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Abstract. Bootstrap Algebraic Multigrid (BAMG) is a multigrid-based solver for matrix equa-
tions of the form Ax = b. Its aim is to automatically determine the interpolation weights used in
algebraic multigrid (AMG) by locally fitting a set of test vectors that have been relaxed as solutions
to the corresponding homogeneous equation, Ax = 0, and are then possibly improved later using
a multilevel eigensolver. This paper introduces a flexible variant of BAMG that determines the in-
terpolation weights indirectly by “collapsing” the unwanted connections in “operator interpolation”.
Compared to BAMG, this indirect BAMG approach (iBAMG) is more in the spirit of classical AMG,
which collapses unwanted connections in operator interpolation based on the (restrictive) assumption
that smooth error is locally constant. This paper studies the numerical performance of iBAMG and
establishes an equivalence, under certain assumptions, between it and a slightly modified (standard)
BAMG scheme. To focus on camparing BAMG and iBAMG and exposing their behavior as the
problem size grows, the numerical experiments concentrate on Poisson-like scalar problems.
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1. Introduction. Multigrid methods consist of two complementary processes:
smoothing and coarse-grid correction. In the classical geometric multigrid setting,
the premise is that relaxation methods like Jacobi and Gauss-Seidel are effective
at reducing high-frequency (oscillatory) error, but are often poor at reducing low-
frequency (smooth) error. The aim, then, of the coarsening process is to eliminate
the smooth error that remains after relaxation. Unfortunately, many problems cannot
be easily treated by coarsening in a geometrically based way (e. g., those arising from
discretizations based on highly irregular grids) and many more still do not exhibit the
property that relaxation produces geometrically smooth error (e. g., highly anisotropic
problems, stochastic problems like those that arise in quantum chromodynamics, and
even problems whose unknowns are scaled in a way that is not available to the solver).

Classical algebraic multigrid (AMG [6]) is a linear solver for matrix equations of
the form Ax = b that is based on multigrid principles but that requires no knowledge
of the underlying geometry. Instead, AMG attempts to use the concept of algebraic
smoothness to choose the coarse “grids” and intergrid transfer operators automati-
cally based on the matrix entries. Classical AMG is founded on two core premises:
relaxation produces relatively small residuals and the errors associated with small
residuals are locally constant. The first premise allows a coarsening process that is
based on “operator interpolation” and the second premise, which constitutes alge-
braic smoothness, allows unwanted connections in the operator interpolation process
to be “collapsed”. (We avoid referring to the terms we intend to collapse in the usual
way as “F − F” connections because, in addition to fine-grid points, we may want
to eliminate coarse-grid points that are not used for interpolation.) See [8] for more
detail. While appropriate use of the characteristics of algebraic smoothness seems
essential for obtaining effective solvers, these additional assumptions limit the scope
of applicability of such methods. What is needed are self-learning algebraic multi-
grid solvers that automatically determine the full character of algebraically smooth
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errors. Robust multigrid solvers with this capability could dramatically increasing
the applicability of optimal multigrid solvers over a wide range of discrete problems.

Extensive research effort has already been devoted to the development of such
self-learning algebraic multigrid algorithms, starting from the original adaptive AMG
algorithm introduced in [6], the bootstrap AMG approach introduced in [3] and de-
veloped further for quantum chromodynamics in [5], an adaptive scheme based on
smoothed aggregation (SA) developed in [9] and [10], and adaptive AMG schemes de-
veloped further in [12] and [11]. The principal difference between these self-learning
multigrid schemes is that the adaptive approaches typically start with just one test
vector, while bootstrap starts with several. Both schemes produce the test vectors
initially by starting with random initial guesses to the corresponding homogeneous
problem, Ax = 0. The adaptive approach constructs interpolation to fit its single ini-
tial test vector, then tests the resulting solver on the homogeneous problem, starting
from another random initial vector. If observed convergence is not yet acceptable,
then the resulting vector is either used to enhance the original test vector or else
added to the test-vector set. The process then continues until acceptable convergence
is observed. BAMG instead constructs interpolation to fit (in a least-squares sense)
its several initial test vectors. It uses the constructed solver a little more reluctantly,
and only after it observes slow improvement of interpolation based on other possible
choices for enhancing the set of test vectors (e. g., interpolating eigenvector approxi-
mations from the coarsest grids). The adaptive schemes are advantageous in that they
naturally sort out a rich and locally independent set of test vectors: a properly imple-
mented adaptive scheme should be able to generate a local representation of algebraic
smoothness that is rich and independent in the sense that each local vector represents
a new character of algebraic smoothness. Unfortunately, adaptive approaches can be
costly in their initial stages because an effective coarse-grid solver must be developed
before returning to the fine grid if the quality of interpolation is to be safely assessed.
Otherwise, it would be difficult to determine whether slow convergence is due to a
poor interpolation operator or a poor coarse-level solver. Bootstrap methods are more
problematic for sorting out local linearly independent test vectors, but their initial
stages are potentially much less expensive because they tend to delay the need for an
effective coarse-grid solver.

It is therefore compelling to study bootstrap methods further, particularly in
terms of gaining some insight into how many test vectors should be used initially
for a given class of problems. Our intention here is not to compare bootstrap and
adaptive methods nor develop related hybrids, but rather to study the performance
of the basic approach and to show performance dependence on problem size. We
also do not intend to analyze cost or determine optimal parameters. Comparisons
and optimization would necessarily be involved and extensive, and are in any case
beyond the scope of this paper. Nevertheless, since the adaptive methods can in a
loose sense be regarded as a bootstrap approach with one initial test vector, then
the specific knowledge we gain here should facilitate comparison of the adaptive and
bootstrap approaches. Ideally, this study would be done by developing strategies
that allow for fewer test vectors than are currently used in bootstrap methods. That
is, bootstrap methods have tended to use enough initial test vectors to yield well-
determined local least-squares problems, which means at least as many as the number
of local interpolatory points. One of the outcomes of our work here is an effective
scheme that allows for very underdetermined least-squares problems, so this paper
can be considered as taking us a step closer to comparing the adaptive and bootstrap
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approaches.
With this goal in mind, we begin in the next section with a brief description of

classical AMG to set the stage. Then, in section 3, we introduce an improved version
of BAMG. This new scheme determines the interpolation weights indirectly by “col-
lapsing” the unwanted connections in “operator interpolation”. Compared to BAMG,
this indirect BAMG approach (iBAMG) is more in the spirit of classical AMG, which
collapses unwanted connections in operator interpolation based on the (restrictive) as-
sumption that smooth error is locally constant. Continuing section 3, we describe two
ways to collapse unwanted connections and prove that they are equivalent under cer-
tain assumptions. More importantly, we then show the equivalence between a slightly
modified standard BAMG scheme and our iBAMG approach, again under certain as-
sumptions. Finally, in section 4, we use numerical experiments to confirm that these
are indeed improvements to standard BAMG, and end with a few concluding remarks
in section 5.

