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Abstract

Recently, a step-stress accelerated degradation test (SSADT) plan, in which the

stress level is elevated when the degradation value of a product crosses a pre-specified

value, was proposed. The times of stress level elevating are random and vary from

product to product. In this paper we extend this model to a more economic plan. The

proposed extended model has two economical advantages compared with the previous

one. The first is that the times of stress level elevating in the new model are identical

for all products, which enable us to use only one chamber (oven) for testing all test

units. The second is that, the new method does not require continuous inspection and

to elevate the stress level, it is not necessary for the experimenter to inspect the value

of the degradation continually. The new method decrease the cost of measurement

and also there is no need to use electronic sensors to detect the first passage time

of the degradation to the threshold value in the new method. We assume that the

degradation path follows a gamma process. The stress level is elevated as soon as

the measurement of the degradation of one of the test units, at one of the specified

times, exceeds the threshold value. Under the constraint that the total experimental

cost does not exceed a pre-specified budget, the optimal settings including the opti-

mal threshold value, sample size, measurement frequency and termination time are

obtained by minimizing the asymptotic variance of an estimated quantile of the life-

time distribution of the product. A case study is presented to illustrate the proposed

method.
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distribution.
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1 Introduction

Due to the rapid improvement of quality of products of today, it is difficult to assess the

failure information of a product using traditional life testing procedures, which record only

failure times. An alternative approach is to collect the degradation data at higher levels

of stress, thus yielding more information about the lifetime distribution in a reasonable

amount of time compared to traditional life tests. Such a life testing plan is called an accel-

erated degradation test (ADT). Mathematical models for analyzing ADT data have been

proposed by Meeker & Escobar [7]. Meeker et al. [8] described accelerated degradation

models that relate to physical failure mechanisms. Yu & Tseng [13] proposed a stopping

rule for terminating an ADT. Chen & Zheng [2] proposed an approach for degradation

analysis which makes inference directly on the lifetime distribution. Huang & Dietrich [3],

used maximum likelihood estimation to estimate the model’s parameters. Joseph & Yu [4],

developed a methodology for quality improvement when degradation data are available as

the response in the experiments.

ADT is usually very costly, since it requires destroying a considerable number of prod-

ucts at each level of stress. Moreover, determining suitable levels of stress for the experi-

ment is not straightforward. To handle these problems, step stress accelerated degradation

tests (SSADT) were proposed by Tseng & Wen [12] in a case study of LEDs. In a SSADT

framework, each product is first tested, subject to a pre-determined stress level for a spec-

ified duration, and the degradation data are collected. A product which survives until the

end of the first step is again tested at a higher stress level and for a different time duration.

The stress level is elevated step by step until an appropriate termination time is reached.

The advantage of the SSADT is that the number of test units needed for conducting this

test is relatively small.

To conduct a SSADT efficiently, special attention is paid to the number of tested units

(sample size), measurement frequency and termination time. For ADT, Boulanger & Es-

cobar [1] addressed the problem of optimal determination of the stress levels as well as the

sample size for each stress level for a specified termination time. The problem of optimiz-

ing the test design have been extensively studied in recent years. Three commonly used

optimization criteria are the minimum approximated variance (Avar) of the maximum

likelihood estimators (MLE) of reliability, mean time to failure (MTTF) and the quantiles

of the lifetime distribution. Tang et al. [11] discussed the optimal planning of a simple

SSADT and minimized the test cost while achieving a requisite level of estimates, from

which the optimal number of inspections of the whole test can be determined. Liao &

Tseng [6] used a Wiener process to model a typical SSADT problem and then, under the

additional constraint that the total experimental cost does not exceed a predetermined

budget, obtained the optimal settings of the SSADT for minimizing the Avar of the esti-

mated 100pth percentile of the product’s lifetime distribution. They derived the optimal

test plans for the sample size, measurement frequency and termination time. Tseng et al.
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[14] discussed the SSADT problem for a gamma process and gave the optimal settings for

minimizing the Avar of the estimated MTTF of the lifetime distribution of the product.

Recently, Pan & Balakrishnan [9] proposed a step-stress accelerated degradation test

(SSADT) plan in which the stress level is elevated when the degradation value of a product

crosses a pre-specified value. In such a plan the times of elevating the stress levels are

random and vary from product to product. However, such a plan can be extended to a

more economic plan in two ways. First one can extend the model such that the times of

stress level elevating in the new model be identical for all products, which enable us to use

only one chamber (oven) for testing all test units. Second, one can conduct the plan such

that it does not require continuous inspection of the degradation by the experimenter (or

may be electronic sensors). In the later we don’t need to spend any money on electronic

sensors and also we have decreased the cost of measurement.

To extend the model, we assume that the measurements are made at the end of con-

secutive intervals of fixed duration. The experimenter elevates the stress level as soon as

a new measurement of at least one of the test units exceeds the threshold value.

