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Abstract 
 
In this paper authors present a general methodology for age-dependent 
reliability analysis of degrading or ageing systems, structures and 
components. The methodology is based on Bayesian methods and inference 
– its ability to incorporate prior information and on idea that ageing can be 
thought as age-dependent change of beliefs about reliability parameters 
(mainly failure rate), when change of belief occurs not just due to new failure 
data or other information which becomes available in time, but also it 
continuously changes due to flow of time and beliefs evolution. 
The main objective of this paper is to present the clear way of how Bayesian 
methods can be applied by practitioners to deal with risk and reliability 
analysis considering ageing phenomena. The methodology describes step-by-
step failure rate analysis of ageing systems: from the Bayesian model building 
to its verification and generalization with Bayesian model averaging which, as 
authors suggest in this paper, could serve as alternative for various 
goodness-of-fit assessment tools and as a universal tool to cope with various 
sources of uncertainty. 
The proposed methodology is able to deal with sparse and rare failure events 
as is the case in electrical components, piping systems and various other 
systems with high reliability. In a case study of electrical instrumentation and 
control components the proposed methodology was applied to analyse age-
dependent failure rate together with treatment of uncertainty due to age-
dependent model selection. 
 
1. Introduction 
 
Reliability and safety of energy facilities, chemical factories, oil companies, 
etc. in many cases depends on their components reliability, which is mainly 
age-dependent. Component ageing is mainly caused by two impacts: 
operating conditions and technical inspection actions. Various ageing tests 
exist, see for example an excellent monograph by Lai and Xie1, where they 
give lots of references about various aspects of aging identification. However, 
a case-specific consideration of ageing effects results into highly complex 
Probabilistic Risk Assessment (PRA) and the prevailing practice is to assume 
constant failure rate, sometimes even non conservative one. However, not 
taken into account at the time when safety margins are being estimated, 
ageing effect can cause failures or multiple damages at given non-standard 
operating conditions or breakdown situations. 
The framework to deal with ageing in a coherent way depends on the type of 
data at hand. Statistical data can be represented as a pure failure sample, i.e. 
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it can be failure counts in consecutive (not necessarily equal) time periods, 
records of component state (failed or not) at specific times, or it might be 
evolution of component physical degradation characteristics, e.g. crack size. 
There are a vast number of references, with models developed specifically to 
deal with the last type of data, known as degradation models. One of such 
comprehensive studies is a review of Singpurwalla et al.2, where part of this 
paper is devoted to the stochastic diffusion–based state models and covariate 
induced hazard rate processes. Also, Yashi and Mantan3 reviewed available 
literature on the likelihood construction for covariate induced hazard rate 
models when two cases are possible: unobserved and observed covariate 
processes. 
As for the first type of statistical data, the closest paper to our research is 
written by Kelly and Smith4, where they reviewed a state of the art of PRA 
with one of applications being related to ageing and valve leakage. However, 
they a priori assumed logit model and did not validated it except the 
comparison with the case where constant failure rate is assumed. In addition, 
some relevant papers are due to Colombo et al.5, where authors present 
nonparametric estimation of time-dependent failure rate, or due to Ho6, where 
semi-parametric family of bathtub shaped failure rates is analysed. Although 
these approaches offer a rich class of failure trend models, it also requires the 
larger samples of data. It is the price for the flexibility of these models. 
Considering the way components function, the following division can be done: 
active (e.g. pumps, valves) and passive (e.g. heat exchangers, pipes, vessels, 
electrical cables, structures). For detailed explanation of the terms see IAEA 
Safety Glossary (Version 2.0, 2006).  
The passive components are usually neglected or not modelled implicitly in 
the probabilistic reliability and risk assessment models of complex systems as 
having very low failure probability, but they could have an increasing 
contribution due to ageing effects. While safety importance of active systems 
and their ageing were recognised widely, in this paper the focus is more on 
complicated reliability data analysis of passive systems when the statistical 
information is provided as a sample of failure counts in consecutive periods of 
times. 
Together with previously mentioned modelling complexity, which arises with 
ageing introduction into model, age-dependent reliability study requires more 
data for inferences to be valid. With regard to data, one basic issue is 
scattering of failure histories for passive components. Because of this 
scattering, reliability and risk model parameters, which are estimated from the 
raw data, have associated large uncertainty. 
Usually, passive systems/components do not provide large samples of failure 
data. Classical statistics framework can be hardly applied to such problems 
due to small samples and asymptotic assumptions, like consistency or 
asymptotic normality of estimators. 
On other hand, uncertainty, related to data scattering and the small samples 
might be reduced by prior information (if available) – experience of other 
similar facilities, subjective expert insights, etc. Then, by the use of available 
statistical data, prior knowledge can be revised by Bayes formula (Berger7).  
Within Bayesian approach one can rely on multiple sources of evidence 
including: warranty data, customer research surveys, proving ground test 
data, etc. It also has the potential to systematically quantify and process “soft” 



