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COMPUTATIONAL EXPERIENCE WITH NUMERICAL METHODS

FOR NONNEGATIVE LEAST-SQUARES PROBLEMS ∗

STEFANIA BELLAVIA † , JACEK GONDZIO ‡ , AND BENEDETTA MORINI §

Abstract. We discuss the solution of large-scale box-constrained linear least-squares problems
by two recent affine-scaling methods: a cyclic Barzilai-Borwein strategy and an Inexact Newton-
like method where a preconditioning technique allows for an efficient computation of the steps. A
robust globally and fast locally convergent method based on the combination of the two procedures
is presented along with extensive numerical results.

1. Introduction. We address the solution of the box-constrained least-squares
problem

min
l≤x≤u

q(x) =
1

2
‖Ax− b‖2

2 +
µ

2
‖x‖2

2,(1.1)

where A ∈ IRm×n, b ∈ IRm are given, m ≥ n, and µ ≥ 0. In order to ensure that the
problem has a unique solution, we assume that A has full rank whenever µ = 0, [4].
The lower and upper bounds l, u ∈ IRn are such that l < u and some components
may be equal to minus or plus infinity.

To simplify the presentation, we will mainly focus on the case where one-sided
bounds apply and outline the generalization to the case of two-sided (box) constraints.
Then problem (1.1) can be stated as

min
x≥0

q(x) =
1

2
‖Ax− b‖2

2 +
µ

2
‖x‖2

2.(1.2)

A number of different methods for the solution of (1.2) have been proposed during
the last years [2, 3, 4, 5, 6, 13, 17, 15, 18]. In this work we follow the so-called Affine-
scaling Interior-Point approach based on the papers [6, 7] by Coleman and Li. This
approach relies on the observation that the first-order optimality conditions (KKT
conditions) for (1.2) can be written as a nonlinear system of equations

D(x)g(x) = 0,(1.3)

where x ≥ 0, g(x) = ∇q(x) = (ATA+µI)x−AT b, andD(x) = diag(d1(x), . . . , dn(x))
has entries of the form

di(x) =

{
xi if gi(x) ≥ 0,
1 otherwise,

(1.4)

with xi and gi(x) denoting the i-th component of the vectors x and g(x). Since the
variable x in (1.3) is subject to the nonnegativity constraint, affine-scaling methods
for solving (1.3) are iterative procedures generating strictly feasible iterates xk > 0.
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Given xk > 0, by formal application of the product rule, the kth iteration of the
Newton method for (1.3), takes the form

(D(xk) (ATA+ µI) + diag(g(xk)+))p = −D(xk)g(xk),(1.5)

where (ATA + µI) is the Hessian of the function q, and gi(x)
+ = max{0, gi(x)},

i = 1, ..., n. Note that the not everywhere existing derivatives of
∂d(x)

∂xi
, i = 1, ..., n,

are substituted by the real valued functions max{0, sign(gi(x))}. Strict feasibility of
the new iterate is enforced by either a projection or a truncation strategy ([6, 17]).

In case problem (1.2) is large, solving the linear system may be computationally
costly and time consuming. This occurrence is addressed in some recent papers adopt-
ing different approaches. An efficient solution of the linear systems (1.5) is proposed
in [2, 3]; the resulting method is a Newton-like procedure which converges locally fast
to the solution. An alternative approach, presented by Hager, Maier and Zhang in
[15], is the Affine-Scaling Cyclic Barzilai-Borwein (AS CBB) method where the ma-
trix in (1.5) is replaced by a diagonal matrix and the solution of the linear system is
not required.

The above methods were combined with globalization strategies. In particular, in
[3] the Newton-like method was embedded into a simple globalization strategy which
uses the Newton step and a constrained scaled Cauchy step; here the resulting method
will be denoted Globally convergent REgularized Newton-like (GREN) method. On
the other hand, the AS CBB method employs a nonmonotone linesearch strategy and
has local R-linear convergence to a nondegenerate solution.

The numerical experiments carried out in [2] showed that GREN method is quite
successful in practice. However, in some cases, the repeated use of a step bent to-
wards the scaled Cauchy step yields a lack of robustness. In this work we propose a
new procedure that combines the GREN method and the AS CBB method. The new
approach is based on the use of the GREN procedure as long as its iterates differ con-
siderably from the iterates generated by the scaled Cauchy step. Otherwise AS CBB
is applied for some iterations. This choice is motivated by the fact that AS CBB me-
thod is superior to classical steepest descent method. A suitable combination of these
strategies enhances robustness of both the GREN and the AS CBB procedures and
favourably compares with them in terms of computational cost. In Sections 2 and 3 we
introduce the AS CBB and the GREN method, respectively. In Section 4 we describe
the new hybrid method which combines the above procedures. Section 5 is devoted
to the numerical solution of the linear systems arising in the hybrid method. The ex-
tension of the preconditioner given in [2] to the case µ > 0 in (1.1) is described along
with the study of its spectral properties. Further relevant implementation issues are
presented in Sections 6 and 7. The algorithm used for the numerical comparison with
the hybrid method is summarized in Section 8. The results of numerical experiments
are discussed in Section 9.

1.1. Notations. We use the subscript k as index for any sequence and for any
function f we denote f(xk) by fk. The symbol xi or (x)i denotes the i-th component
of a vector x. For any vector t, we let t+ = max{0, t}, where max is meant compo-
nentwise. Finally, the symbol I denotes the identity matrix of dimension inferred by
the context.

2. The AS CBB method. The general framework of AS CBB method was
proposed for general box-constrained optimization problems but here we restrict to
the case where the objective function is the one of problem (1.2).
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The AS CBB method replaces the Hessian matrix (ATA + µI) in (1.5) by the
matrix λkI where λk is a positive scalar. Then, the step bk used solves the equation

(λkDk + diag(g+
k ))bk = −Dkgk,

and the ith component of bk is given by

(bk)i = −
(

1

λk + (gk)+i /(xk)i

)

(gk)i.(2.1)

Remarkably, xk + bk is strictly feasible [15, Lemma 3.4].
The positive scalar λk is computed using a cyclic version of the Barzilai-Borwein

(BB) stepsize rule. In particular, let

λBB
0 = max{λ̄, ‖g0‖∞},(2.2)

λBB
k = argmin

λ≥λ̄

‖λsk−1 − yk−1‖2 = max

{

λ̄,
sT

k−1yk−1

sT
k−1sk−1

,

}

, k ≥ 1,(2.3)

where λ̄ is a fixed positive parameter, sk−1 = xk − xk−1, yk−1 = gk − gk−1, [1].
These BB stepsizes ensure that the denominator in (2.1) is bounded away from zero.
The cyclic BB strategy consists in reusing the BB stepsize for several iterations and
performs better than the standard BB strategy [9]. In practice, letting c ≥ 1 be the
cycle length and l ≥ 0 be the cycle number, the value of the scalars λk is assigned by
the following rule

λcl+i = λBB
cl+1, i = 1, . . . , c.(2.4)

The choice of the steplength (2.3) is superior to the choice of the classical Cauchy
steepest descent steplength along −Dkgk both in theory and practice. Since the BB
method does not monotonically reduce the value of the objective function, AS CBB
method generates a new iterate of the form

xk+1 = xk + ζkbk,(2.5)

where the stepsize ζk ∈ (0, 1] is computed by a nonmonotone linesearch strategy. This
way, the generated sequence is strictly feasible, due to the property that xk + bk is
strictly feasible.

The algorithm for the kth iteration is given below.

AS CBB ALGORITHM. kth iteration

Given c ≥ 1, C > 0, δ, γ, λ̄ ∈ (0, 1).
1. Let λk be given by (2.2)-(2.4).
2. Compute bk by (2.1).
3. Set

qmax
k = max{qk−i, 0 ≤ i ≤ min{k − 1, C − 1}}.(2.6)

4. If k = 0, set qr
0 = q0

Else choose qr
k so that qk ≤ qr

k ≤ max{qr
k−1, q

max
k } and qr

k ≤ qmax
k infinitely often.

5. Let qR be either qr
k or min{qmax

k , qr
k}.

