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Quantitative Analysis of Dynamic Fault Trees Based on the Coupling

of Structure Functions and Monte Carlo Simulation

G. Merle∗†1, J.-M. Roussel1, J.-J. Lesage1, V. Perchet2 and N. Vayatis3

1LURPA, ENS Cachan, 61 Avenue du Président Wilson, Cachan, 94230, France
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This paper focuses on the quantitative analysis of Dynamic Fault Trees (DFTs) by means of Monte
Carlo simulation. In a previous article, we defined an algebraic framework allowing to determine
the structure function of DFTs. We exploit this structure function and the minimal cut sequences
that it allows to determine, to know the failure mode configuration of the system, which is an
input of Monte Carlo simulation. We show that the results obtained are in good accordance with
theoretical results and that some results, such as importance measures and sensitivity indexes,
are not provided by common quantitative analysis and yet interesting. We finally illustrate our
approach on a DFT example from the literature.
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1 Introduction

Fault Tree Analysis (FTA) is one of the oldest and most diffused techniques in industrial applications, for the
dependability analysis of large safety-critical systems.1-3 FTA generally consists in two types of analyses. On the
one hand, a qualitative analysis allows to determine the list of all the possible combinations of events that lead
to the top event (TE), which are called the minimal cut sets of the FT. On the other hand, a quantitative level
allows to determine the probability of occurrence of the TE of the FT, based on the time-to-failure probability
distributions of its basic events.

The original FTs contain only Boolean OR/AND gates, and only the combination of failures of basic events
is relevant and not their sequence. As they do not allow to model the failure mechanisms of sequence-sensitive
dynamic systems, they are commonly called Static Fault Trees (SFTs). As the knowledge of the working or failing
state of each component is sufficient to determine the state of the system, a Boolean model of events is generally
retained for SFTs and Boolean gates can easily be modelled by means of Boolean operators OR and AND. An
expression for the TE of the SFT can hence be determined as a function of basic events: this expression is
called the structure function of the SFT. Such an expression can always be reduced to a minimal sum-of-product
canonical form thanks to the theorems of Boolean algebras, and both the qualitative and quantitative analyses
can be performed directly from this minimal canonical form.

Several attempts have been reported in the literature to remove some modelling limits of SFTs and include
various kinds of temporal and statistical dependencies in the model. A Priority-AND (PAND) gate has been
introduced by Fussel et al.4 to model situations in which the failure of the gate occurs if the inputs fail in an
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order. This gate was later included in the Dynamic Fault Tree (DFT) model that Dugan et al. proposed.5,6 The
DFT is based on the definition of new gates that induce temporal as well as statistical dependencies: PAND,
Functional Dependency (FDEP), Warm Spare (WSP) and Sequence Enforcing (SEQ). As the TE of DFTs can
be engendered not only by combinations but also by sequences of event failures, the concept of minimal cut sets
was hence extended to the concept of minimal cut sequences.7 However, the lack of a behavioural model for these
gates made impossible the determination of a structure function for DFTs, and other approaches – mainly based
on state models – were developed to perform the analyses. On the one hand, qualitative temporal analysis8 and
zero-suppressed binary decision diagrams7 were retained to perform the qualitative analysis of DFTs. On the
other hand, continuous time Markov chains,9,10 Stochastic Petri Nets11,12 and temporal Bayesian networks13

were retained to perform the quantitative analysis of DFTs. However, all these approaches present some limits
in terms of accuracy of the results obtained or of time-to-failure distributions which can be considered.

To remove these limits, in a previous article, we presented an algebraic framework allowing to algebraically
model dynamic gates and determine the structure function of any DFT.14 We also showed that the minimal
cut sets and sequences of DFTs can be determined directly from this structure function, in the same way that
the minimal cut sets of SFTs can be determined directly from their structure function. Based on the structure
function and on a probabilistic model of all dynamic gates, we also proposed in the work of Merle et al.15 an
analytical approach for the quantitative analysis of DFTs. The main advantage of this approach is that it allows
to consider any kind of failure distribution for basic events, because the probabilistic models of dynamic gates
do not depend on this distribution. Nevertheless, for large-scale systems, the underlying calculations are quite
important and remain difficult to handle for practitioners. On the other hand, Monte Carlo simulation is often
used for DFT quantitative analysis, and especially when the use of non-exponential distributions is needed for a
realistic modelling of failures in a system.16 Although Monte Carlo simulation is within the reach of practitioners
(at least more than analytical calculus), it remains time-consuming when solving large-scale problems. In this
paper, we propose a new approach that aims at cumulating the advantages of both approaches by performing
Monte Carlo simulation onto the only minimal cut sequences extracted from the structure function and not onto
the whole DFT.