evidence such as expert knowledge (Krivtso and Wasiloff8). However, 
elicitation of prior information is a very challenging task, and the usual way to 
proceed in Bayesian analysis is to employ so-called uninformative priors. The 
use of non-informative priors does not invalidate Bayesian analysis of small 
samples, though. 
In addition to the ability to deal with sparse data, Bayesian methods are 
appropriate for use in PRA (Siu and Kelly9). Further, practical advantage of 
the Bayesian framework in PRA applications is that propagation of uncertainty 
through complex models is relatively simple. On the other hand, it is very 
difficult, and intractable in practical analysis, to propagate classical statistical 
confidence intervals through PRA models to estimate a confidence interval for 
a composite result of interest. 
Despite of the advantages offered by Bayesian methods, practical applicability 
of it was very limited and generally confined by the use of so called conjugate 
prior distributions, which provides analytically tractable solutions just for quite 
unsophisticated applications. 
However, the advent of Markov Chain Monte Carlo (MCMC) sampling has 
proliferated Bayesian inference throughout the world, across a wide array of 
disciplines (Kelly and Smith10). MCMC methods are a class of algorithms for 
sampling from probability distributions based on constructing a Markov chain 
that has the desired distribution as its equilibrium distribution (Gilks, 
Richardson and Spiegelhalter11, Ching and Michael12). The state of the chain 
after a large number of steps is then used as a sample from the desired 
distribution. MCMC algorithms enabled development and application of highly 
complex Bayesian models. The freely available software package known as 
Bayesian inference Using Gibbs Sampling (WinBUGS) has been in the 
vanguard of this proliferation since the mid-1990s (Lunn, Andrew and 
Nicky13). Our calculations is performed by WinBUGS software to illustrate that 
outwardly complex MCMC algorithms could be quite easily used by reliability 
engineers to deal with aging and Bayesian models. 
We construct our paper as an investigation of different Bayesian modelling 
steps in order to give for the reliability analyst and PRA practitioner a clearer 
view of how ageing phenomena can be easily incorporated within their tasks. 
The main contribution of this paper to the reliability assessment field is  in 
purely Bayesian treatment of ageing phenomena, in time-dependant reliability 
modelling methodology and many-sided investigation of analysis steps.  
The structure of paper is as follows: in section 2.1 the review of most 
commonly used ageing trend models is presented; further, in sections 2.2 to 
2.4 we present general methodology of Bayesian model construction from 
prior distribution selection to the model checking with section 2.3 being more 
didactical on posterior construction for general trend functions. In practical 
part of the paper (starting form section 3.1) we treat ageing effect of 
instrumentation and control components. This case study (in section 3.2) is 
transformed into piecewise homogeneous Poisson regression model 
according to the theory presented in section 2.4. In the same section we 
further elaborate on practical issues of prior distribution selection by pointing 
some pitfalls of gamma prior distribution. Then, followed by short advises on 
the MCMC initialization and convergence in WinBUGS, we obtain posterior 
summaries of trend models under consideration. We make constructive 
critique of p-values based on chi-square discrepancy measure and propose 



alternative one in section 3.3. Then, before conclusions and final remarks we 
complete our paper with section 3.4 devoted to the illustration of Bayesian 
model averaging technique being handled by recent marginal likelihood 
calculation method which we easily implemented in WinBUGS. 
2. Theoretical issues of age-dependent failure rate 
 
2.1 Dynamic models for failure rate analysis 
 
If the evidences show possible trend in statistical failure data, then one can 
consider trend model for failure rate. Several examples for failure rate trend 
function  λ t( )  can be: 
• piecewise constant [ ]1( ) , ;i i it tλ λ τ τ += ∈ ; (1) 
• linear 1 2( )t tλ θ θ= + ;  (2) 
• exponential (log-linear) 1 2ln ( )t tλ θ θ= + ; (3) 

• power-law (Weibull)   λ(t) = θ1t
θ2 ;  (4) 

• Xie and Lai model  

  λ t( ) = θ1θ2 θ1t( )θ2−1
+θ3θ4 θ3t( )θ4−1

,0 <θ2 <1,θ4 >1 , (Xie and Lai14); (5) 

• generalized Makeham ( ) 2 3
1
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t
θ θλ θ

θ
= +

+
, (Lai and Xie1); (6) 

where  λ t( )  is age-dependent failure rate,  t  - age covariate, θ  - parameters 
which influence the shape of failure rate trend function. 
Linear ageing is the mostly simple and obvious natural way to give a first-
order approximation to changes in the failure rate, but it does seem to have a 
practical disadvantage. Wolford et al.15 analyzed two data sets using several 
functional forms for ( )tλ ; one such analysis is reported by Atwood16. They 
found that a Bayesian posterior distribution for ( )tλ  was approximately 
lognormal when a log-linear or power-law model was used for ( )tλ , but this 
was not a case when a linear model was used. Apparently, the approximate 
log normality required a much larger data set when linear ageing was 
assumed in comparison to the case when power-law or exponential ageing 
were assumed. 
Usually, the timing for failure rate consideration is divided into three distinct 
periods: burn-in period, useful life, wear-out period. For such general trend the 
linear, power-law or exponential distribution can’t provide desirable fit to the 
data. Due to this reason, models that have ability to shape-up whole bathtub 
curve are needed and Xie & Lai or generalized Makeham trend models can 
be applied (Lai and Xie1). Notwithstanding flexibility of these models, it can be 
quite difficult to apply them by using frequentist framework, because due to 
number of parameters and lack of enough data to estimate them. Classical 
statistical methods are ill-suited for this situation, leading in such cases to 
excessively wide confidence intervals. 
Some authors (Radionov17, Okazaki and Aldemir18, Radulovich, Veseley and 
Aldemin19) introduce a threshold of age at which ageing is assumed to begin. 
Then ( )tλ  is assumed to be a constant before the threshold of age is 
attained, and to be increased according to one of the above formulas 



afterwards. The threshold is generally unknown, and must be estimated from 
the data. Thresholds cause difficulty in classical statistics, because the 
assumptions for the asymptotic theory of maximum likelihood estimation are 
typically violated. Therefore, it is difficult to quantify the uncertainty in the 
estimate of the threshold. However, even in this case the application of 
Bayesian modelling, for instance, using simulation package such as BUGS® 
(Lunn, Thomas and Best13), is still possible. 
 
