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Abstract. This paper is concerned with proving theoretical results related to the convergence of
the Conjugate Gradient method for solving positive definite symmetric linear systems. New relations
for ratios of the A-norm of the error and the norm of the residual are provided starting from some
earlier results of Sadok [13]. These results use the well-known correspondence between the Conjugate
Gradient method and the Lanczos algorithm.
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1. Introduction. The conjugate gradient (CG) method of Hestenes and Stiefel
[3, 4] was originally developed in the early 1950s for solving a linear system of equa-
tions

Ax = b, A ∈ Rn×n, x ∈ Rn, b ∈ Rn (1.1)

where A is a symmetric positive definite (SPD) matrix.
Let x0 be an initial approximate solution of (1.1), the CG method first computes

the initial residual r0 = b − Ax0 and generates a sequence of approximate solutions
x1, x2, . . . such that the residual vector ri = b−Axi can be written in the form

ri = Pi(A)r0,

where Pi belongs to πi the space of i-th degree polynomials satisfying the relation
Pi(0) = 1.

The CG polynomial Pi is chosen such that the error εi = x − xi which satisfies
the relation Aεi = ri is minimized in the A-norm, defined as ‖y‖A = (yT Ay)

1
2 . The

A-norm of the error is therefore given by

‖εi‖A = min
Pi∈πi

‖Pi(A)ε0‖A. (1.2)

In exact arithmetic, the residuals ri obtained by the CG method are orthogonal.
The remainder of this paper is organized as follows. In section 2, we describe

the Petrov-Galerkin orthogonality conditions that define the CG iterates. Using the
relationship between CG and the Lanczos algorithm [5], [6], this leads to obtaining
some new relations for the error A-norm and the residual norm, depending essentially
on Krylov matrices whose columns are the vectors of the natural basis of the Krylov
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subspace based on A and the initial residual. In section 3, using the QR-factorizations
of these Krylov matrices (which are closely linked to the Lanczos algorithm), some
new expressions are derived for ratios of the norms of the error and the residual.

In this paper we will assume exact arithmetic. For a summary of results when
using CG in finite precision arithmetic, see [8] or [9]. Throughout this paper, ej will
stand for the j-th vector of the canonical basis.

2. The Conjugate Gradient method. Let us consider the linear system (1.1)
with the SPD matrix A. Let v ∈ Rn and Kk(A, v) ≡ span{v,Av, . . . , Ak−1v} be the
Krylov subspace constructed from A and v. According to (1.2), the iterates xk are
defined by

xk − x0 ∈ Kk(A, r0) ≡ Kk, (2.1)

and the so-called Petrov-Galerkin orthogonality conditions

rk = b−Axk = Aεk ⊥Kk. (2.2)

It follows from (2.1) that

εk = ε0 −
k∑

i=1

ai Ai−1r0. (2.3)

where ai ∈ R, 1 ≤ i ≤ k. The orthogonality condition (2.2) can be written as

(Air0)T Aεk = 0, 0 ≤ i ≤ k − 1. (2.4)

In an equivalent matrix form, using the Krylov matrix

Kk = [r0, Ar0, . . . , A
k−1r0],

the orthogonality condition writes as

(KT
k AKk)a = KT

k r0, (2.5)

with a = (a1, a2, · · · , ak)T . Of course, in practice, xk is not computed by solving the
system giving a at each iteration k. The most usual form of the Conjugate Gradient
algorithm (see for instance [2] or [8]) is given as:

Conjugate Gradient Algorithm
• Init: r0 := b−Ax0, p0 := r0.
• Iterate: Until convergence do,

1. γj := (rj , rj)/(Apj , pj)
2. xj+1 := xj + γjpj

3. rj+1 := rj − γjApj

4. βj+1 := (rj+1, rj+1)/(rj , rj)
5. pj+1 := rj+1 + βj+1pj

This algorithm needs only a matrix-vector product, vector additions and two
inner products per iteration. In the following, we derive expressions for the A-norm
of the error ‖εk‖A and the norm of the residual ‖rk‖.
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2.1. The norms ‖εk‖A and ‖rk‖. We start by giving expressions of ‖εk‖A

involving the Krylov matrix Kk.
Theorem 2.1. Let εk = x − xk be the Conjugate Gradient error. Then, if the

matrices KT
k AKk and KT

k+1A
−1Kk+1 are nonsingular,

‖εk‖2
A = (εk, Aεk) =

det(KT
k+1A

−1Kk+1)
det(KT

k AKk)
=

1
eT
1 (KT

k+1A
−1Kk+1)−1e1

.