This paper is organised as follows. The main approaches commonly used to perform the quantitative analysis
of DFTs are reviewed in Section 2. Then, our approach based on the coupling of structure functions and Monte
Carlo simulation is presented in Section 3. Finally, we illustrate our approach on a DFT example in Section 4.

2 State of the art

Many approaches have been envisaged to perform the quantitative analysis of DFTs. In the work of Tang
and Dugan,7 each dynamic gate of the considered DFT is replaced by the static gate corresponding to its logic
constraints; the minimal cut sets of the resulting SFT are then generated by using zero-suppressed binary decision
diagrams, and these minimal cut sets are expanded to minimal cut sequences by considering the time constraints.
However, it can be noted that some constraints cannot be taken into account during this conversion of dynamic
gates into static gates as this conversion leads to a super set of sequences for the qualitative analysis: we showed
in the work of Merle17 that, during the conversion of many Spare gates sharing a spare event into static gates, the
behaviour of the spare event cannot be correctly taken into account. Coppit et al.18 propose to convert the DFT
into a failure automaton that models the changing state of the system as failures occur. This failure automaton
can then be converted into a continuous time Markov chain (CTMC), and the solution of the corresponding set
of differential equations allows to determine the failure probability of the TE of the DFT. These two approaches
have been implemented in the Galileo tool.6

Other model-based approaches also allow to perform the quantitative analysis of DFTs. For instance, in
the work of Montani et al.,19 the whole DFT is converted into a dynamic Bayesian network, and the failure
probability of the TE of the DFT can be determined by using inference algorithms. Finally, in the work of
Bobbio and Codetta Raiteri,11 the dynamic subtrees of DFTs are converted into a class of coloured Stochastic
Petri Nets called Stochastic Well-formed Net (SWN). This SWN can be converted into a CTMC to determine
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the failure probability of the TE of the dynamic subtree, and this failure probability can then be cast back into
the original DFT. These two approaches have been respectively implemented in the Windows19 and Linux20

version of the Drawnet tool.
All these approaches can provide a literal result, but the types of time-to-failure distributions that can be

considered for basic events are limited. On the one hand, CTMC-based approaches can only take into account
exponential distributions. On the other hand, there is no theory for exact Bayesian network inference with
general distributions, and theory exists only in the case of Gaussian distributions21 and mixtures of truncated
exponentials.22 In both cases, the state space becomes too large for calculation when the number of gate inputs
increases.16 This is the reason why Monte Carlo simulation has become more and more used to perform the
quantitative analysis of DFTs over the years, as it allows to obtain an approximate result for any distribution
of basic events whilst eliminating the statistical independence assumption. Initially applied to SFTs only,23 the
extension of Monte Carlo simulation to DFTs was considered for the first time by Marsaguerra et al.24 Over the
years, it has been used to determine the availability, reliability and importance measure estimations of complex
systems25-27 such as multi-state systems, that is, systems with dependencies between the system state and the
state of its components.

Recently, Monte Carlo simulation was made able to solve dynamic gates. In the work of Durga Rao,16 a
tool called Dynamic Reliability with SIMulation (DRSIM) and based on the Monte Carlo simulation approach is
presented; dynamic gates are implemented in this tool by taking into account the sequences according to which
components fail (for the PAND gate) as well as by accommodating the standby behaviour of spare components
(for Spare gates). The results obtained thanks to DRSIM are in good agreement with the results commonly
obtained by analytical approches, even if this approach is not subject to state space explosion and provides
results with a lower computational time. Miao et al.28 particularly focus on some structures called ring-standby
structures, which are standby models in which backup components cannot replace all non-backup ones. Such a
structure can easily be modelled by means of many Spare gates having both shared and unshared spare events.
However, the authors do not compare the results obtained with their approach with the results obtained with
other approaches. Finally, a library object called MatCarloRe and based on Simulink was proposed by Manno
et al.,29 allowing the user to construct a DFT model of the process thanks to the graphical interface of the
MATLAB simulator by using the library blocks. Each such block carries the logic of a DFT gate, and the
Monte Carlo engine collects the outputs of many runs and their agglomerate to construct significant statistics of
interest. However, this tool does not allow to calculate differential importance measures. Differential importance
measures represent the impact that each parameter of the system (e.g. the failure rate of a basic event) has on
the failure of the whole system and hence represent a really useful result to know what component(s) to improve
in priority to improve the reliability of the system considered.