We should point out here that our focus is on improving the process for choosing
weights in bootstrap methods, not the other aspects of coarsening that have been
developed in this context. Thus, in particular, we do not address the question of
determining good coarse grids or interpolatory points. For example, our numerical
tests all use standard coarse grids, which we know to be adequate for the simple
Poisson-type problems we consider here. For recent work on how to choose effective
coarse grids within the BAMG setting, see [5].

2. Classical AMG. Assume in what follows that A = (aij) ∈ <n×n. This
section is devoted to describing how classical AMG applied to Ax = b determines the
weights in the interpolation operator, which we denote by P . Because our focus is
on the weights of interpolation as opposed to how the coarse grids are selected, we
assume that the fine-level points have already been partitioned into points that are
identified with the coarse grid, the set of which we denote by C, and its complement,
which we denote by F . This partition into C and F points gives rise to the AMG
form of interpolation described as follows: the ith entry of Pe be given by

(Pe)i =





ei if i ∈ C,∑
j∈Ci

wijej if i ∈ F. (2.1)

Here, Ci is the subset of C of points that are used to interpolate to point i /∈ C.
Our task now is to describe in abstract terms how the interpolation weights, wij , are
determined. Therefore, for the remainder of this section, we consider a given fixed
i ∈ F .

Interpolation only needs to approximate error that is not easily attenuated by
relaxation. This observation gives rise to the first AMG premise: relaxation produces
error, e, that is algebraically smooth in the sense that it exhibits a relatively small
residual. Therefore, we can assume that (Ae)i ≈ 0, that is, that

aiiei ≈ −
∑

j 6=i

aijej .

Consider now the splitting of this sum into its component sums over Ci, the coarse
interpolatory set, and Cc

i , the remaining grid points in the neighborhood of i, by which
we mean the set of points that are connected to i in A (i. e., all points ` such that
ai` 6= 0). We assume for simplicity in this paper that Cc

i is taken only from the
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neighborhood of i, so it consists of connected F points and other connected C points
that are not in Ci. With this splitting, we obtain

aiiei ≈ −
∑

j∈Ci

aijej −
∑

k∈Cc
i

aikek. (2.2)

The message here is that, if the second component sum happens to vanish in this
approximation (e. g., aik = 0 for k ∈ Cc

i ), then we would immediately have a formula
that expresses the value of any algebraically smooth error at point i by its value at
points of Ci. This “operator interpolation” formula would then yield appropriate
weights for P given by wij = −aij/aii. This observation suggests, for the general
case

∑
k∈i aikek 6= 0, that we need to “collapse” the unwanted connections (aik for

k ∈ Cc
i ) to Ci. Thus, we need to replace the ek in the second sum on the right side of

(2.2) with sums that involve only ej for j ∈ Ci.
To replace each ek, k ∈ Cc

i , with a linear combination of the ej , j ∈ Ci, we
need to make a further assumption about the nature of smooth error. Since the
historical target for AMG is partial differential equations of elliptic type, the classical
AMG premise is that smooth error is locally almost constant. This second AMG
premise means that we can assume that each ek is any convex linear combination
of the ej , j ∈ Ci, that preserves constants. AMG is based on the particular linear
combination where the coefficients are proportional to the connections from point k
to each point j, that is, it is based on the approximation

ek ≈
∑

j∈Ci

akj∑
`∈Ci

ak`
ej . (2.3)

Substituting this expression into (2.2) and dividing the result by aii yields interpola-
tion weights given by

wij =
1
aii


−aij −

∑

k∈Cc
i


aik

akj∑
`∈Ci

ak`





 . (2.4)

This process of collapsing the unwanted connections in the operator interpola-
tion formula expressed by (2.2) can be viewed as using a crude but properly scaled
truncated interpolation formula, expressed by (2.3), to interpolate from Ci to ek. (We
refer to (2.3) as truncated because it amounts to operator interpolation at point k
where we have simply deleted the unwanted terms–those that do not belong to Ci. It
is properly scaled in the sense that it is exact for constants.) This indirect process has
the effect of collapsing the unwanted connections, and it leads to the direct formula
for interpolation weights defined in (2.4).

3. BAMG and iBAMG methods. Assume for the remainder of this paper
that A ∈ <n×n is symmetric and positive definite. Suppose now that we are given
a set of test vectors, e(l), l = 1, 2, . . . , q, that result from several fine-level relaxation
sweeps on the homogeneous equation, Ae = 0, starting from q distinct random ap-
proximations. (We assume that the initial random vectors are of unit length in the
Euclidean norm to avoid significant scale disparity in the least-squares processes that
follow.) Since the focus is on the process of determining interpolation weights, we
continue to assume that the fine-level points have already been partitioned into the
C-points that are identified with the coarse grid and its F -point complement set. We
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also assume that the coarse-grid interpolatory set, Ci, has already been determined
for each F -point i. Also, unless otherwise noted (in particular, see section 3.5), we
assume that the vectors are locally rich in that they are locally independent and
numerous enough to ensure that all of the least-squares problems we introduce are
uniquely solvable.

