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Abstract. We propose a fast algorithm for mode rank truncation of the result
of a bilinear operation on 3-tensors given in the Tucker or canonical form. If the
arguments and the result have mode sizes n and mode ranks r, the computation
costs O(nr3 + r4). The algorithm is based on the cross approximation of Gram
matrices, and the accuracy of the resulted Tucker approximation is limited by square
root of machine precision.
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1 Introduction

Data sparse representations of tensors and efficient operations in the corresponding
formats play increasingly important role in many applications. In the paper we consider
a 3-tensor A = A[i, j, k] that is an array with three indices. The number of allowed
values of each index is called mode size. To specify tensor indices explicitly, we use
square brackets. This notation allows to easily specify different index transformations.
For instance, unfoldings of n1 × n2 × n3 tensor A[i, j, k], are matricizations of sizes
n1×n2n3, n2×n1n3 and n3×n1n2 that consist of columns, rows and tube fibers of A,

A(1) = A[i, jk], A(2) = A[j, ki], A(3) = A[k, ij]. (1)

Here we set row/column/fiber index of the tensor A[i, j, k] as row index and join the two
others in one multiindex for columns of the unfolding. The result is considered as a two-
index object (matrix), with row and column indices separated by comma. The difference
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between matrices and tensors is additionally stressed by use of uppercase letter instead
of bold uppercase. The reshape of tensor elements assumes as well a change of the index
ordering. For example, transposition of matrix reads (A[i, j])T = A[j, i], vectorization
reads a[ij] = A[i, j].We see that the square bracket notation is rather self-explaining and
suits for description of algorithms working with multidimensional data. We also will
use the MATLAB-style round bracket notation a(i, j, k) to point to individual element
of A[i, j, k] and a(i, :, k) to select a mode vector (i.e. row) from tensor A. Scalars and
vectors are denoted by lowercase and bold lowercase letters.

In numerical work with tensors of large mode size it is crucial to use data sparse
formats. For 3-tensors, the most useful are the following.

The canonical decomposition [20, 2, 19] (or canonical approximation to some
other tensor) reads

A[i, j, k] =
R∑
s=1

us[i] ⊗ vs[j] ⊗ws[k], a(i, j, k) =

R∑
s=1

u(i, s)v(j, s)w(k, s). (2)

The minimal possible number of summands is called tensor rank or canonical rank of
the given tensor A. However, canonical decomposition/approximation of a tensor with
minimal value of R is a rather ill-posed and computationally unstable problem [8]. This
explains why among many algorithms of canonical approximation (cf. [4, 7, 11, 25])
none is known as absolutely reliable, and no robust tools for linear algebra operations
maintaining the canonical format (linear combinations, etc.) are proposed.

The (truncated) Tucker decomposition/approximation [28] reads

A[i, j, k] = G[p, q, s]×1 U[i, p]×2 V[j, q]×3W[k, s],

a(i, j, k) =

r1∑
p=1

r2∑
q=1

r3∑
s=1

g(p, q, s)u(i, p)v(j, q)w(k, s).
(3)

The quantities r1, r2, r3 are referred to as Tucker ranks or mode ranks, the tensor
G = G[p, q, s] of size r1× r2× r3 is called the Tucker core, the symbol ×l designates the
multiplication of a tensor by a matrix along the l-th mode, the mode factors U,V,W
have orthonormal columns. In d dimensions, the memory to store r×r×. . .×r core is rd,
that is usually beyond affordable for large d and even for very small r (so-called curse
of dimensionality). For d = 3, r ∼ 100 the storage is small and Tucker decomposition
can be used efficiently.