The main goal of our approach is to perform the quantitative analysis of DFTs and the sensitivity analysis
of their top events by coupling Monte Carlo simulation with the structure function of DFTs that we introduced
in the work of Merle et al.,14 and hence with the knowledge of the cut sequences and minimal cut sets of the
DFT (i.e. the results of the qualitative analysis of the DFT). As the algebraic framework that we presented in
the work of Merle et al.14 allows to model all dynamic gates and is based on temporal operators, we can use
Monte Carlo simulation to simulate the sequences according to which components will fail and the results of
the qualitative analysis will allow to know, for each random sequence, whether the system fails or not. This
approach is presented in Section 3.

3 Quantitative analysis of DFTs based on the coupling of structure
functions and Monte Carlo simulation

3.1 Structure function of DFTs

We defined in the work of Merle et al.14 three temporal operators named non-inclusive BEFORE (BF, noted �),
SIMULTANEOUS (SM, noted 4), and inclusive BEFORE (IBF, noted �):
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• the operator SM was introduced to take into account the simultaneity of occurrence of intermediate events
that may happen in any DFT containing repeated events30;

• the operator BF was introduced to model a strict version of the PAND gate, as well as all Spare gates;

• finally, the operator IBF was built thanks to operators SM and BF to model the non-strict version of the
PAND gate that we retained in the work of Merle et al.14

The operators BF and IBF allowed us to define a behavioural model for all dynamic gates FDEP (which
can be modelled by means of Boolean operators as we demonstrated in the work of Merle et al.31), PAND and
Spare. We demonstrated that such a model allows to determine the structure function of any DFT and that
this structure function can be expressed under a minimal canonical form thanks to a set of theorems that we
provided. Because this minimal canonical form is a sum of terms, each term – that we called a cut sequences set
– is an algebraic expression, which represents a condition that must hold for a sequence of occurrences to be a
cut sequence and which hence allows to determine a set of minimal cut sequences. For instance, if the minimal
canonical form of the structure function contains the algebraic term C · (A � C) · (B � C), it means that any
failure sequence in which the basic events A and B fail before C is a cut sequence: [A,B,C] and [B,A,C] hence
are minimal cut sequences. In the same way, if an expression in the structure function does not contain temporal
operators, it allows to determine minimal cut sets and hence minimal cut sequences. For instance, if the minimal
canonical form of the structure function contains the algebraic term A ·B, it means that any failure sequence in
which the basic events A and B fail is a cut sequence: [A,B] and [B,A] will hence be minimal cut sequences.

The knowledge of all these minimal cut sequences can then be used in Monte Carlo simulation to determine,
for each random failure sequence, whether the system fails or not, as illustrated in Section 3.2.

3.2 Monte Carlo simulation

Our approach is illustrated in Figure 1. On the one hand, as explained in Section 3.1, the algebraic framework
that we presented in the work of Merle et al.30 allows to determine the minimal canonical form of the structure
function of any DFT. Such a minimal canonical form allows to determine the minimal cut sequences of the DFT,
and either this structure function of the DFT or the minimal cut sequences can be used to generate an oracle
that will be able to state, for any sequence of occurrences of basic events, whether the top event of the DFT
occurs or not. On the other hand, we use Monte Carlo simulation to generate random sequences of occurrences.

Monte Carlo simulation is a very valuable method widely used in the solution of real engineering problems in
many fields.16 It allows to estimate the reliability indices by simulating the actual process and random behaviour
of the system in a computer model to create a realistic lifetime scenario of the system. The only required
information for the analysis is as follows29:

• the probability density function (pdf) of the time to failure of each component – noted fbi(t) in Figure 1
– and their parameters values;

• the mission time T of the system;

• the system failure mode configuration (which is modelled here by the oracle of the DFT).

Components are then simulated for the specified mission time for depicting the duration of their available
state, which is random and will depend on the pdf of time to failure.