2.2 Prior information in Bayesian modelling 
 
As noted in introduction section, Bayesian methods are capable to join 
various sources of information: statistical data, expert opinions, historical 
information, experience in quantification of uncertainty in similar systems or 
components, etc. These sources can be classified into subjective (e.g. expert 
opinions, etc.) and objective (statistical data). 
To quantify subjective information, the need of subjective probability 
framework arises. The theory of subjective probability has been created to 
enable one to talk about probabilities when the frequency viewpoint for 
probability estimation does not apply. The main idea of subjective probability 
is to let the probability of an event to reflect the personal belief in the “chance” 
of the occurrence of the event (Berger7). In Bayesian theory, such subjective 
probability is expressed in terms of subjective prior distribution. More details 
about advantages and disadvantages of subjective probability can be found in 
(Chib, Clyde, Woodworth and Zaslavsky20). 
Although subjective information, in the form of prior distribution, can be very 
useful, its elicitation is quite difficult and nontrivial task. Usual practice is to 
use expert opinion regarding some reliability characteristics (e.g. Coolen21,22); 
also meta – analysis can be used to quantify prior information in terms of 
distribution (Gelman et al.23). In addition, there exist in literature different prior 
distribution construction approach – data-based prior distribution construction, 
introduced by Guikema24. In this case, the basic idea is to divide the data 
sample into two parts – the first part is used to construct the prior distribution 
(by estimating the parameters with statistical methods), while the second part 
is used to obtain the likelihood function. 
The basis of this approach is to use the historical data applying the method of 
moments, maximum likelihood or maximum entropy methods together with 
bootstrapping in order to obtain the estimates of prior distribution parameters. 
Then, the prior distribution together with the likelihood function, constructed 
for sample not used to obtain prior, yields a posterior distribution. 
However, the situations when no useful prior information is available are quite 
frequent. In that case Bayesian modelling can be carried out by using non-
informative prior or its proper approximation, which expresses prior ignorance 
about quantities of interest. This approach is often called objective Bayesian 
analysis and it is still ideally suited for small sample problems (Berger25). 
Prevailing practice is to use Laplace uniform prior, which puts equal mass on 
whole real axis and is based on principle of insufficient reason or Jeffreys26 
invariant measure, based on Fisher information. In general, the use of non-
informative prior distributions causes some problems in applications: such 
distributions are improper (i.e. they do not integrate to 1) and sometimes can 
yield improper posterior distribution; also Bayes factors, that are common 



quantities in models comparisons, cannot be calculated (Chib, Clyde, 
Woodworth and Zaslavsky20).  
Proper prior distribution approximations can be used instead. Approximation 
of Laplace prior is a uniform distribution: in this case probability mass is 
distributed uniformly on some finite interval and gives no priority for any 
particular parameter value, as can be the case with Jeffreys prior 
approximation, which can bring bias into small sample analysis. In addition, 
uniform distribution can be though about as being a diffuse distribution, i.e. it 
closely approximates the state, when expert has no clue about which 
particular values of parameters could be given a priority. Diffuse priors can be 
gamma distribution with very small parameters (e.g.  α = 0.001,β = 0.001), 
normal distribution with very large variance, etc. But, as we will demonstrate 
in the application part, analyst must be very careful when he use diffuse priors 
(especially in the small sample case), because it can lead to incorrect 
inferences. 
 
2.3 Application of Bayesian methods for age-dependent modelling 
 
Ageing can be thought as age-dependent change of beliefs about reliability 
parameters (mainly failure rate). Change of beliefs occurs not just due to new 
failure data or other information (mentioned above) which becomes available 
in time, but also it continuously changes due to flow of time and beliefs 
evolution. 
One of the difficulties of Bayesian inference is inability to deal with changes of 
age-dependent parameter as a continuous process. This problem partially can 
be overcome by considering ageing (or degradation) as step-wise process, 
which is constant in some period of time and has value jump in other period. 
Mathematically this can be expressed as a jump process: 
 

 ( ) ( )
1

1
{ }1
1

N

i
i

t t ti i
d t d t

−

=
< < +

=∑ ; (7) 

 
where ( )d t  is any model of characteristic (or reliability parameter) under 
consideration and constant ( )id t  is value of characteristics at each time 
period it ; N – number of time intervals. 
Model of characteristic ( )d t  can have any functional form. It can be linear, 

Weibull, or some other form. Depending on adopted formula, ( )d t  will be 
based on vector of parameters { }1,..., mθ θΘ = : 
 
 ( ) ( ),d t d t= Θ . (8) 
 
If analyst considers more than one model, then indexation is used for different 
models, i.e. ( ),i id t Θ , where id  denotes ith model with iΘ  vector of 
parameters. 
Modelling conception introduced above allows interpreting distribution of 
parameters as age-dependent. If prior knowledge and beliefs about failure 



rate or other reliability parameter is represented by probability density 
distribution ( )π Θ  and statistical observations has likelihood 

  
f Y | d t( )( ) , where 

( )1,..., NY y y=  is sample of observations, then, according to Bayes theorem, 
age-dependent beliefs about the reliability parameter is expressed as 
posterior distribution: 
 