In [26] the efficient operations with 3-tensors in canonical and Tucker formats are
discussed, with approximation of the result in the Tucker format. Simple operations like
linear combination of small number of structured tensors can be done using multilinear
SVD [5] (or high-order SVD, HOSVD), with quasi-optimal ranks and guaranteed accu-
racy. Linear combination of many tensors, convolution, Hadamard (pointwise) product
of tensors and many other bilinear operations reduce to recompression of the following
structured tensor

F[i, j, k] =Kron(G,H)[ap, bq, cs]×1 U[i, ap]×2 V[j, bq]×3W[k, cs],

f(i, j, k) =
∑
pqs

∑
abc

g(p, q, s)h(a, b, c)u(i, ap)v(j, bq)w(k, cs), (4)

2



Table 1. Memory for rd elements, MB

d = 3 d = 4 d = 5 d = 6

r = 15 0.026 0.4 5.8 87

r = 30 0.2 6.2 185 5560

r = 50 0.95 47 2384 119210

r = 100 7.7 763 76300 ≈ 8 TB

with r1 × r2 × r3 core G[p, q, s], p1 × p2 × p3 core H[a, b, c] and non-orthogonal factors
U,V andW. Formally (4) is a Tucker-like format with larger mode ranks p1r1, p2r2, p3r3,
that should be reduced (truncated) maintaining the desired accuracy. Due to memory
limitations, F[i, j, k] can not be assembled for mode sizes n & 103 and auxiliary p1r1 ×
p2r2 × p3r3 core can not be assembled for ranks r & 30 (see Tab. 1).$ The structure of
F should be exploited without explicit evaluation of large temporary arrays.

A practical rank-reduction algorithm proposed in [26] is a rank revealing version of
iterative Tucker-ALS [22, 6] requiring O(nr4 + r6) operations. However, the number of
iterations in Tucker-ALS depends on the initial guess, and fast approximate evaluation
of Tucker factors of (4) is important.

In Sec. 2 we propose to approximate dominant mode subspaces of F[i, j, k] by the
ones of simpler tensors. In Sec. 3 we compute dominant mode subspaces by a cross
approximation of Gram matrices of the unfoldings. The resulted algorithm requires
O(nr3+ r4) operations in three-dimensional case and can be easily generalized to higher
dimensions using O(dnr3 + drd+1) operations. Since it uses decomposition of Gram
matrices, the accuracy is limited by square root of machine precision. In Sec. 4 we apply
the proposed method to Hadamard product of electron densities of simple molecules
and show that using the result as an initial guess, Tucker-ALS converges to almost
machine precision in one iteration.

In the paper we use Frobenius norm of tensors, that is defined as follows

‖A‖2F
def
= 〈A, A〉 , 〈A, B〉 def=

n1∑
i=1

n2∑
j=1

n3∑
k=1

aijkbijk

and spectral norm of tensor (cf. [9])

‖A‖2
def
= max
‖u‖=‖v‖=‖w‖=1

A×1 uT ×2 vT ×3 wT = max
‖u‖=‖v‖=‖w‖=1

〈A, u ⊗ v ⊗w〉 ,

induced by standard vector norm ‖u‖2 def
= ‖u‖22 = (u,u) =

∑n
i=1 |ui|

2.

$We always assume n1 = n2 = n3 = n and r1 = r2 = r3 = p1 = p2 = p3 = r in complexity estimates
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2 Approximation of dominant subspaces

Our goal is to find approximate dominant subspaces of an n1 × n2 × n3 tensor (4)
producing an approximation in the Tucker format

~F[i, j, k] = T[α,β, γ]×1 X[i, α]×2 Y[j, β]×3 Z[k, γ], ‖F− ~F‖F 6 ε‖F‖F (5)

with a desired (not very high) accuracy and values of mode ranks for ~F, close to optimal.
Tucker factors X[i, α], Y[j, β] and Z[k, γ] approximate dominant subspaces of rows,