For instance, if we consider a random variable X with a Markovian time-to-failure distribution with failure
rate λ, its pdf and cumulative distribution function (cdf) are given by the following expressions:

f(x) = λe−λx

F (x) =

∫ x

0

f(t)dt = 1− e−λx, (1)
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Figure 1. Monte Carlo simulation coupled with the structure function of DFTs.

when x > 0 and by f(x) = F (x) = 0 otherwise.
x can then be expressed as a function of F (x) as follows:

F (x) = 1− e−λx

⇔ x =
1

λ
ln

(
1

1− F (x)

)
(2)

The pdf and cdf that we are considering in this paper are functions of time t and a uniform random number
can be generated by using any of the standard random number generators. Such a random number generator will
hence allow to determine a random value for F (t) in [0; 1], which can then be substituted in place of F (t) in the

expression t =
1

λ
ln

(
1

1− F (t)

)
in order to obtain a random date of occurrence for the basic event considered.

Similarly, if X is a Weibull random variable with parameters λ > 0 (the scale parameter) and k > 0 (the shape
parameter; when k = 1, the Weibull distribution corresponds to an exponential distribution), then its pdf and
cdf are given by the following expressions:

f(x) = λk(λx)k−1e−(λx)k

F (x) =

∫ x

0

f(t)dt = 1− e−(λx)k . (3)
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As a consequence, one readily obtains that

x =
1

λ

(
ln

(
1

1− F (x)

)) 1
k

Finally, we recall that, with respect to these paremeters, the expectation of the random variable X is

λΓ

(
1 +

1

k

)
, where Γ(·) is the usual Gamma function. For the specific choices of k = 0.5, 1 or 2, it is de-

fined by Γ(3) = 2, Γ(2) = 1 and Γ(1.5) =

√
π

2
.

In the same way, it can be noted that if a random variable X has a uniform distribution and if F is an
invertible cdf, then the random variable F−1(X) has the cdf F .32 This can be reproduced for all basic events in
order to determine a random sequence of occurrences. This random sequence can then be reduced by comparing
it with the mission time considered and by removing all the events that occurred after the mission time. Finally,
these reduced random sequences of occurrence of basic events can be compared with the minimal cut sequences
of the DFT to determine whether the top event of the DFT occurs or not. The failure probability of the system

– noted Pr {TE} (T ) in Figure 1 – can then be determined as the ratio
nTE
N

between the number of times the

top event occurs nTE and the number of simulations N .
The number of simulations N that is needed to have a probability δ of returning a value that misses the

correct index by more than ε can be determined, thanks to Hoeffding’s inequality33, as

N >
1

2ε2
ln

(
2

δ

)
, (4)

that is, the smaller δ will be, the more lucky we will be to obtain a result with the accuracy ε. It can be noted
that Hoeffding’s inequality allows to obtain a lower bound for the number N as this probabilistic analysis is

based on the worst case (which corresponds here to Pr {TE} =
1

2
).

Two types of analyses can also be carried out:

• a global analysis, which consists in analysing the differential importance measures of the parameters of the
pdfs to know which component needs to be improved in priority;

• a local analysis, which consists in analysing the sensitivity with respect to a set of parameters, in order to
know which components best represent the model.

These global and local analyses are shortly described in Sections 3.3 and 3.4, respectively.

3.3 Global analysis

Global analysis aims at knowing which parameters of the pdfs are important by determining how the failure prob-
ability of the system evolves depending on these parameters. If the system considered depends on n parameters,
for each parameter, the (n−1) other parameters are left unchanged, whilst the value of the parameter considered
varies inside a set of values to get an idea of its importance with respect to the global failure probability by
simulation. Such an analysis can be performed in two ways:

• by doing a large number of simulations on a small set of values;

• by doing a small number of simulations on a large set of values.

The data obtained can then be classified in order to determine areas in which the probability is particularly
high or low, and these areas can be ordered in order to know the relative importance of the parameters.
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3.4 Local analysis

The main purposes of local analysis – i.e. of sensitivity analysis – are as follows:

• compare the mathematical model with the real system, to see whether the variables have the same impact
in theory and in practice;

• minimize the error made on the output, by decreasing the error on influent variables or by modifying the
model;

• simplify the model, by replacing non-influent variables by constants.