Proof. Since Aεk = rk, it follows from (2.3) that

(εk, Aεk) = (rk, εk)

= (rk, ε0 −
k∑

i=1

ai Ai−1r0).

By using condition (2.4), we obtain

(εk, Aεk) = (rk, ε0)

= (r0, ε0)−
k∑

i=1

ai(Ai−1r0, r0)

= (r0, ε0)− (r0,Kka).

(2.6)

where a is given by solving the system (2.5), that is a = (KT
k AKk)−1KT

k r0. We
observe that the right hand side of (2.6) is a Schur complement for the matrix

KT
k+1A

−1Kk+1 =

 rT
0 ε0 rT

0 Kk

KT
k r0 KT

k AKk

 .

Cramer’s rule gives that

‖εk‖2
A = det

 rT
0 ε0 rT

0 Kk

KT
k r0 KT

k AKk

 / det(KT
k AKk),

where det(B) stands for the determinant of the matrix B.
Note that Kk+1 =

[
r0, AKk

]
and A−1Kk+1 =

[
ε0, Kk

]
. Therefore

‖εk‖2
A =

det(KT
k+1A

−1Kk+1)
det(KT

k AKk)
.

Using the hypothesis that KT
k+1A

−1Kk+1 is nonsingular and by using Cramer’s rule
for computing the (1, 1) element of the inverse of KT

k+1A
−1Kk+1, the following result

holds

eT
1 (KT

k+1A
−1Kk+1)−1e1 =

det(KT
k AKk)

det(KT
k+1A

−1Kk+1)
=

1
(εk, Aεk)

.

Since ε0 = A−1 Kk+1 e1 we have (ε0, Aε0) = (ε0, r0) = eT
1 KT

k+1 A−1Kk+1 e1. Conse-
quently

‖εk‖2
A

‖ε0‖2
A

=
1

eT
1 (KT

k+1 A Kk+1)e1 eT
1 (KT

k+1A
−1Kk+1)−1e1

.
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By using the Kantorovich inequality [16] we obtain the following lower bound.
Theorem 2.2.

‖εk‖A

‖ε0‖A
≥

2
√

κ(KT
k+1A

−1Kk+1)

κ(KT
k+1A

−1Kk+1) + 1
,

where κ denotes the condition number.
This last result shows that there is no CG convergence as long as the matrix

KT
k+1A

−1Kk+1 is well-conditioned.
It is well known that the CG algorithm has a close relationship with the Lanczos

algorithm which is the following:
Lanczos Algorithm
• Set v1 =

r0

‖r0‖
, v0 ≡ 0

• For j = 1, 2, . . . , k:
1. wj := Avj − ηjvj−1

2. αj := (wj , vj)
3. wj := wj − αjvj

4. ηj+1 := ‖wj‖2.
5. If ηj+1 = 0 then Stop
6. vj+1 := wj/ηj+1.

The Lanczos algorithm generates matrices Vj whose columns are the Lanczos
vectors vi, i = 1, . . . , j and a tridiagonal matrix Tk,

Tk =


α1 η2

η2 α2 η3

. . . . . . . . .
ηk−1 αk−1 ηk

ηk αk

 .

It is easy to see that we have the following well known properties

V T
k Vk = Ik, where Vk ≡ [v1, . . . , vk] ,

that is Vk is an orthonormal matrix and

A Vk = Vk Tk + ηk+1 vk+1 eT
k . (2.7)

Multiplying relation (2.7) by V T
k implies that Tk = V T

k AVk. The Lanczos algorithm
can be used to solve linear systems by defining iterates xk = x0+Vkyk. The coefficients
yk are computed by requiring orthogonality of the residuals. They are obtained by
solving

Tkyk = ‖r0‖e1.

The relationship between CG and the Lanczos algorithm is given in the following
theorem, see for instance [8].

Theorem 2.3. If x0 and v1 with ‖v1‖ = 1 are such that r0 = b− Ax0 = ‖r0‖v1

the Lanczos algorithm started from v1 generates the same iterates as the CG algorithm
started from x0 when solving the linear system Ax = b with A SPD and we have the
following relations between the coefficients

αk =
1

γk−1
+

βk−1

γk−2
, β0 = 0, γ−1 = 1,
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ηk+1 =
√

βk

γk−1
,

and the Lanczos vectors are related to the CG residuals by

vk+1 = (−1)k rk

‖rk‖
.