 ( ) ( ) ( )( )
( ) ( )( )

| ,
| ,

| ,

f Y d t
Y t

f Y d t d

π
π

π
Ω

Θ Θ
Θ =

Θ Θ Θ∫
. (9) 

 
Assume that parameters 1,..., mθ θ  are a priori independent, then, according to 
definition of independent random variables, prior distribution of Θ  can be 
expressed as: 

 ( ) ( )
1

m

i i
i

π π θ
=

Θ =∏ , (10) 

 
where ( ) , 1,i i i mπ θ =  are priors for components of vector Θ . 
If data set contains n  statistical observations, then posterior distribution is 
represented as: 
 

 ( )
( ) ( )( )
( ) ( )( )

1 1

1 1

| ,
| ,

| ,

m n

i i j j
i j
m n

i i j j
i j

f y d t
Y t

f y d t d

π θ
π

π θ

= =

= =Ω

Θ
Θ =

Θ Θ

∏ ∏

∏ ∏∫
. (11) 

 
In addition, usually it is the case when several trend models fits data almost 
equally well, i.e. possible set of “good” models contain more than one 
possibility 
 
 ( ) ( )( )1 1, ,..., ,r rd t d tΜ = Θ Θ ,  (12) 
 
where ( ), , 1,i id t i rΘ =  are models which were considered as having good fit. 
In such circumstances uncertainty of modelling cannot be handled 
appropriately within classical statistical framework. As noticed by Hoeting27, 
standard statistical practice ignores model uncertainty. Data analysts typically 
select a model from some class of models and then proceed as if the selected 
model had generated the data. This approach ignores the uncertainty in 
model selection, leading to over-confident inferences and decisions that are 
more risky than one thinks they are. As an alternative approach, models 
averaging is more correct because it takes into account a source of 
uncertainty that analyses based on model selection ignore (Kulinksaya, 
Morgenthaler and Staudte28). Also, according to Hoeting27, Bayesian model 
averaging advantages include better average predictive performance than any 
single model that could be selected.  



Then, let’s denote ( )A t  as failure rate averaged over set of models Μ . 
Considering our notation, posterior probability of averaged age-dependent 
failure rate can be represented as: 
 

 ( )( ) ( ) ( )( ) ( )( )
1

| | , , , |
r

j j j j
j

p A t Y p A t Y d t p d t Y
=

= Θ Θ∑ , (13) 

 
where ( )( ), |j jp d t YΘ  is posterior probability distribution of model ( ),j jd t Θ  

given the set Μ  of available models; ( ) ( )( )| , ,j jp A t Y d t Θ  is posterior 

distribution of quantity ( )A t  under model ( ),j jd t Θ . Posterior probability 
distribution for model jM  is given by 
 

 ( ) ( )( ) ( )( )
( )( ) ( )( )

1

| , ,
|

| , ,

j j j j
j r

l l l l
l

p Y d t p d t
p M Y

p Y d t p d t
=

Θ Θ
=

Θ Θ∑
, (14) 

 
where ( )( ),j jp d t Θ  is prior probability distribution of model ( ),j jd t Θ , 

( )( )| ,j jp Y d t Θ  is marginal likelihood conditional on model ( ),j jd t Θ .  

In the case of non-informative prior distribution, equal discrete probabilities 

can be assigned for each model ( )( ) 1,j jp d t
r

Θ =  and posterior probability 

distribution for model ( ),j jd t Θ  becomes: 
 

 ( )( )
( )( )
( )( )

( )( )
( )( )

1 1

1| , | ,
, | , 1,

1| , | ,

j j j j
j j r r

l l l l
l l

p Y d t p Y d trp d t Y j r
p Y d t p Y d t

r= =

Θ Θ
Θ = = ∀ =

Θ Θ∑ ∑
. (15) 

 
Even though, Bayesian Model Averaging (BMA) seems to have advantages 
over one-model-fitting, little work has been done in the engineering field to 
address this for model uncertainty. For example, Alvin et al.29 used BMA to 
predict the vibration frequencies of a bracket component, Zhang and 
Mahadevan30 applied it in fatigue reliability analysis on the butt welds of a 
steel bridge, and most recent work was done by Inseok Park et al.31. Those 
authors analyzed uncertainty of 4 finite element models for laser peening 
process. However, all of these works used relatively simple models with 
unsophisticated probabilistic assumptions and there was no need to adopt 
advanced probability sampling techniques such as Markov Chain Monte Carlo 
methods with validation of model selection. 
 