Theoretically, let Y be the output variable and X1, . . . , Xn be the independent input variables of the system. If
the relation between Y and the inputs Xi, i ∈ {1, . . . , n} is as follows:

Y = β0 +

n∑

k=1

βkXk, (5)

the variance of Y can be determined as follows:

var [Y ] =

n∑

k=1

β2
kvar [Xk], (6)

and we can hence determine the sensitivity indexes of variables Vk as,

1 =

n∑

k=1

β2
k

var [Xk]

var [Y ]
=

n∑

k=1

ISk. (7)

It can be noted that all these sensitivity indexes are positive numbers whose sum equals to 1. The importance
of a variable can hence be determined by comparing its sensitivity index with respect to 1.

In the same way, if Y = f(X1, . . . , Xn) is a function of n random variables X1, . . . , Xn, there exists a family
of mappings fj1,...,jk , with {j1, . . . , jk} ⊂ {1, . . . , n}, that are orthogonal1 with each other and such that

f(X1, . . . , Xn) = f0 +

n∑

k=1

fk(Xk) +

n∑

k,l=1

fk,l(Xk, Xl) + · · ·+ f1,...,n(X1, . . . , Xn). (8)

From a probabilistic point of view, we hence have

Y = E [Y ] +

(
n∑

k=1

E [Y |Xk]− E [Y ]

)
+




n∑

k,l=1

(E [Y |Xk, Xl]− E [Y |Xk]− E [Y |Xl]) + E [Y ]


+ . . . , (9)

which allows to determine the variance of Y as

var [Y ] =

n∑

k=1

Vk +

n∑

k,l=1

Vk,l + · · ·+ V1,...,n, (10)

where Vk = var [E [Y |Xk]] is the part of var [Y ] which is due to Xk, Vk,l = var [E [Y |Xk, Xl]]− var [E [Y |Xk]]−
var [E [Y |Xl]] is the part of var [Y ] which is due to the interaction between Xk and Xl and which is not taken
into account in Xk and Xl, and so on.

This variance-based sensitivity analysis originated in the work of Cukier et al.34 and Sobol.35

1According to Chastaing et al.,38 two functions depending on random variables from L2 are orthogonal whenever all the variables
involved in one of the functions also appear in the other.
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4 Application to a DFT example

4.1 Presentation of the DFT example

The DFT example that we are going to use is the DFT of a Hypothetical Cardiac Assist System (HCAS) from
the work of Boudali and Dugan,13 which was inspired from a Cardiac Assist System found in the work of Vemuri
et al.,36 and whose structure can be found in the work of Ren and Dugan37 and is shown in Figure 2, where
TEDTS stands for transcutaneous energy and data transmission system.

TEDTS
controller

TEDTS
coil

Battery

Power
supply

Primary
CPU

Backup
CPU

Leads
System

Supervisor

Crossbar
Switch

Motor
amplifier

Motor
Cable

MotorPumps

Figure 2. The Hypothetical Cardiac Assist System (HCAS).

The HCAS is designed to treat mechanical and electrical failures of the heart. The system can be divided
into four modules: trigger, CPU unit, motor section, and pumps. The crossbar switch (CS) and the system
supervisor (SS) represent the trigger, because the failure of either CS or SS triggers the failure of both CPUs.
The CPU unit can be considered as a warm spare with a primary P and a spare unit B (which corresponds to the
backup CPU). For the motor section to function, either the motor (MOTOR) or the motor cable (MOTORC)
needs to be working. The pumps unit is composed of two cold spares, each having a primary pump (PUMP 1
and PUMP 2), and sharing a common spare pump (Backup PUMP ). In order for the pumps unit to fail, all
three pumps need to fail, and CSPGate 1 needs to fail before (or at the same time as) CSPGate 2.

The DFT that models the potential failure of the HCAS is shown in Figure 3.

4.2 Structure function and qualitative analysis of the DFT

The minimal canonical form of the structure function of the DFT in Figure 3 has been determined in the work
of Merle et al.14 and is

TE = CS + SS +MOTOR ·MOTORC + P · (Bd � P ) +Ba · (P �Ba)

+BP · (P2 � P1) · (P1 �BP ) + P2 · (P1 �BP ) · (BP � P2), (11)

where P1, P2, and BP respectively stand for PUMP 1, PUMP 2, and Backup PUMP .
In Equation (11), the top event of the DFT is expressed as a sum of seven algebraic expressions. Amongst

these seven algebraic expressions,

• three algebraic expressions do not contain the temporal operator �: they hence are static expressions from
which the minimal cut sets of the DFT can be extracted;

• four algebraic expressions contain the temporal operator �: they hence are dynamic expressions from
which the minimal cut sequences of the DFT can be extracted.
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Figure 3. The DFT of the HCAS.