In this paper, we propose a SSADT model when the degradation path follows a gamma

process. The measurements are made at times kf , for k = 1, . . . ,M , where f is the

measurement frequency in unit of time and M is the number of measurements. The stress

level is elevated as soon as a new measurement of the degradation of one at least of the test

units exceeds the threshold value. Next, under the constraint that the total experimental

cost does not exceed a pre-specified budget, the optimal settings including the optimal

threshold value, sample size, measurement frequency and termination time are obtained

by minimizing the Avar of an estimated quantile of the lifetime distribution of the product.

The paper is organized as follows. The model is described in Section II. An optimiza-

tion algorithm is presented in Section III to obtain the optimal settings under budget

constraints. Section IV presents a real data example for illustrating the proposed algo-

rithm and some concluding remarks are made in Section V.

2 Model description

Suppose that n test units are subject to a degradation test. Let L(t|S) denote the degra-

dation path of the product under a level of stress S at time t. Denote the use stress

level (under the normal conditions) by S0. The lifetime of the ith unit under the normal

conditions, T
(i)
0 , is defined the first time that L(t|S0) crosses the critical value D, that is

T
(i)
0 = inf{t|L(i)(t|S0) ≥ D}, (1)

in which L(i)(t|S0), i = 1, . . . , n, denotes the degradation value of the ith unit under the

stress S0 at time t.

Pan & Balakrishnan [9], proposed a SSADT model in which the jth stress level of the

ith unit, i = 1, . . . , n, j = 1, . . . ,m, is elevated as soon as the degradation of the unit
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passes the threshold value ωj (ω0 = 0 < ω1 < · · · < ωm < D). Hence, the testing stress

of the ith unit, i = 1, . . . , n, under such a SSADT model can be expressed for the stress

values S0 < S1 < · · · < Sm as follows

S(i) =























S1 τi,0 = 0 ≤ t < τi,1
S2 τi,1 ≤ t < τi,2,
...

Sm τi,m−1 ≤ t < T,

(2)

where T is the termination time of the test and

τi,j = inf{t|L(i)(t|Sj) ≥ ωj}, j = 1, . . . ,m− 1. (3)

in which L(i)(t|Sj), i = 1, . . . , n, j = 1, . . . ,m, denotes the degradation value of the ith

unit under the stress levels Sj at time t. We should keep in mind that the degradation

values do not depend on the random variables τi,j, j = 1, . . . ,m − 1, and the random

variables τi,j, j = 1, . . . ,m − 1, depend on the degradation values. In other words, we

have

S(i) =























S1 −∞ ≤ L(i)(t|S1) ≤ ω1,

S2 ω1 ≤ L(i)(t|S2) ≤ ω2,
...

Sm ωm−1 ≤ L(i)(t|Sm) ≤ D & t < T.

(4)

Also, it is worth noting the difference of notations in this paper with the paper of Pan

and Balakrishnan [9]. In this paper, L(i)(t|Sj) denotes the cumulative degradation value

of ith item during the test, under the jth stress level, while in Pan and Balakrishnan [9],

it denotes the cumulative degradation value of ith item during the jth stress level.

They considered both Wiener and Gamma processes for the degradation path of the

products. In the following, we assume that the independent increments of the degradation

path of the products follows a gamma process (Lawless & Crowder [5]); that is, for fixed

t and ∆t,

∆L(t|Sj) = L(t+∆t|Sj)− L(t|Sj) ∼ Ga(αj∆t, β), (5)

where Ga(αj∆t, β) stands for the gamma distribution with shape and scale parameter

αj∆t and β, respectively. Thus, we have, for t > 0

L(i)(t|Sj) ∼ Ga

(

αj(t− τi,j) +

j−1
∑

k=1

αi(τi,k − τi,k−1)

)

.

Park and Padgett [10] provided the approximate distribution of iid random differences

τi,k − τi,k−1, for k = 1, . . . ,m− 1 as Birnbaum-Saunders distribution with cdf

Gτi,k−τi,k−1
(t) ≈ Φ

(

1

δ1

(
√

t

γ1
−

√

γ1
t

))

. (6)
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Under the above settings and using (6), Pan and Balakrishnan [9] derived the approx-

imate joint pdf of τi,1, . . . , τi,m−1 as

gτi,1,...,τi,m−1(t1, . . . , tm−1) ≈
m−1
∏

k=1

{

αk

2
√

2πβ(ωk − ωk−1)

[

(

αk(tk − tk−1)

β(ωk − ωk−1)

)−1/2

+

(

αk(tk − tk−1)

β(ωk − ωk−1)

)−3/2
]

· exp

[

−
β(ωk − ωk−1)

2

×

(

αk(tk − tk−1)

β(ωk − ωk−1)
+
β(ωk − ωk−1)

αk(tk − tk−1)
− 2

)]}

. (7)

The idea of using random time for elevating the stress level of SSADT is interesting.

