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Optimal Process Adjustment by Integrating
Production Data and Design of Experiments

Jing Li,?*' Hairong Xie? and Jionghua Jin®

This paper proposes a method to improve the process model estimation based on limited experimental data by
making use of abundant production data and to achieve the optimal process adjustment based on the improved
process model. The proposed method is called an Estimation-adjustment (EA) method. Furthermore, this paper proves
three properties associated with the EA, which guarantee the feasibility and effectiveness of using EA for integrating
production and experimental data for optimal process adjustment. Also, the paper develops a sequential hypothesis
testing procedure for implementing the EA. The properties and implementation of the EA are demonstrated in a
cotton spinning process. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

output of a process, which provides a basis for adjusting the process input in order to achieve a target output. Abundant

research exists in the DOE literature on how to design efficient experiments and how to perform effective modeling and
analysis of the experimental data'~>. Essentially, DOE is an offline technique, which usually happens at the design stage of the
process and product (i.e. prior to production). In practice, the number of test samples that can be used in a designed experiment
is usually limited due to timing, economical, or availability reasons. This leads to a small sample size of the experimental data,
which further leads to large uncertainty in the process model that is estimated from the data. As the process model is a key in
determining how to adjust the process input so as to achieve a target output, a process model with large uncertainty may lead
to ineffective process adjustment.

With the rapid advancement in in-process sensing technologies, massive production data can now be continuously collected
during the production®. In contrast with the experimental data, these production data are much easier to obtain, associated with
less cost, and come with myriad amounts. Therefore, it is highly desirable to investigate how to fully utilize the production data
to adaptively tune the initial process model estimated from the experimental data, as the production data become available.
This has a potential benefit of reducing the possibly large uncertainty in the initial process model estimated and consequently
making it possible to achieve the optimal process input adjustment.

The idea of integrating DOE and production data has been explored in the literature of engineering process control (EPC)
and run to run control (R2R)’~13. EPC and R2R are usually applied to dynamic processes, such as chemical and semiconductor
processes, whose output has a tendency to shift or slowly drift away from the target due to uncontrollable process disturbance.
The purpose is to adjust some controllable input variable(s) in order to compensate for the shift/drift and keep the process
output on target. Moreover, EPC and R2R have been enhanced by combining with statistical process control (SPC)14-20,

Compared with EPC and R2R, the research in this paper has the similarity of using DOE data to estimate an initial process
model and then tuning the process model based on continuously available production data. The difference lies in the following
aspects:

First, we assume that the true process model parameters do not change over time. As a result, our purpose of using production
data for process model tuning is to reduce the large uncertainty in the estimation of the unknown process model parameters
due to small experimental sample sizes. However, the purpose for process modeling tuning in EPC and R2R is to account for

Design of experiments (DOE) has been widely used in industrial processes to study the relationship between the input and
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the process change (e.g. shifts or drifts) over time. For example, a typical R2R controller for a single-input single-output (SISO)
process may assume the intercept of the linear process model to be time-varying; hence, the intercept needs to be updated
recursively upon production data becoming available2!:22_|n fact, small experimental sample sizes have not been the focus of
EPC and R2R. For example, in the SISO process discussed previously, the slope of the linear process model is assumed to be a
constant and is estimated accurately using experimental data.

Second, EPC and R2R assume that it is the uncontrollable process disturbance that shifts/drifts the process output to
be off target. Therefore, the effort of EPC and R2R is to adjust the process input to compensate for the shifts/drifts so as
to keep the process output on target. However, we consider the process output to be off target because of inappropriate
process input settings, which are caused by the large uncertainty in the process model estimation. Therefore, our effort in
this research would be to reduce the uncertainty by incorporating the production data and identifying the optimal process
input.