The minimal cut sets and sequences of the DFT can hence be determined as follows:

• the algebraic expressions CS, SS and MOTOR·MOTORC allow to determine that CS, SS and MOTOR·
MOTORC are minimal cut sets for the DFT;

• the algebraic expression P · (Bd � P ) allows to determine that [Bd, P ] is a minimal cut sequence for the
DFT;

• the algebraic expression Ba · (P � Ba) allows to determine that [P,Ba] is a minimal cut sequence for the
DFT;

• the algebraic expression BP · (P2 � P1) · (P1 � BP ) allows to determine that [P2, P1, BP ] is a minimal
cut sequence for the DFT;

• the algebraic expression P2 · (P1 � BP ) · (BP � P2) allows to determine that [P1, BP, P2] is a minimal
cut sequence for the DFT.

Sequences are noted between brackets and contain the basic events that occurred in the order in which they
occurred. For instance, the sequence [A,B] indicates that the basic events A and B failed and that A failed before
B. As we consider that basic events are statistically independent, two basic events cannot occur simultaneously
and the case in which two basic events occur at the same moment in a sequence will hence never happen.
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Our approach is based on Monte Carlo simulation and hence on the generation of random sequences of
occurrences. As we aim at comparing these random sequences of occurrences with the minimal cut sequences of
the DFT, we hence have to provide minimal cut sequences only and to convert the minimal cut sets of the DFT
into minimal cut sequences:

• the minimal cut set CS is equivalent to the minimal cut sequence [CS];

• the minimal cut set SS is equivalent to the minimal cut sequence [SS];

• the minimal cut set MOTOR ·MOTORC is equivalent to the two minimal cut sequences [MOTOR,
MOTORC] and [MOTORC,MOTOR], as both MOTOR and MOTORC need to occur and cannot
occur simultaneously as they are statistically independent.

We can hence conclude that the DFT in Figure 3 has eight minimal cut sequences:

• two minimal cut sequences of length 1: [CS] and [SS];

• four minimal cut sequences of length 2: [Bd, P ], [P,Ba], [MOTOR,MOTORC] and [MOTORC,MOTOR];

• two minimal cut sequences of length 3: [P2, P1, BP ] and [P1, BP, P2].

4.3 Monte Carlo simulation of the DFT example

In order to compare the results obtained by Monte Carlo simulation with the results obtained by Merle,17 we
retain exponential time-to-failure distributions for basic events with the failure rates given in Table I and with
a dormancy of 0.5 for the spare event B. It can be noted that there is no methodological or computational
obstacle that may prevent us from applying our approach to non-exponential distributions.

Table I. Failure rates of the basic events of the DFT of the
HCAS, from the work of Boudali and Dugan13

Basic component Failure rate (10−6)
CS 1
SS 2
P , B 4
P1, P2, BP 5
MOTOR 5
MOTORC 1
CS: crossbar switch; SS: system supervisor; P1: PUMP 1;
P2: PUMP 2; BP : Backup PUMP ; MOTORC: motor cable.

We need to determine how many simulations are needed to obtain an accurate result for the failure probability
of the system. According to Equation (4),

N >
1

2ε2
ln

(
2

δ

)
.

Let us target a result with an accuracy of ε = 1% and with δ = 5% (i.e. we want to have a probability of
95% of obtaining a result with the accurary ε). We hence have

N >
1

2× 0.012
ln

(
2

0.05

)
≈ 18, 444.

Twenty thousand simulations will thus be sufficient to obtain a result with the expected accuracy. The result
obtained is a failure probability of 36.19% at a mission time T = 100, 000 h, which is in accordance with the
failure probability of 36.35% obtained by Merle17 at the same mission time, with an error of only 0.44%.
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It can be noted that the results obtained with Monte Carlo simulation are determined within a few seconds
or minutes, depending on the number of simulations. If we retain a probability of 95% of obtaining an accurate
probability,

• a 1% accurate result is calculated within a few seconds with 20, 000 simulations;

• a 0.1% accurate result is calculated within a few minutes with 2, 000, 000 simulations.

It can be noted that these computation times are similar with the ones obtained from the work of Boudali
and Dugan13 with Bayesian networks, for which the accuracy of the result – as well as the computation time
– depends on the time granularity. However, the types of time-to-failure distributions that can be taken into
account in Bayesian networks are limited by inference algorithms, like we said in Section 2, whereas Monte Carlo
simulation can accommodate any such distribution.