2.4 Model selection 
 



There are various techniques for model validation in Bayesian framework 
(Ntzoufras32, Gelman, Meng and Stern33, Dei and Rao34]. One of possible 
approaches to analyse model fitness is to use tail-area probability or as it is 
sometimes known, the posterior predictive p-value: 
 
 ( ) ( )( ) ( ) ( ) ( ) ( )

, ,
, , | | |rep

rep rep rep
D Y D Y

p P D Y D Y Y I p Y p Y dY d
θ θ

θ θ θ θ θ⎡ ⎤>⎣ ⎦
= > = ∫ ∫ , (16) 

 
where repy  is the replicated data that could have been observed, or, to think 
predictively, as the data that would appear if the experiment that produced y  
were replicated in future with the same model (Gelman, Meng and Stern33). 
Posterior p-value expresses the differences between statistical data and 
replicated. Rule of thumb is p-values close to 0.5 (Ntzoufras32, Gelman and 
Meng35). ( ),D Y θ  is discrepancy measure and can have any functional form, 
e.g.: 
 

 ( ) ( )( )21 ;D Y E Y E Yθ = −  and ( ) [ ]( )
[ ]

2

2

|
;

|
t t

t

y E y
D Y

Var y
θ

θ
θ

−
=∑ . (17) 

 
Chi-square statistics ( )2 ;D Y θ  is quite popular among researchers; however 
as will be showed the use of just one discrepancy measure can be very 
misleading. 
The use of discrepancy measures can be used to assess fitness of each 
model individually, i.e. rejection and acceptance of one model does not 
depend on other models. 
Another possible way to analyse fitness of models is to use Deviance 
Information Criterion (DIC), which is already implemented in WinBUGS as 
inner function. DIC can be used to compare different models with each other. 
Spiegelhalter et al.36 suggest the following rule of thumb: that models with DIC 
difference within the minimum value lower than two (2) deserve to be 
considered as equally well, while models with values ranging within 2-7 have 
considerably less support. DIC of ith model is defined as: 
 
 ( )( )2ln | , 2i DDIC L Y i p= − Θ + ; (18) 
 
where Dp  is the effective number of parameters (Spiegelhalter et al.36). 
More information about Bayesian model selection can be found in 
(Ntzoufras32, Dei and Rao34). 
 
3. Case study 
 
3.1 Data representation 
 
Data set represents the failure and replacement dates of electrical 
instrumentation and control (I&C) components. The considered data is quite 
similar to the real operating experience data collected in French or German 
nuclear power plants (data were encoded and exact places where it was 



collected can’t be identified). In particular, it is a large sample that represents 
one technological group of continuously operating components. The data set 
contains records from type “T” reactors, which are operated by a single utility 
with a single management philosophy. The components and composition of 
them in all reactors are similar (design, manufacturer, technology, etc.). In all 
type “T” reactors the components of type “A” are subjected for ageing effect 
during their operation in the environment with more stressful pressure and 
temperature. The scope of maintenance is the same for all components. 
All data were collected during eleven years, from January 1, 1990 through 
December 31, 2000. The components in the sample do not all have same 
date of being put into service, and as a consequence do not have the same 
ages at the beginning and end of observation. This reason caused the 
expansion of age scale from 11 years to 15 years, i.e. at the beginning of the 
observation some units have been operating for several years already, and as 
a consequence their were older than 11 years. The failure counts were taken 
from a review of the maintenance data, so any reported date of failure is 
actually the date of the periodic test. A “critical” failure is one that causes the 
component to lose its safety function modelled for PRA. 
There were 20 reactor units of type “T”, each with 20 components of type “A”. 
So, each year there would be 400 component-years except for the fact that 
some of the reactor units were commissioned before and after the start of the 
data collection (see Table 1). This caused differing cumulative operating 
times. 
Failure rates, presented in Table 1, give the first impression about failure 
behaviour over time: failure rate increases in time showing system ageing 
effect. Also several statistical tests were performed for the ageing effect 
confirmation and were presented in the report of JRC Institute for Energy 
(Radionov17). 
 
Age, 

Years 
Number of failures 

 
Cumulative operating time,  

Years 
Failure rate, 

1/Year 
1 1 126.60 0.0079 
2 1 171.62 0.0058 
3 3 231.36 0.0130 
4 1 314.80 0.0032 
5 10 396.60 0.0252 
6 8 400.00 0.0200 
7 16 396.76 0.0403 
8 11 380.00 0.0289 
9 12 363.34 0.0330 

10 8 336.73 0.0238 
11 16 281.68 0.0568 
12 9 273.42 0.0329 
13 10 288.44 0.0347 
14 16 168.58 0.0949 
15 15   85.16 0.1761 

 
Table 1. Failure data of I&C components under consideration 

 
3.2 Bayesian model for piecewise homogeneous Poisson count data 



 
In this analysis, failure rates are considered as constant values in each year, 
but at every year this value jumps at the value which can be calculated from 
linear, Weibull or other model. 
Consider as the model for the failure rate ( ){ }; 0t tλ ≥  a jump process 
structure described above: 
 

 ( ) { }
1 1
1

N

i
i

t t ti i
tλ λ

=
< ≤ +

=∑ . (19) 

 
In each year period failures occurs as homogeneous Poisson process but with 
different failure rate parameter , 1,2,...,15i iλ = . In every time period (which in 
this case is equal to one year) equipment was in operation for iτ  time 
(operating time). Denote number of failure that occurred in one year as iN . 
Probability of iN  failure can be expressed as: 
 

 ( ) ( )
!

i i
k

i i
i

e
P N k

k

λτ τ λ−

= = . (20) 

 
Likelihood function, that contains all information obtained from data, is: 
 

 ( ) ( ) ( ){ } ( )( )
1

,
| exp ,

!

iNn
i i

i i
i i

t
L P Y t

N
λ τ

λ τ
=

Θ
Θ = Θ = − Θ∏ . (21) 

 
3.2.1. Selection of prior distribution 
 
Since in data source (Radionov17) there is no available information about 
which particular I&C components were under observation, prior distribution for 
parameters of failure trend function is chosen as diffuse distribution. 
As already mentioned in Section 2.2, to express diffuse knowledge about 
model parameters, one can choose to use uniform, gamma, normal 
distributions, etc. It is our experience that gamma distribution with small 
parameters (which is the usual way to obtain diffuse prior) can lead to 
incorrect estimates. This occurs due to nature of gamma distribution – all its 
mass is concentrated close to zero (Figure 1.). 