columns and fibers of F[i, j, k], respectively. They can be computed by SVD of the
unfoldings of F, as proposed in [5], but this method requires evaluation of all elements
of tensor and is not feasible for large mode sizes. We can compute (5) interpolating a
given tensor on carefully selected set of elements. This is done in Cross3D algorithm [23],
that requires evaluation of O(nr + r3) tensor elements and uses O(nr2 + r4) additional
operations. For a structured tensor (4) this summarizes to O(nr3 + r6) operations, i.e.
the complexity is linear in mode size. However, pivoting and error checking involves
heuristics and in certain cases is slower than the approximation itself. For example,
computation of residual (F − ~F)[i, j, k] on O(n) randomly picked elements uses O(nr4)

operations.
To avoid heuristic approaches, we can evaluate dominant subspaces by proper de-

composition of Gram matrices of the unfoldings. In [27] this idea was used for fast
mode rank truncation of tensor given in the canonical form (2) with large number of
terms. The proposed in [27] cross approximation algorithm is equivalent to an unfin-
ished Cholesky decomposition and computes rank-r dominant basis using the diagonal
and certain r columns of the Gram matrix. However, for the unfolding F[i, jk] of tensor
F[i, j, k] the Gram matrix (FFT)[i, i ′] reads

(FFT)(i, i ′) =
∑
pqs

∑
abc

∑
p ′q ′s ′

∑
a ′b ′c ′

g(p, q, s)h(a, b, c)g(p ′, q ′, s ′)h(a ′, b ′, c ′)

(VTV)(bq, b ′q ′)(WTW)(cs, c ′s ′)u(i, ap)u(i ′, a ′p ′),

(6)

and it is easy to check, that evaluation of any element of (6) requires O(r6) operations.
Therefore, the algorithm from [27] applied to (6) has O(nr6) complexity, which is not
promising even for moderate r. To perform faster, we propose to change the computa-
tional objective and look for dominant subspaces of tensors with a simpler structure.

Rewrite the tensor (4) as follows

F[i, j, k] =U ′[i, bq, cs]×2 V [j, bq]×3W[k, cs],

U ′[i, bq, cs] = Kron(G,H)[ap, bq, cs]×1 U(i, ap).
(7)

It is clear that the Tucker approximation of U ′[i, bq, cs] gives a Tucker approximation of
F[i, j, k] with the same mode-1 rank. Therefore, we can approximate dominant mode-1
subspace of F by the one of U ′. The accuracy of resulted approximation is estimated by
the following theorem.
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Theorem 1. For tensor F[i, j, k] given by (7) it holds

‖F‖F 6 ‖U ′‖F‖V‖2‖W‖2, ‖F‖2 6 ‖U ′‖2‖V‖2‖W‖2,

and for mode-1 unfoldings F = F[i, jk] and U ′ = U ′[i, pqcs] it holds

‖F‖2 6 ‖U ′‖2‖V‖2‖W‖2.

Proof. The first and last parts follow directly from matrix inequalities

‖F[i, j, k]‖F = ‖F[i, jk]‖F 6 ‖U ′[i, bqcs]‖F‖W[k, cs] ⊗ V[j, bq]‖2 = ‖U ′‖F‖V‖2‖W‖2,
‖F[i, jk]‖2 6 ‖U ′[i, bqcs]‖2‖W[k, cs] ⊗ V[j, bq]‖2 = ‖U ′[i, bqcs]‖2‖V‖2‖W‖2.

Second part reads

‖F[i, j, k]‖2 = max
‖u‖=‖v‖=‖w‖=1

〈U ′[i, pq, cs]×2 V[j, pq]×3W[k, cs], u[i] ⊗ v[j] ⊗w[k]〉 =

= max
‖u‖=‖v‖=‖w‖=1

(vTV)[bq](U ′ ×1 uT)[bq, cs](WTw)[cs] 6

6 max
‖u‖=‖v‖=‖w‖=1

‖VTv‖‖U ′ ×1 uT‖2‖WTw‖ =

=

(
max
‖u‖=1

‖U ′ ×1 uT‖2
)(

max
‖v‖=1

‖VTv‖
)(

max
‖w‖=1

‖WTw‖
)

= ‖U ′‖2‖V‖2‖W‖2.