3.1. BAMG. The general form of interpolation operator, P , for AMG is given
in (2.1). As described in the previous section, the choice of weights wij is dictated by
two basic premises: relaxation produces small residuals and relaxed errors are locally
almost constant. The first premise is very general: many matrix equations can be
treated by relaxation schemes that produce small residuals in a sense that leads to
useable local operator interpolation formulas. However, many circumstances arise
where local errors are not approximately constant in any local sense, so the second
premise seriously restricts the applicability of AMG methods. The basic idea behind
BAMG is to glean the local character of algebraically smooth errors from the set
of test vectors. This leads to a determination of the interpolation weights by direct
least-squares fit of the target vectors. Thus, for each i ∈ F , we compute

(BAMG) {wij : j ∈ Ci} = arg min
wij

q∑

l=1

(e(l)
i −

∑

j∈Ci

wije
(l)
j )2. (3.1)

BAMG takes a direct approach to determining the weights of interpolation. More
in the spirit of classical AMG as described in section 2, we now introduce an indirect
approach based on collapsing the unwanted connections in operator interpolation.

3.2. iBAMG. As with classical AMG, the starting point for determining the
interpolation weights is the residual relation expressed in (2.2), again with Cc

i denoting
the complement of Ci in the neighborhood of i. In particular, we assume nonzero
unwanted connections: aik 6= 0 for all k ∈ Cc

i . The objective now is to collapse
these connections by approximating the last sum in the residual equation by a linear
combination of the errors at the Ci points. The departure point here is that we can
no longer assume that the target error is approximately constant. Instead, we use
the test vectors to provide the sense of smoothness that we need. As before, once the
unwanted connections have been collapsed, we can use the residual relation to write
the F -point error, ei, directly as a linear combination of the ej for j ∈ Ci, which then
yields the desired interpolation weights.

In classical AMG, an approximation is made separately for each ek with k ∈ Cc
i ,

so this is a natural approach to take here: for each k ∈ Cc
i , we seek weights βkj ,

dependent on i, such that

ek ≈
∑

j∈Ci

βkjej .

Analogous to the BAMG approach, for this indirect interpolation problem, we use
least squares to determine each βkj :

(iBAMGa) {βkj : j ∈ Ci} = arg min
βkj

q∑

l=1

(e(l)
k −

∑

j∈Ci

βkje
(l)
j )2. (3.2)

This process results in the approximation
∑

k∈Cc
i

aikek ≈
∑

j∈Ci

∑

k∈Cc
i

aikβkjej
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and resulting interpolation weights

wij =
1
aii


−aij −

∑

k∈Cc
i

aikβkj


 . (3.3)

Compare this expression with the weights for classical AMG given in (2.4). Note
that these weight formulas agree for the case where the βkj reduce to the truncated
interpolation formula given in (2.3).

An alternative to separately collapsing unwanted connections is to approximate
all of the connections at once: for each k ∈ Cc

i , we seek weights αj , again dependent
on i, such that

(iBAMGb) {αj : j ∈ Ci} = arg min
αj

q∑

l=1

(
∑

k∈Cc
i

aike
(l)
k −

∑

j∈Ci

αje
(l)
j )2. (3.4)

This yields the simpler approximation
∑

k∈Cc
i

aikek ≈
∑

j∈Ci

αjej

and resulting interpolation weights

wij =
1
aii

(−aij − αj). (3.5)

3.2.1. iBAMGa and iBAMGb equivalence. Fitting the interpolation weig-
hts of all of the unwanted connections at once for each i ∈ F as iBAMGb does is sim-
pler and less expensive than fitting these weights individually as iBAMGa does. So it
is important to know that these two approaches actually yield the same weights, pro-
vided the least-squares problems are well posed in the sense that the normal equation
operator is nonsingular.

Lemma 3.1. Denote the vector of values of e(l) at points of Ci by ε(l) and let L
be the |Ci| × |Ci| matrix defined by

L =
q∑

l=1

ε(l)ε(l)T . (3.6)

If L is nonsingular, then definitions (3.3) and (3.5) are equivalent.
Proof. For each k ∈ Cc

i , let βk denote the vector of values βkj , j ∈ Ci. Also let
α denote the vector of values αj , j ∈ Ci. Then least-squares problem (3.2) results in
the normal equation

Lβk =
q∑

l=1

e
(l)
k ε(l), (3.7)

for each k ∈ Cc
i , while least-squares problem (3.3) results in just the one normal

equation

Lα =
q∑

l=1

∑

k∈Cc
i

aike
(l)
k ε(l). (3.8)
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The equivalence between (3.3) and (3.5) now follows from the unique solvability of
(3.7) and (3.8) and the relation

α =
∑

k∈Cc
i

aikβk. (3.9)

An important implication of this lemma is that, if each connection to Cc
i is col-

lapsed to all Ci points using a rich-enough set of test vectors (note, in particular, that
we must have at least |Ci| test vectors), then the combined approach of iBAMGb is
to be preferred because it is equivalent to, but less expensive than, iBAMGa. How-
ever, because of its greater flexibility, iBAMGa may be useful in cases where different
subsets of the interpolatory points are used for each unwanted connection or the set of
test vectors is somehow deficient. We demonstrate this flexibility is section 3.5 below.

3.3. BAMG and iBAMG conditional equivalence. The motive behind
iBAMG is to attempt to insulate coarsening from a crude interpolation formula by
relegating this formula to the unwanted and hopefully less important connections to i
from Cc

i . The hope is that any crudeness in determining the weights would have less
impact if it were used for collapsing the connections indirectly than it would with the
approach of determining interpolation weights directly. It is interesting to observe
that the indirect and direct approaches are also equivalent in the special case that the
residuals for all test vectors at point i are 0.

Lemma 3.2. Suppose again that the |Ci| × |Ci| matrix L defined by (3.6) is
nonsingular. Then BAMG and iBAMG (either version) are conditionally equivalent
in the sense that they give the same interpolation weights at any point i for which all
test-vector residuals are null: r

(l)
i ≡

(
Ae(l)

)
i
= 0, l = 1, 2, · · · , q.

Proof. Denote the vector of values of wij at points of Ci by wi and note that the
normal equation for the BAMG least-squares problem in (3.1) can be written as

Lwi =
q∑

l=1

e
(l)
i ε(l). (3.10)

The right side of this equation can be rewritten as

q∑

l=1

e
(l)
i ε(l) =

1
aii




q∑

l=1

(ri −
∑

j∈Ci

aije
(l)
j −

∑

k∈Cc
i

aike
(l)
k )ε(l)


 .