As seen previously, the A-norm of the error shows the important role played by
the matrix (KT

k A−1Kk)−1. Using the QR decomposition of the Krylov matrix Kk,
we obtain Kk = Vk Rk, where V T

k Vk = Ik and Rk is an upper triangular matrix. This
orthonormal matrix Vk is the same as the one constructed in the Lanczos algorithm,
see [8]. Consequently

(KT
k A−1Kk)−1 = R−1

k (V T
k A−1 Vk)−1 R−T

k = R−1
k T̂k R−T

k ,

where T̂k is defined as

T̂k = (V T
k A−1 Vk)−1.

In the next section we will study the interesting properties of the matrix T̂k. We will
prove that its eigenvalues, which in the sequel will be called the Petrov-Galerkin values
(since (2.2) is a Petrov-Galerkin condition) are approximations to the eigenvalues of
the matrix A, as those of the Lanczos matrix Tk which are known as Ritz values.

2.2. Properties of the matrix T̂k. In this section we study the structure of
the matrix T̂k. We will first prove that this matrix is tridiagonal. We will also show
that T̂k is nothing but the matrix Tk except for the (k, k) diagonal element, that is
T̂k is a rank-one modification of Tk. The eigenvalues of T̂k behave as the Ritz values.
Some interlacing relations between both sets of approximations will be given.

To prove the next theorem we need the following lemma which is proved in Zhang
[16].

Lemma 2.4. Let U be an orthogonal matrix. If the eigenvalues of the SPD matrix
A are ordered such that λn ≤ . . . ≤ λ1 then ∀y ∈∈ Rn, we have

1. 0 ≤ yT (UT A U) y − yT (UT A−1 U)−1 y ≤ (
√

λ1 −
√

λn)2,

2. 0 ≤ yT (UT A2 U) y − yT (UT A U)2 y ≤ (λ1 − λn)2

4
.

In the following result we characterize the matrix T̂k.
Theorem 2.5. Let λn, . . . , λ1 be the eigenvalues of the matrix A arranged as in

Lemma 2.4, then

T̂k = Tk − τkek eT
k , (2.8)

where τk is a positive real element such that

0 ≤ τk ≤ (
√

λ1 −
√

λn)2.

Proof. Invoking relation (2.7) we deduce that

Ik = V T
k A−1VkTk + ηk+1V

T
k A−1vk+1e

T
k ,

T̂k = Tk + ηk+1T̂kV T
k A−1vk+1e

T
k ,

T̂k = Tk + uk eT
k ,
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where uk = ηk+1T̂kV T
k A−1vk+1. Since T̂k and Tk are symmetric, it is obvious that

uk eT
k is also symmetric. Hence uk eT

k = τkek eT
k and T̂k is tridiagonal.

In Lemma 2.4, we set, U = Vk and y = ek to obtain the second part of the
theorem.

Theorem 2.5 shows that the only unknown parameter of T̂k is τk. Indeed we have

T̂k = (V T
k A−1 Vk)−1 =


α1 η2

η2 α2 η3

. . . . . . . . .
ηk−1 αk−1 ηk

ηk αk − τk

 .

Let θ
(k)
i and θ̂

(k)
i be the eigenvalues of Tk (Ritz values) and T̂k (Petrov-Galerkin

values) respectively. We arrange them as
θ
(k)
k ≤ . . . ≤ θ

(k)
2 ≤ θ

(k)
1 and θ̂

(k)
k ≤ . . . ≤ θ̂

(k)
2 ≤ θ̂

(k)
1 .

In the following theorem we gather some interlacing properties relating the eigen-
values of the three matrices Tk, T̂k and A.

Theorem 2.6. There exist nonnegative real numbers m1, . . . ,mk such that

θ̂
(k)
i = θ

(k)
i − τk mi

with mi ≥ 0 and
k∑

i=1

mi = 1. Moreover

1) θ
(k)
i+1 ≤ θ̂

(k)
i ≤ θ

(k)
i , i ∈ {1, . . . , k − 1},

2) θ̂
(k)
i ≤ θ

(k)
i ≤ θ̂

(k)
i−1, i ∈ {2, . . . , k},

3) θ̂
(k)
i ≤ θ

(k−1)
i−1 ≤ θ̂

(k)
i−1, i ∈ {2, . . . , k},

4) λi+n−k ≤ θ̂
(k)
i ≤ θ

(k)
i ≤ λi, i ∈ {1, . . . , k}.