Corollary 1. For certain perturbation ∆U ′ of tensor U ′, the corresponding perturbation
∆F can be estimated as follows

‖∆F‖F
‖F‖F

6 cF
‖∆U ′‖F
‖U ′‖F

, cF =
‖U ′‖F‖V‖2‖W‖2

‖F‖F
;

‖∆F‖2
‖F‖2

6 c2
‖∆U ′‖2
‖U ′‖2

, c2 =
‖U ′‖2‖V‖2‖W‖2

‖F‖2
;

‖∆F‖2
‖F‖2

6 c2
‖∆U ′‖2
‖U ′‖2

, c2 =
‖U ′‖2‖V‖2‖W‖2

‖F‖2
.

(8)

Remark 1. For any tensor, ‖A[i, j, k]‖2 6 ‖A[i, jk]‖2 6 ‖A[i, j, k]‖F.

To find a dominant mode-1 subspace of U ′[i, bq, cs], we can use proper decomposi-
tion of Gram matrix of the unfolding U ′[i, bqcs], that reads

A[i, i ′] = (U ′U ′
T
)[i, i ′] = U[i, ap]

(
Ĝ[p, p ′] ⊗ Ĥ[a, a ′]

)
U[a ′p ′, i ′],

Ĝ[p, p ′] = G[p, qs]G[qs, p ′], Ĥ[a, a ′] = H[a, bc]H[bc, a ′].
(9)

Tensor U ′ has a simpler structure than F, and computation of the Gram matrix (9) is
faster than (6). However, evaluation of A[i, i ′] as full n1 × n1 array leads to O(n2r3)

complexity. Looking for the methods with linear in mode size complexity, we are to use
the cross approximation algorithms.
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3 Cross approximation of Gram matrices

Truncated singular/proper decomposition is used in cases where low-rank approxima-
tion is required. This problem can be solved by faster methods, for example, those
based on cross approximation A[i, j] ≈ ~A[i, j] = U[i, J](A[I, J])−1A[I, j], where I and J
contain indices of certain rows and columns of A. This approximation is exact on the
cross formed by rows I and columns J, but the overall accuracy depends heavily on the
properties of A[I, J]. In [17, 18, 16] it is shown that a good choice for A[I, J] is maxi-
mum volume (modulus of determinant) submatrix. Search of this submatrix in general
case is NP-hard problem [1], and alternatives should be used, see [29, 13]. If the sup-
ported cross is iteratively widened at each step by one row and column that intersect on
element where residual is maximum in modulus, cross approximation method is equiv-
alent to Gau�ian decomposition with complete pivoting. For Gram matrix the pivot is
always on the diagonal and cross approximation is equivalent to unfinished Cholesky
decomposition. The resulted algorithm exploiting structure of (9) is summarized in
Alg. 1.

Algorithm 1: Cross approximation for Gram matrix (9)

Input: Structured tensor F = Kron(G,H)×1 U×2 V ×3W, see (4)
Output: Approximation ~A = XΛXT for Gram matrix (9), such that ‖A− ~A‖F . ε‖A‖F
Initialization: p = 0, ~A = 0

1: Ĝ[p, p ′] = G[p, qs]G[qs, p ′], Ĥ[a, a ′] = H[a, bc]H[bc, a ′] O(r4)

2: for i = 1, . . . , n do {Compute diagonal of matrix}
3: Ui[a, p] = U[i, ap], d(i) = 〈Ui[a, p]G[p, p ′], H[a, a ′]Ui[a ′, p ′]〉 O(r3)

4: end for
5: nrm := ‖d‖1
6: repeat
7: i? := argmaxi |d(i)| {Find new pivot} O(n)

8: a(:, i?) := U[:, ap](H[a, a ′]Ui? [a
′, p ′]G[p ′, p])[ap] O(nr2 + r3)

9: ~a(:, i?) = XΛ(x(i?, :))T O(np)