Letting ai be the vector of coefficients aij , j ∈ Ci, and using the premise that ri = 0,
we then have

q∑

l=1

e
(l)
i ε(l) = − 1

aii


Lai +

q∑

l=1

∑

k∈Cc
i

aike
(l)
k ε(l)


 .

From (3.8), we can then rewrite the right side of (3.10) as

q∑

l=1

e
(l)
i ε(l) = − 1

aii
L (ai + α) ,
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which in turn yields

wi =
1
aii

(−ai − α).

3.4. rBAMG. This equivalence for the case that ri = 0 can be exploited to
improve BAMG simply by incorporating the residual in the least-squares process.
Specifically, the least-squares problem for BAMG given by (3.1) can be modified by
the addition of the local scaled residual as follows:

(rBAMG) {wij : j ∈ Ci} = arg min
wij

q∑

l=1

(e(l)
i −

∑

j∈Ci

wije
(l)
j −

r
(l)
i

aii
)2. (3.11)

This change to the fitting process yields a new scheme, which we call rBAMG, that
is equivalent to iBAMG for the case that unwanted connections are collapsed to all
of Ci and the target vectors are rich enough locally to guarantee a unique fit. This
change should therefore improve the direct approach insofar as our numerical tests
show the superiority of iBAMG. Thus, we can expect this improved approach to offer
better performance for a given number of target vectors and relaxation steps applied
to them.

Note that this modification to the direct scheme is equivalent to temporarily re-
laxing the equation at point i and then applying the standard BAMG minimization
approach. As such, rBAMG is related in spirit to the adaptive relaxation scheme
described by Brandt in [1] (and suggested in [2]) that applies relaxation selectively to
points exhibiting especially large residuals. However, it should be noted that iBAMG
offers significant improvement over existing bootstrap methods in two respects. First,
iBAMG is equivalent to BAMG only when relaxation is applied to all points, and then
only temporarily in a pointwise fashion during the least-squares fit. This equivalence
breaks down when local and/or permanent relaxation is applied to the target vectors.
Second, this equivalence also breaks down when either collapsing the unwanted con-
nections does not include all of Ci or there are not enough target vectors to determine
a unique least-squares fit. For these reasons, iBAMG represents a more flexible and
significant improvement over the standard bootstrap approach.

An important implication of the equivalence between these bootstrap methods is
that, when it does hold, then all of the machinery that has so far been developed for
BAMG applies in effect to iBAMG. For example, this includes processes for assessing
the quality of the current coarse level (i. e., the C − F partition and Ci) as well as
the processes that are designed to improve them (see [3] and [5] for further detail).

A result in [11] shows that adaptive AMG is invariant to diagonal scaling in
the sense that symmetrically scaling A by any positive diagonal matrix does not
change the results, provided the random test vectors are commensurately scaled. This
invariance property is important in part because it confirms some sense of stability of
the algorithm. As our next lemma shows, rBAMG is also scale invariant.

To be specific, let D be any positive diagonal matrix. With the given C/F -
splitting, matrices A and D can be written in block form as follows:

A =
[

Aff Afc

Acf Acc

]
and D =

[
Df 0
0 Dc

]
.

Lemma 3.3. Let Â = DAD. Then rBAMG applied to Ax = b with target vectors
e(l), l = 1, ..., q, and rBAMG applied to Âx̂ = b̂ with target vectors ê(l) = D−1e(l), l =
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1, ..., q, are equivalent in the sense that the resulting interpolation operators are related
by P̂ = D−1PDc.

Proof. Noting that r̂
(l)
i =

(
Âê

)
i

=
(
DADD−1e

)
i

= (DAe)i = diri, then the

weights for Â are given by

{ŵij} = argmin
q∑

l=1

(ê(l)
i −

∑

j∈Ci

ŵij ê
(l)
j −

r̂
(l)
i

âii
)2

= argmin
q∑

l=1

(
e
(l)
i

di
−

∑

j∈Ci

ŵij

e
(l)
j

dj
− dir

(l)
i

d2
i aii

)2

= argmin
q∑

l=1

1
d2

i

(e(l)
i −

∑

j∈Ci

ŵij
di

dj
e
(l)
j −

r
(l)
i

aii
)2 .

Thus, if wij minimizes (3.11), then so does ŵij
di

dj
. Hence, we can write the interpola-

tion operator, P̂ , for Â in the form

P̂ =
(

Ŵ
I

)
=

(
D−1

f WDc

I

)
= D−1PDc ,

where P is the interpolation operator for A. This proves the assertion.
This lemma confirms that rBAMG is invariant under symmetric positive diagonal

scaling in the sense that the convergence of the process is unchanged and the resulting
interpolation operators are related via the diagonal transformation. This also confirms
that the resulting multigrid solvers are related in the same way, provided the relaxation
processes possess this invariance property.

3.5. Underdetermined case. The equivalence results obtained above, together
with the improved performance of iBAMG observed in the next section, suggests that
our slight modification to BAMG should generally lead to the need for fewer targets
smoothed fewer times. In fact, we may want to consider how well rBAMG performs
when the number of targets is smaller than the number of points of Ci, that is, when
q < |Ci| so that least-squares problem (3.11) has infinitely many solutions. To decide
how to select a sensible solution, we take our cue from iBAMG. When the least-squares
problem for the indirect approach has many solutions, it is important for accuracy
alone to control the size of the resulting weights. It thus seems natural to select the
solution of (3.4) with minimal Euclidean norm. This translates to computing the
weights for rBAMG that deviate least in the Euclidean norm from those obtained
by operator truncation: find the least-squares solution, wij , of (3.11) with minimal
deviation from −aij/aii in the sense of minimizing

∑

j∈Ci

(wij +
aij

aii
)2. (3.12)

The scaled operator coefficients given by −aij/aii in (3.12) are “default” weights
in the sense that the objective is to stay as close to them as possible when the least-
squares fit to the targets is underdetermined. These defaults are not necessarily
good weights to use in the adaptive process because they correspond to truncating
the unwanted connections, which, in the model problem, leads to improperly scaled
weights. (Properly scaling in this case can instead be obtained by collapsing the
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unwanted connections to the diagonal, for example.) However, it should be kept in
mind that, generally, these defaults would be selected only in the unrealistic case that
no targets are available. Just one target is usually enough to adjust the weights from
these targets to obtain interpolation that is properly scaled.