However, implementing the above SSADT model with stress model (2) is not economic,

since the main results for conducting a SSADT is that, we can economically use only

one chamber (oven), which allows us to elevate gradually the stress levels at specified

(or random) times for all testing units. From equation (2), it is clear that n chambers

should be used simultaneously, since with current metrology technology it is not possible

to conduct such an SSADT plan within a single chamber.

A more economic model with random stress-elevating times can be conducted with the

common stress

S =























S1 0 ≤ t < τ(1),1
S2 τ(1),1 ≤ t < τ(1),2,
...

Sm τ(1),m−1 ≤ t < T,

(8)

for all test units, in which

τ(1),j = min{τi,j; i = 1, . . . , n}, j = 1, . . . ,m− 1. (9)

Under the SSADT plan with stress model (8), the jth stress level is elevated for all

units as soon as the degradation of at least one of the units exceeds the threshold value

wj . The test terminated at time T .

Using (7), one can obtain the joint distribution of τ(1),1, . . . , τ(1),m−1, which is a rather

complicated formula.

For the case m = 2, since τ1,1, . . . , τn,1 are independent and identically distributed,

using (6) τ(1),1 has the approximate cdf

Gτ(1),1(t; θ) ≃ 1−

(

1− Φ

(

1

δ1

(
√

t

γ1
−

√

γ1
t

)))n

. (10)

Also, for the case m = 3, using (6), the approximate joint survival function of τ(1),1
and τ(1),2 is obtained as follows

Pr(τ(1),1 > t1, τ(1),2 > t2; θ) = (Pr(τ1,1 > t1, τ1,2 > t2; θ))
n ,

5



where

Pr(τ1,1 > t1, τ1,2 > t2; θ) = Pr(τ1,1 > t1; θ)− Pr(τ1,1 > t1, τ1,2 ≤ t2; θ)

= Pr(τ1,1 > t1; θ)(1− Pr(τ1,2 − τ1,1 ≤ t2 − t1; θ))

≃

(

1− Φ

(

1

δ1

(
√

t1
γ1

−

√

γ1
t1

)))

× Φ

(

1

δ1

(
√

t2 − t1
γ1

−

√

γ1
t2 − t1

))

. (11)

It is easy but a bit tedious to extend the above discussion for m ≥ 4. For instanse, for

m = 4, we have

Pr(τ1,1 > t1, τ1,2 > t2, τ1,3 > t3; θ) = Pr(τ1,1 > t1; θ)− Pr(τ1,1 > t1, τ1,2 ≤ t2; θ)

− Pr(τ1,2 > t2, τ1,3 ≤ t3; θ)

+ Pr(τ1,1 ≤ t1, τ1,2 > t2, τ1,3 ≤ t3; θ)

= Pr(τ1,1 > t1; θ)Pr(τ1,2 − τ1,1 ≤ t2 − t1; θ)

− Pr(τ1,2 > t2; θ)Pr(τ1,3 − τ1,2 ≤ t3 − t2; θ)

+ Pr(τ1,1 ≤ t1; θ)Pr(τ1,2 − τ1,1 > t2 − t1; θ)

× Pr(τ1,3 − τ1,2 ≤ t3 − t2; θ).

The second step for conducting a more economic plan is to extend the model with test

stress model (8) such that it does not require continuous inspection of the degradation

level of test units by the experimenter or electronic sensors. In the following, we describe

the extended model with discrete inspection times.

Suppose we want to makeM measurements for each unit with a measurement frequency

per f unit of time. Note that for the stress model (8), since the stress elevating time is

random, we can only determine the total number of measurements and the number of

measurements under each stress level is random. Under the jth stress level, j = 1, . . . ,m,

we elevate the stress level, as soon as a new measurement of the degradation of at least

one of the test units exceeds the threshold value ωj. The testing stress of the ith unit,

i = 1, . . . , n, under such a model can be expressed as follows

S =























S1 0 ≤ t < κ1f

S2 κ1f ≤ t < κ2f,
...

Sm κm−1f ≤ t < Mf,

(12)

where

κj = min{M,

[[

τ(1),j

f

]]

}, j = 1, . . . ,m− 1, (13)
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in which [[x]] stands for the smallest integer greater than x and τ(1),j is defined in (9).

The random variables κj are discrete with the obvious property that 1 ≤ κ1 ≤ κ2 ≤

· · · ≤ κm−1 ≤ M , with probability 1. Also, it is straightforward that, if for some j∗,

κj∗ = M , we have κj = M , for all j > j∗ and min{T(1),m/f,M} = M . Therefore, if for

some j∗, κj∗ =M , the testing stress takes only the values S1 < · · · < Sj∗ during the total

time interval, [0, Mf ].