10: x? := (a− ~a)/
√

(a− ~a)(i?, i?) O(n)

11: d[i] := d[i] − |x?[i]|2 {Update diagonal of residual} O(n)

12: x? =: [X x ′]b {Orthogonalize x? to spanX} O(np)

13: Λ+ bTb =: VDVT {Re-diagonalize decomposition} O(p3)

14: X := [X x ′]V, Λ := D, ~A = XΛXT , err := ‖d‖1 O(np2)

15: until err 6 ε nrm or r = rmax

It is easy to see that evaluation of Ĝ and Ĥ, i.e. Gram matrices of the unfoldings
G[p, qs] and H[a, bc], requires O(r4) operations in three-dimensional case and O(rd+1)

in d-dimension case. With precomputed Ĝ and Ĥ every element a(i, i ′) is computed
in O(r3) operations and a column a(:, i ′) is computed in O(nr2 + r3) operations for
three and d-dimensional case. For the rediagonalization of Λ + bTb matrix we can
use algorithm proposed by Demmel (see [10], Alg. 5.3) that is implemented by the
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LAPACK procedure slaed3 and has complexity O(p3).We conclude that approximation
of rank-r dominant mode subspace of Gram matrix (9) in d-dimensional case requires
O(nr3 + rd+1) operations.

The relation between accuracy of cross approximation of Gram matrices and corre-
sponding low-rank approximation of initial matrices is given by the following theorem.

Theorem 2. Consider a matrix U =
[
U1 U2

]
. If the corresponding Gram matrix

A = UTU =

[
A11 A12
A21 A22

]

allows the cross approximation∥∥∥∥∥A−

[
A11
A21

]
A−1
11

[
A11 A12

]∥∥∥∥∥
2

6 ε‖A‖2,

then there exists a matrix B such that

‖U−U1B
T‖2 6

√
ε‖U‖2. (10)

Proof. Consider V = −U1A
−1
11A12 +U2 and write

VTV = A21A
−1
11A11A

−1
11A12 −A21A

−1
11A12 −A21A

−1
11A12 +A22 = A22 −A21A

−1
11A12.

Cross approximation is exact on the selected rows and columns

A−

[
A11
A21

]
A−1
11

[
A11 A12

]
=

[
0 0

0 A22 −A21A
−1
11A12

]
=

[
0 0

0 VTV

]
, (11)

and it follows that ‖VTV‖2 6 ε‖UTU‖2 and ‖V‖2 6
√
ε‖U‖2. We conclude that BT =[

I A−1
11A12

]
provides (10).

Remark 2. For U with UT1U1 = I, U
T
2U2 = εI, U

T
1U2 = 0, inequality (10) is sharp.

Remark 3. For fixed U1, matrix BT =
[
I A−1

11A12

]
= (UT1U1)

−1UT1U provides minimal

residual U−U1B
T in Frobenius and spectral norms. See [14], where a nice estimates for

accuracy of cross approximation of matrices and tensors are also given.

Remark 4. spanB = spanX is the subspace of columns of the Gram matrix that
support the cross approximation in Alg. 1.

Since the spectral norm of the residual is not easy to evaluate, the stopping criteria
in a practical algorithm is based on the Frobenius norm. On each step of Alg. 1 vector
d contains the diagonal of residual (11) and

‖d‖1 =
n∑
i=1

|d(i)| =
∑
i

(VTV)(i, i) = ‖V[i, j]‖2F.

7



We can also implement stopping criteria based on eigenvalues stored in Λ. To do this,
we can split them in ‘dominant’ and ‘smaller’ parts basing on desired tolerance ε, and
stop the process if during several iterations new eigenvalues fall into the smaller part.
This criteria will approximate spectral norm more precisely, but as we see in numerical
experiments, it generally does not differ from the Frobenius-based one.