4.4 Global analysis of the DFT example

As we consider exponential time-to-failure distributions, each basic event has one parameter, that is, its failure
rate λ. The DFT in Figure 3 has nine basic events, so the system hence has nine parameters. As the failure
rates of spare events in their dormant and active modes are linked by the dormancy α of the spare event, we
just consider one failure rate (and hence one parameter) per spare event too.

Figure 4. Graphical representation of the failure probabilities of Table II.

We can check which parameters are the most important with respect to the system by making each one of
them vary whilst the eight other ones are kept unchanged. The failure probabilities obtained for each case are
displayed in Table II, and they are represented graphically in Figure 4. We consider that each component X from

the first column fails with a variable failure rate λX(k) =
k · λX

10
, where λX is the initial failure rate from Table I

and where the value of k is given in the first row of Table II and can take values in {5, 6, 7, 8, 9, 10, 20, 30, 40, 50},
whilst the failure rates of the eight other basic events are kept unchanged. It can be noted that λX(10) = λX ,
that is, the new failure rate when k = 10 equals to the original one. These results were obtained by performing
10, 000 simulations, which gives them a probability of 75% of having an accuracy of 1%. On the other hand,
the probability that every value of Table II has an accuracy of 2% is greater than 94%. The failure probabilities
that are particularly high are indicated by bold italic letters, whereas the failure probabilities that correspond
to the original values of the parameters of the system (i.e. the ones in Table I) are in bold letters.

On the one hand, it can be noted that the failure mechanisms of the pumps, motors and CPU units are
working well, because the variation of the failure rate of their components has a minor impact on the failure
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Table II. Estimated failure probabilities in the exponential model
5 6 7 8 9 10 20 30 40 50

CS 33 33 34 35 36 36 42 47 53 57
SS 29 30 32 33 35 36 48 57 65 71
P 34 35 34 35 36 36 40 44 46 47
B 34 34 35 35 35 36 41 45 46 49
P1 36 36 36 36 36 36 37 37 37 38
P2 36 36 36 35 36 36 37 38 38 38
BP 35 37 36 36 36 36 36 36 37 37
MOTOR 35 36 36 35 36 36 38 39 39 40
MOTORC 35 36 35 36 36 36 38 39 42 43
CS: crossbar switch; SS: system supervisor; P1: PUMP 1; P2: PUMP 2;
BP : Backup PUMP ; MOTORC: motor cable.

probability of the system. On the other hand, it can be noted that the variation of the failure rates of the
components of the trigger unit has a strong impact on the failure probability of the system with, for instance, a
particularly low failure probability when k = 5 and a particularly high failure probability when k = 50 for CS
and SS. Consequently, if one component had to be improved, one had better choose it in the trigger unit.

One may also wonder whether it may be fruitful to improve a whole unit. We can study the impact of the
improvement of all the components of a unit on the failure probability of the system. Let us consider that the
improved failure rate of the components of the unit considered is decreased to λ = 5 · 10−7:

• if we decide to improve the motors unit, the failure probability of the system is decreased by 6%;

• if we decide to improve the pumps unit, the failure probability of the system is decreased by 3%;

• if we decide to improve the CPU unit, the failure probability of the system is decreased by 17%;

• if we decide to improve the trigger unit, the failure probability of the system is decreased by 39%.

All these results were obtained after performing 20, 000 simulations, and we hence have a probability of 95%
that they have an accuracy of 1%. This analysis hence confirms that one had better focus on the trigger unit if
a unit had to be improved.

We also run simulations to determine whether the choice of a Weibull distribution instead of an exponential
distribution for the pumps unit would have an impact. The results are summarized in Table III with the specific
choice of k = 0.5 and in Table IV for k = 2. We stress out the fact that in these simulations, we modified the

shape parameter (from k = 1 to k = 0.5 or k = 2) and the scale parameter (from λ to
λ

2
or λ× 2√

π
) to keep the

life expectancy invariant.
As it was quite predictable (because of the local analysis detailed in the following section), these changes

have very few impacts on the estimated failure probabilities. For illustration purpose only, we also modelled the
case where the CPU unit has Weibull distribution, although it might not be a good description of the reality.
The results are provided in Table V, and, as suspected, they show significant differences in the estimated failure
probabilities.