For the case m = 2, we have

Pr(κ1 = k; θ) = Pr((k − 1)f < τ(1),1 ≤ kf ; θ)

≈ Gτ(1),1(kf ; θ)−Gτ(1),1((k − 1)f ; θ), k = 1, . . . ,M − 1, (14)

and

Pr(κ1 =M ; θ) = Pr(τ(1),j > (M − 1)f ; θ) ≈ 1−Gτ(1),1((M − 1)f ; θ), (15)

where Gτ(1),1(t; θ) is given in (10).

Also, for the case m = 3, the joint pmf of κ1 and κ2 is

Pr(κ1 = k1, κ2 = k2; θ) = P ((k1 − 1)f < τ(1),1 ≤ k1f, (k2 − 1)f < τ(1),2 ≤ k2f ; θ),

k1, k2 = 1, . . . ,M − 1, (16)

and simillar expressions are derived easily for Pr(κ1 = M,κ1 = k2; θ), Pr(κ1 = k1, κ1 =

M ; θ) and Pr(κ1 = M,κ1 = M ; θ), which are all approximated using the joint sur-

vival function given in (11). Similar formulas can also be obtained for the joint pmf

of κ1, . . . , κm−1, for m ≥ 4.

Suppose that the relation between αj and the stress level Sj is modeled by the Arrhe-

nius reaction rate model as

αj = exp(a+
b

273 + Sj
), j = 0, 1, . . . ,m,

for two unknown parameters a and b.

For k = 0, . . . ,M −1 and i = 1, . . . , n, let Gki denote the degradation increment of the

ith unit at time (k + 1)f relative to time kf , that is

Gki = L(i)((k + 1)f)− L(i)(kf),

where L(i)(kf) is the level of degradation of the ith unit at time kf . We have L(i)(t) =

L(i)(t|Sj) for all t ∈ [kf, (k + 1)f ] for k = κj−1, . . . , κj − 1 with κ0 = 0, κm = M , and

j = 1, . . . ,m.

Using (5), the conditional distribution of Gki given κ1, for k = κj−1, . . . , κj − 1, is

Ga(αjf, β), j = 1, . . . ,m, in which we assume κ0 = 0 and κm = M . Therefore, given

7



Gki = gki and (κ1 = k1, . . . , κm−1 = km−1), the likelihood function of θ = (a, b, β) is given

by

L(θ) = Pθ(κ1 = k1, . . . , κm−1 = km−1)

n
∏

i=1

m
∏

j=1

kj−1
∏

k=kj−1

g
fαj−1
ki e−gki/β

Γ(fαj)βfαj
, (17)

where Pθ(κ1 = k1, . . . , κm−1 = km−1) is given in (14) to (16) for m = 2, 3 and similar

formulas can also be obtained for the joint pmf of κ1, . . . , κm−1, for m ≥ 4.

3 The Optimal Design

We develope the optimization algorithm for the case m = 2. The generalization of the

proposed algorithm for larger values of m is straightforward. For the case m = 2, the

optimization of the SSADT model in (12) consists of finding the optimal values of n, M ,

f , and the optimal value of ω1. We concern the problem of minimizing the Avar of an

estimate of a quantile of the product’s lifetime distribution as an optimization criterion.

The approximated cdf of the lifetime of the product under the use stress level, S0, which

is defined as in (1), is (see Park and Padgett, [10])

F0(t) ≃ Φ

(

1

α∗
0

(√

t

β∗0
−

√

β∗0
t

))

, (18)

where

α∗
0 =

√

β

D
, and β∗0 =

D

βα0
.

Using (18), one can obtain the 100pth percentile of T0 as ξp = F−1
0 (p), 0 < p < 1. The

MLE of ξp, ξ̂p = F̂−1
0 (p), is obtained by substituting the MLEs of β and α0 into F−1

0 (p).

These values can be obtain by maximizing the likelihood function of θ = (a, b, β) in (17).

The Avar of ξ̂p can be obtained as a function of ω1, based on Avar of the MLE (The

inverse of the Fisher information matrix). Using the delta method we have

Avar(ξ̂p;ω1, n, f,M) =
1

(f̂0(ξ̂p))2
hT I−1(θ̂(ω1))h,

where f0 is the corresponding pdf of the cdf in (18), the transpose of vector h is

hT =

(

∂F0(ξ̂p)

∂a
,
∂F0(ξ̂p)

∂b
,
∂F0(ξ̂p)

∂β

)

,

and I(θ) is the Fisher information matrix of the likelihood in (17) which is calculated and

given in Appendix and θ̂(ω1) is the MLE of θ for a fixed ω1.

8



We have

∂F0(t)

∂a
=

1

2α∗
0

(√

t

β∗0
+

√

β∗0
t

)

φ0(t),

∂F0(t)

∂b
=

1

273 + Sj

∂F0(t)

∂a
,

∂F0(t)

∂β
=

1

βα∗
0

√

β∗0
t
φ0(t),

and

f0(t) =
1

2α∗
0

√

tβ∗0
(1 +

β∗0
t
)φ0(t),

where φ0(t) = φ

(

1
α∗

0

(

√

t
β∗

0
−
√

β∗

0
t

))

and φ stands for the pdf of the standard normal

distribution.

