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Abstract

The detection of outlying rows in a contingency table is tackled from a

Bayesian perspective, by adapting the framework adopted by Box and Tiao

for normal models to multinomial models with random effects. The solution

assumes a 2–component mixture model of 2 multinomial continuous mixtures

for them, one for the nonoutlier rows and the second one for the outlier rows.

The method starts by estimating the distributional characteristics of nonoutlier

rows, and then it does cluster analysis to identify which rows belong to the

outlier group and which do not. The method applies to any type of contingency

table, and in particular, it could be used on the analysis of multivariate categor-

ical control charts. Here, the use of the method is illustrated through a simu-

lated example and by applying it to help identify heterogeneities of style

among the acts in the plays of the First Folio edition of Shakespeare drama.
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1 | INTRODUCTION

Statistical inference is grounded on the assumption that
data have been generated from a given statistical model,
or from a mechanism that is close to a given statistical
model. That assumption can fail either because the model
is wrong for all or most of the observations in the data set,
or just because it fails for a relatively small subset of
observations. In the second case, one labels the observa-
tions that are not generated by the statistical model in
place for the majority of observations, as outliers.

The literature covering the outlier detection problem
from the statistical standpoint (see, eg, Barnett and Lewis1

and Rousseeuw and Leroy2) deal mainly with continuous
type data and are grounded mostly on the normality
assumption. In practice, one often faces the existence of
outliers among categorical data, often presented in terms
of a contingency table. Methods for detecting outliers in
contingency tables, like the ones presented in Fienberg,3

Haberman,4 Brown,5 Fuchs and Kenett,6 Simonoff,7 Yick
and Lee,8 Kuhnt,9 Mebane and Sekhon,10 or Kuhnt et al,11
wileyonlinelibrary.com/journ
deal with outlying cells rather than with outlying rows or
columns of the table, and they tackle the problem mostly
through the analysis of residuals based on the robust fit
of multinomial regression models.

Instead, here, the rows of the contingency table are
considered to be the unit of interest, and one looks for
rows that depart from the distributional behavior of the
majority of the rows of the table. That problem appears
often in contexts like the analysis of multivariate categor-
ical control charts, survey data, marketing data, electoral
data, and stylometric data.

The solution adopted here extends the Bayesian
framework for outlier detection proposed in Box and Tiao
12 for normal models, by adapting it to multinomial
models with random effects. In that approach, one sup-
poses that there exist 2 alternative models for any given
observation, a basic model adequate for the majority of
the observations in the data set and an alternative model
adequate when the observation is an outlier. One then
uses tools from Bayesian clustering to classify all the
observations in the data set into either the outlier group
Copyright © 2018 John Wiley & Sons, Ltd.al/qre 1
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or the nonoutlier group. The method starts by estimating
the variability of the main set of observations, ideally
through a subset of the observations in the sample
known to be uncontaminated by the presence of outliers,
and then it simultaneously identifies the outlier observa-
tions and estimates their distribution through cluster
analysis.

The paper is organized as follows. In Section 2, outlier
detection models are presented, first in the case where the
rows of the table are unstructured and then in the more
general case where they are structured. Section 3 illus-
trates the model usage for unstructured tables on a simu-
lated example, while Section 4 illustrates the use of the
more advanced model for structured tables to search for
heterogeneities among acts in the plays of the First Folio
edition of Shakespeare's drama.
2 | OUTLIER DETECTION MODEL
FOR THE ROWS OF A TABLE

The problem starts with a n× J contingency table. In the
context of the statistical analysis of literary style, for
example, it is assumed that for each text, i, in a corpus
of n texts, one has a vector valued categorical observation,
yi=( yi1,…,yiJ), where J denotes the number of categories.
The set of all the rows in the n× J table and hence of all
the vectors of counts for the n acts in the corpus will be
denoted by y=( y1,…,yn). In the example of the drama
by Shakespeare analyzed later on, the corpus will be
175 acts in 35 plays and yi will be a 20‐dimensional vector
with the function word counts for the ith act, presented as
the ith row of Table 1.