 
Figure 1. Gamma distribution with parameters  α = β = 0.001 . 



 
Due to this high concentration, prior gamma distribution sometimes is able to 
pull parameter estimates towards zero. This effect misrepresents the real 
underlying failure trend and causes to make overly optimistic decisions.  
Assume linear model   λ(t) = a + bt  and in one case all priors are gamma with 
parameters  α = β = 0.001 , while in second case all priors are uniform 
distributions on interval  0,100⎡⎣ ⎤⎦ . Resulting posterior distribution for parameter 
 a  are highly biased towards zero under gamma prior distribution (Figure 2). 

 

 
Figure 2. Influence of prior distributions for posterior inference. 

 
Due to this observation, we confined ourselves with uniform prior distributions 
for all models and all parameters. Having this, prior distribution can be 
generally expressed as follows: 
 

 
π Θ( ) = 1

range Di( )i=1

m

∏ , 

 
where range is a length of the interval  Di  with ith parameter is defined.  
If the parameter is defined on positive part of real axis, it is not necessary to 
define prior in the same range i.e. on infinite interval. It is usually sufficient to 
choose “big enough” real value instead of infinity. Of course, posterior 
distribution has to be inspected and if at least one distribution is found to be 
truncated, one needs to extend the interval of prior distribution. Numerical 
experiments and constraints of parameters led to the following intervals of 
uniform prior distributions: 
 



Failure rate model Parameters and their ranges for prior distributions 
Linear 

 θ1 ,θ2( )∈ 0,100⎡⎣ ⎤⎦ × 0,100⎡⎣ ⎤⎦  
Log-linear 

 θ1 ,θ2( )∈ −100,100⎡⎣ ⎤⎦ × −100,100⎡⎣ ⎤⎦  
Power-law 

 θ1 ,θ2( )∈ 0,100⎡⎣ ⎤⎦ × −100,100⎡⎣ ⎤⎦  
Xie & Lai 

 θ1 ,θ2 ,θ3 ,θ4( )∈ 0,100⎡⎣ ⎤⎦ × 0,1⎡⎣ ⎤⎦ × 0,100⎡⎣ ⎤⎦ × 1,100⎡⎣ ⎤⎦  
Generalized 
Makeham  θ1 ,θ2 ,θ3 ,θ4( )∈ 0,100⎡⎣ ⎤⎦ × −100,100⎡⎣ ⎤⎦ × 0,100⎡⎣ ⎤⎦ × 0,100⎡⎣ ⎤⎦  

 
Table 2. Prior distributions of parameters definition ranges 

 
 
3.3.2 MCMC convergence assessment in WinBUGS 
 
Although, there exists quite comprehensive treatment of convergence 
monitoring in WinBUGS (see for example a book of Ntzoufras32 or Kelly and 
Smith37), we think that several issues has to be addressed here in order to 
help practitioner to use WinBUGS more efficiently.  
The first thing that we want to stress is initialization of Markov chains in BUGS 
software. There exist several options: one can choose initial values of chains 
by inner BUGS algorithm, or another one can provide them as a data list. In 
our case, enabling to initialize Markov chain automatically usually led to an 
error, that BUGS cannot initialize algorithm. This error was observed for 
gamma and for uniform prior distributions, although it was more often in 
former case. Interestingly, setting initial values by hand, quite robust reaction 
was observed regarding the accuracy of initialization, i.e. initial values does 
not have to be very close to the posterior expectation values in order to run 
algorithm without crashing of software.  
Second point that we want to state is that gamma prior distribution, when 
algorithm successfully initialized, resulted to quite long calculations of chain 
values. As for uniform prior, software performed quite smoothly and the 
convergence was achieved almost immediately. 
 
3.3.3 Posterior summaries 
 
Having guaranteed convergence of the Markov chain, one has to decide 
(since no rigorous calculations can be done) on how long to run chains in 
order to obtain posterior summaries. These summaries in WinBUGS can be 
obtained very easily without any additional burden. On the other hand, such 
automation of calculation of summaries sometimes can get a bit restrictive, 
since just expectation, standard deviation and quantiles are reported. But if 
one wishes to employ other than squared error loss function (which 
corresponds to the posterior mean), then WinBUGS Coda13 should be called 
for and values of Markov chain for specific parameter should be transferred 
and analysed outside the BUGS. For example this could happen if 
asymmetric loss function is used. Since our work is not directed to the 
analysis of various estimators, we confined ourselves to the posterior 
expectation as appropriate posterior summaries. 
As mentioned at the beginning of this paper, 5 trend models (Figure 3) of 
failure rate were considered. Linear, exponential and power models represent 



class of trends which is common in ageing analysis and Makeham and Xie & 
Lai models represents more flexible bathtub trend class. We excluded 
constant failure rate model because ageing effect of considered data has 
been already validated in other analysis (Radionov17). 
 

 
Figure 3. Comparative representations of fitted trend models 

 
The posterior summaries are being reported in the following table. 
 