6. If qk ≤ qR + δgT
k bk, set ζk = 1;

Else find the smallest integer j such that

q(xk + γjbk) ≤ qR + δγjgT
k bk,(2.7)
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and set ζk = γj .
7. Set xk+1 = xk + ζkbk

The linesearch performed along bk makes use of the local maximum function
qmax
k defined in (2.6) where the scalar C is a fixed integer memory. In particular,
qmax
k is used in Steps 4-5 to choose the scalar qR employed in (2.7). Various strategies

for setting qR have been proposed and we refer to [16, Appendix A]. The scalars
δ ∈ (0, 1), γ ∈ (0, 1) are the Armijo parameters.

The AS CBB method is globally convergent with R-linear asymptotic rate of
convergence to a nondegenerate solution [15].

3. The GREN method. On the base of the analysis conducted in [17], the
authors proposed a Globally convergent REgularized Newton-like (GREN) method
suited for bound-constrained least-squares problems, [2]. Letting

E(x) = diag(e1(x), . . . , en(x)),(3.1)

with

ei(x) =

{
gi(x) if 0 ≤ gi(x) < x2

i or gi(x)
2 > xi,

0 otherwise,
(3.2)

and

W (x) = diag(w1(x), . . . , wn(x)), wi(x) =
1

di(x) + ei(x)
,(3.3)

the Newton equation (1.5) is replaced with the linear system

WkDkNkpk = −WkDkgk,(3.4)

where

Nk = ATA+ µI +D−1
k Ek + ∆k,(3.5)

∆k = diag(δk,1, δk,2, . . . , δk,n), δk,i ∈ [0, 1), i = 1, . . . , n,(3.6)

The linear system (3.4) can be reformulated as the symmetric and positive definite
system

SkNkSkp̃k = −Skgk,(3.7)

with

S(x) = W (x)
1

2 D(x)
1

2 , p̃k = S−1
k pk,(3.8)

and the corresponding augmented system takes the form

(
I ASk

SkA
T −Ck

) (
q̃k
p̃k

)

=

(
−(Axk − b)
µSkxk

)

,(3.9)

Ck = WkEk + (µI + ∆k)S2
k,(3.10)

The use of the matrices E and W allows to develop fast convergent methods with-
out assuming strict complementarity at the solution ([3, 17]) while the regularizing
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matrix ∆k has been introduced in [2] with the aim to design an efficient preconditioner
for the augmented system and to avoid the potential ill-conditioning of the augmented
system in the case µ = 0.

To enforce strict feasibility of the iterates, the projected Newton step p̂k

p̂k = max{σ, 1 − ‖P (xk + pk) − xk‖2 } (P (xk + pk) − xk),(3.11)

is formed. Here σ ∈ (0, 1) is close to one, and P (x) is the projection of x onto the
feasible set, i.e. P (x) = x+.

The GREN method consists of the above described Newton method and of a
globalization strategy which provides a sufficient decrease in the value of q with respect
to a constrained scaled Cauchy step pC

k , [3]. Let ψk be the following quadratic function

ψk(p) =
1

2
pTNkp+ pT gk,

whose minimizer is the Newton step pk. Further, let pC
k be an approximate solution

to the problem

argmin{ψk(p) : p = −ckDkgk, ck > 0, xk + p > 0}.

In practice, pC
k is given by

pC
k = −ckDkgk,(3.12)

with

ck =







gT
k Dkgk

gT
k DkNkDkgk

, if xk − gT
k Dkgk

gT
k DkNkDkgk

Dkgk > 0

θ argmin{l > 0, xk − lDkgk ≥ 0}, θ ∈ (0, 1), otherwise

.

(3.13)
Then, the new iterate xk+1 has the form

xk+1 = xk + tpC
k + (1 − t)p̂k,(3.14)

and it is required to satisfy

ψk(xk+1 − xk)

ψk(pC
k )

≥ β, β ∈ (0, 1).(3.15)

This ensures global convergence of the procedure. If the point xk+1 = xk + p̂k satisfies
(3.15), t is simply taken equal to zero, otherwise a scalar t ∈ (0, 1] is computed in
order to satisfy

ψk(tpC
k + (1 − t)p̂k)

ψk(pC
k )

− β = 0.(3.16)

It is easy to see that this problem amounts to finding the smallest root of the above
scalar quadratic equation.

The convergence analysis of GREN method carried out in [2] is valid for the case
µ = 0 and in an inexact framework i.e. an Inexact Newton step can replace the step
pk = Skp̃k provided that p̃k satisfies:

SkNkSkp̃k = −Skgk + r̃k,(3.17)

5



with

‖r̃k‖2 ≤ ηk‖WkDkgk‖2, ηk ∈ [0, 1),(3.18)

Such convergence analysis can be easily extended to the case µ > 0. Hence the
GREN method results to be globally convergent and choosing ‖∆k‖2 ≤ Λ1‖WkDkgk‖2

and ηk ≤ Λ2‖WkDkgk‖2 for some positive Λ1 and Λ2 and for k sufficiently large, it
converges quadratically to the solution of (1.2) even if it is degenerate.

4. The hybrid method. The globalization strategy employed in GREN is
cheap but may be ineffective in some occurrences. In particular, if the projected
Newton step p̂k is a poor direction then the step used in (3.14) is likely to be bent
towards the Cauchy step pC

k . The repeated use of such step may produce a very slow
progress towards the solution. In fact, the projected Newton step is guaranteed to
provide a sufficient reduction of the objective function only when the current iter-
ate is close enough to the solution. On the other hand, the Barzilai-Borwein method
AS CBB is superior to standard steepest descent method both in theory and practice.
Therefore, here we propose a hybrid algorithm based on a suitable combination of the
GREN and AS CBB methods. In other words, the GREN method is enriched with a
further globalization strategy with the aim to avoid unnecessary computations of the
Newton step, whenever the projected Newton step does not provide reduction of the
objective function.

The combination of the GREN method and the AS CBB method is given in the
following algorithm and it is based on the preceding discussion. The logical variable
m GREN has value true if the method to be applied is the GREN method. At the first
iteration m GREN is set to true, and then it is adaptively modified.

HYBRID ALGORITHM. kth iteration

Given m GREN, β, tu ∈ (0, 1), ω1 > 0 (for GREN algorithm)
c ≥ 1, C > 0, δ, γ, λ̄ ∈ (0, 1), ICBB, Imax

CBB (for AS CBB algorithm).

1. If m GREN

1.1 Choose the matrix ∆k and the forcing term ηk.
1.2 Solve (3.17) and (3.18) for p̃k. Set pk = Skp̃k.
1.3 Let p̂k be given by (3.11).
1.4 If ψk(p̂k) ≥ βψk(pC

k ), then set xk+1 = xk + p̂k.
Else compute the smallest root t of (3.16).

If t ≤ tu then set xk+1 = xk + tpC
k + (1 − t)p̂k.

Else compute xk+1 by the AS CBB algorithm.

1.5 If
ψk(p̂k)

ψk(pC
k )

< −1 and min
1≤i≤n

|(xk)i| < ω1 then

set m GREN=false, ICBB = 1.
Compute xk+1 by the AS CBB algorithm.

Else
1.6 Compute xk+1 by the AS CBB algorithm,

set ICBB = ICBB + 1.
If ICBB > Imax

CBB set m GREN=true.

We remark that the AS CBB strategy is activated either in Step 1.4 or in Step
1.5. In the first case, the parameter tu is assumed to be near to one and the AS CBB
strategy is performed if the step (tpC

k + (1 − t)p̂k) is bent towards pC
k . In the second

case, the switch to the AS CBB strategy is performed if xk is near to the boundary of
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the feasible set and the projected Newton step p̂k does not provide a decrease of the
quadratic model ψk. Since one iteration of the AS CBB strategy is cheap, if in Step
1.5 we activate this method then Imax

CBB successive AS CBB iterations are performed.
We underline that the hybrid method inherits all the asymptotic convergence

properties of the GREN method. This is due to the fact that in [2, Theorem 3.1] it
is proved that eventually p̂k satisfies ψk(p̂k) ≥ βψk(pC

k ). Then eventually, only the
GREN method is applied.