The total cost of the experiment TC(n, f,M) is given by

TC(n, f,M) = Cop · f ·M + Cmea · n ·M + Cit · n,

where Cop is the unit cost of operation per unit of time, Cmea is the unit cost of measure-

ment, and Cit is the unit cost of items. The optimization criterion is to find the values

n∗, f∗,M∗, ω∗
1 , which minimize Avar(ξ̂p;ω1, n, f,M), subject to TC(n∗, f∗,M∗) ≤ Cb,

where Cb is the total budget for conducting the degradation experiment.

Since the parameter spaces N = {(n, f,M) : TC(n, f,M) ≤ Cb} and Ω = {ω1 : ω1 ∈

(0,D)} are independent we have

inf
(n,f,M,ω1)∈N×Ω

Avar(ξ̂p;ω1, n, f,M) = inf
ω1∈Ω

inf
(n,f,M)∈N

Avar(ξ̂p;ω1, n, f,M). (19)

Thus, although there is no analytic expression for the solution of the optimization problem

of finding inf(n,f,M)∈N Avar(ξ̂p;ω1, n, f,M), due to the integer restriction on the optimality

parameters n, f and M , the global and unique minimum of Avar(ξ̂p;ω1, n, f,M) can be

found by searching the minimum through all possible values of n, f andM (see for example

Tseng et al. [14]), for a fixed value of ω1 and then applying the common minimization

algorithms for minimization of the continuous function min(n,f,M)(Avar(ξ̂p;ω1, n, f,M))

of ω1.

Summing up, the optimal solution of the above optimization problem can be deter-

mined by the Algorithm I below.

Algorithm I:

Step 1) Define the function ϕ(ω1) with domain (0,D) as follows:

9



Step 1-1) Compute the largest possible number for n, when f = 1 and M = 2 (one

measurement for each stress level), which is equal to

nmax =

[

Cb − 2Cop

2Cmea + Cit

]

.

Step 1-2) Set n = 1.

Step 1-3) Compute the largest possible number for f , for the fixed n, and M = 2, which

is

fmax =

[

Cb − 2Cmea.n− nCit

2Cop

]

.

Step 1-4) Set f = 1.

Step 1-5) Let M =
[

Cb−nCit

nCmea+fCop

]

.

Step 1-6) Compute Avar(ξ̂p;ω1, n, f,M).

Step 1-7) Set f = f + 1, and repeat steps 1-5 and 1-6 until f = fmax.

Step 1-8) Set n = n+ 1 and repeat steps 1-3 through 1-7 until n = nmax.

Step 1-9) Let (n∗(ω1), f
∗(ω1),M

∗(ω1)) = argmin(n,f,M)(Avar(ξ̂p;ω1, n, f,M)).

Step 1-10) Return

ϕ(ω1) = min
(n,f,M)

(Avar(ξ̂p;ω1, n, f,M)).

Step 2) Let ω∗
1 = arg infω1 [ϕ(ω1)] and (n∗, F ∗,M∗) = (n∗(ω∗

1), f
∗(ω∗

1),M
∗(ω∗

1)).

It is worth noting that the above optimization algorithm can easily be extended for

larger values of m. For example generalization to the case m = 3, can be easily made by

replacing ϕ(ω1) and (0,D) in Step 1 of Algorithm I with ϕ(ω1, ω2) and (0,D)2, respectively.

4 Numerical illustration

We consider the data from the carbon-film-resistor problem described by Meeker &

Escobar [7], for the purpose of illustration of the proposed procedure. Increasing the

resistance value of the carbon-films resistors over time reduces the performance quality of

the products and leads to failure. The failure occurs as soon as the percent increase in

resistance hits a threshold value D = 5, under the use operating temperature S0 = 50◦C.

Suppose that the cost of operation, Cop is $1.9 per unit of time, the cost of measurement,

10



Table 1: Optimal SSADT plan for minimizing Avar(ξ̂p;ω1, n, f,M) for different values of

p, under the budget constraint.

p ξ̂p minimum C.V. ω∗
1 Gτ(1),1(T

∗; θ̂)

0.1 292795.6 0.1389 0.0507 0.9999950

0.2 307152.4 0.1358 0.0505 0.9999951

0.3 317950.3 0.1335 0.0504 0.9999952

0.4 327481.6 0.1318 0.0503 0.9999953

0.5 336650.3 0.1300 0.0502 0.9999954

0.6 346075.7 0.1283 0.0501 0.9999955

0.7 356450.0 0.1266 0.0500 0.9999956

0.8 368981.1 0.1245 0.0499 0.9999957

0.9 387073.5 0.1218 0.0497 0.9999959
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Figure 1: Plot of ω∗

1
versus p.
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Figure 2: Plot of minimum C.V. as a function of p.