In the analysis, the ith row of the table is assumed
to be multinomially distributed, Mult(Ni,θi), where
TABLE 1 Part of the 175 × 20 table of counts of 20 function words in

Most Frequent Word Counts

play act the and I to of

1

1 148 121 110 88 84
2 102 102 99 71 79
3 69 96 105 56 49
4 47 68 51 41 30
5 78 97 83 45 48

… … … … … … …

35

1 175 144 188 141 11
2 113 97 117 73 83
3 175 156 141 142 12
4 142 112 106 92 67
5 220 183 156 160 13

aThe first play corresponds to The Tempest and the last one to Cymbeline.
Ni ¼ ∑J
j¼1yij is the sum of all the counts for the ith row,

and where θi =(θi1,…,θiJ) is such that θij is the probability
of the jth category for the ith row, and hence with
∑J

j¼1θij ¼ 1. If one can assume the row counts to be
conditionally independent, then the distribution of
y=( y1,…, yn) is

yjðθ1; ⋯; θnÞ∼∏
n

i¼1
MultðNi; θiÞ: (2:1)

Next, 2 outlier detection models are presented. The first
one assumes that all the rows of the table are exchange-
able, while the second model adds structure to it to cover
situations where rows are nonexchangeable.
2.1 | Outlier detection model for an
unstructured table

If all the rows in the table come from the same multino-
mial population, one might assume the vector of multino-
mial probabilities, θi=(θi1,…,θiJ), of all the n rows to be
the same. A more flexible way to model that, though, is
by assuming that the θi could be different among differ-
ent rows, and yet all θi share the same distribution. In
particular, here, it will be assumed that

θij ¼ eβjþνij

1þ eβ2þνi2 þ …þ eβJþνiJ
for j ¼ 1; …; J; (2:2)

where the βj are fixed effects and the νij are random
effects with β1=0 and νi1=0 to make the parameters of
this multinomial logistic model identifiable. If all rows
in the table were homogeneous, without any outlying
row, one could assume that the random effects, νij, are
independent and with a Normal(0,σ2) distribution.
the 35 plays of the First Folio edition of Shakespeare's dramaa

a you my that in …

91 37 83 55 49 …

96 55 52 52 38 …

54 44 60 27 28 …

29 29 43 20 15 …

43 45 54 35 31 …

… … … … … …

4 115 120 102 79 66 …

57 75 34 49 28 …

1 100 69 106 99 82 …

59 42 61 47 49 …

0 122 103 103 90 76 …
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Instead, if outlier rows are present, one needs to
allow for the possibility that a subset of the rows have
multinomial probabilities with a more dispersed distribu-
tion. Here, the θi for the outlying rows are assumed to be
as in (2.2), with all the νij being independent and with a
normal (0,k2σ2) distribution, where k>1.

To model the way outliers appear in a table, the
distribution of the random effects of the ith row,
νi=(νi2,…, νiJ), is assumed to be a 2–component mixture
model, with the first component corresponding to the
nonoutlying rows, and the second one to the outlying
rows. Finite mixture models are often used in Bayesian
analysis when heterogeneity is suspected, because they
provide a flexible structure that can be used for the
unsupervised classification of observations into either
one of the groups. More specifically, here, we consider
the νi to be conditionally independent and identically
distributed as

ðν1; …; νnÞjω; σ2; k∼∏
n

i¼1
ðð1−ωÞ∏

J

j¼2
Normalð0; σ2Þ

þ ω∏
J

j¼2
Normalð0; k2σ2ÞÞ;

(2:3)

where ω is a weight that determines the proportion of
rows that tend to be outliers.