Specifically in this paper, we propose a method, called the Estimation-adjustment (EA) method, which uses production
data to adaptively tune the initial DOE model which is likely to be imprecise due to limited sample sizes. To realize the
proposed EA method, we prove three properties associated with the EA, which guarantee the feasibility and the effective-
ness of using EA for integrating production data and DOE for optimal process adjustment. Briefly, the three properties of
EA are: (i) there is a permanent offset between the estimates and the true values for the process model parameters due
to insufficient perturbation in the process input; (ii) despite (i), i.e. the estimates for the process model parameters do
not converge to the true model parameters as the EA procedure proceeds, it is still possible for the process output to
converge to the target output; (iii) after the process output converges to the target, it will not drift away even when the EA
procedure continues on. Based on these properties of EA, we further develop a statistical hypothesis testing procedure for
implementing the EA.

The remainder of this paper is organized as follows: Section 2 is the problem formulation, in which we define the scope
of the industrial processes under consideration and propose the EA method; Section 2 discusses the three properties of the
EA and shows the detailed mathematical proof of each property; Section 3 proposes a sequential hypothesis testing procedure
for implementing the EA; finally, Section 4 demonstrates the properties and implementation of the EA in a cotton spinning
process.

2. Problem formulation

In this paper, we consider a process with an output variable, Y, and multiple input variables, X and Z. X and Z represent the
controllable variable and uncontrollable variables, respectively. Furthermore, we consider that the relationship between the output
and input variables can be represented by a multiple linear regression, called a ‘process model’, i.e.

Y:ozo—{—ocXX—l—a;Z—i—a}ZZX—key, (1)

where ey is the residual error. A common assumption is that ey ~N(0, agy) and ey is independent of X and Z. Note that (1) is
suitable for the following two types of processes: (i) the process with one controllable variable; (ii) the process with multiple
controllable variables, but we can only choose one of them to adjust due to cost or engineering constraints. In the second type
of process, in order for (1) to be an appropriate process model for the process, we need to change the definition of X and Z
as follows: we use X to denote the controllable variable that is chosen to be adjusted and use Z to denote other controllable
variables as well as uncontrollable variables.

Furthermore, we propose a simpler but equivalent representation for the process model in (1), for the convenience of the
subsequent discussion in the paper. Specifically, let Z be expressed by a sum of its mean vector, pz, and a random vector, ez, i.e.

Z=pz+ez. )
Inserting (2) into (1),
Y = (o0 +agnz)+(ox + oy ng)X + (g sezX +agez +ey).
Letting uo+a;uzzﬁ0,ax+a}zpzzﬁ1 and a)T(ZeZX+a;ez+eyEa, then the process model in (1) becomes
Y=Po+p1X+e. )

The goal of process adjustment is to find a setting for the controllable input variable, X, to make the output, Y, satisfy a
predefined condition. In this paper, we focus on a setting for X that is optimal in the sense that it brings the mean output
to the target. Specifically, let T denote the target value for Y. Then, the optimal setting for X should be xopt=(T— o)/ 1,
because E(Y|X=xopt)=E(Bo+ f1Xopt +¢)=T+E(e)=T. To find the optimal setting for X, we first must estimate the process model
parameters, ; and f3;, from data.

The data used to estimate the process model parameters may be collected from an offline designed experiment. Let x'=
[xﬁ,...,x}n]T and yT=[yq,...,y;,,]T denote the data for X and Y, respectively. m is the sample size. If the commonly used
orthogonal designs are used in the experiment, the data for X will have setting ‘—1’ for the first m/2 samples and ‘1’
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Figure 1. The proposed Estimation-adjustment (EA) method

for the rest of the samples, ie. xT:[xq,...,x;n/z,x;n/ZH,...,x;n]T:[—1,...,—1,1,...,1]T. These data can be used to estimate
o and f.

However, the sample size of the experimental data is usually very limited, making the estimates for the process model
parameters unreliable. On the other hand, after the production starts, massive amounts of production data can now be collected.
This motivates the idea of taking advantage of the production data to update the initial, experimental data-based estimates for
the process model parameters. Specifically, the proposed idea is as follows:

Denote the initial, experimental data-based estimates for 5 and f; by [30,1 and [3111, respectively. 230,1 and [31,1 are used to obtain

the first setting for the process input, X, i.e. x =(T—/A30/1)//A31,1 . Then, the offline experimental stage ends and the production starts.
During the production, assume that the process adjustment cycle has length ¢, i.e. the process input will be adjusted after every ¢
samples have been produced. This implies that the process input for the first ¢ samples after the production starts will all be equal
to x1. Denote the corresponding process output by [y11,...,y1c]T. Upon the first ¢ pairs of input-output data becoming available,
they will be used, in conjunction with the offline experimental data, to update the estimates for fij and f;. Denote the updated
estimates by Bo,z and 31,2, which will then be used to obtain the setting for the process input for the next process adjustment cycle,

ie. x2:(T—f30,2)/[}1,2. This procedure will continue until the /th process adjustment cycle is finished (here, a stopping criterion is
needed and will be defined later). Afterwards, the process input will be kept at x;. Because this procedure involves progressively
updating the estimates for iy and 1, and adjusting the process input accordingly, it is called an Estimation-adjustment (EA in short)
method in this paper. The proposed EA method can be clearly depicted by Figure 1, in which :B)O,i and BH denote the estimates for
fo and f; at the end of the (i—1)th process adjustment cycle or equivalently at the start of the ith process adjustment cycle, based
on the data collected in the offline experiment and in the first (i— 1) process adjustment cycles, x; = (T—/Afol,-)/[}],i denote the setting
for the process input in the ith process adjustment cycle, and [yj;,.. .,y,-c]T denote the data on the process output corresponding to
X, i=1,...,1

There are two parameters associated with the EA method: the total number of adjustment cycles, /, and the length of each
cycle, c. In Sections 3 and 4 of this paper, properties of the EA will be discussed, based on which methods for selecting the two
parameters will be further developed.

Note that the EA involves estimating the process model parameters at the end of the offline experimental stage as well as at
the end of each process adjustment cycle. To determine the estimation method, the property of the process model in (3) must
be understood. A special property of the process model is that the data of the process output Y according to this process model
are independently but non-identically distributed. More specifically, the data are independent, because cov(y;, y;)=cov(s; &) =0
where y; and y; denote two samples for Y, and ¢ and ¢ are the corresponding residual errors. Recall that in the process
model in (3), the residual error is s:a}zer+u}ez+ey. The data are not identically distributed because the residual error
¢ is a function of the process input X. As a result, Var(Y)=Var(e) =X? var(axzez)+var(azez) + varley) + 2X cov(oxzez, azez) ie.
the variance of Y is a function of the input variable X and thus it is not a constant across different samples. This special
property of our process model, i.e. the samples being independently but non-identically distributed, is called ‘heteroskedas-
ticity’ in statistics23. To estimate the parameters of a model with heteroskedasticity, least-square estimation (LSE) can still
be used because it has been proven to be unbiased and efficient given a large sample size?3. In our case, although the
‘large sample size’ condition may not be satisfied at the offline experimental stage and the first few process adjustment
cycles, this condition will be satisfied as the process adjustment goes along. Essentially, the proposed EA method has the
advantage of compensating for the sample shortage in the offline experiment by making use of the abundant data collected
during the production. Therefore, in this paper, we propose to use LSE to estimate the process model parameters in the EA
method.

3. Properties of the EA method

The purpose of the EA is to progressively adjust the process input X, until the optimal input is achieved. Recall that the optimal
input is xopt =(T—fg)/ f1, which brings the mean output, E(Y), to the target T. To achieve this purpose, it is desirable that
the estimates for iy and f, ie. /A?O,i and BU' should converge to fy and f; as the EA procedure goes along. However, the
convergence is difficult to achieve, because the settings of the process input in the EA, i.e. the x;'s, i=1,...,I, do not have enough

]
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perturbation, i.e. the x;’s are too close to each other. This leads to a permanent offset between the estimates and the true values
for o and f; no matter how far along the EA goes—a unique property of the EA method, as summarized below:

Property | of EA: there is a permanent offset between the estimates and the true values for the process model parameters 5, and f3;.

Although this property shows that the estimates for i and f; will not be able to converge to the true fy and f; due to a
permanent offset in the estimates, Property Il below shows that the mean process output may still reach the target—another
unique property of the EA:

Property Il of EA: it is possible for the mean process output to reach the target, at the existence of a permanent offset between
the estimates and the true values for the process model parameters.