Cmea is $1.3 for each measurement, the cost of each item, Cit is $53, the unit time is 4

hours and the total budget is $1500.

For obtaining the optimal design we need some initial values for the parameters. These

initial values are usually obtained from a pilot study. The pilot study need not to be even

a step stress test. Tseng et al. [14] used this data set and obtained an initial estimate of

the parameters as follows

(â, b̂, β̂) = (4.11,−4006.46, 0.0594).

We use the above estimates as the true parameter vector of the SSADT model with gamma

degradation process and S1 = 83◦C and S2 = 133◦C. Algorithm I is used with software

R.2.14 for the optimization process. Interestingly, the optimal sampling setting is obtained

as

(n∗, f∗,M∗) = (13, 52, 7),

for all values of p = 0.1(0.1)0.9. Hence, the optimal total time of experiment is equal

to T ∗ = 4fM = 1456. The optimal threshold values ω∗
1, are given in Table 1 which

also includes the estimated ξp, minimum C.V. (the minimum coefficient of variation of ξ̂p
equal to

√

ϕ(ω∗
1)/ξ̂p, where ϕ is defined in Algorithm I) and the probability of stress level

elevation before the end of the experiment, that is Gτ(1),1(T
∗; θ̂), for p = 0.1(0.1)0.9. For

example, for estimating the median time to failure of the product (p = 0.5), the optimal

setting is to elevate the stress level as soon as a new measurement of the degradation of

12



Table 2: Stability analysis of parameter estimation for different values of (n, f,M,ω1).

(n, f,M, ω1) Bias(â) MSE(â) Bias(b̂) MSE(b̂) Bias(β̂) MSE(β̂)

(13, 52, 7, 0.0504) 0.125667 0.503172 0.460590 0.212146 -0.001530 9.228e-05

(13, 52, 7, 0.0502) 0.204601 0.912977 0.460766 0.212310 -0.003645 9.973e-05

(13, 62, 6, 0.0818) 0.153269 0.647985 0.460649 0.212201 -0.002000 0.000117

(13, 62, 6, 0.0912) 0.133570 0.535452 0.460604 0.212159 -0.004489 0.000113

(13, 204, 2, 0.6181) 0.188061 0.595449 0.460837 0.212375 -0.005635 0.000303

at least one of the test units exceeds the threshold value ω∗
1 = 0.0502, which occurs with

probability 0.9999954.

Figure 1 shows the plot of ω∗
1 versus p. The optimal value of ω∗

1 decreases as p increases.

The reason is that the degradation values under stress level S2 provide more information

about upper quantiles (ξp for greater values of p) than those under S1.

Also the minimum C.V. is plotted as a function of p in Figure 2. As we can see

from Figure 2, the estimation precision increases for upper quantiles. This means that

the SSADT plan is more suitable for estimation of the upper quantiles of the product’s

lifetime.

5 Sensitivity and stability analysis

The optimal design depends on the initial estimates of the parameters. Hence, it is ap-

propriate for the optimization algorithm to be rather robust for departures from the real

values of the parameters. In order to check the effect of variation of θ̂ on the optimal

setting (n∗, f∗,M∗, ω∗
1), we consider a pilot run on the SSADT plan for various combi-

nations of ((1 + ǫ1)a, (1 + ǫ2)b, (1 + ǫ3)β). Table 3 presents some values of ǫ1, ǫ2 and ǫ3
which cause a change in the optimal setting (n∗, f∗,M∗) and the corresponding ω∗

1, for

p = 0.3, 0.5, 0.7.

From the values of Table 3, it is clear that the optimization algorithm is quite robust

for small departures from θ, since the changes in decision variables (ω∗
1 , n

∗, f∗,M∗) occur

for relatively large values of (ǫ1, ǫ2, ǫ3). In fact, the variation of θ̂ affect on the value of ω∗
1,

and this leads to a more robust structure for the remaining decision variables (n∗, f∗,M∗).

To examine the stability of the optimal test plan, we perform a simulation study with

θ̂ = (4.11,−4006.46, 0.0594) taken as the true parameter of the SSADT model. A Monte

Carlo simulation study with 10,000 iterations is performed and the ML estimate of the θ is

obtained for each iteration using the log-likelihood function in (17), for some values of the

decision vector (n, f,M,ω1). The bias and the mean square error (MSE) of the estimates

are obtained and tabulated in Table 2. From the values of Table 2 it can be observed that

the estimates of the parameters are quite stable, for small departures from the optimal

plan.
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Table 3: Sensitivity analysis for p = 0.3, 0.5, 0.7 and different values of ǫ1, ǫ2 and ǫ3.