Note that we are not prevented from using i in the definition of the weights in
(3.12) and the form of interpolation in (3.1). Note also that nothing is forcing us
to restrict Ci to the immediate neighborhood of i: it may include points outside of
i’s nearest neighborhood, perhaps even only those points. However, studying these
possibilities is beyond the scope of this paper and is therefore left for further research.

A possible unexplored alternative to (3.12) in the iBAMG underdetermined case
is to is to restrict the number of interpolation points to the number of test vectors.
A similar approach, using iBAMGa, would be to restrict the subset of Ci used to
approximate ej for each j ∈ Cc

i . In each approach, questions arise as to how to
choose these subsets. This is also a subject of further research.

4. Numerical experiments. Here we compare the results of BAMG with those
obtained by iBAMG. As is usual in AMG, except where noted, the methods are
applied recursively to the coarse-grid operator formed by a Galerkin approach based
on interpolation (i. e., Ac = PT AP ). Since our focus is on how these approaches
compare in their determination of the weights of interpolation, we force standard
coarsening on every level. In both the BAMG and iBAMG approaches, we relax
q different random vectors of unit Euclidean length ν times for the homogeneous
problem. We use Gauss-Seidel iteration with lexicographic ordering of the grid points
as the relaxation method. All of the results in the following tables reflect an average
residual reduction factor over a total residual reduction by a factor of 1010 (or over
50 cycles, whichever comes first).

4.1. 2D Laplacian. Consider the two-dimensional Poisson problem with homo-
geneous Dirichlet boundary conditions on the unit square given by

−∆u = f in Ω = (0, 1)2,
u = 0 on δΩ.

(4.1)

We discretize (4.1) using standard bilinear elements on a uniform grid, which yields
the nine-point stencil given by

A =
1

3h2



−1 −1 −1
−1 8 −1
−1 −1 −1


 .

Although this model problem is not the ultimate target for these methods, it is impor-
tant to compare the two bootstrap approaches in this simple setting because we can
take advantage of knowing optimal coarsening and interpolation weights in a classical
AMG approach.

Because of our use of standard coarsening, some of the F points have four neigh-
bors in their interpolatory set. Thus, the use of fewer than four targets ensures an
underdetermined least-squares system for these points. Accordingly, the first three
rows of each table show the results of using the minimal-deviation rBAMG approach
described in the previous section. Note that the use of just one target in Tables 4.1
to 4.3 yields remarkably good performance in all cases, while performance degrades
substantially for q = 2 and 3. This result is somewhat special to this problem. For
q = 1, minimizing (3.12) amounts to choosing the equal interpolation weights that
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q/ν 1 2 3 4 5 6 7 8 9 10
1 (.54) (.12) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
2 (.87) (.86) (.85) (.84) (.84) (.84) (.81) (.81) (.80) (.81)
3 (.81) (.70) (.59) (.50) (.41) (.35) (.39) (.30) (.28) (.26)
4 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87

(.87) (.86) (.86) (.86) (.86) (.86) (.85) (.85) (.85) (.85)
5 .86 .83 .79 .78 .78 .78 .76 .72 .77 .79

(.72) (.52) (.39) (.33) (.49) (.48) (.33) (.56) (.29) (.31)
6 .81 .69 .57 .61 .51 .59 .61 .55 .57 .59

(.44) (.24) (.11) (.11) (.09) (.09) (.13) (.17) (.09) (.11)
7 .77 .54 .39 .34 .35 .40 .30 .27 .37 .34

(.31) (.12) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
8 .73 .45 .31 .23 .23 .19 .25 .18 20 .21

(.26) (.10) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
9 .69 .36 .22 .19 .17 .17 .16 .16 .15 .15

(.22) (.09) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
10 .66 .33 .20 .16 .14 .16 .12 .12 .12 .12

(.20) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

Table 4.1: Average five-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-
dimensional model problem (4.1) for various combinations of the number of relaxation
sweeps, ν, and the number of random approximations, q. Shown here are the average
convergence factors using BAMG (iBAMG). In all cases, a random initial guess was
used to test the resulting cycle.

match the target vector (with the sum of the weights becoming more accurate as the
number of relaxation sweeps is increased). This choice is exactly what is needed for
the Poisson problem, so one vector is sufficient here. In fact, using two vectors results
in degradation of convergence, as the tables show. The results of the next section
show a somewhat more monotone pattern of increasing improvement with increasing
q.

For q ≥ 4 ≥ |Ci|, the consistent trend is that better performance of the resulting
solver is obtained by more vectors and/or more relaxation sweeps. Moreover, iBAMG
tends to provide substantially better performance for the same number of vectors and
sweeps. Also observe the moderate degredation in performance as the size of the
problem increases. For example, to obtain a convergence factor of 0.08 with a minimal
number of total relaxation sweeps requires q × ν = 7 × 3 = 21 sweeps for a 64 × 64
grid, q × ν = 8× 3 = 24 sweeps for a 128× 128 grid, and q × ν = 8× 4 = 32 sweeps
for a 256× 256 grid. This is to be expected because interpolation must approximate
the smoothest components increasingly well on increasingly finer levels for V-cycles
to be optimal.
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q/ν 1 2 3 4 5 6 7 8 9 10
1 (.75) (.31) (.11) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
2 (.86) (.86) (.86) (.86) (.86) (.85) (.85) (.85) (.85) (.85)
3 (.84) (.80) (.76) (.73) (.67) (.65) (.61) (.56) (.51) (.48)
4 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87

(.86) (.86) (.86) (.86) (.86) (.86) (.86) (.86) (.86) (.86)
5 .86 .85 .85 .85 .84 .84 .84 .84 .84 .84

(.81) (.75) (.69) (.68) (.67) (.72) (.72) (.70) (.69) (.67)
6 .84 .79 .74 .71 .74 .73 .75 .73 .75 .75