Finally, the third unique property of the EA method is stated below:

Property lll of EA: once the mean process output reaches the target, it will not drift away even when the EA continues on.

Proofs of all the three properties can be found in the Appendix.

4. Implementation of EA by a sequential hypothesis testing method

Recall that there are two parameters associated with the EA: the total number of adjustment cycles, /, and the length of each
cycle, c. To determine the total number of adjustment cycles is equivalent to defining a stopping criterion for the EA. The EA
should stop once the mean process output reaches the target. We have known from Property Il of EA that it is possible for the
mean process output to reach the target although there is a permanent offset between the estimates and the true values for the
process model parameters. This motivates the idea of using hypothesis testing to test the equality between the mean process
output and the target in each process adjustment cycle. The hypothesis testing should be ‘sequential’ in the sense that if the
mean process output is unequal to the target in a particular adjustment cycle, the testing should proceed to the next adjustment;
otherwise, the testing will stop, i.e. the EA will stop. Specifically, at the ith adjustment cycle, the following hypotheses can be
tested:

Ho,i:Elyi)=T,
Hyi:EQy) #T.

(4)

If Ho j is rejected, then a similar test to that in (4) will be performed for the (i4-1)th adjustment cycle. Otherwise, the EA will stop,
implying that the total number of adjustment cycle is /=i, and the process input will be set at x; permanently to guarantee the
mean process output to stay at the target.

To test the hypotheses in (4), a test statistic must be identified. A natural choice of the test statistic is

_ J_/io =T — )_/i. =T
Jvaris)  Jvarlyy)/c

where )7,.:27:1y,~,/c. to,; follows a student-t distribution with c—1 degrees of freedom, when Hy; is true. Therefore, |tg;| can
be compared with t,/5_1, i.e. the upper-a/2 percentage point of the student-t distribution with c—1 degrees of freedom. If
to,il>1ty/2,c—1, then Hy; is rejected.

One risk associated with the sequential hypothesis testing method is Type-Il error, ;, which is the probability that the EA
stops (i.e. Hp,; is not rejected) when the mean process output has not reached the target. Let 6 be the difference between the
mean process output and the target T, i.e. E(yy)=T+0. Then, it can be derived that

to,i (5)

s 0
=F\twvae1 = T | P | Ttz e ) °
& (“2'” /W) ( 2 JW)

where F(e) is the cumulative probability function of the student-t distribution with c—1 degrees of freedom. The consequence
of the Type-Il error is severe and costly, because once it is committed, the process input will be permanently set to a value that
creates a deviation between the mean process output and the target, i.e. the mean process output will never have a chance to
reach the target.

The other risk associated with the sequential hypothesis testing method is Type-l error, which is the probability that the EA
continues, although the mean of the process output has already reached the target. The consequence of Type-l error is usually
not severe because (i) it is known from Property Ill of EA that after the mean process output reaches the target, it will not
drift away even when the EA continues; (ii) even when we fail to identify that the mean process output reaches the target at a
particular adjustment cycle due to a Type-I| error, there is still a chance to make this identification at later adjustment cycles; and
(i) the cost of Type-l error, incurred by additional unnecessary process adjustment cycles, is relatively low, compared with the
cost of Type-Il error.

Considering that the consequence of Type-Il error is severe and costly, Type-Il error needs to be well controlled. Therefore, in
what follows, we will show how to modify the sequential hypothesis testing method presented previously in order to guarantee
that Type-ll error will not exceed a pre-specified upper bound, B :

It can be proved that Type-Il error is monotonically decreasing with respect to the length of the adjustment cycle, c. Therefore,
if the Type-Il error of the hypothesis testing for a particular adjustment cycle is larger than the pre-specified upper bound, i.e.
By> By, we can lower the Type-Il error by collecting additional samples, i.e. by increasing the length of the adjustment cycle.