Obviously, Alg. 1 can be applied in the same way to estimate other Tucker factors
of (4). Due to roundoff errors, accuracy ε of Alg 1 is limited by machine precision tol,

and for ε = tol, accuracy of (5) can be estimated by Thm. 2 as

‖F− ~F‖2 6
√
tol

√
c22(U) + c

2
2(V) + c

2
2(W)‖F‖2,

where c2(U) is defined in (8) and similar definition applies to V,W.

4 Numerical examples

Multidimensional data often appear in modern modelling programs. For example, in
chemical packages, e.g. PC GAMESS, MOLPRO, the electron density function is given
in canonical form (2) as a sum of tensor product of Gaussians, but with number of terms,
that may be too large for practically feasible computations even for moderate molecules.
In order to make computations efficient, further approximation (recompression) to the
Tucker format can be performed. This problem was approached in [3] using Tucker-ALS
algorithm, in [21] by Tucker-ALS with initial guess obtained from the coarser grids,
in [12] by Cross3D algorithm, in [24] by individual cross approximation of canonical
factors, in [27] by cross approximation of Gram matrices of unfoldings and in [15] by
algorithms based on Wedderburn rank reduction.

As an example, we apply the discussed algorithm for Hadamard multiplication of
electron density given in Tucker format to themselves. This operation can be a building
block for algorithm that computes pointwise cubic root of density, that is used in the
Kohn-Sham model. A good initial guess for such methods can be evaluated by mimic
algorithm [24].

The results of experiments are collected in Tab. 2. They were performed on Intel
Xeon Quad-Core E5504 CPU running at 2.00 GHz using Intel Fortran compiler version
11.1 and BLAS/LAPACK routines provided by MKL library. For each molecule, we
show time in seconds T(Alg. 1) for evaluation of three dominant subspaces X[i, α], Y[j, β]
and Z[k, γ] by Alg. 1 with accuracy of approximation of Gram matrices set to ε = 10−12.
Then we compute best core by convolution

T[α,β, γ] = F[i, j, k]×1 X[α, i]×2 Y[β, j]×3 Z[γ, k].

and check relative accuracy ε(Alg. 1) of approximation (5) in Frobenius norm. The
direct computation of all elements of residual requires a lot of computational time and
the accuracy ‖F− ~F‖F was verified by comparing the result with Tucker approximation
computed by Cross3D algorithm [23] with accuracy set to ε = 10−12. The Cross3D

8



Table 2. Hadamard square of electron density, n1 = n2 = n3 = 5121

molecule r1, r2, r3 T(Alg. 1) ε(Alg. 1) T(c3d) T(wsvdr) T(tals) ε(tals)
methane (74, 74, 74) 4.0 3·10−7 78.6 12.4 37 7·10−13

ethane (67, 94, 83) 5.3 6·10−7 76.8 15.1 42 8·10−13

ethanol (128, 127, 134) 20 5·10−7 1050 210 473 9·10−13

glycine (62, 176, 186) 38 8·10−7 1260 237 442 9·10−13

algorithm was verified in [23, 12] by exhaustive check on parallel memory platforms,
and can be considered as reliable answer. The residual between two Tucker formats is
computed as proposed in [26].

Then we compute approximation of the same accuracy ε(Alg. 1) by Cross3D [23] and
WsvdR [15] algorithms and show the corresponding timings as T(c3d) and T(wsvdr).
We also show time T(tals) for one iteration of Tucker-ALS [22, 6] with ranks fixed equal
to the ranks of bases X, Y, Z, returned by Alg. 1. Then we apply one iteration of rank-
revealing Tucker-ALS [24] with accuracy parameter set to ε = 10−12 using bases X, Y, Z
as initial guess, and show the accuracy of improved approximation by ε(tals).

We conclude that proposed algorithm is faster that other methods for this purpose
and return approximation of dominant subspaces that allows to construct approximation
with accuracy about square root of machine precision. Using the subspaces, computed
by Alg. 1 as initial guess, rank revealing Tucker-ALS converges to almost machine
precision in one iteration.
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