Failure rate model Posterior expectations of parameters 
Linear: 

  exp θ1 +θ2t( )  0.0073 0.1704 
  Log-linear:   θ1 +θ2t  0.0030 0.0038 
  Power-law:   θ1t

θ2  0.0025 1.2710 
  Xie & Lai:   θ1θ2 θ1t( )θ2−1

+θ3θ4 θ3t( )θ4−1
 0.0700 5.7060 0.0113 0.8932 

Generalized Makeham: 
  
θ1e

θ2t +
θ3

1+θ4t
 

0.7715 1510.0 0.0046 0.2118 
 

Table 3. Posterior summaries for considered trend models 
 
3.3 Model screening 
 
Estimated posterior p-values for different failure rate models are in Table 4: 
 

 Linear Exponential Power law Gen. Makeham Xie & Lai 
p(D1) 0.5458 0.6333 0.7356 0.6178 0.7006 
p(D2) 0.0042 0.0278 0.0084 0.0306 0.0110 

 
Table 4. Posterior p-values for different failure rate models 

 
As can be seen from posterior p-values p(D2) presented in Table 4, in this 
case (using chi-square measure) none of proposed trend models of failure 



rate gives good enough fit and all models should be rejected. However, p-
values p(D1) shows satisfactory discrimination abilities – linear, generalized 
Makeham and exponential trend models can be interpreted as better fit than 
Xie & Lai and power low failure rate trend models. Validity of p-values p(D1) is 
supported by a visual inspection of replicated and observed number of failures 
(Figure 4). 

 
Figure 4. Replicated number of failures from exponential model compared to 

observed data 
 
It is worth to take notice of chi-square discrepancy measures p(D2) inability to 
assess model goodness-of-fit, even though graphical investigation shows 
quite tolerable fitness. Even though standard deviation measure seems to 
work, but it might be that applied to another data sample it fails, as is the case 
with chi-square measure in this case. This leads to the conclusion that 
discrepancy measures (and as a consequence, posterior predictive p values) 
does not provide automatic model assessment tool for practitioners. 
It is well known that more complex curves will fit data more precisely, but 
fitness of very complex models can lead to over fitting (e.g. perfect fitness can 
be achieved by splines, but this apparently leads to nonsensical inference). 
Nevertheless, this obscurity can be solved by using DIC measure. This 
criterion naturally adopts Occam’s razor principle, because it incorporates 
penalty - the effective number of parameters: more complex models will be 
penalized more severely. DIC values for all models under consideration are 
presented in Table 5. 
 

Model Linear Exponential Power law Gen. Makeham Xie & Lai 
DIC 91.39 86.48 88.42 94 88 

 
Table 5. Values of Deviance Information Criterion 

 
As can be seen from DIC values, exponential model shows best fit. Also, Xie 
& Lai and power law model can be accepted.  
Two measures of fitness – discrepancy measure and DIC – shows different 
results and unambiguous answer cannot be given. Preference to one model 
over another can lead to too pessimistic or optimistic predictions of ageing 
phenomena behaviour. Such uncertainty related to the selection of model for 
further use has to be quantified to make sure that applications of model will 



not be influenced on incorrect choice of trend. Such quantification will be 
demonstrated in further analysis where Bayesian model averaging (BMA) will 
be applied. 
 
3.4 Bayesian averaging for age-dependent failures 
 
As was concluded previously, discrepancy measure and DIC gave quite 
ambiguous results; subsets of models, selected by these criterions are not 
exactly the same. In practice, usual decision is to adopt just one model, but as 
we have already mentioned in theoretical part, this could lead to 
overoptimistic results if model uncertainty is not incorporated into modelling 
process.  
In this part of paper application of Bayesian model averaging to analyze age-
dependent failures will be demonstrated. We will perform averaging procedure 
for all models that were considered in this paper. To be able to average over 
the set M of models, probabilities of each model has to be obtained by 
calculating marginal likelihoods with WinBUGS software. Calculation of 
marginal likelihoods is not a trivial task, especially with WinBUGS, where user 
cannot control which MCMC method to use. However, quite recently Friel and 
Pettitt38 proposed a method, when marginal likelihood can be estimated via 
power posteriors, defined as follows: 
 

 
π s Θ |Y ,t( )∝ f s Y | d t ,Θ( )( )π Θ( ) , s ∈ 0,1⎡⎣ ⎤⎦ . 

 
It can be proved, that: 

  
log p Y | d t,Θ( )( ) = EΘ|Y ,s log f Y | d t,Θ( )( )⎡

⎣
⎤
⎦

0

1

∫ ds , 

 
where expectation is taken over the power posterior. Then this integral can be 
approximated by a trapezoidal rule like this: 
 

  
log p Y | d t,Θ( )( ) ≈ 1

2
si+1 − si( ) EΘ|Y ,si+1

log f Y | d t,Θ( )( )⎡
⎣

⎤
⎦ + EΘ|Y ,si

log f Y | d t,Θ( )( )⎡
⎣

⎤
⎦( )

i=0

n−1

∑ . 

 
To be able to obtain power posteriors in WinBUGS, one needs to define new 
sampling distribution with additional power parameter  s  (for more details see 
WinBUGS manual and the appendix, wher the program code for exponential 
trend model case is presented). Then calculate expectations of log-likelihood 
for original model with regard to power posterior: 
 

  
EΘ|Y ,si

log f Y | d t,Θ( )( )⎡
⎣

⎤
⎦ . 