______________________________________________________________________________________________________________________________________________|
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Figure 2. A sequential hypothesis testing method for implementing the EA considering an upper bound for Type-Il error

On the other hand, increasing the length of an adjustment cycle changes the hypothesis testing for this adjustment cycle
by changing the test statistic tg; in (5) and the test threshold t,/5 mjc—2; hence, the testing must be re-conducted. While the
original testing (before c is increased) concludes that Hg; cannot be rejected, the re-conducted testing may make a different
conclusion that Hy is rejected. As a result, the EA will continue.

When the EA stops again, f3;; will be re-computed and compared with f; ;. If B>y, additional samples are collected at the
corresponding adjustment cycle and the hypothesis testing at that cycle is re-conducted. This process repeats until ;< f .

As a summary, Figure 2 shows a flow chart of the revised sequential testing method.

5. Examples

The EA method will be demonstrated in a cotton spinning process?*, in which the process output variable is skein strength.
Because skeins are made of fibers, the input variables of this process are fiber fineness and fiber strength. Fiber fineness is
considered to be controllable, because producers have the option to choose fibers with different grades of fineness. However,
even fibers with the same grade of fineness may have natural variation in the fiber strength; hence, fiber strength is considered to
be uncontrollable. Furthermore, each input and output variable is standardized by subtracting its mean and then being divided
by its standard deviation. The resulting standardized variables are denoted by Y (standardized skein strength), X (standardized
fiber fineness), and Z (standardized fiber strength), all being assumed to follow the standard normal distribution.

The output is linked to the input variables by the following regression (the true process model):

Y =—0.343X+0.602Z +0.582XZ +ey. 7)

Because Z has been standardized, Z=ez. Then, (7) becomes Y =—0.343X+0.602e7+0.582Xez+ey. Letting fy=0, f; =—0.343,
and ¢=0.602e7+0.582Xe7 +ey, then (7) can be further written as:

Y=ﬂo+ﬂ1x+8

In other words, the true process model parameters are ;=0 and f; =—0.343.

The target skein strength is its mean, indicating that the target value for standardized skein strength, Y, is zero, i.e. T=0. Thus,
the optimal setting for the standardized fiber length, X, should be xopt =(T—fy)/ 1 =0.

Based on the above understanding of the cotton spinning process, two simulation studies will be conducted: one is to
demonstrate the properties of the EA procedure, and the other is to show how to implement the EA procedure by the sequential
hypothesis testing method developed in Section 4.

5.1.  Demonstration of EA properties in cotton spinning process

To demonstrate Property |, the following simulation steps are developed. These steps will be performed for given values for m
(sample size of the offline experiment), ¢ (length of each adjustment cycle), and / (total number of adjustment cycles).

51 (generate offline experimental data): Set X to be —1 for the first m/2 samples and 1 for the next m/2 samples. Apply (7)
to generate Y for each sample. Then, use LSE to obtain initial estimates for iy and f8y, i.e. fpq and f; 1, respectively.

S2 (generate online data and conduct the EA procedure): Let i=1

$2.1: Set X to be x,-:(T—/Aiol,-)//AiL,- in the ith adjustment cycle.
S2.2: With X=x;, apply (7) to generate Y for ¢ samples in the ith adjustment cycle.

Copyright © 2010 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011, 27 327-336
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Figure 4. Difference between the process input at each adjustment cycle, x;, and the optimal input, Xopt, as the EA procedure proceeds

$2.3: Use all data generated so far (including the offline experimental data) to re-estimate fy and f;, i.e. to obtain ifo,i+1

and fqj11.
S2.4: Let i=i+1. If i<l, go to S2.1; otherwise, exit.

By executing the above simulation steps, we can obtain a sequence consisting of progressively updated estimates for the true
process model parameters B:[ﬂo,ﬂ1]T after each adjustment cycle. Denote this sequence by B,,...,B; ;. We can execute the

simulation for N times and compute the average sequence, fiz,...,ﬁ,H. Then, we can compare the average sequence with the
true process model parameters.