To allocate rows into either the outlier or the
nonoutlier groups, one introduces a vector of unobserved
categorical variables, ζ=(ζ1,…,ζn), such that ζi=1 when
the ith row is an outlier, and hence, νi=(νi2,…,νiJ) comes

from the ∏J
j¼2Normalð0; k2σ2Þ mixture component, and

such that ζi=0 when the ith row is not an outlier, and
hence, νi=(νi2,…,νiJ) comes from the ∏J

j¼2Normalð0; σ2Þ
mixture component. The ζi are assumed to be condition-
ally independent with π(ζi=1|ω)=ω and π(ζi=0|ω)
=1−ω.

These allocation variables can be used to estimate the
posterior probabilities that the ith row is an outlier,
E[ζi|y], that can then be used to classify the rows into
either being outliers or not. By imposing that k>1, this
formulation ensures that ζi=1 always correspond to the
second component with the largest variance.

In Bayesian statistics, one needs to choose a prior dis-
tribution for the parameters of the model, which are
ω,β=(β2,…,βJ),σ

2 and k. That prior needs to capture what
one knows about the parameters before observing the
data, and its choice depends on the problem at hand.
Section 3 will describe the prior chosen for ω,β, and k in
our simulated example. Here, σ2 will not be modeled
through a prior. Instead, its value will be calibrated based
on observations known to be nonoutliers, the way
described in Section 2.3.
2.2 | Outlier detection model for a
structured table

Here, a more general framework is considered, in which
one can depart from the assumption that all rows in
the table are exchangeable in the following 2 different
ways:

1. Rows can be grouped, with a different distribution for
the multinomial probabilities of each group or, even
more generally, the multinomial probabilities of rows
could be related to a set of covariates. That will be
attained by letting the fixed effects in (2.2) change
from row to row.

2. The probability that a row is an outlier can change
from row to row, due to a random effect. That
extension will be attained by letting the distribution
of the random effects in (2.2) be such that the
probabilities that 2 rows are outliers becomes
related and are not independent as in the previous
section. That will be useful in those settings in
which 2 rows that are in some sense close are more
or less likely to be both outliers than 2 rows that
are far apart.

As an example of the first departure, note that when
looking for outliers among the acts of the plays attributed
to Shakespeare, one might want to allow for different
distributions for the multinomial probabilities of the acts
of plays classified as Histories than the ones for the acts of
plays classified as Tragedies, and the ones for the acts of
Comedies. As an example of the second kind of depar-
ture, in that same example, one might want to allow for
the probabilities that different acts from the same play
are outliers to be related.

The first extension can be modeled by assuming that
the rows are as in (2.1) with

θij ¼ eμði; jÞþνij

1þ eμði;2Þþνi2 þ …þ eμði; JÞþνiJ
for

j ¼ 1; …; J;

(2:4)

instead of (2.2), with the restrictions that μ(i, 1)=0 and
νi1= 0 to make the logistic model with random effects
identifiable. Hence, the fixed effect component, μ(i, j),
here, is allowed to change with i, and it could be a func-
tion of row covariates and, in particular, it could be a
function of the group to which the ith row belongs to.

The second extension can be modeled by letting
the weights in the mixture distribution for the random
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effects of the i‐th row, νi=(νi2,…, νiJ), vary from row
to row,

ðν1; …; νnÞjω; σ2; k∼∏
n

i¼1
ðð1−wiÞ∏

J

j¼2
Normalð0; σ2Þ

þ wi∏
J

j¼2
Normalð0; k2σ2ÞÞ; (2:5)

where ω=(ω1,…,ωn). This idea was proposed by
Fernandez and Green13 for Poisson mixtures for spatial
data, and it was used by Puig et al14 for multinomial
cluster analysis. As a consequence of (2.5), the probabil-
ity that the ith row is allocated to the outlier group, ωi,
will change from row to row, and the set of allocation
variables, ζ=(ζ1,…, ζn), will not be identically distributed
because π(ζi=1|ω)=ωi.