We conclude this section presenting the generalization of the hybrid method to
the case where the unknown is bounded on both sides. In this case everything follows
as in the nonnegative case, once suitable adaptations of the matrices D(x) and E(x)
and the Cauchy step are introduced. The KKT conditions are written as in (1.3)
letting l ≤ x ≤ u and D(x) = diag(d1(x), . . . , dn(x)) with

di(x) =







ui − xi if gi(x) < 0, ui <∞
xi − li if gi(x) ≥ 0, li > −∞
1 otherwise,

(4.1)

Let Jd
k ∈ IRn×n be the diagonal matrix whose i-th row is given either by the

gradient of di(x) (whenever di(x) is differentiable) or by the null vector ( when gi(x) =
0). Then, the k-th iteration of the Newton method for (1.3) takes the form

(D(xk) (ATA+ µI) + diag(g(xk))Jd
k )p = −D(xk)g(xk).(4.2)

The diagonal entries ei of the matrix E used in (3.5) are:

ei(x) =







|gi(x)| if |gi(x)| < min{xi − li, ui − xi}2 or
|gi(x)|2 > min{xi − li, ui − xi},

0 otherwise.
(4.3)

Then, the projected Newton step has the form (3.11) where P (x) = max{l,min{x, u}}.
The Cauchy step pC

k is given by (3.12) with

ck =







gT
k Dkgk

gT
k DkNkDkgk

, if l < xk−
gT

k Dkgk

gT
k DkNkDkgk

Dkgk<u

θ argmin{τ >0, l ≤ xk−τDkgk ≤ u}, θ ∈ (0, 1), otherwise.

Finally, we refer to [15, §8] for the generalization of AS CBB to handle box
constrained problems.

5. Solution of the Newton equation. In this section we address the com-
putation of the Newton step, when the dimension of the problem is large. For sake
of simplicity, we focus on problem (1.2). First, we assume to use an iterative linear
solver and to compute an inexact Newton step p̃k satisfying (3.17) and (3.18). In the
following, we let pk = Skp̃k.

In order to choose an iterative method and a suitable preconditioner, we follow
the ideas of [2] and extend the approach proposed in [2] to the case µ > 0. We take
advantage of the splitting of the indices {1, . . . , n} into two sets. From (3.1), (3.3)
and (3.8) it is easy to note that (wk)i(ek)i + (sk)2i = 1, for i = 1, . . . , n. Moreover
(sk)i either tends to zero or one whenever {xk} approaches the solution x∗. In fact, if
(x∗)i is active and non-degenerate, we have that (xk)i → 0 and from (3.2) it follows
(ek)i → gi(x

∗) 6= 0. This implies that (sk)i → 0. On the other hand, if (x∗)i is
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inactive, we must have gi(x
∗) = 0 and from the definition of the matrix E it follows

(ek)i → gi(x
∗) = 0 and this yields (sk)i → 1. In the case (xk)i is degenerate, it is

easy to see, again using (3.2) that if gi(xk) = o(
√

(xk)i) then (sk)i → 1, otherwise
(sk)i → 0.

Therefore, given a small positive threshold τ ∈ (0, 1), at each iteration we let

Lk = {i ∈ {1, 2, . . . , n}, s.t. (sk)2i ≥ 1 − τ}, n1 = card(Lk),(5.1)

where card(Lk) is the cardinality of the set Lk.
If the set Lk is empty then in (3.9) we have ‖Sk‖2 ≤ 1 − τ . Moreover, ‖Sk‖2 is

expected to be small if xk is close to x∗. In such a case, to use a short-recurrence me-
thod, we apply the Conjugate-Gradient (CG) method to (3.4) without preconditioner
and solve the linear system so that

SkNkSkp̃k = −Skgk + r̃k,(5.2)

where the residual vector r̃k is required to satisfy (3.18).
If the set Lk is nonempty, we proceed as follows. Let us omit permutations and

assume that

Sk =

(
(Sk)1 0

0 (Sk)2

)

,(5.3)

(Sk)1 = diagi∈Lk
((sk)i) ∈ IRn1×n1 ,

(Sk)2 = diagi/∈Lk
((sk)i) ∈ IR(n−n1)×(n−n1).(5.4)

Analogously for any diagonal matrix G ∈ IRn×n we let (G)1 ∈ IRn1×n1 be the sub-

matrix formed by the first n1 rows and n1 columns and (G)2 ∈ IR(n−n1)×(n−n1) be
the submatrix formed by the remaining rows and columns. Finally, we consider the
partitioning A = (A1, A2), A1 ∈ IRm×n1 , A2 ∈ IRm×(n−n1) and xk = ((xk)T

1 , (xk)T
2 ),

(xk)1 ∈ IRn1 , (xk)2 ∈ IRn−n1 . Then, the augmented system (3.9) takes the form





I A1(Sk)1 A2(Sk)2
(Sk)1A

T
1 −(Ck)1 0

(Sk)2A
T
2 0 −(Ck)2









q̃k
(p̃k)1
(p̃k)2



 =





−(Axk − b)
µ(Sk)1(xk)1
µ(Sk)2(xk)2



 ,(5.5)

and eliminating (p̃k)2 from the first equation we get

(
I +Qk A1(Sk)1

(Sk)1A
T
1 −(Ck)1

)

︸ ︷︷ ︸

Ak

(
q̃k

(p̃k)1

)

=

(
−(Axk − b) +Rk

µ(Sk)1(xk)1

)

,(5.6)

where Qk = A2(SkC
−1
k Sk)2A

T
2 ∈ IRm×m and Rk = µA2(SkC

−1
k Sk)2(xk)2 ∈ IRm. The

preconditioner we use for (5.6) is the matrix

Pk =

(
I A1(Sk)1

(Sk)1A
T
1 −((µI + ∆k)S2

k)1

)

.(5.7)

Here we point out that, by (5.1) we have ‖(WkEk)1‖2 ≤ τ , ‖(Ck)−1
2 ‖2 ≤ 1/τ , ‖Qk‖2 ≤

(1− τ)‖A2‖2
2/τ . Further, we note that when {xk} approaches the solution x∗ we have

(Sk)1 → I, (Sk)2 → 0, ‖Qk‖2 → 0 and ‖(WkEk)1‖2 → 0. Therefore, ‖Pk − Ak‖2

tends to zero.
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In the following theorems we characterize the spectral properties of the matrix
P−1

k Ak for varying iterative linear solvers. Iterative methods for indefinite systems
such as BiCGSTAB, GMRES, QMR can be applied to solve the preconditioned aug-
mented system. Alternatively, in case A is full rank, the specific structure of (5.6)
and (5.7) allows the use of the short-recurrence Projected Preconditioned Conjugate-
Gradient (PPCG) method developed in [10, 12]. While PPCG would have the disad-
vantage that A must be full rank, it has the relevant features to satisfy a minimization
property and to require a fixed amount of work per iteration.

First, we analyze the spectral properties of the preconditioned system in case
iterative methods for indefinite systems are applied. This analysis was first provided
in [2] for the case µ = 0. However, the proof given in [2, Theorem 4.1] had a gap and
characterized only the real eigenvalues of P−1

k Ak. In fact the eigenvalues of P−1
k Ak

may be complex. Below we generalize this theorem to the case µ 6= 0 and provide a
new proof which corrects the gap of [2].

Theorem 5.1. Let Ak and Pk be the matrices given in (5.6) and (5.7). Then
at least m − n + n1 eigenvalues of P−1

k Ak are unit and the other eigenvalues have
positive real part.

Letting (uT , vT )T , u ∈ Cm, v ∈ Cn1 , be an eigenvector of P−1
k Ak associated to

λ = Re(λ) + iIm(λ), and Z be the imaginary part of uHA1(Sk)1v, then λ has the
form

λ = 1 + γ,

with

Re(γ) =
(uHQku+ vH(WkEk)1 v)(u

Hu+ vH((µI + ∆k)S2
k)1 v)

(uHu+ vH((µI + ∆kS2
k)1 v)2 + 4Z2

,(5.8)

and

Im(γ) = − 2Z(uHQku+ vH(WkEk)1 v)

(uHu+ vH((µI + ∆k)S2
k)1 v)2 + 4Z2

,(5.9)

Proof. The eigenvalues and eigenvectors of matrix P−1
k Ak satisfy

(
I +Qk A1(Sk)1

(Sk)1A
T
1 −(Ck)1

) (
u
v

)

= λ

(
I A1(Sk)1

(Sk)1A
T
1 −((µI + ∆k)S2

k)1

) (
u
v

)

.