For example, consider that four samples are generated offline, i.e. m=4. Figure 3 shows the offset between ﬁu and the

true model parameter f/; =—0.343, for different lengths of the adjustment cycle, i.e. c=1, 5, 20. It can be seen that /A}]I,- does
not converge to f/; even when the adjustment cycle goes as large as 2000. Furthermore, comparison across the three curves

in Figure 3 shows that the larger the length of the adjustment cycle, ¢, the smaller the offset between ,7)’11, and f;. Similar

phenomena can be observed when comparing 30,i and the true model parameter 5 =0.

Furthermore, to demonstrate Property Il of EA, the mean process output in each adjustment cycle, E(y;), needs to be compared
with the target, T, i=1,...,//=1,...,c. Because E(yj)=pfo+f1E(;), the comparison between E(y;) and T can be obtained by
comparing E(x;) and xopt =(T — )/ f1 =0. An estimate for E(x;) can be obtained by running simulation steps S1-52 for N times
and computing the average x;, X;. For example, Figure 4 shows the difference between X; and xopt =0, for different lengths of
the adjustment cycle, i.e. ¢=1,5,20. To make a contrast, the curves in Figure 3 are added into Figure 4. It can be clearly seen

that while Zﬂ,; does not converge to fi1, X; converges to xopt, i.e. the mean process output will converge to the target in the EA
procedure.

In addition, Figure 4 also demonstrates Property lll of EA. Specifically, it can be seen that x; converges to xopt far before the
2000th adjustment cycle. After that, although the process adjustment is still continued, x; does not drift away from xopt. In other
words, the mean process output does not drift away from its target after the target has been reached.

______________________________________________________________________________________________________________________________________________|
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5.2.  Implementation of EA in cotton spinning process
Before the EA is implemented in the cotton spinning process, the following information is given:

Offline experimental sample size is m=4;

Online sample batch size is 5 (i.e. the length of each adjustment cycle can only be multiples of five);

Type-l error of the hypothesis testing in each adjustment cycle is =0.1;

The upper bound of Type-Il error, when the mean process output deviates from the target by at least one standard deviation
(i.e. |(3| >1), is ﬁ/I,U:0'01‘

Based on the given information, the EA procedure is implemented. Detailed steps and results (including intermediate results
for verification of the procedure) are shown as follows:
At the offline experimental stage:

o Initial estimates for 5 and f; based on the offline experimental samples are 230,1 =0.7368 and /}1,1 =—0.0154, respectively.
o The process input is set to be xj =(T—[A§0,1)//Ai1,1 =47.7338.

At the first adjustment cycle (i=1):

o Five samples of the process output corresponding to the process input x1 =47.7338 are collected (i.e. c=5), based on which
the hypothesis testing rejects Hp, 1.

At the second adjustment cycle (i=2):

o Updated estimates for i and f; based on all samples collected so far are [30,2=0.7256 and [31,2=—O.5501, respectively.

o The process input is set to be x2=(T—/A30,2)//A§1,2=1.3192.

o Five samples of the process output corresponding to the process input x1 =1.3192 are collected (i.e. c=5), based on which
the hypothesis testing fails to reject Ho . Therefore, Type-ll error is computed, f;=0.7364.

Because f3;;=0.7364>0.01, five more samples of the process output are collected at this adjustment cycle (i.e. c=10), based
on which the hypothesis testing still cannot reject Hg . Therefore, Type-ll error is re-computed, f;=0.5157.

o Because f3;,=0.5157>0.01, five more samples of the process output are collected (i.e. c=15), based on which the hypothesis
testing still cannot reject Hg . Therefore, Type-Il error is re-computed, f3;;=0.1689.

Because f;=0.5157>0.01, five more samples of the process output are collected (i.e. c=20), based on which the hypothesis
testing rejects Ho,.

o

[e]

A

~

the third adjustment cycle (i=3):

[e]

Updated estimates for f; and f; based on all samples collected so far are /?013:0.1036 and /?1,3:—0.5373, respectively.

The process input is set to be X3=(T—ﬁol3)/ﬁ1,3=0.1929.

Twenty samples of the process output are collected (i.e. c=20), based on which the hypothesis testing fails to reject Hg 3.