Certain dependence among the probabilities that
rows are outliers can now be incorporated by letting ωi

be such that

log
ωi

1− ωi
¼ γ þ δi; for i ¼ 1; …; n; (2:6)

where γ is a fixed effect capturing the overall amount
of outliers and the δi's are random effects that model
the dependency in the ωi and are linked by a hierarchical
structure that lets their relative contribution be
determined by data. That relative contribution is usually
characterized through the variance of these random com-
ponents, σ2δ. The hierarchical structure through which the
δi link the probabilities of being outlier, ωi, for rows that
are close will depend on the particular example. One
could, for example, model that dependency through a
conditional autoregressive structure mimicking the one
used in disease mapping to obtain spatially smoothed
estimates of Poisson means (Besag et al15 and Mollie16),
and the one used in stylometric analysis to take the order
of texts into consideration (Puig et al14). Instead, in the
example on the plays by Shakespeare in Section 4, that
will be done through a repeated measurement type of
structure that takes into account the fact that acts belong-
ing to the same play are more likely to belong to the same
cluster than acts from different plays.

The choice of prior distribution for the parameters at
hand, β, k, γ,σ2, and σ2δ will depend on the problem at
hand. Section 4 will describe our choice for the example
on Shakespeare's plays. The posterior distribution under
the models in Sections 2.1 and 2.2 can not be computed
analytically. Instead, one can update the models and
simulate from them through the MCMC method. In
the examples that follow, that has been implemented
through JAGS (see, eg, Plummer17). The convergence of
the chains has been assessed through visual inspection
of the sample traces and by monitoring diagnostic mea-
sures. For each model, 4 chains with different initial
values have been run until convergence.
2.3 | Calibration of the method through
the choice of σ2

In our method, a crucial role is played by σ2, which
models the variability of the random effects that rule
the multinomial probabilities in the main set of rows,
which are not outliers, together with the variability of
the random effects for outliers, which is k2σ2.

In those instances where one expects outliers to be
extreme, in the sense that their distribution is far from
the distribution of the nonoutliers and hence where the
value of k is much larger than 1, one can use a reference
prior on σ2. In the case where the distribution of the
outlier observations is close to the one of the nonoutliers
though, taking the 2 groups apart by simultaneously
estimating k and σ2 becomes a lot harder due to
identifiability problems. To avoid that, here, the parame-
ter value for σ2 will be estimated through an empirical
Bayes type of calibration process that should be carefully
tailored to the problem at hand, and then that value is
plugged into the analysis.

In a generic case in which the table is not structured,
covered in Section 2.1, the estimation of σ2 ideally
requires one to have a subset of rows that one knows that
belong to the main group and therefore that are not
outliers. With this set of homogeneous rows, one can esti-
mate σ2 by using them to update the model that assumes
(2.1) and (2.2) with the random effects νij being normal
(0,σ2) and the fixed effects βj being normal (0, 1002) and
the prior distribution for 1/σ2 being gamma (0.1, 0.001),
which are reference priors. One can then use the poste-
rior distribution for σ2 conditioned on the counts in the
set of rows known to be nonoutliers, as an estimate of
σ2. In particular, in the simulation example presented in

Section 3, the σ̂2 used to calibrate the outlier detection
method will be E[σ2|y].

In the nonideal case where one does not have a subset
of rows that are known to be nonoutliers, one can repeat-
edly take a small number of randomly chosen subsets of
rows and calculate the corresponding set of estimates of
σ2, one for each subset of rows, using the method
described above. Then one can use the median of the
sample of σ2 estimates to calibrate the model.