If λ = 1 we get

(I +Qk)u = u

(Ck)1v = ((µI + ∆k)S2
k)1v

i.e. u belongs to the null space of Qk and v belongs to the null space of (WkEk)1. As
the rank of Qk is at most n− n1, it follows that there are at least m− (n− n1) unit
eigenvalues. If λ 6= 1, denoting λ = 1 + γ we have

uHQku = γuHu+ γuHA1(Sk)1v

vH(WkEk)1 v = −γ(uHA1(Sk)1v)
H + γvH((µI + ∆k)S2

k)1v

Then, adding these two equations we obtain

uHQku+ vH(WkEk)1 v
︸ ︷︷ ︸

α

= γ (uHu+ vH((µI + ∆k)S2
k)1v

︸ ︷︷ ︸

β

+2iZ)(5.10)
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where Z is the imaginary part of uHA1(Sk)1v. Note that Qk, (WkEk)1, ((µI +
∆k)S2

k)1 are positive semidefinite and α and β are real and strictly positive ( if α = 0
then u belongs to the null space of Qk and v belongs to the null space of (WkEk)1.
These conditions imply λ = 1 and this is a contradiction. Analogously, if β = 0 then
u = 0 and consequently Z = 0; thus (5.10) reduces to vH(WkEk)1v = 0 and this is
a contradiction because if u = 0 and v belongs to the null space of (WkEk)1 then
λ = 1). Thus,

γ =
α

β + 2iZ
=
α (β + 2iZ)H

β2 + 4Z2
=

αβ

β2 + 4Z2
− i

2αZ

β2 + 4Z2
(5.11)

Then, the real and complex part of γ are such that Re(γ) = αβ
β2+4Z2 and Im(γ) =

− 2αZ
β2+4Z2 which give (5.8) and (5.9), respectively. Since α > 0 and β > 0 we conclude

that Re(γ) is positive. �.
Clearly, if the magnitude |γ| of γ is small it means that the eigenvalues of P−1

k Ak

are clustered around one and fast convergence of Krylov methods can be expected.
This is the case when xk is close to the solution. On the other hand, when xk is still
far away from x∗, the following bounds for |γ| can be derived.

Corollary 5.1. Let Ak and Pk be the matrices given in (5.6) and (5.7), τ be
the scalar in (5.1), L̄k = {i ∈ Lk : (sk)2i 6= 1}.

If the elements δk,i in (3.6) are such that δk,i = δ > 0 for i ∈ Lk, and δk,i = 0
for i /∈ Lk, then the eigenvalues of P−1

k Ak have the form λ = 1 + γ and

|γ| ≤ ‖A2(Sk)2‖2
2

τ
+

τ

(δ + µ)(1 − τ)
.(5.12)

If the elements δk,i in (3.6) are such that

δk,i =







max{(wk)i(ek)i − µ, 0} if i ∈ L̄k

δ if i ∈ Lk\L̄k and µ = 0
0 otherwise

(5.13)

then the eigenvalues of P−1
k Ak have the form λ = 1 + γ and

|γ| ≤ ‖A2(Sk)2‖2
2

τ
+

1

1 − τ
.(5.14)

Proof. Suppose u 6= 0 and v 6= 0. Then, from (5.11) we have

|γ| =
|α|

|β + 2iZ| =
α

√

β2 + 4Z2
≤ α

β
.

Then, from the definition of α and β we get:

|γ| ≤ uHQku+ vH(WkEk)1 v

uHu+ vH((µI + ∆k)S2
k)1v

≤ uHQku

uHu
+

vH(WkEk)1 v

vH((µI + ∆k)S2
k)1 v

.(5.15)

Also observe that (5.1) implies

min
i∈Lk

(sk)2i ≥ 1 − τ, ‖(WkEk)1‖2 ≤ τ, ‖(Ck)−1
2 ‖2 ≤ 1

τ
.
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Then, when δk,i = δ > 0 for i ∈ Lk, we obtain

|γ| ≤ ‖(Ck)−1
2 ‖2 ‖A2(Sk)2‖2

2 +
τ

(µ+ δ)(1 − τ)
,

which yields (5.12).

Consider the case when δk,i is determined by (5.13). For i ∈ Lk\L̄k, we have
(wk)i(ek)i = 0. Then, we get

|γ| ≤ ‖(Ck)−1
2 ‖2 ‖A2(Sk)2‖2

2 +

∑

i∈Lk
(wk)i(ek)iv

2
i

∑

i∈Lk
(δk,i + µ)(sk)2i v

2
i

= ‖(Ck)−1
2 ‖2 ‖A2(Sk)2‖2

2 +

∑

i∈L̄k
(wk)i(ek)iv

2
i

∑

i∈L̄k
max{(wk)i(ek)i, µ)}(sk)2i v

2
i +

∑

i∈Lk\L̄k
(δk,i + µ)(sk)2i v

2
i

≤ ‖A2(Sk)2‖2
2

τ
+

∑

i∈L̄k
(wk)i(ek)iv

2
i

∑

i∈L̄k
(sk)2i (wk)i(ek)iv2

i

≤ ‖A2(Sk)2‖2
2

τ
+

1

mini∈L̄k
(sk)2i

.

Then (5.14) trivially follows from (5.1).

Finally, if either u or v is null the bound (5.15) simplifies to one of the two terms
and the thesis still holds. �

The previous result (5.14) shows that the spectral properties of the preconditioned
matrix are affected by the choice of the regularization term ∆k. In fact, (5.13) indi-
cates that if µ is sufficiently large it is not necessary to introduce the regularization
term in order to get good spectral properties of the preconditioned system. In other
words, in this latter case ∆k may be chosen as the null matrix at each iteration. On
the other hand, when µ is small compared to (wk)i(ek)i, letting δk,i = (wk)i(ek)i − µ
for i ∈ Lk we have a better distribution of the eigenvalues of P−1

k Ak. Note that
for any regularization used, it is essential to keep the term ‖A2(Sk)2‖2

2/τ as small as
possible. Hence, we advise scaling matrix A at the beginning of the solution process
to guarantee that the norm ‖A‖2 is small.

Let us now consider the application of PPCG method for solving the precon-
ditioned iterative system. PPCG is a conjugate-gradient like method for solving
preconditioned block symmetric indefinite linear systems that arise from saddle-point
problems and our preconditioned augmented systems fall in this class of problems.
Taking into account that PPCG requires the second block of the right hand side to be
the null vector, we introduce the vector p∗k ∈ IRn1 defined as p∗k = −µ(Ck)−1

1 (Sk)1(xk)1
and rewrite system (5.6) in the following form

(
I +Qk A1(Sk)1

(Sk)1A
T
1 −(Ck)1

)

︸ ︷︷ ︸

Ak

(
q̃k

(p̃k)1 − p∗k

)

=

(

−(Axk − b) + R̂k

0

)

,(5.16)

where R̂k = Rk − A1(Sk)1p
∗
k. Solving (5.16) with preconditioner Pk by PPCG is

equivalent to applying Preconditioned Conjugate Gradient (PCG) method to the sys-
tem
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(I +Qk +A1(SkC
−1
k Sk)1A

T
1 )

︸ ︷︷ ︸

Fk

q̃k = −(Axk − b) + R̂k,(5.17)

using the preconditioner

Gk = I + A1(∆k + µI)−1
1 AT

1 ,(5.18)

see [11]. The distribution of the eigenvalues for matrix G−1
k Fk is summarized in the

following theorem.
Theorem 5.2. Let Fk and Gk be the matrices given in (5.17) and (5.18), Lk

be the set given in (5.1). If δk,i are given by (5.13) then the eigenvalues λ of G−1
k Fk

satisfy

1 − 1

2 − τ
≤ λ ≤ 1 +

‖A2(Sk)2‖2
2

τ
.(5.19)

Proof. The proof follows straightforwardly from the proof of Theorem 4.2 in [2] . �

6. Scaling of the problem. Numerical experience with the GREN and the
AS CBB methods shows that scaling of the problem is crucial for the performance of
such algorithms. As will be shown in §9, robustness and efficiency of the AS CBB
method seem to be favourably affected by the scaling. Further, a proper scaling
enhances the linear algebra phase of GREN method and influences the convergence
of the sequence {xk} generated by the hybrid method.