p = 0.3

ǫ1 ǫ2 ǫ3 min.C.V. ω∗
1 n∗ f∗ M∗

0 0 0 0.1335 0.0504 13 52 7

48.5% 0 -3.5% 0.0519 0.1517 13 62 6

-7.9% 0 4.9% 0.2959 0.6181 13 204 2

0 1.9% -1.9% 0.2797 0.6181 13 204 2

0 -6.6% 4.3% 0.0992 0.0818 13 62 6

-1.8% 1.8% 0 0.2887 0.6181 13 204 2

6.5% -6.5% 0 0.0877 0.0893 13 62 6

2.8% 2.8% -1.9% 0.2778 0.6181 13 204 2

-3.9% -1.8% 5.8% 0.1224 0.0744 13 62 6

p = 0.5

ǫ1 ǫ2 ǫ3 min.C.V. ω∗
1 n∗ f∗ M∗

0 0 0 0.1300 0.0502 13 52 7

41.5% 0 -2.5% 0.0519 0.1517 13 62 6

-7.8% 0 4.7% 0.2868 0.6181 13 204 2

0 1.8% -1.8% 0.2704 0.6181 13 204 2

0 -8.0% 8.0% 0.0903 0.0912 13 62 6

-1.6% 1.6% 0 0.2763 0.6181 13 204 2

7.2% -7.0% 0 0.08219 0.0923 13 62 6

2.7% 2.7% -2.2% 0.2690 0.6181 13 204 2

-9.3% -9.4% 9.3% 0.1012 0.0832 13 62 6

p = 0.7

ǫ1 ǫ2 ǫ3 min.C.V. ω∗
1 n∗ f∗ M∗

0 0 0 0.1266 0.0500 13 52 7

75% 0 -67% 0.0289 0.1090 13 62 6

-31.5% 0 31.5% 0.4516 0.9999 13 204 2

0 0.9% -7% 0.2500 0.6181 13 204 2

0 -9.9% 9.0% 0.0802 0.1020 13 62 6

-1.5% 1.5% 0 0.2669 0.6181 13 204 2

9.9% -9.9% 0 0.0660 0.1164 13 62 6

2.7% 2.7% -2.3% 0.2616 0.8181 13 204 2

-0.12 -0.12 0.12 0.0917 0.0931 13 62 6
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6 Conclusion

This paper presents an approach for performing an SSADT experiment in which the stress

level is elevated on the basis of the degradation value. In the proposed method, there is

no need to observe the value of the degradation continually. The stress level is elevated as

soon as a new measurement of the degradation exceeds the threshold value. We consider

this threshold value as a decision variable in the optimization problem of the plan as

well as the usual variables such as sample size, measurement frequency and number of

measurements. An algorithm is proposed for minimizing the approximated variance of

the ML estimator of the pth quantile of the lifetime of the products, under the budget

constraints. It is observed that the proposed optimization algorithm is quite robust for

departures from the values of the parameters. Also the estimates of the parameters are

quite stable for small departures from the optimized plan.

Appendix [The Fisher information matrix]

Since, the likelihood function in (17) satisfies the regularity conditions, specially that the

paramater space does not depend on the observations, the Fisher information matrix of

the SSADT data about the parameter θ is as follows

I(θ) = −E







∂2

∂a2 l(θ)
∂2

∂a∂b l(θ)
∂2

∂a∂β l(θ)
∂2

∂a∂b l(θ)
∂2

∂b2
l(θ) ∂2

∂b∂β l(θ)
∂2

∂a∂β l(θ)
∂2

∂b∂β l(θ)
∂2

∂β2 l(θ)






,

where, l(θ) is the log-likelihood of θ which, for the case m = 2 of (17), is

l(θ) = logPκ1(κ1) +

n
∑

i=1

2
∑

j=1

κj−1
∑

k=κj−1

{(fαj − 1) log gki − gkiβ − log Γ(fαj)− fαj log β} ,

in which κ0 = 0 and κ2 =M .

For the sake of brivity we define the following notations:

c1(t) =
1

δ1

(
√

t

γ1
−

√

γ1
t

)

,

c2(t) =
1

δ1

(
√

t

γ1
+

√

γ1
t

)

,

∆[ϕ(kf)] = ϕ(kf)− ϕ((k − 1)f),

for any function ϕ, and

Eκ =
M−1
∑

k=1

kP(κi = k).
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Also, let

g1(t) = n[1−Φ(c1(t))]
n−1φ(c1(t))

and

g′1(t) = −n(n− 1)[1 − Φ(c1(t))]
n−2φ2(c1(t))− nc1(t)[1− Φ(c1(t))]

n−1φ(c1(t))

denote the differentiation of Gτ(1),1(t) and g1(t) with respect to c1(t), respectively.