(.66) (.35) (.21) (.22) (.21) (.26) (.18) (.18) (.15) (.21)
7 .82 .71 .61 .56 .58 .54 .51 .53 .60 .60

(.53) (.16) (.10) (.09) (.08) (.08) (.11) (.08) (.09) (.08)
8 .80 .61 .43 .36 .40 .43 .34 .35 .39 .35

(.47) (.13) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
9 .79 .53 .33 .26 .24 .24 .19 .22 .20 .23

(.42) (.11) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
10 .77 .48 .27 .21 .17 .17 .14 .15 .16 .14

(.38) (.10) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

Table 4.2: Average six-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 128 × 128 grid 9-point discretization of 2-
dimensional model problem (4.1) for various combinations of the number of relaxation
sweeps, ν, and the number of random approximations, q. Shown here are the average
convergence factors using BAMG (iBAMG). In all cases, a random initial guess was
used to test the resulting cycle.
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q/ν 1 2 3 4 5 6 7 8 9 10
1 (.82) (.61) (.29) (.14) (.08) (.08) (.08) (.08) (.08) (.08)
2 (.86) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85)
3 (.84) (.83) (.82) (.82) (.80) (.78) (.79) (.76) (.77) (.73)
4 .86 .86 .86 .86 .86 .86 .86 .86 .86 .86

(.86) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85)
5 .85 .85 .84 .84 .84 .84 .84 .84 .84 .84

(.83) (.82) (.82) (.81) (.81) (.82) (.82) (.82) (.82) (.82)
6 .84 .82 .81 .81 .81 .82 .82 .82 .82 .82

(.77) (.53) (.43) (.31) (.46) (.47) (.43) (.38) (.51) (.36)
7 .83 .78 .75 .73 .74 .76 .74 .76 .77 .77

(.72) (.31) (.17) (.13) (.14) (.15) (.09) (.08) (.09) (.08)
8 .83 .73 .62 .61 .61 .65 .64 .66 .65 .65

(.69) (.26) (.10) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
9 .82 .68 .48 .43 .39 .41 .41 .39 .36 .35

(.66) (.22) (.09) (.08) (.08) (.08) (.08) (.08) (.08) (.08)
10 .82 .65 .38 .28 .23 .25 .23 .27 .28 .22

(.64) (.20) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

Table 4.3: Average seven-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 256 × 256 grid 9-point discretization of 2-
dimensional model problem (4.1) for various combinations of the number of relaxation
sweeps, ν, and the number of random approximations, q. Shown here are the average
convergence factors using BAMG (iBAMG). In all cases, a random initial guess was
used to test the resulting cycle.
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4.2. Scaled 2D Laplacian. To maintain the geometric simplicity of our model
problem but test performance in the presence of widely varying coefficients, our next
example is produced by symmetrically scaling the matrix resulting from (4.1) by a
positive diagonal matrix D = (Dii) =

(
e(10∗ri)

)
, where ri is a random number between

−.5 and .5. The scaling is done as follows:

A← DAD. (4.2)

q/ν 1 2 3 4 5 6 7 8 9 10
1 (.77) (.58) (.43) (.35) (.30) (.26) (.22) (.23) (.22) (.21)
2 (.77) (.65) (.52) (.42) (.40) (.38) (.36) (.35) (.36) (.35)
3 (.76) (.54) (.32) (.25) (.22) (.21) (.19) (.19) (.19) (.19)
4 .79 .69 .58 .49 .42 .43 .39 .38 .37 .37

(.76) (.54) (.34) (.27) (.26) (.23) (.22) (.20) (.20) (.21)
5 .78 .66 .47 .35 .30 .28 .26 .26 .24 .24

(.75) (.43) (.20) (.13) (.13) (.11) (.10) (.09) (.11) (.11)
6 .78 .64 .43 .27 .23 .20 .20 .20 .19 .19

(.74) (.38) (.15) (.09) (.07) (.07) (.06) (.06) (.06) (.06)
7 .77 .63 .38 .24 .19 .18 .16 .15 .15 .14

(.74) (.35) (.13) (.07) (.05) (.06) (.06) (.06) (.06) (.06)
8 .77 .62 .36 .21 .15 .14 .13 .13 .12 .12

(.73) (.34) (.12) (.06) (.06) (.06) (.06) (.06) (.06) (.06)
9 .77 .62 .33 .19 .14 .12 .12 .10 .10 .10

(.73) (.33) (.11) (.06) (.06) (.06) (.06) (.06) (.06) (.05)
10 .76 .62 .33 .19 .13 .11 .10 .10 .09 .09

(.73) (.32) (.11) (.06) (.05) (.05) (.05) (.05) (.05) (.05)

Table 4.4: Average two-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-
dimensional model problem (4.2) for various combinations of the number of relaxation
sweeps, ν, and the number of random approximations, q. Shown here are the average
convergence factors using BAMG (iBAMG). In all cases, a random initial guess was
used to test the resulting cycle.

Results for this test are shown in Table 4.4. For both methods, we see mostly
improved convergence as number of target vectors and/or smoothing steps increase.
The principal exception is again the case q = 1, although the results are not as
remarkable as they were for the standard model problem. Note that the performance
of iBAMG is again substantially better than that of BAMG in most cases.
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4.3. Long-range interpolation. BAMG naturally allows for long-range inter-
polation, using any of the given coarse grids. To demonstrate that iBAMG also
provides this capability, Table 4.5 shows two-level results for the 5-point Laplacian
with standard coarsening, where some F points have only F-point neighbors.

q/ν 1 2 3 4 5 6 7 8 9 10
4 .74 .65 .58 .55 .52 .50 .50 .51 .49 .49

(.67) (.60) (.52) (.45) (.42) (.40) (.41) (.39) (.41) (.38)
5 .72 .55 .44 .39 .38 .37 .36 .36 .35 .35

(.58) (.44) (.35) (.31) (.28) (.26) (.26) (.25) (.25) (.24)
6 .69 .45 .36 .34 .30 .30 .29 .27 .28 .30

(.53) (.34) (.28) (.23) (.21) (.19) (.18) (.18) (.19) (.17)
7 .66 .39 .31 .28 .27 .25 .24 .24 .22 .23