Proof.
1) and 2). The matrix T̂k is obtained by perturbing the matrix Tk by a rank-one

matrix. From theorem 8.1.5 of [2, p. 412], we obtain the first two statements.
3) The matrix Tk−1 is a square submatrix of order (k − 1) of T̂k obtained by

deleting the last row and the last column. Hence by using the interlacing Cauchy
theorem for eigenvalues [2, p. 411], we get the inequalities given in 3).

4) Finally, for the last part, we use the relation T̂−1
k = Vk A−1 Vk and Corollary

4.4 of [14, p. 198] to deduce that

θ̂
(k)
i ∈ [λn−k+i, λi] for i = 1, . . . , k,

which completes the proof.

3. Relationship between ‖rk‖ and ‖εk‖A. When using CG, we are concerned
with the A-norm of the error because it corresponds to the energy norm occurring in
some problems arising from partial differential equations and also because this norm
is minimized at each CG iteration. We have the following result which appears to be
new.
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Theorem 3.1. Let εk−1 and εk be the errors obtained by the Conjugate Gradient
method at steps k − 1 and k respectively. We have

‖εk‖2
A

‖εk−1‖2
A

= 1− 1
det(V T

k AVk) det(V T
k A−1Vk)

= 1−det(T̂k)
det(Tk)

= 1−
k∏

i=1

θ̂
(k)
i

θ
(k)
i

= τk eT
k T−1

k ek.

(3.1)

Proof. Since A−1Kk+1 =
[

A−1r0, Kk−1, Ak−1r0

]
, we deduce that,

KT
k+1A

−1Kk+1 =


rT
0 A−1r0 rT

0 Kk−1 rT
0 Ak−1r0

KT
k−1r0 KT

k−1AKk−1 KT
k−1A

kr0

rT
0 Ak−1r0 rT

0 AkKk−1 rT
0 A2k−1r0

 .

Applying Sylvester’s identity [1] to the matrix KT
k+1A

−1Kk+1, we obtain

det(KT
k+1A

−1Kk+1) det(KT
k−1AKk−1) = det(KT

k A−1 Kk) det(KT
k A Kk)−det(KT

k Kk)2.
(3.2)

By using Theorem 2.1, the following result holds

‖εk‖2
A

‖εk−1‖2
A

= 1− det(KT
k Kk)2

det(KT
k A−1Kk) det(KT

k AKk)
. (3.3)

By using the QR-factorization of Kk, we obtain

‖εk‖2
A

‖εk−1‖2
A

= 1− det(T̂k)
det(Tk)

= 1−
k∏

i=1

θ̂
(k)
i

θ
(k)
i

.

Relation (2.8) also gives

det(T̂k) = (αk − τk) det(Tk−1)− η2
k det(Tk−2). (3.4)

By using the fact that det(Tk) = αk det(Tk−1)− η2
k det(Tk−2), we deduce that

det(T̂k) = det(Tk)− τk det(Tk−1),
det(T̂k)
det(Tk)

= 1− τk
det(Tk−1)
det(Tk)

.

The proof is completed by using (3.3).
Remarks:

1. If k = 1, it is easy to show, by using the fact that

‖ε1‖2
A

‖ε0‖2
A

= 1− 1
(vT

1 Av1)(vT
1 A−1v1)

and the Kantorovich inequality, that an optimal bound is given by

‖ε1‖A

‖ε0‖A
≤ 1

1 + 2
λn

λ1 − λn

.
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2. Using Theorem 2.6, we deduce that

‖εk‖A

‖εk−1‖A
≤

√√√√1−
θ̂
(k)
k

θ
(k)
1

≤
√

1− λn

λ1
.

Now, we recall a result proved by Sadok in [13].
Theorem 3.2. Let rk−1 and rk be the residuals obtained by the Conjugate Gra-

dient method at steps k − 1 and k respectively, we obtain

‖rk‖
‖rk−1‖

= ηk+1
det(Tk−1)
det(Tk)

= ηk+1 eT
k T−1

k ek.

Using this theorem we can give a new bound for the (possible) increase of the
residual.

Theorem 3.3. Let rk−1 and rk be the residuals obtained by the Conjugate Gra-
dient method at steps k − 1 and k respectively, we obtain

‖rk‖
‖rk−1‖

≤ κ(A)− 1
2

,

where κ(A) = λ1/λn is the condition number of A.
Proof. Formula (2.7) can be rewritten as

A Vk = Vk+1

(
Tk

ηk+1e
T
k

)
.