4.5 Local analysis of the DFT example

The sensitivity indexes of all the components can be determined by means of two samples of size N = 20, 000.
Indeed, two samples are necessary to be able to calculate conditional expectations. The first order sensitivity
indexes are given in Table VI.

12



Table III. Estimated failure probabilities with pumps unit following Weibull distribution
with shape parameter k = 0.5

5 6 7 8 9 10 20 30 40 50
CS 33 33 34 36 36 36 43 48 53 56
SS 29 32 32 34 35 36 49 56 65 71
P 33 34 35 35 35 36 41 43 46 47
B 33 33 34 35 36 36 41 42 47 48
P1 36 36 36 36 37 37 37 36 37 37
P2 36 37 36 36 36 36 37 37 37 37
BP 37 36 37 36 36 37 37 37 38 38
MOTOR 35 36 35 36 36 36 38 38 40 39
MOTORC 35 35 37 35 36 36 38 40 43 44
CS: crossbar switch; SS: system supervisor; P1: PUMP 1; P2: PUMP 2;
BP : Backup PUMP ; MOTORC: motor cable.

Table IV. Estimated failure probabilities with pumps unit following Weibull distribution
with shape parameter k = 2

5 6 7 8 9 10 20 30 40 50
CS 32 32 33 34 34 36 41 47 52 56
SS 29 29 32 33 35 35 47 56 64 70
P 33 33 33 35 35 35 39 43 46 46
B 32 33 34 35 35 35 40 44 46 48
P1 35 34 35 35 35 35 36 37 36 37
P2 34 34 35 36 35 35 36 36 37 36
BP 35 35 35 35 35 35 36 36 36 36
MOTOR 34 33 35 35 35 35 37 37 39 39
MOTORC 33 34 35 35 35 36 37 40 41 43
CS: crossbar switch; SS: system supervisor; P1: PUMP 1; P2: PUMP 2;
BP : Backup PUMP ; MOTORC: motor cable.

Table V. Estimated failure probabilities with pumps and CPU units following Weibull
distribution with shape parameter k = 2

5 6 7 8 9 10 20 30 40 50
CS 17 17 18 17 18 18 21 26 32 39
SS 15 15 16 17 18 18 31 45 63 75
P 15 15 16 17 17 18 23 27 30 32
B 14 16 16 17 17 18 24 29 31 34
P1 18 18 18 17 18 18 19 21 20 20
P2 18 18 18 17 18 18 19 19 20 20
BP 18 18 18 18 18 18 19 19 19 19
MOTOR 16 18 17 18 18 18 20 21 22 23
MOTORC 17 17 18 18 18 18 21 24 26 29
CS: crossbar switch; SS: system supervisor; P1: PUMP 1; P2: PUMP 2;
BP : Backup PUMP ; MOTORC: motor cable.
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It can be noted that both CS and SS have a major impact on the variance of the top event and hence on
the failure probability of the system. SS has the highest importance because of its twice lower life expectancy
with respect to CS. This analysis confirms that the trigger unit should be the unit on which to focus.

Higher order sensitivity indexes are not represented for two reasons: basic computations show that there are
more than 500 of them, and they are close to zero. This explains the missing 35% (split between these hundreds
of terms) in Table VI.

Table VI. Sensitivity indexes of the components
CS SS P B P1 P2 BP MOTOR MOTORC
18% 39% 5% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0% 3%
CS: crossbar switch; SS: system supervisor; P1: PUMP 1; P2: PUMP 2; BP : Backup PUMP ;
MOTORC: motor cable.

5 Conclusion

In this paper, we presented an approach allowing to perform the quantitative analysis of DFTs. This approach is
based on both Monte Carlo simulation, which allows to generate random failure sequences for any time-to-failure
distribution of basic events, and the structure function of DFTs, which allows to determine the minimal cut
sequences of DFTs. On the one hand, we have showed that our approach allows to obtain accurate quantitative
results within a short calculation time. Any time-to-failure distribution can be accommodated as, from any such
distribution, a random failure date can be generated for each basic event and hence random failure sequences.
On the other hand, our approach also allows to obtain results that are quite uncommun – and yet useful – in
quantitative analysis, such as the importance measures of the parameters of the distribution functions of basic
events or the sensitivity of the system with respect to these parameters.

Ongoing work is now addressed to the determination of a scoring criterion allowing to classify configurations
of parameters according to their criticity in terms of risk with respect to failure events.
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