 
Suppose for a moment, that we have failure rates for 14 years and want to 
predict for the next one. We will apply BMA for this exercise. Obtained 
probabilities for each model are presented in Table 6. 
 

 Linear Exponential Power law Gen. Makeham Xie & Lai 



( )( ), |j jp d t YΘ  0.107 0.422 0.108 0.216 0.147 

 
Table 6.  List of probabilities of analysed models 

 
Calculated probabilities partially justifies assessments made by DIC and do 
not confirm conclusions based on discrepancy measures. Predictions together 
with 95% confidence regions are presented in Figure 5. 
 

 
Figure 5. Bayesian predictive confidence intervals under exponential and 

BMA models 
 
Differences in confidence intervals suggest that the statistical information 
about future values is not the same for exponential and BMA models. The 
smaller confidence interval more information is carried by the model from 
which it is obtained. The manifestation of shrinkage effect in BMA case is due 
to aggregation of information over the set of different models. We see, that 
BMA is superior to single model (exponential in our case) in reliability 
prediction task. 
Having this, authors think that Bayesian averaging procedure can be good 
alternative to various goodness-of-fit approaches since it prevents decision 
maker of exclusion of models, which have good fit and could lead to 
reasonable posterior inferences. Also the information aggregation inherited by 
BMA approach can be advantageous over the single parametric model in 
component reliability prediction. 
 
4. Conclusions and final remarks 
 
In this paper authors presented general methodology of Bayesian methods 
application for age-dependent analysis. It was showed that this methodology 
is able to deal with disperse and small data amount along with multiple 
parameter set (Makeham and Xie & Lai trend models). As an illustrative 
example, the proposed methodology was applied for ageing analysis of 
electrical I&C components. This application was carried in terms of piecewise 
homogeneous Poisson model with several failure trends. 
When fitting and screening various trend models, it was noticed that none of 
model selection approaches can give unambiguous answer. P-values can be 
quite misleading and can either show no discriminatory abilities (as in case of 
chi-square p-value) or can suggest more than one model as having good fit 
(as in case of standard deviation p-value). 



Deviance information criteria can also suggest more than one model (and not 
necessarily the same one as p-value criteria). That’s why there is a high 
chance to omit model which can also lead to satisfactory results. Thus, model 
selection should be performed very carefully. It is worth to mention, that other 
model selection and validation criteria (such as Bayesian information criteria, 
Bayesian factors, etc. not described or used in this paper) can also suffer from 
such shortcomings. 
To evade the drawbacks of model selection and validation tools, Bayesian 
posterior model averaging procedure were performed for whole set of models, 
which were analysed in this paper. Such averaging over set of selected trends 
finally results to better predictive performance, because, due to shrinkage 
effect inherited by BMA approach, averaged future failure rates will not be 
underestimated in terms of their uncertainties. Notwithstanding all the 
advantages of Bayesian model averaging, this approach also undergoes 
some problems: BMA cannot deal with infinite set of models and when one 
chooses finite set of them the best one can be not included in this set; it also 
fails to “emit the alert signal” when all models fits data very poorly and so 
averaging will not result to better performance. 
This paper and its results can be used as groundwork for further assessment 
of ageing components. Its generality and idea, that ageing or degradation can 
be thought as age-dependent change of beliefs about reliability parameters, 
allows analysis of wide spectrum of problems - it can be stochastic behaviour 
of crack growth (in this case characteristic ( )d t  of interest would be crack 
growth rate), it can be degradation modelling as transitions through Markovian 
states ( ( )d t  could be transition rates, time-homogeneous or time-
inhomogeneous, between degradation states), etc. 
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Appendix A 
 
We present here a WinBUGS program script for calculation of power 
marginals for exponential model. Obtained posterior expectations of the 
variable logpower are then used together with trapezoidal rule to 
estimate the marginal likelihood value. 
 
model{ 
 #Poisson model with exponential trend line, p - parameters 
  for(i in 1:N){ 
       x[i]~dpois(rate[i]) 
       rate[i]<-lambda[i]*time[i] 
       lambda[i]<-exp(p[1]+p[2]*T[i]) 
  } 
  # Construction of power likelihoods 
  #For each ith power, we construct a corresponding likelihood model by “zero 
trick” 
  for(i in 1:100){ 
    #For each data point obtain values of power-likelihood 
    for(j in 1:N){ 
         zeros[i,j]<-0 
         zeros[i,j]~dpois(phi[i,j]) 
         # pow(0.01*I,3) is chosen to obtain uneven distribution of powers 
         phi[i,j]<-  pow(0.01*i,3)*(rate_p[i,j]-x[j]*log(rate_p[i,j])+logfact(x[j])) 
         rate_p[i,j]<-lambda1[i,j]*time[j] 
         lambda1[i,j]<-exp(p1[i,1]+p1[i,2]*T[j]) 
    } 
  } 
  #Calculate power posterior over entire data sample  
  for(i in 1:100){ 
      logpower[i]<- -sum(phi[i,1:N])/pow(0.01*i,3) 
  } 
 
  #Exponential model priors 
  p[1]~dunif(-10,10) 
  p[2]~dunif(-10,10) 
  #Priors for power-likelihood 
  for(i in 1:100){ 
      p1[i,1]~dunif(-1000,100) 
      p1[i,2]~dunif(-1000,100) 
  } 
} 
 

 