Multiplying this relation by its transpose we find

V T
k A2 Vk = (V T

k AVk)2 + ηk+1ekeT
k .

Using the second part of Lemma 2.4, we deduce that

ηk+1 ≤
λ1 − λn

2
,

then, by the Courant-Fischer Minimax Theorem, Theorem 2.5 and Theorem 3.2, we
conclude that

‖rk‖
‖rk−1‖

≤ λ1 − λn

2 θ
(k)
k

≤ λ1 − λn

2 λn
.

By considering Theorem 3.1 and Theorem 3.2, we have

τk =
‖εk‖2

A

‖εk−1‖2
A

‖rk−1‖
‖rk‖

ηk+1.

The following result relates the A-norm of the error to the norm of the residual.
Theorem 3.4. Let rk be the residual obtained at the k-th step, εk and εk−1 the

CG errors obtained at k-th and (k − 1)-th steps respectively. Then
1.

‖rk‖2 =
det(T̂k+1)
det(Tk)

‖εk‖2
A =

‖εk‖2
A

eT
k+1 T̂−1

k+1 ek+1

.
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2.

θ̂
(k+1)
k+1 ≤ ‖rk‖2

‖εk‖2
A

≤ θ̂
(k+1)
1 .

Proof. It was proved by Sadok in [13] that

‖rk‖2 =
det(KT

k Kk) det(KT
k+1Kk+1)

det(KT
k AKk)2

.

From Theorem 2.1, we see that

‖rk‖2 =
det(KT

k Kk) det(KT
k+1Kk+1)

det(KT
k AKk) det(KT

k+1A
−1Kk+1)

(εk, Aεk).

Using the QR decomposition of the Krylov matrix Kk = VkRk, we obtain

‖rk‖2 =
det((V T

k+1A
−1Vk+1)−1)

det(V T
k AVk)

(εk, Aεk).

Consequently

‖rk‖2 =
det(T̂k+1)
det(Tk)

(εk, Aεk).

The second part of the theorem is obtained by bounding det(T̂k+1)/ det(Tk).
Theorem 3.5. Let rk be the residual and εk be the CG error obtained at the k-th

step. Then

‖rk‖2

‖εk‖2
A

= αk+1 − ηk+1
‖rk‖
‖rk−1‖

− τk+1 =
1
γk

− τk+1

Proof. Using Formula (3.4), we have

det(T̂k+1)
det(Tk)

= αk+1 − τk+1 − η2
k+1

det(Tk−1)
det(Tk)

.

The assertion follows from Theorem 3.4.
Finally, we relate our results using Krylov matrices to a formula for difference of

the squares of the A-norm of the error in successive iterations proved in Hestenes and
Stiefel [3].

Theorem 3.6. Let rk be the residual obtained at the k-th step, εk and εk−1 the
CG errors obtained at k-th and (k − 1)-th steps respectively. Then

‖εk−1‖2
A − ‖εk‖2

A = γk−1‖rk−1‖2 =
‖rk−1‖.‖rk‖

ηk+1
,

with γk−1 =
det(Tk−1)
det(Tk)

, the parameter computed in CG.

Proof. By using (3.2), we deduce

‖εk−1‖2
A − ‖εk‖2

A =
det(KT

k Kk)2

det(KT
k−1AKk−1) det(KT

k AKk)
= γk−1‖rk−1‖2,

where γk−1 =
det(KT

k Kk) det(KT
k−1AKk−1)

det(KT
k AKk) det(KT

k−1Kk−1)
=

det(Tk−1)
det(Tk)

.
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4. Conclusion. In this paper we have established new expressions for the A-
norm of the error and the norm of the residual for the CG algorithm. We have shown
that T̂k = (V T

k A−1Vk)−1 is a tridiagonal matrix and a rank-one modification of the
Lanczos matrix Tk. This modification is characterized by an important parameter τk

which is involved in the ratio of A-norms of the error at successive CG iterations and
in the ratio of the norm of the residual to the A-norm of the error.

It remains to be seen if we can, at least, compute good approximations of the
parameter τk during CG iterations. This will be considered in a forthcoming paper.
It could lead to complementing the bounds on the A-norm of the error that can be
cheaply obtained using Gauss quadrature, see [8] for a summary of these techniques.
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