(.46) (.31) (.22) (.16) (.15) (.14) (.14) (.14) (.16) (.13)
8 .65 .35 .27 .24 .23 .22 .21 .21 .20 .20

(.43) (.25) (.17) (.14) (.13) (.12) (.12) (.12) (.13) (.12)
9 .63 .31 .24 .22 .21 .19 .19 .18 .18 .17

(.38) (.22) (.15) (.12) (.11) (.11) (.11) (.12) (.12) (.12)
10 .61 .28 .23 .20 .19 .18 .18 .16 .16 .17

(.36) (.19) (.13) (.11) (.11) (.11) (.11) (.11) (.12) (.12)

Table 4.5: Average two-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 64 × 64 grid 5-point discretization of 2-
dimensional model problem (4.1) for various combinations of the number of relaxation
sweeps, ν, and the number of random approximations, q. Shown here are the average
convergence factors using BAMG(iBAMG) with standard coarsening. In all cases, a
random initial guess was used to test the resulting cycle.

4.4. Variable-coefficient 2D diffusion. Our next example represents a more
taxing problem for optimal solvers. It was chosen here because it can cause difficulty
with some implementations of standard AMG. The results for this specific case are
also fairly representative of our experience so far with variable-coefficient problems,
including those with much larger jumps in the coefficients.

Consider the two-dimensional variable-coefficient problem with homogeneous Dir-
ichlet boundary conditions on the unit square given by

−∇ · (d(x, y)∇u) = f in Ω = (0, 1)2,
u = 0 on δΩ .

(4.3)

where, as shown in Fig. 4.1, we have

d(x, y) =

{
1 .25 < max(|x− .5|, |y − .5|) < .375 ,

1000 otherwise.
(4.4)

We discretize (4.3) by finite element method using piecewise bilinear elements, which
yields the nine-point stencil given by

A =
1

3h2




−dnw − (dnw+dne)
2 −dne

− (dnw+dsw)
2 2(dnw + dne + dsw + dse) − (dse+dne)

2

−dsw − (dsw+dse)
2 −dse


 .
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Our element boundaries align with the discontinuities in d so that the entries in this
stencil refer in an obvious way to the values of d in neighboring elements of each grid
point. Table 4.6 shows convergence factors, comparisons, and trends for a 64 × 64
grid that are quite similar to what we saw for the Poisson case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
x  d = 1000
+  d = 1

Fig. 4.1: The distribution of the coefficient for (4.3) on [0 1]2.

To see what happens when the coefficient discontinuites do not align with the
coarse grid, we shifted the red region in Fig 4.1 up and right by h = 1

64 :

d(x, y) =

{
1 .25 < max(|x− .5− 1

64 |, |y − .5− 1
64 |) < .375 ,

1000 otherwise.
(4.5)

Table 4.7 shows similar performance to the coarse-grid-aligned case.
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q/ν 1 2 3 4 5 6 7 8 9 10
1 (.80) (.80) (.72) (.60) (.45) (.35) (.25) (.21) (.16) (.15)
2 (.81) (.81) (.78) (.74) (.66) (.62) (.54) (.51) (.47) (.46)
3 (.81) (.79) (.70) (.58) (.47) (.36) (.28) (.27) (.27) (.28)
4 .81 .81 .78 .73 .67 .59 .54 .50 .45 .44

(.81) (.79) (.70) (.58) (.44) (.35) (.29) (.26) (.24) (.26)
5 .81 .81 .73 .65 .55 .43 .35 .32 .28 .30

(.81) (.75) (.57) (.36) (.23) (.16) (.14) (.11) (.12) (.11)
6 .81 .80 .73 .58 .45 .32 .27 .23 .23 .22

(.81) (.71) (.49) (.30) (.17) (.11) (.08) (.09) (.09) (.07)
7 .81 .79 .68 .51 .36 .25 .20 .17 .15 .16

(.80) (.69) (.44) (.23) (.13) (.09) (.07) (.06) (.06) (.06)
8 .81 .78 .65 .47 .30 .21 .16 .14 .13 .13

(.80) (.67) (.41) (.20) (.11) (.08) (.06) (.06) (.06) (.06)
9 .81 .78 .63 .43 .25 .17 .13 .12 .11 .12

(.80) (.65) (.39) (.19) (.09) (.07) (.06) (.06) (.06) (.06)
10 .81 .78 .62 .39 .22 .15 .11 .10 .11 .11

(.80) (.62) (.33) (.17) (.08) (.06) (.06) (.06) (.06) (.06)

Table 4.6: Average two-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-
dimensional model problem (4.3) with coefficient in (4.4) for various combinations of
the number of relaxation sweeps, ν, and the number of random approximations, q.
Shown here are the average convergence factors using BAMG(iBAMG). In all cases,
a random initial guess was used to test the resulting cycle.
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q/ν 1 2 3 4 5 6 7 8 9 10
1 (.76) (.78) (.73) (.61) (.49) (.35) (.28) (.24) (.24) (.23)
2 (.77) (.79) (.77) (.74) (.70) (.63) (.54) (.53) (.49) (.47)
3 (.78) (.78) (.70) (.57) (.46) (.36) (.33) (.26) (.27) (.25)
4 .76 .78 .77 .74 .65 .60 .55 .50 .48 .43

(.78) (.77) (.70) (.57) (.49) (.36) (.29) (.31) (.29) (.27)
5 .77 .78 .74 .65 .54 .42 .37 .33 .32 .31

(.78) (.73) (.58) (.37) (.27) (.22) (.20) (.18) (.18) (.17)
6 .78 .78 .72 .56 .45 .32 .27 .24 .24 .24

(.78) (.72) (.52) (.30) (.20) (.19) (.18) (.17) (.17) (.15)
7 .78 .78 .68 .51 .37 .27 .22 .19 .20 .19

(.77) (.69) (.44) (.25) (.19) (.20) (.17) (.16) (.14) (.13)
8 .77 .76 .66 .47 .30 .23 .20 .19 .17 .19

(.77) (.66) (.44) (.23) (.18) (.17) (.14) (.15) (.15) (.12)
9 .78 .76 .63 .43 .26 .20 .20 .19 .18 .18