Without lack of generality, let us assume that all the columns of A contain at
least one nonzero entry. We apply a scaling from the right-hand side and divide each
column of A by the sum of the absolute values of its entries. Let F ∈ IRn×n be the
diagonal matrix where jth entry is the sum of the absolute values of the jth column
of A. Thus, our method is applied to the following equivalent problem

min
x≥0

q(x) = min
x̄≥0

q̄(x̄) =
1

2
‖AF−1x̄− b‖2

2 +
µ

2
‖F−1x̄‖2

2, x̄ = Fx.(6.1)

The relation between g(x) = ∇q(x) and ḡ(x̄) = ∇q̄(x̄) is

ḡ(x̄) = F−1g(x).(6.2)

Thus ‖ḡ(x̄)‖2 = ‖g(x)‖F−2 .
When such a scaling of the problem is performed, the hybrid method generates

the sequence {x̄k}, the augmented system (5.16) takes the form
(

I +Qk A1F
−1
1 (Sk)1

(Sk)1F
−1
1 AT

1 −(C̃k)1

)

︸ ︷︷ ︸

Ak

(
q̃k

(p̃k)1 − p∗k

)

=

(

−(AF−1x̄k − b) + R̂k

0

)

,

where

R̂k = µA2F
−1
2 (SkC̃

−1
k Sk)2F

−2
2 (x̄k)2 −A1F

−1
1 (Sk)1p

∗
k,

Qk = A2F
−1
2 (SkC̃

−1
k Sk)2F

−1
2 AT

2 ,

C̃k = WkEk + (µF−2 + ∆k)S2
k,

p∗k = −µF−2
1 (C̃−1

k Sk)1x̄k,

and the preconditioner Pk is given by

Pk =

(
I A1F

−1
1 (Sk)1

(Sk)1F
−1
1 AT

1 −((µF−2 + ∆k)S2
k)1

)

.(6.3)
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7. Implementation of the hybrid method. In this section we address the
implementation issues, the choice of default parameters for the hybrid method, the
preconditioner’s factorization, the choice of the regularization matrix and the stopping
criteria.

The parameter β = 0.1 is used within the GREN algorithm. For the AS CBB
algorithm we followed [15] and set

c = 4, C = 6, δ = 10−4, γ = 0.5, λ̄ = 10−2.(7.1)

A maximum number of 10 backtracks were allowed in Step 4 of the AS CBB algorithm.
If the criterion (2.7) was not satisfied within 10 backtracks we proceeded with the last
computed iterate.

The switching to the AS CBB algorithm was performed using the parameters

tu = 0.8, ω1 =
√
ǫm, Imax

CBB = 10.

Further, in our implementation the switch to Imax
CBB AS CBB iterations was activated

in the case where

qk − qk−1

1 + qk
≤ 10−4.

This rule is motivated by the fact that the nonmonotone globalization strategy can
be beneficial to convergence if we are far from the solution and a stagnation occurs.

The factorization of the preconditioner Pk given in (6.3) can be accomplished
based on the identity

Pk =

(
I 0
0 (Sk)1

) (
I A1F

−1
1

F−1
1 AT

1 −(µF−2 + ∆k)1

)

︸ ︷︷ ︸

Πk

(
I 0
0 (Sk)1

)

,(7.2)

and factorizing Πk. The LDLT factorization of Πk is carried out via the Cholesky
factorization of the matrix AT

1 A1. We stress that if the set Lk and the matrix ∆k

remain unchanged for a few iterations, the factorization of the matrix Πk does not
have to be updated. In fact, eventually Lk is expected to settle down as it contains
the indices of all the components of x∗ such that (sk)i tends to one.

The rules we used to update the matrix ∆k and the set Lk are the following. The
entries of ∆k = diag(δk,1, δk,2, . . . , δk,n), δk,i ∈ [0, 1), i = 1, . . . , n are given by

δk,i =







0, if i 6∈ Lk and max{F−2
ii µ, (wk)i(ek)i} > 10−8

10−8, if i 6∈ Lk and max{F−2
ii µ, (wk)i(ek)i} ≤ 10−8

0, if i ∈ Lk and F−2
ii µ > max{10−8, (wk)i(ek)i)}

min{max{10−8, (wk)i(ek)i − F−2
ii µ}, 10−2}, otherwise.

Further, we freeze the set Lk and (∆k)1 either if at kth iteration the iterative
linear solver has succeeded within 30 iterations and

|card(Lk+1) − card(Lk)| ≤ 10, ‖(∆k + µF−2)−1
1 (WkEk)1‖∞ ≤ 100(7.3)

or if at kth iteration the iterative linear solver has not succeeded within 30 iterations
but

Lk+1 = Lk, ‖(∆k + µF−2
1 )−1(WkEk)1‖∞ ≤ 100(7.4)
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Some comments on the choice of the regularization term and conditions (7.3)-(7.4) are
in order. The quality of the preconditioner depends on the size of the regularization

term and on the ratio
(wkek)i

δk,i + µF−2
i,i

(see §5 and the analysis performed in [2]). Taking

into account the presence of the matrix F , it seems that the best choice is δk,i =
max{(wkek)i −µF−2

i,i , 0} for any i ∈ L̄k. This choice also guarantees fast convergence
as the regularization sequence converges to zero when xk approaches the solution (see
[2], Theorem 3.1). In practice, we impose the threshold 10−8 in order to avoid too
small regularization terms. Moreover the set Lk and the regularization (∆k)1 are
frozen only if the ratio (wkek)i/(δk,i + µF−2

i,i ) is less than or equal to 100. This way
the quality of the preconditioner is preserved. Finally, it must be taken into account
that, after a freezing, it may happen that an index i such that (wk)i(ek)i = 0 does
not belong to Lk and this yields the singularity of (Ck)2 if µ = 0. In order to prevent
this latter situation, we set the regularization term to 10−8, whenever i 6∈ Lk and
max{(wk)i(ek)i, µF

−2
i,i } ≤ 10−8.

We conclude this section by discussing the stopping criteria that we used. Due to
(6.2), the norms of P (x̄k − ḡ(x̄k)) − x̄k and P (xk − gk) − xk may differ significantly.
Since we are solving the scaled problem (6.1), it is appropriate to check ‖P (x̄k −
ḡ(x̄k)) − x̄k‖∞ as a measure of optimality but to avoid stopping at a point xk where
‖P (xk − gk) − xk‖∞ is large, we control both ‖P (x̄k − ḡ(x̄k)) − x̄k‖∞ and ‖P (xk −
gk) − xk‖∞.

At kth iteration we test either if






qk−1 − qk < τ1(1 + qk−1),
‖P (x̄k − ḡ(x̄k)) − x̄k‖∞ < τ1(1 + min{‖ḡ(x̄0)‖∞, τu}),
‖P (xk − gk) − xk‖∞ < τg,

(7.5)

or

{
‖P (x̄k − ḡ(x̄k)) − x̄k‖∞ < τ2(1 + min{‖ḡ(x̄0)‖∞, τu}),
‖P (xk − gk) − xk‖∞ < τg,

(7.6)

A failure is declared when the above conditions are not satisfied within a fixed number
of nonlinear iterations.

8. The algorithms used for the comparison. The numerical performance
of the hybrid method proposed was compared with the performance of the AS CBB
method described in §2, the GREN method described in §3 and with the BCLS
software package [13, 14].

The GREN method was implemented as the hybrid method inhibiting the switch
to AS CBB strategy. The AS CBB method was implemented in Matlab with the algo-
rithmic parameters (7.1) and two possible strategies for setting the reference function
value qr

k. The first strategy sets qr
k = qmax

k at each iteration; this yields qR = qmax
k

in (2.7). The second strategy is the one described in [16, Appendix A] where qr
k is

set equal to qmax
k after a prescribed number of iterations if a sufficient reduction of q

has been achieved. We underline that all the numerical results reported in the next
session are obtained using the first strategy for selecting qr

k since in our runs this
choice turned out to be slightly more effective than the other.

The stopping criteria for successful termination are given in (7.6). A maximum
number of 10 backtracks is allowed in Step 4 of the AS CBB algorithm. If the criterion
(2.7) is not satisfied within 10 backtracks we declare a failure.
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The comparison of the hybrid method with the AS CBB and GREN algorithms
allows us to establish if our strategy strengthens such approaches and is competitive
from a computational point of view.

BCLS is an ISO C-code for solving bound-constrained least-squares problems of
the form

min
l≤x≤u

1

2
‖Ax− b‖2

2 + cTx+
1

2
µ‖x‖2

2,

where the m-by-n matrix can be any shape, b ∈ IRm, c ∈ IRn and µ is a nonnegative
regularization parameter [13, 14].