Therefore, Type-Il error is computed, f3;;=0.0140.

o Because f3;=0.0140>0.01, five more samples of the process output are collected (i.e. c=25), based on which the hypothesis
testing fails to reject Ho 3. Therefore, Type-ll error is computed, ;=0.0012.

o Because f;;=0.0012<0.01, the EA procedure stops.

[e]

o

In summary, the EA method went through three adjustment cycles with 50 samples collected online, before it stopped. The
process input was finally set to be X=x3=0.1929, resulting in a mean process output E(Y)=fg+ /1 X=—0.0662.

6. Conclusion

Process models estimated from limited experimental data may have large uncertainty, which leads to ineffective process adjustment.
On the other hand, the wide adoption of automatic sensing technologies in modern industrial processes generates abundant
production data. This motivates the use of the production data to progressively tune the imprecise process models estimated
from the limited experimental data, and consequently enable optimal process adjustment.

Following this line of thinking, this paper proposes an EA method to improve the process model estimation based on limited
experimental data by making use of abundant production data and to achieve the optimal process adjustment based on the
improved process model. To realize the proposed EA method, we prove three unique properties associated with the EA, which
guarantee the feasibility and effectiveness of using EA for integrating production data and DOE for optimal process adjustment.
Based on these properties of EA, we further develop a sequential hypothesis testing procedure for implementing the EA. The
uniqueness of the procedure is that it can take an upper bound for Type-Il error into account, so that the Type-Il error of the
decision making can be well controlled. Finally, we demonstrate the properties and implementation of the EA in a cotton spinning
process.

Future research directions may include extension of this research to processes with multiple outputs or/and multiple input
variables to be controlled.

]
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Appendix A

A.1. Proof on Property | of EA

According to the EA method depicted in Section 2, ﬁ,:[iioli, [31,,-]T is obtained using LSE based on the data collected in the offline
experiment as well as the data collected from the first through the (i—1)th process adjustment cycle, i.e.

Bi= KT Xi—) ™ X Vi =X X)) T X (K q Bei ) =B+ X X)X e, (A1)

where BZ[ﬂo,ﬂﬂT:
1 17"
Xi_1= ,
—1...—=1 1.7 X1...X1 ... Xji—1---Xji—q

E(Y) — True process model

Estimated process model at
the I-th adjustment cycle

Estimated process model at
the 2" adjustment cycle

Estimated process model at
the 1* adjustment cycle

X

Xopt

Figure A1. The mean process output achieves the target at the /th adjustment cycle although the estimated process model parameters have an offset with
respect to the true process model parameters
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/ / / / H H
Yi_g =[y1,...,ym,y11,...,y1c,...,y,-,1,1,...,y,-,LC]T, and g_q =[s1,...,em,s11,...,s1c,...,s,-,1,1,...,s,-,LC]T. After performing matrix
multiplication and inversion, (A1) becomes

i—1 i—1 m i-1 ¢
m+chﬁ —C Y Xk > 8;7—}— > ek
k=1 k=1 h=1 k=1I=1
i—1 m/2 i-1 ¢
—< Y xx  mci-N|| - Zs + Z et D D Xeul
k=1 =1 h=m/2+1 k=1I=1

Bi=p+ (A2)

(m+c(l—1 +c2k 1xk)-i-c (i—1) Zk 1xk—c (Zk 1xk)

Divide both the numerator and denominator of the second term in the right-hand side of (A2) by c(i—1). Then, when
c(i—1) goes large as the EA proceeds, it is evident that m/(c(i—1))~0 because the offline sample size m is usually very small;
Z;(_:]] 31 et/ (ci—1)) ~0 because E(ey)) =E(of €z, Xk +0yez,, +ey,)=0; and Zko 1 21 Xkéki/ (cli—1))~0 because E(xxé) =0.
Thus, (A2) becomes

m /
|:a)2(,i—1 + (i) —Pyi } h§1 h
—ii1 1 _"%28;# % p
Bi~pt h=1 " h=miaer "3

M +62;_+ (1)) +65;_cli—1)

where fi, ;. 1—22 xi/(i—1) and & JX, 1—2 2/ (=)= (1)