(.77) (.65) (.38) (.20) (.18) (.16) (.16) (.14) (.14) (.13)
10 .78 .75 .60 .38 .26 .20 .19 .16 .16 .17

(.77) (.62) (.35) (.19) (.18) (.15) (.14) (.15) (.13) (.11)

Table 4.7: Average two-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-
dimensional model problem (4.3) with coefficient in (4.5) for various combinations of
the number of relaxation sweeps, ν, and the number of random approximations, q.
Shown here are the average convergence factors using BAMG(iBAMG) with standard
coarsening. In all cases, a random initial guess was used to test the resulting cycle.
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q/ν 1 2 3 4 5 6 7 8 9 10
1 (.79) (.79) (.81) (.81) (.81) (.82) (.82) (.82) (.83) (.83)
2 (.77) (.77) (.79) (.80) (.80) (.81) (.80) (.80) (.80) (.80)
3 (.77) (.78) (.79) (.79) (.79) (.75) (.74) (.74) (.69) (.59)
4 .77 .76 .78 .79 .79 .79 .77 .76 .72 .70

(.77) (.77) (.78) (.76) (.75) (.71) (.72) (.65) (.55) (.44)
5 .78 .77 .78 .78 .76 .74 .69 .65 .57 .47

(.77) (.78) (.75) (.69) (.57) (.45) (.44) (.38) (.27) (.25)
6 .78 .76 .77 .77 .75 .69 .63 .56 .48 .34

(.77) (.77) (.71) (.64) (.48) (.38) (.27) (.25) (.24) (.18)
7 .78 .78 .77 .76 .70 .66 .61 .49 .40 .30

(.76) (.77) (.71) (.59) (.47) (.33) (.26) (.21) (.19) (.16)
8 .78 .77 .77 .75 .68 .66 .54 .43 .34 .31

(.75) (.76) (.70) (.57) (.42) (.32) (.25) (.21) (.18) (.15)
9 .78 .78 .77 .75 .70 .63 .55 .40 .33 .26

(.77) (.75) (.67) (.53) (.38) (.28) (.24) (.18) (.16) (.14)
10 .78 .77 .76 .72 .68 .59 .49 .38 .31 .26

(.76) (.76) (.67) (.50) (.37) (.27) (.22) (.18) (.14) (.14)

Table 4.8: Average two-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-
dimensional model problem (4.6) with coefficient in (4.4) for various combinations of
the number of relaxation sweeps, ν, and the number of random approximations, q.
Shown here are the average convergence factors using BAMG(iBAMG). In all cases,
a random initial guess was used to test the resulting cycle.

4.5. Diagonally scaled variable-coefficient 2D diffusion. Our final exam-
ple comes from symmetrically scaling the matrix resulting from (4.3) by the positive
diagonal matrix D = (Dii) =

(
a
−1/2
ii

)
as follows:

A← DAD. (4.6)

The results as shows in Tables 4.8 again are similar to what we have seen in the other
examples.
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4.6. 2D Gauge Laplacian. The so-called gauge Laplacian from partical physics
is a scalar five-point difference operator with unitary but otherwise random complex
coefficients. This problem has plagued traditional solvers, including conventional
multigrid and algebraic multigrid methods. Just to suggest the general capabilities
of BAMG and iBAMG (see [5] for a related study on more general problems from
partical physics), we tested them on the eqivalent real form of the gauge Laplacian
for a typical random gauge field. Tables 4.9 and 4.10 show that both methods work
relatively well for this problem, again with iBAMG showing marked improvement.

q/ν 1 2 3 4 5 6 7 8 9 10
8 .74 .74 .72 .72 .71 .70 .70 .70 .69 .69

(.30) (.21) (.18) (.15) (.15) (.13) (.14) (.15) (.12) (.11)
9 .73 .68 .63 .59 .58 .54 .51 .50 .51 .47

(.26) (.14) (.11) (.09) (.08) (.08) (.08) (.09) (.08) (.09)
10 .70 .61 .53 .43 .37 .34 .33 .27 .27 .26

(.22) (.11) (.07) (.07) (.07) (.07) (.06) (.07) (.07) (.07)

Table 4.9: Average four-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on the equivalent real form of a 32 × 32 grid
5-point discretization of 2-dimensional Gauge Laplacian for various combinations of
the number of relaxation sweeps, ν, and the number of random approximations, q.
Shown here are the average convergence factors using BAMG(iBAMG). In all cases,
a random initial guess was used to test the resulting cycle.

q/ν 1 2 3 4 5 6 7 8 9 10
8 .73 .72 .71 .70 .70 .69 .69 .69 .68 .68

(.37) (.33) (.32) (.30) (.30) (.29) (.27) (.27) (.27) (.27)
9 .71 .68 .64 .62 .59 .59 .60 .57 .57 .56

(.30) (.24) (.21) (.21) (.20) (.20) (.21) (.18) (.18) (.20)
10 .69 .61 .54 .51 .48 .47 .44 .48 .44 .45

(.25) (.16) (.12) (.13) (.13) (.13) (.13) (.13) (.14) (.13)

Table 4.10: Average five-level V(1,1) convergence factors for residual reduction by a
factor of 1010 (or at most 50 cycles) on the equivalent real form of a 64 × 64 grid
5-point discretization of 2-dimensional Gauge Laplacian for various combinations of
the number of relaxation sweeps, ν, and the number of random approximations, q.
Shown here are the average convergence factors using BAMG(iBAMG). In all cases,
a random initial guess was used to test the resulting cycle.
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5. Conclusions. The iBAMG scheme introduced in this paper, as a general-
ization of the classical AMG scheme, seems to be substantially more efficient than
the original BAMG approach, at least on the simple problems we studied here. Thus,
rBAMG, which is equivalent to iBAMG, seems to provide more accurate interpolation
for these problem. The hope is that these improvements carry over to more relevant
applications with a sense of smoothness that is either difficult to obtain or wholly
unknown (as is the case for quantum chromodynamics). One of the most important
benefits of the indirect approach is that modifications to it translate to equivalent
modifications to the modified direct approach. As such, iBAMG is an important tool
if for no other reason than to suggest improvements to rBAMG.
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