The BCLS algorithm is based on a two-metric projection method where the vari-
ables are partitioned into two sets. Variables that are well within the interior of the
feasible set are classified as free (B); variables that are at or near the bounds are la-
belled as fixed (N). Two independent directions ∆xB and ∆xN for the free and fixed
components of x are generated at each iteration. The step ∆xB is a Newton step and
∆xN is a scaled steepest descent step. Then, the aggregated step (∆xB ,∆xN ) is pro-
jected into the feasible region and the first minimizer is computed along the piecewise
linear projected-search direction, [8]. The step ∆xB is computed as a solution of a
least-squares problem by applying the LSQR method [18] and a preconditioner can
be supplied by the user. Note that BCLS reduces the dimension of the linear system
to be solved at each iteration but it does not provide an internal preconditioner.

BCLS has been run using a precompiled Mex interface available in [13]. A pre-
conditioner for LSQR was not supplied and default values for the parameters were
used. In particular, BCLS successfully terminates if

‖ĝk‖∞ < τ(1 + ‖AT b‖2),(8.1)

where τ = 10−3 and

(ĝk)i =

{
(gk)i min{(xk)i − li, 1} if (gk)i ≥ 0,
−(gk)i min{ui − (xk)i, 1} if (gk)i < 0.

A failure is declared if (8.1) is not satisfied within 5n nonlinear iterations or 10n linear
iterations.

The comparison of the hybrid method with the BCLS code allows to assess if
our interior-point approach is competitive with a strategy that identifies active set
variables.

9. Numerical results. All tests were performed on a Intel Xeon (TM) 3.4 Ghz,
1GB RAM using MATLAB 7.6 with machine precision ǫm ∼ 2 · 10−16.

The problems selected include several tests where both the GREN method and the
AS CBB method failed to converge. This allows us to highlight the good properties of
the hybrid method. We considered 60 matrices from The University of Florida Sparse
Matrix Collection [19]; these matrices belong to 21 different groups, are full rank and
such that n ≥ 4000 and ‖AT b‖2 ≤ 1020. In case of nonsquare matrix with m < n, we
used the transpose. Table (9.1) displays the name of the matrix and its group, the
dimensions m, n and the number nnz of nonzero entries of A. Moreover, the vector b
is set equal to b = −Ae, where e is the vector of all ones and µ is set to zero. In the
following we refer to each obtained test problem with the name of the matrix A used.

All algorithms used for the comparison were applied with and without the scaling
described in §6. The initial guess x0 is the vector F−1e, that is we start the iterative
process with x̄0 = e.
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The tolerances for the stopping criteria (7.5) and (7.6) are

τ1 = 10−6, τ2 = 10−9, τu = 103, τg = 10−2(9.1)

The maximum number of nonlinear iterations allowed for the hybrid method, the
AS CBB method and the GREN method is 5000, 20000 and 500, respectively.

When Lk 6= ∅, the linear system (5.6) is solved using PPCG. The linear systems
are solved with a low accuracy when the current iterate is far from the solution and
increased accuracy as the solution is approached. Specifically, following [2], the forcing
term ηk in (3.18) is

η0 = 0.5, ηk = max{500 ǫm,min{10−3, 10−2‖WkDkgk‖2}}, k ≥ 1,(9.2)

thus ηk decreases as ‖WkDkgk‖2 and fast convergence is ensured.
As already underlined in §5, when Lk = ∅, p̃k is computed approximately solving

(3.4) by the unpreconditioned CG method.
We restricted the CG and PPCG methods to use a maximum of 100 iterations.

If the stopping criterion is not satisfied within 100 iterations, the algorithm proceeds
with the last computed iterate.

The successful runs of the hybrid method on the scaled problems (6.1) are shown
in details in Table 9.2. For every problem we report: the total number it of iterations
performed; the number it new of iterations where the Newton step was computed; the
number h bt of backtracks performed in the AS CBB phase; the overall number prec
of preconditioner updates and factorizations; the average number PPCG a of PPCG
iterations performed; the number Aprod of matrix-vector products computed and, in
brackets, the number of matrix-vector products needed excluding the linear algebra
phase; the values of q at the computed solution xc and the infinity norm gp(xc) of
the projected gradient at xc, i.e. gp(xc) = ‖P (xc − g(xc)) − xc‖∞. All failures of the
hybrid method occurred as the maximum number of allowed nonlinear iterations was
reached.

The hybrid method was able to solve 46 problems (77% of the problem set).
For some problems, our solver returns quite a large value gp(xc). We solved all the
problems for which gp(xc) ∈ [10−2, 10−1) again with a higher accuracy, that is, us-
ing τ1 = 10−9 instead of 10−6. From the results obtained, we can conclude that
the approximate solutions computed with the tolerances (9.1) are accurate, except
for one test, even if gp(xc) is not small and that the implemented stopping crite-
ria works properly. In fact, the relative error between the two solutions, computed
using both τ1 = 10−9 and τ1 = 10−6, is at least of order 10−6 for all tests except
for Oberwolfach/flowmeter0 where the lower tolerance produces a more accurate
solution.

On successful runs, typically the number it new of iterations where the Newton
step was computed is considerably smaller than the total number it of iterations
performed. Further, 16 problems were solved using only CG for computing the Inexact
Newton step and therefore without using preconditioning strategy. On the remaining
30 successfully solved tests, comparing the values of it new and prec, we see that
freezing of the preconditioner occurred a few times in 11 problems.

The combination of the GREN method with the Barzilai-Borwein strategy con-
siderably enhances the performance of the GREN method. In fact, the GREN method
solves 34 problems (57% of the problem set) and in case of successful runs the elapsed
time is higher than that of the hybrid method. The elapsed time performance profile
for the successful runs is displayed in Figure 9.1. In this figure for each algorithm, we
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plot the fraction of problems for which the algorithm is within a given factor of the
best CPU time.

The AS CBB method was able to solve 36 problems (60% of the problem set).
We underline that all the failures of AS CBB are due to the fact that the maximum
number of allowed nonlinear iterations was performed without satisfying the stop-
ping criteria. The numerical behaviour of the AS CBB method on succesfull runs is
reported in Table 9.3. For every problem we report: the number it of iterations per-
formed; the number Aprod of matrix-vector products computed, the values of q and
the infinity norm gp(xc) of the projected gradient P (x − g(x)) − x at the computed
solution xc.

The results obtained show that the hybrid method is more robust than AS CBB
method. Concerning the computational cost, we note that there are several problems
where AS CBB converges very fast; in particular for 21 problems it requires less
than 50 matrix-vector products and clearly, it solves these problems with a very low
computational cost. On the other hand, the hybrid method favourably compares with
the AS CBB method in terms of computational time on more difficult tests. Table
9.4 displays the time in seconds required by the hybrid method and the AS CBB
method; in this table we restrict the comparison to problems solved successfully by
both algorithms and such that at least one algorithm requires less than 1 second.
Table 9.5 shows the time in seconds for runs where both algorithms require more
than 1 second. Focusing on these tests, we can see from Table 9.5, that the hybrid
method is more efficient than AS CBB on 10 out of 13 tests and the execution time
is more than halved for six tests. On the other hand, we note the disappointing
performance of the hybrid method on two examples from the Parsec family.

We would like to stress that for the hybrid method the number of matrix-vector
products is not the only factor which determines its computational cost. The overall
effort of the method is also influenced by the number prec of preconditioner fac-
torizations. On the other hand, the number of matrix-vector products is an accurate
measure of the cost of the AS CBB method. However, it should be taken into account
that the execution time depends on the number of matrix-vector products and on the
number of nonzero elements of the matrix A as well. For example, if we compare
the behaviour of AS CBB on Parsec/Na5 and Shenk IBMNA/c-42, the substantial
execution time to perform 74720 matrix-vector products, compared to the execution
time of solving Shenk IBMNA/c-42, can be explained by the 305000 nonzero entries
in the matrix A of Parsec/Na5 against the 110000 nonzeros entries of the matrix A
of Shenk IBMNA/c-42.

Finally, in the upper portion of Figure 9.2 we compare the behaviour of the hybrid
method and AS CBB method in terms of accuracy of the computed solution in case of
successful runs for both methods. Let xAS CBB and xhybrid be the computed solutions
provided by AS CBB and the hybrid method, respectively. In this figure, we plot,
with a logarithmic (base 10) scale for the y-axis, the value of the ratio:

rAS CBB =
gp(xAS CBB)

gp(xhybrid)

for each problem successfully solved by both methods. The figure clearly shows that
the hybrid method reaches a lower level of accuracy than AS CBB only for eight tests.