When the settlngs for the process input, i.e. the X¢'s, k=1,...,i—1, are very close to each other (no enough perturbation), the
sample variance of the x’s, i.e. 02, 1 will be very small. Therefore 0)2“ 1€li—=1) may still be small when c(i—1) goes large. As
a result, the denominator of the fraction in (A3) may not be big enough to make the whole fraction close to zero. This creates
an offset in [}, with respect to B. Consider a special case when the x;'s are exactly the same as each other, i.e. x, =x1. Then,

0)2(,,-_1 =0 and (A3) becomes

m /
> ép
2 x h=1
m/2
- 1 Z:18 +h Z/2 18;1 /2
m/2+ m, / m / _
B _a, X Dbt th = Lhed th T 2 hm/241 8 | X
BINB+ 2 _B 7
m(1+x7) m(1 +x1) 1

in which the offset in ﬁ,» with respect to B under a small offline sample size m is obvious.

A.2. Proof on Property Il of EA
Assume that the mean process output reaches the target at the /th adjustment cycle, i.e. E(yy)=T,/=1,...,¢, and x;=xopt. Because
X/=(T—ﬁ0,/)/ﬁ1,[ and Xoptz(T—ﬁo)/ﬂ1 , X|=Xopt implies that
T—Bos  T—Po
B, br
According to Property |, there is an offset in the estimates for ffg and f;; hence, 231,,75131 and /A)’ol,;éﬁo. Then, (A4) can be
written as

(A4)

Bo—Po Bo, _T=ho
B~ By P

ie. (/30—BO,I)/(B1,I—/31)=X0pr- Note that ([50—230,,)/([}1,,—[51) is actually the solution for X in the equation S +[)’1X=[A30,,+B1I,X.
In other words, it is the X-coordinate of the intersecting point between two lines, E(Y)=fy+f1X (the true process model)
and E(Y):/A?O,,—i-ff],,x (the estimated process model at the end of the (/—1)th process adjustment cycle or equivalently at the
beginning of the Ith process adjustment cycle). An important indication of this is as follows: during the EA procedure, the line of
the estimated process model will change as the process adjustment goes along. Consequently, the intersecting point between
the line of the estimated process model and the line of the true process model will change. At the moment that the X-coordinate
of this intersecting point becomes xopt , the mean process output reaches the target, although the estimates for f; and f; at this
moment may still have an offset with respect to the true values for 5 and ;. Please see Figure A1 for a graphical illustration
of this property.

(A5)

]
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A.3. Proof on Property Ill of EA

Assume that the mean process output reaches the target at the /th adjustment cycle. If the EA procedure continues on, then the
estimates for fig and f; at the (/4 1)th adjustment cycle are:

1 30,/
(X,T_1X/—1)_1( > Yiayn/c=01 x| .
X|

Bo,i1 Bo, B

= +

X R 1
B B T+ x,](X,T1X/1)_1< )
x|

1 P
- XTI X! ( > Oy Bo+Brxi+en)/ c—(Bo+B1,x1)
_ Bo,i N x|
B T 4!
1 +C[1 XI](XI—1 XI*'I)

X

Because the mean process output has reached the target at the /th adjustment cycle, x;=Xxopt and ,Bo—i—/ﬂx,:[io,,—i—ﬁh,x,:T.
Therefore, (A6) can be further written as

1
Bo,i+1 Bo,i

X X! ( )
_ Xj " g

7 N 1 c
B1,141 B, 1t X/](X,T_1X/_1)_1< )
X|

It is easy to see that the conditional mean of [.Bo,l+1/i’)1,l+1]T given [ﬁol,,ﬁu]T is [ﬁol,,[ﬁ,,]T, ie. E([ffol,+1,ﬁ1l,+1]T|[[%0,,,231,,]T)=
[ﬁol,,[ﬂ,,]T. As a result, the mean process output at the (/4 1)th adjustment cycle, i.e. y;1,, /=1,...,¢, will have a mean equal to

EWy1,)=Bo+B1EC11) = Bo+B1EWT = Bo 1)/ By js1) = Bo+B1EWT —Bo )/ By p=T.
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