In the case of structured tables dealt with through
the model in Section 2.2, one needs to think carefully
about the way one estimates σ2. Section 4 illustrates
how that can be done in a case study like the one on
Shakespeare's drama.
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Note that the way in which one can estimate σ2 in
a particular example will rarely be unique. Different
estimates of σ2 will lead to a different number of observa-
tions being identified as outliers, but the relative degree
of outlierness of all the observations will tend to be

similar across different values for σ̂2. In the following
simulation exercise, a small sensitivity analysis on the
choice of estimate of σ2 is carried out to quantify the
potential effect of its misspecification and so of the cali-
bration method.
3 | OUTLIER DETECTION IN A
SIMULATED TABLE

3.1 | Description of the simulated
scenario and the prior

To assess the performance of the Bayesian model driven
outlier detection method for rows of an unstructured
table and to carry out a small sensitivity analysis on the
calibration method used, one simulation scenario is
designed. In it, a table with 90 rows and 3 columns is sim-
ulated in a way such that all the rows are independent
and each row has a count total of Ni=200.

The scenario considered here is very close to the one
faced in the analysis of control charts for multivariate
attribute processes. In particular, each row of the table
of this example could represent a different hospital, and
the counts in each row could correspond to the result of
certain medical procedure on a random sample of 200
patients from that hospital, categorized as complete suc-
cess, partial success, or failure. The goal of the analysis
0.0

0.2

0.4

0.6

0.8

1.0

1

p

0.0

0.2

0.4

0.6

0.8
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0.0
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0.4

0.6

0.8

1.0

p
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FIGURE 1 Proportion of counts of each the 3 categories for the last 4

placed randomly among these 40 rows. In the bottom panels, moderate o

last 5 positions
would be to identify hospitals with a performance on this
procedure that deviates from the one from the majority of
the 90 hospitals considered.

The first 80 rows of the table, yi=(yi1, yi2, yi3) for i=1,
…, 80, will be considered to be the nonoutlying observa-
tions, and they will be realizations of a Dirichlet multino-
mial (Ni ; τ=100,μ=(0.5, 0.3, 0.2)) model, which is a
mixture of multinomial (Ni ;θ=(θ1,θ2,θ3)) distributions,
where the mixing distribution on the multinomial param-
eter is Dirichlet (τ=100,μ=(0.5, 0.3, 0.2)). For a descrip-
tion of the Dirichlet multinomial (N;τ,μ) model with the
parametrization used here, see, eg, Puig and Ginebra.18

Note that under this model, E[θi|μi, τi]=μi and E[yi|
Ni, τi,μi]=Niμi, and hence, μi determines the mean of θi

and of yi. Furthermore, V ½θijμi; τi� ¼
1

1þ τi
μið1−μiÞ and

V ½yijjNi; τi; μi� ¼ Ni
Ni þ τi
1þ τi

μijð1−μijÞ, and hence, the

larger τi, the smaller the overdispersion of the ith row.
The 81st to the 85th rows, yi with i=81,…, 85,

will be considered to be moderate outliers, and they will
be realizations of a Dirichlet multinomial (τ=100,
μ=(0.6, 0.3, 0.1)). The last 5 rows in the table, yi with
i=86,…, 90, will be considered to be extreme outliers,
and they will be realizations of a Dirichlet multinomial
(τ=100,μ=(0.2, 0.5, 0.3)).

Figure 1 presents the proportion of the counts of each
one of the 3 categories for each one of the last 40 rows of
the table, first ordered with the 10 outlier rows appearing
randomly among these last 40 rows, and then ordered in
such a way that the 10 outliers are presented at the end
of the sequence. The simulation scenario was designed
with only 3 categories to help visualize the existence of
2

0.0

0.2

0.4

0.6

0.8

1.0

3

70 80 90 50 60 70 80 90

70 80 90 50 60 70 80 90

0.0

0.2

0.4

0.6

0.8

1.0

0 rows of the simulated table. In the top panels, the ten outliers are

utliers are between positions 81 and 85 and the extreme ones in the
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outliers. With tables with more than 3 columns, the
existence of outliers would be a lot harder to pinpoint
in graphics like Figure 1.