Next we report results obtained with BCLS. BCLS seems to be slightly more
robust and computationally cheaper if scaling is applied. In particular, it solves 45
problems (75%) when no scaling is applied and 48 problems (80%) when scaling is
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applied. Proper scaling of the problem affects the linear algebra phase; if the problem
is badly scaled, BCLS may fail as the maximum number of allowed LSQR inner
iterations is reached.

Let us focus on the application of BCLS on scaled problems. In Table 9.6 we
report solution statistics for BCLS method: the number major-itns of iterations
performed; the number minor-itns of linear iterations performed; the number Aprod
of matrix-vector products computed and, in brackets, the number of matrix-vector
products needed to perform the globalization strategy; the values of q and the infinity
norm gp of the projected gradient at the computed solution xc. We report statistics
only for problems successfully solved by BCLS; all the failures declared by BCLS code
are due to the fact that the maximum number of linear iterations allowed was reached.

BCLS is able to solve 48 problems (80%) of the problem set but some comments on
the returned norm gp(xc) are in order. For 14 problems the value of gp is equal to zero
and this feature can be ascribed to the active set strategy employed as the solution of
these tests is the null vector and therefore all the constraints are active at the solution.
On the other hand, in case of 10 successful runs we have obtained gp(xc) > 10−1

and in seven among these tests, BCLS has declared successful termination although
gp(xc) ≥ 1. We explain these occurrences noting that BCLS does not apply an internal
scaling and in (8.1) the gradient ḡ of the scaled problem is checked.

A comparison of the values of the norm of the projected gradient at the solution
computed by the hybrid method and BCLS method is shown in the bottom portion of
Figure 9.2. In this figure, for each problem successfully solved by both methods (runs
where the norm of projected gradient at the computed solution is zero are excluded),
we plot, with a logarithmic (base 10) scale for the y-axis, the value of the ratio:

rbcls =
gp(xbcls)

gp(xhybrid)

where xbcls is the approximate solution provided by BCLS. We note that the level of
accuracy reached by the hybrid method is lower than that reached by BCLS only in
six tests.

Performing further runs with the tighter tolerance τ1 = 10−9, on problems where
gp(xc) > 10−1, we observed that the level of accuracy in the computed solution
increases considerably when tighter tolerances are used. We think that providing a
scaling of the problem and a control of the original gradient ∇q(x) is a good feature
of our implementation which distinguishes it from BCLS.

Focusing on the iterations where a Newton step is computed, we see that the num-
ber it new of iterations performed by our code is similar to the number major-itns
of major iterations performed by BCLS. In Figure 9.3 we draw the performance profile
comparing the values of it new and major-itns on successful runs.

Regarding the number of matrix-vector products Aprod, our method requires a
lower number of products than BCLS. This saving can be ascribed to the use of our
built-in preconditioner but it is not easy to compare the computational effort of the
two codes as the cost of our preconditioning technique may vary substantially and is
difficult to estimate. A fair comparison of the computational cost can be performed
restricting to problems where our code did not require preconditioning. We recall
that this is the case when the set Lk defined in (5.1) is empty, see (5.2). For such
problems, in Figure 9.4 we draw the ratio of the number Aprod of matrix-vector
products required by BCLS and our code respectively; the height of the dotted line is
equal to 50. This ratio is always greater than one and lower than 50 for 8 problems.
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Fig. 9.1. Performance profile: elapsed times over successful runs
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Fig. 9.2. Accuracy comparison on successful runs

From Figure 9.4 we can see that in the solution of these tests our method needs
considerably fewer matrix-vector products than BCLS.

10. Conclusions. A method for box-constrained linear least-squares has been
discussed in this paper. It combines ideas of a cyclic Barzilai-Borwein and globally
convergent regularized Newton-like method to guarantee global and fast local conver-
gence. Its major computational step consists in the solution of the Newton equation.
This step is executed by a suitably preconditioned iterative method. The precon-
ditioner combines the idea of regularization and makes guess of active constraints.
Extensive computational results based on Matlab implementation illustrate that the
new method strengthens both the cyclic Barzilai-Borwein method and the regularized
Newton-like method and that it compares favourably with the BCLS code.
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Group/Test name m n nnz

Bai/cryg10000 10000 10000 49699
Bai/dw8192 8192 8192 41746
Bai/olm5000 5000 5000 19996
Bai/rw5151 5151 5151 20199
Boeing/bcsstm39 46772 46772 46772
Boeing/msc23052 23052 23052 1142686
Boeing/pcrystk03 24696 24696 1751178
Boeing/pct20stif 52329 52329 2698463
DRIVCAV/cavity16 4562 4562 137887
DRIVCAV/cavity26 4562 4562 138040
GHS indef/bloweybq 10001 10001 49999
GHS indef/bratu3d 27792 27792 173796
GHS indef/sit100 10262 10262 61046
GHS indef/spmsrtls 29995 29995 229947
GHS psdef/copter1 17222 17222 211064
GHS psdef/ford1 18728 18728 101576
GHS psdef/jnlbrng1 40000 40000 199200
GHS psdef/opt1 15449 15449 1930655
Gset/G67 10000 10000 40000
HB/bcspwr10 5300 5300 21842
HB/gemat1 10595 4929 46591
HB/gemat12 4929 4929 33044
HB/sherman3 5005 5005 20033
LPnetlib/lp dfl001 12230 6071 35632
LPnetlib/lp osa 60 243246 10280 1408073
LPnetlib/lp qap15 22275 6330 94950
LPnetlib/lp stocfor3 23541 16675 72721
Mallya/lhr07 7337 7337 18427
Mathworks/Kuu 7102 7102 340200
Mathworks/Muu 7102 7102 170134
Mathworks/Pd 8081 8081 13036
Meszaros/bas1lp 9852 5411 587775
Meszaros/co5 12325 5774 57993
Meszaros/cq9 21534 9278 96653
Meszaros/deter1 15737 5527 32187
Meszaros/nl 15325 7039 47035
Mittelmann/fome13 97840 48568 285056
Mittelmann/nug08-3rd 29856 19728 148416
Nasa/barth5 15606 15606 61484
Nasa/nasa4704 4704 4704 104756
Nasa/shuttle eddy 10429 10429 103599
Nasa/skirt 12598 12598 196520
Oberwolfach/flowmeter0 9669 9669 67391
Oberwolfach/gyro 17361 17361 1021159
Oberwolfach/rail 5177 5177 5177 35185
Parsec/Benzene 8219 8219 242669
Parsec/Na5 5832 5832 305630
Parsec/SiH4 5041 5041 171903
Rajat/rajat09 24482 24482 105573
Schenk IBMNA/c-42 10471 10471 110285
Schenk IBMNA/c-48 18354 18354 166080
Schenk IBMNA/c-53 30235 30235 355139
Schenk IBMNA/c-61 43618 43618 310016
Schenk IBMSDS/2D 27628 bjtcai 27628 27628 206670
Simon/appu 14000 14000 1853104
Tkk/cbukle 13681 13681 676515
Tkk/g3rmt3m3 5357 5357 207695
Tkk/t2d q4 9801 9801 87025
Tkk/tube1 21498 21498 897056
VanHenkelum/cage11 39082 39082 559722

Table 9.1

Test problems
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Group/Test name it it new h bt prec PPCG a Aprod q(xc) gp(xc)