Since we have for j = 1, 2 and i = 1, . . . , n

E(log gki|κi,1) =

2
∑

j=1

ψ0(fαj)I{κj−1,...,κj−1}(k)I1,...,M−1(κ1) + ψ0(fα1)IM (κ1) + log β,

we obtain

E

[

−∂2

∂a2
l(θ)

]

= nf2
{

[α2
1ψ1(fα1)− α2

2ψ1(fα2)].Eκ

+Mα2
1ψ1(fα1)[1−Gτ(1),1((M − 1)f ; θ)]

+Mα2
2ψ1(fα2)Gτ(1),1((M − 1)f ; θ)

}

+
A

4
,

where ψ0(t) = d
dt log Γ(t) and ψ1(t) = d2

dt2
log Γ(t) are the digamma and trigamma func-

tions, respectively, and

A =

M−1
∑

k=2

[∆[c2(kf)g1(kf)]]
2

∆[Gτ(1),1(kf ; θ)]
+

[c2(f)g1(f)]
2

Gτ(1),1(f ; θ)
+

[c2((M − 1)f)g1((M − 1)f)]2

1−Gτ(1),1((M − 1)f ; θ)

−
M−1
∑

k=2

[

∆[c1(kf)g1(kf) + (c2(kf))
2g′1(kf)]

]

−
[

c1(f)g1(f) + (c2(f))
2g′1(f)

]

+ [c1((M − 1)f)g1((M − 1)f) +(c2((M − 1)f))2g′1((M − 1)f)
]

.

Similarly, we have

E

[

−∂2

∂b2
l(θ)

]

= nf2

{[

(

α1

273 + S1

)2

ψ1(fα1)−

(

α2

273 + S2

)2

ψ1(fα2)

]

.Eκ

+M

(

α1

273 + S1

)2

ψ1(fα1)[1−Gτ(1),1((M − 1)f ; θ)]

+M

(

α2

273 + S2

)2

ψ1(fα2)Gτ(1),1((M − 1)f ; θ)

}

+

(

1

273 + S1

)2 A

4
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and

E

[

−∂2

∂a∂b
l(θ)

]

= nf2
{[(

α2
1

273 + S1

)

ψ1(fα1)−

(

α2
2

273 + S2

)

ψ1(fα2)

]

.Eκ

+M

(

α2
1

273 + S1

)

ψ1(fα1)[1−Gτ(1),1((M − 1)f ; θ)]

+M

(

α2
2

273 + S2

)

ψ1(fα2)Gτ(1),1((M − 1)f ; θ)

}

+

(

1

273 + S1

)

A

4
.

Since

E(gki|κi,1) =
2
∑

j=1

fαjβI{κj−1,...,κj−1}(k)I1,...,M−1(κ1) + fα1βIM (κ1) + log β,

we have similarly

E

[

−∂2

∂β∂a
l(θ)

]

=
Cγ1
2β

+
nf

β

{

[α1 − α2].Eκ +Mα1[1−Gτ(1),1((M − 1)f ; θ)]

+Mα2Gτ(1),1((M − 1)f ; θ)
}

,

where

C =
M−1
∑

k=2

∆[
√

α1
kf g1(kf)]∆[c2(kf)g1(kf)]

∆[Gτ(1),1(kf ; θ)]
−

M
∑

k=2

∆

[
√

α1

kf
g1(kf) + γ1

α1

kf
g′1(kf)

]

+

√

α1
f g1(f)c2(f)g1(f)

Gτ(1),1(f ; θ)
−

√

α1

f
g1(f)− γ1

α1

f
g′1(f)

+

√

α1

(M − 1)f
g1((M − 1)f)

c2((M − 1)f)g1((M − 1)f)

1−Gτ(1),1((M − 1)f ; θ)

+

√

α1

(M − 1)f
g1((M − 1)f) + γ1

α1

(M − 1)f
g′1((M − 1)f)

Also

E

[

−∂2

∂β∂b
l(θ)

]

=
1

273 + S1

Cγ1
2β

+
nf

β

{

[
α1

273 + S1
−

α2

273 + S2
].Eκ

+M
α1

273 + S1
[1−Gτ(1),1((M − 1)f ; θ)] +M

α2

273 + S2
Gτ(1),1((M − 1)f ; θ)

}

.

Finally, we obtain

E

[

−∂2

∂β2
l(θ)

]

=
D

β2
+
nf

β2
{[α1 − α2].Eκ +Mα1[1−Gτ(1),1((M − 1)f ; θ)]

+Mα2Gτ(1),1((M − 1)f ; θ)
}

,
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where

D =

M−1
∑

k=2

[

∆[γ1
√

α1
kf g1(kf)]

]2

∆[Gτ(1),1(kf ; θ)]
+

[

γ1
√

α1
f g1(f)

]2

Gτ(1),1(f ; θ)
+

[

γ1
√

α1
(M−1)f g1((M − 1)f)

]2

1−Gτ(1),1((M − 1)f ; θ)

+
M−1
∑

k=2

[

∆[2γ1

√

α1

kf
g1(kf) + g′1(kf)(γ1

√

α1

kf
)2]

]

+ 2γ1

√

α1

f
g1(f) + g′1(f)(γ1

√

α1

f
)2

− 2γ1

√

α1

(M − 1)f
g1((M − 1)f)− g′1((M − 1)f)(γ1

√

α1

(M − 1)f
)2
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