Note that under this simulated scenario, the rows
follow a multinomial mixture model different from the
one assumed by our outlier detection method, and the
scenario has 3 different row patterns and not just 2. By
using a model for simulation that is different from
the one assumed by the outlier detection method, the
assessment of the method is more realistic. Note also
that the scenario is quite challenging, because 1 out of
every 9 rows is an outlier, and therefore, the usual outlier
detection methods will fail because outliers will mask
themselves.

In the Bayesian approach, one needs to choose a prior
distribution for the parameters of the model, ω,β=(β2,
…, βJ),σ

2 and k. The prior for ω needs to be chosen based
on the percentage of outliers that one expects to find. If
one has no idea beyond the fact that the number of outly-
ing rows is less than one‐half of the total number of rows,
one can choose a uniform (0, 0.5), but if, for example, one
expects to find less than 20% of outliers, a uniform (0, 0.2)
or a beta (1, 15) would be better choices. In this example,
ω is assumed to be uniform (0, 0.5) distributed. For
β=(β2,…,βJ), one will assume a reference prior under
which the βj are independent and normal (0,1002) distrib-
uted, and as a prior for k, here, one assumes that it is
uniform (2.5, 25). Using 2.5 as the lowest possible value
for k ensures that one will not consider a random effect
νi to be outlying unless its standard deviation is 2.5 times
larger than the one for nonoutliers. The larger this lowest
possible value for k, the smaller the number of outlier
rows that will be detected.
0.0

0.2

0.4

0.6

0.8

1.0

calibration method A

50 60 70 80

50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0

calibration method B
3.2 | Description of the results

To calibrate the method, it will first be assumed that one
faces an ideal case in which one knows that the first 50
rows are homogeneous, without the presence of any
outliers, and hence, that they can be used as a training
set of rows to estimate σ2. This calibration method will

be labeled as method A. The value of σ̂2 used is 0.056,
which is the posterior expected value of σ2 obtained as
described in Section 2.3, conditioning on the counts in
the first 50 rows. That estimate is then used to calibrate
the outlier detection method to tell outlier rows apart
from nonoutlier rows among the set of the last 40 rows
of the table.

To explore the performance of the method in a non-
ideal case, when one does not have any subset of rows
known to be uncontaminated with outliers, a second cal-
ibration method has been implemented and labeled as
method B. Under method B, one estimates σ2 by ran-
domly sampling 20 subsets of 5 rows and finding the cor-
responding set of estimates of σ2, one for each subset of 5
rows, as explained in Section 2.3. Given that many of
these subsets are bound to include outliers, we use the
median of this sample of estimates of σ2 as a robust esti-
mate of the variability of the random effects that deter-
mine the distribution of the multinomial probabilities of

the nonoutlier rows. The value of σ̂2 found in this way
by sampling 20 subsets of 5 rows in our example is 0.083.

Figure 2 presents an estimate of the posterior proba-
bility that each one of the last 40 rows in this simulated

scenario is an outlier, E[ζi|y], first, using the σ̂2 ¼ 0:056
obtained from the ideal calibration method A and second,
using the σ̂2 ¼ 0:083 obtained from the calibration
90

90

FIGURE 2 Estimate of the posterior

probabilities that each one of the last 40

rows of the simulated table is an outlier,

when using the model for unstructured

tables in Section 2.1 with the 2 calibration

methods described in Section 3.2. In

reality, the first thirty rows are simulated

to be nonoutliers, the next 5 rows are

moderate outliers, and the last 5 rows are

extreme outliers
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method B. Given that under method A, one uses the fact
that one knows that the first 50 rows are nonoutliers, the
posterior probability that they are outliers is not pre-
sented in Figure 2. Note that all 5 extreme outliers and
3 and 2 of the moderate outliers have a posterior proba-
bility larger than .5 that they are an outlier. Only one of
the 30 nonoutlier rows among the last 40 rows used as
testing sample are classified as an outlier under both cal-
ibration methods. Hence, the Bayesian model proposed
for the identification of outliers works adequately in this
example, even though one faces a setting where 1 out of
every 9 observations are outliers.