Bai/dw8192 324 34 880 34 7 3696(3158) 2.00420E+3 1.E-5
Bai/rw5151 6 5 1 0 2 62(36) 2.57550E+3 2.E-9
Boeing/bcsstm39 6 5 1 3 2 75(41) 2.55329E+5 8.E-7
Boeing/pcrystk03 3 3 0 0 1 32(20) 6.45662E+7 4.E-10
Boeing/pct20stif 4 3 1 0 1 36(24) 7.71187E+7 5.E-7
DRIVCAV/cavity26 3378 310 9261 310 9 39460(32964) 3.46916E+3 1.E-4
GHS indef/bratu3d 76 31 90 31 4 901(579) 8.21465E+2 2.E-5
GHS indef/sit100 646 71 1491 71 8 6997(5771) 4.22135E+2 4.E-6
GHS indef/spmsrtls 94 14 141 14 1 1010(700) 2.56428E+5 1.E-6
GHS psdef/copter1 4 3 1 0 1 36(24) 1.57801E+6 1.E-10
GHS psdef/ford1 5 4 1 0 1 48(30) 3.00930E+5 5.E-12
GHS psdef/jnlbrng1 118 18 184 18 6 1138(890) 2.10955E+2 1.E-6
GHS psdef/opt1 3 3 0 0 1 32(20) 1.34586E+8 1.E-10
Gset/G67 38 8 36 8 10 424(250) 1.90595E+4 2.E-5
HB/bcspwr10 5 4 1 0 1 48(30) 5.05190E+4 2.E-11
HB/gemat1 408 38 1040 38 10 4630(3824) 2.76050E+8 8.E-3
HB/sherman3 195 45 303 40 9 2393(1523) 8.11138E+5 7.E-2
LPnetlib/lp dfl001 36 7 29 7 11 405(233) 1.61473E+4 1.E-4
LPnetlib/lp osa 60 3 2 1 0 1 26(18) 3.73599E+7 4.E-9
LPnetlib/lp qap15 4 4 0 2 2 52(30) 1.76400E+5 3.E-6
LPnetlib/lp stocfor3 3171 294 9611 252 5 36096(32788) 3.58317E+8 1.E-2
Mathworks/Muu 12 9 3 8 4 170(82) 3.30168E-4 4.E-8
Meszaros/bas1lp 6 2 4 0 2 44(34) 3.89051E+8 7.E-7
Meszaros/cq9 197 27 481 27 10 2415(1833) 7.55190E+6 3.E-2
Meszaros/deter1 66 16 100 16 9 842(512) 4.25901E+1 8.E-5
Meszaros/nl 405 45 931 43 7 4367(3617) 1.37931E+5 4.E-5
Mittelmann/fome13 36 7 33 7 11 403(233) 1.29178E+5 1.E-4
Mittelmann/nug08-3rd 11 4 7 2 2 94(70) 3.43392E+5 2.E-7
Nasa/barth5 5 4 1 0 1 48(30) 1.24284E+5 4.E-12
Nasa/shuttle eddy 4 4 0 0 1 42(26) 5.41577E+5 3.E-11
Nasa/skirt 5 3 2 0 3 42(30) 1.78356E+6 5.E-6
Oberwolfach/flowmeter0 265 249 38 249 5 5033(1885) 1.39057E+2 9.E-2
Oberwolfach/rail 5177 37 10 69 8 17 625(265) 4.94290E-6 7.E-7
Parsec/Benzene 71 41 62 41 7 1191(533) 9.68629E+3 6.E-4
Parsec/Na5 61 23 66 23 8 851(447) 1.95586E+3 5.E-5
Parsec/SiH4 47 17 59 17 6 601(359) 6.40972E+3 3.E-4
Rajat/rajat09 4 4 0 0 1 44(26) 2.42823E+5 5.E-8
Schenk IBMNA/c-42 266 39 599 39 13 3447(2371) 1.79401E+8 7.E-2
Schenk IBMNA/c-48 1041 96 2951 96 8 12042(10352) 2.50827E+11 1.E-2
Schenk IBMNA/c-53 3481 323 13484 318 8 47499(41853) 1.42336E+7 3.E-2
Schenk IBMNA/c-61 395 37 1167 34 8 4655(4013) 2.42598E+8 2.E-4
Simon/appu 4 3 1 0 1 36(24) 1.69528E+6 1.E-10
Tkk/g3rmt3m3 4 3 1 0 1 36(24) 4.15968E+6 1.E-11
Tkk/t2d q4 39 11 43 8 14 605(273) 1.82855E+1 1.E-5
Tkk/tube1 3 3 0 0 1 32(20) 1.90115E+7 7.E-10
VanHenkelum/cage11 6 5 1 0 1 60(36) 1.97780E+4 2.E-11

Table 9.2

Results obtained with the hybrid method on scaled problems
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Fig. 9.3. Performance profile in terms of Newton step computations (i.e. linear systems solved)
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Group/Test name major-itns minor-itns Aprod q(xc) gp(xc)

Bai/cryg10000 17 1475 4240(1219) 2.37768E+1 3E+2
Bai/dw8192 24 708 6279(4184) 2.00420E+3 2.E-3
Bai/rw5151 4 8 1531(1495) 2.57550E+3 0.E+0
Boeing/bcsstm39 6 6 519(12) 2.55329E+5 3.E-5
Boeing/pcrystk03 6 16 1323(120) 6.45642E+7 0.E+0
Boeing/pct20stif 8 29 17313(5329) 7.71187E+7 0.E+0
DRIVCAV/cavity26 69 11122 27954(5431) 3.46916E+3 1.E-4
GHS indef/bratu3d 47 7182 17491(2322) 8.21465E+2 4.E-5
GHS indef/sit100 57 4648 22441(12913) 4.22135E+2 6.E-5
GHS indef/spmsrtls 13 234 26808(26285) 2.56428E+5 3.E-4
GHS psdef/copter1 5 28 1781(1446) 1.57801E+6 0.E+0
GHS psdef/ford1 5 31 6867(4980) 3.00930E+5 0.E+0
GHS psdef/jnlbrng1 20 873 10797(5384) 2.10955E+2 2.E-5
GHS psdef/opt1 6 36 1560(1) 1.34586E+8 0.E+0
Gset/G67 11 70 7640(6451) 1.90595E+4 3.E-4
HB/bcspwr10 4 10 5227(5083) 5.05190E+4 0.E+0
HB/sherman3 50 14586 32728(3351) 8.11138E+5 8.E-1
LPnetlib/lp dfl001 9 89 5830(5605) 1.61473E+4 1.E-2
LPnetlib/lp osa 60 2 3 2695(1264) 3.73599E+7 0.E+0
LPnetlib/lp qap15 1 1 10(0) 1.76400E+5 2.E-10
LPnetlib/lp stocfor3 15 798 3668(1437) 3.58318E+8 3.E+1
Mathworks/Muu 6 22 4413(2129) 3.32036E-4 2.E-8
Mathworks/Pd 10 1538 4530(938) 2.37584E+4 7.E+0
Meszaros/bas1lp 6 34 5506(5415) 3.89051E+8 0.E+0
Meszaros/co5 54 18356 42974(5873) 1.47088E+7 2.E+0
Meszaros/cq9 23 995 11030(8819) 7.55190E+6 4.E-1
Meszaros/deter1 14 818 6444(4748) 4.25901E+1 1.E-4
Meszaros/nl 20 878 7963(5989) 1.37931E+5 2.E-2
Mittelmann/fome13 13 190 6085(0) 1.29178E+5 1.E-3
Mittelmann/nug08-3rd 2 4 21(0) 3.43392E+5 3.E-11
Nasa/barth5 4 10 9559(8857) 1.24284E+5 1.E-15
Nasa/shuttle eddy 3 10 405(15) 5.41577E+5 0.E+0
Nasa/skirt 6 47 2882(814) 1.78356E+6 0.E+0
Oberwolfach/flowmeter0 426 84980 616410(444743) 1.38994E+2 2.E-1
Oberwolfach/rail 5177 6 3320 6667(0) 2.78271E-6 1.E-11
Parsec/Benzene 59 6583 19816(6411) 9.68629E+3 3.E-4
Parsec/Na5 30 2166 7334(2879) 1.95586E+3 3.E-4
Parsec/SiH4 17 708 2993(1443) 6.40972E+3 3.E-4
Rajat/rajat09 3 7 280(189) 2.42823E+5 2.E-8
Schenk IBMNA/c-42 65 1818 15382(11457) 1.79401E+8 1.E+0
Schenk IBMNA/c-48 29 1994 21739(17604) 2.50827E+11 2.E+1
Schenk IBMNA/c-53 153 27335 86948(29013) 1.42336E+7 9.E+0
Schenk IBMNA/c-61 26 1012 39563(37292) 2.42598E+8 2.E-1
Simon/appu 4 17 14053(14000) 1.69528E+6 0.E+0
Tkk/g3rmt3m3 5 24 163(2) 4.15968E+6 0.E+0
Tkk/t2d q4 86 10185 35708(13889) 1.82855E+1 1.E-5
Tkk/tube1 3 13 153(0) 1.90115E+7 0.E+0
VanHenkelum/cage11 4 16 31607(27820) 1.97780E+4 0.E+0

Table 9.6

Results obtained with BCLS on scaled problems
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