To assess how this outlier detection method fares
under repeated use and to compare the performance of
the 2 calibration methods considered above, the same
simulation experiment described here has been repeated
500 times. That is, one has simulated 500 different tables
of 90 rows with a total of 200 counts each from the model
described in Section 3.1; for each one of these 500 tables,
one has estimated σ2 through the calibration methods A
and B, and one has implemented the outlier detection
method with these 2 calibration estimates. Table 2 pre-
sents the percentage of nonoutlier rows of moderate
outlier rows and of extreme outlier rows that have been
classified as outliers under both calibration methods. As
one expects, the calibration method A that knows that a
subset of rows are nonoutliers is better than calibration
method B at identifying outliers, specially in the case of
moderate outliers.
4 | OUTLIERS AMONG ACTS OF
PLAYS BY SHAKESPEARE

4.1 | Description of the problem and the
data

Very little is known about the life of William Shake-
speare, and that has fueled a heated debate around the
authorship of plays attributed to him. Even though only
a minority of experts question his authorship, some claim
that some or all of the plays attributed to him could be
work of or joint work with Francis Bacon, Cristopher
Marlowe, Ben Johnson, Sir Walter Raleigh, or Edward
de Vere, among others. That debate has been going
TABLE 2 Percentage of outliers detected among the 3 types of rows,

tables of the same size and from the same model considered in Section

Calibration Method Nonoutliers, %

A 3.0

B 0.9
on for more than 150 years, and far too many people
has contributed to it to try to summarize it here. For
recent overviews of that debate, see, for example, Hope,19

Edmondson and Wells,20 or Shahan and Waugh.21

The statistical analysis of literary style has often been
used to characterize the style of texts and help settle
authorship‐attribution problems (see, eg, Holmes22 and
Stamatatos23). The frequency of use of function words is
one of the best tools when it comes to discriminating
styles, and that is what will be used here. Examples of
the use of function words can be found in Mosteller and
Wallace,24 Holmes, 25 Zhao and Zobel,26 Giron et al,27

Riba and Ginebra,28 and Puig et al,29 among many other
places.

To explore possible departures from the style of
Shakespeare in the plays attributed to him, the outlier
detection analysis is used on the 35 plays collected in
the first printing of the First Folio edition of the plays
by Shakespeare, published posthumously in 1623. That
edition includes 14 comedies, 10 histories, and 11 trage-
dies, and it is the only reliable version for about 20 of
these plays. All plays consist of 5 acts, which will be the
unit used in this study, and hence the analysis will con-
sider a total of n=175 text units.

As a stylistic characteristic, we will focus on the
counts of the 20 most frequent function words in these
plays, which are as follows: the, and, I, to, of, a, you, my,
that, in, is, not, it, for, with, me, your, his, this, and be.
Hence, data will consist of the 175×20 table with these
20 most frequent word counts, which is partially pre-
sented in Table 1.

Figure 3 presents the frequency of appearance of
these 20 function words in the 175 acts, which are
grouped by play and genre. Note that there is a clear
difference in the use of many of these words in comedies,
histories, and tragedies, and one will need to take that
difference into account when searching for acts with an
outlying behavior. Note also that even though all 5 acts
in the same play will not be considered to be all either
outliers or nonoutliers at once, by adapting the mixed
multinomial cluster model in Section 2.2, one will incor-
porate the fact that acts from the same play are more
likely to belong to the same author than acts from
different plays.
estimated through repeated use of the outlier detection method on

3.1

Moderate Outliers, % Extreme Outliers, %

48.3 99.6

28.4 94.8
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FIGURE 3 Grey dots indicate the proportion of each function word in each act, grouped by play and genre. Black lines indicate the

average proportion of function word in every play
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For each row (act) in Table 1, one has a vector valued
categorical observation, yi=(yi1,…, yiJ), where J=20
denotes the number of categories. The goal is to identify
the rows of the table that depart from the style that one
expects from an act from a play from the corresponding
genre in that edition. If all the acts had been written by a
single author and were all of the same genre, one might
expect all the rows in Table 1 to come from a single distribu-
tion. If instead, the distribution of a few of these rows is very
different from what is expected for an act in such a play
from such genre by Shakespeare, which could indicate that
these rows were written or tampered of by someone else.
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4.2 | Description of the model and of the
results

To adapt the outlier detection model for structured tables
in Section 2.2 to this problem, one needs to specify the
μ(i,j), ruling how the multinomial probabilities in differ-
ent rows are related, and the distribution of ωi, ruling
the way in which the probabilities that 2 different rows
are outliers are related.

In the first case, it will be assumed that μði; jÞ ¼
β0j þ β1jIHi þ β2jITi , where IHi and ITi are variables indi-

cating whether the corresponding act, i, belongs to a play
that is a history or a tragedy, and where β01,β11 and β21
are 0. That is, the multinomial probabilities of all the acts
in plays of the same genre will share the same fixed effect
component, μ(i,j), in (2.4).

In the second case, the log odds for ωi will be modeled
as indicated in Section 2.2 with a fixed effect, γ, and a set
of random effects, δi. In this specific example on the plays
by Shakespeare, all the 5 δi that correspond to the same
play, p, will be considered to take the same value, δP(i),
and therefore, all 5 ωi for acts in the same given play p
will take the same value, ωP(i), with

log
ωPðiÞ

1−ωPðiÞ
¼ γ þ δPðiÞ; for PðiÞ ¼ 1; …; 35; (4:1)

where the 35 values for δP(i) will be assumed to be normal
ð0; σ2δÞ distributed. Hence, 2 acts in the same play will
tend to be more likely both either outliers or nonoutliers
together than 2 acts in different plays. Note though that
the values of ζi for the 5 acts in the same play do not coin-
cide, and the posterior distribution for the corresponding
ζi will be different. As a consequence, not all acts in the
same play need to be classified together in the same
cluster.

Note that this model allows one to classify acts
into either the outlier or the nonoutlier group through
E(ζi|y), and it allows one to classify whole plays, p, into
the same groups through E(ωP(i)), the way it will be illus-
trated in Table 3.

In this search for outlying acts in Shakespeare, the
variability of the random effects, νij, that rule the distribu-
tion of the θi for the nonoutlier rows, σ2, after taking
genre into consideration, needs to be estimated. Here,
that will be done by assuming that 5 acts belonging to
the same play are homogeneous and using the technique
described in Section 2.3 on the 5 acts of each one of the
35 plays considered. That is, one updates the Bayesian
model that assumes (2.1) and (2.2) with νij being normal
(0,σ2), based on the data on the 5 acts of each play. As a
prior, one assumes that the β0j are normal (0,1002) and
that 1/σ2 is gamma (0.1,0.001). Figure 4 presents the
posterior distribution for σ2 given the 5 acts of a play,
for each one of the 35 plays considered. The posterior
expected value of each one of these distributions could

be used as an estimate of σ2. As our choice of σ̂2 to cali-
brate the method, here, we use an average of all the 35
posterior expected values of these distributions, which is
σ̂2 ¼ 0:031. More robust choices for σ̂2 would have been
using the median of all the 35 individual estimates of
σ2, the way done in Section 3, or using an average of these
estimates after discarding the largest ones, which might
be contaminated with outliers. Note though that relying
on these smaller estimates for σ̂2 would have lead to the
identification of more outliers, but it would have not
changed the relative degree of outlierness of each row,
which is what is more meaningful.

If the set of 5 acts of a given play was not homoge-
neous because one or a few of these 5 acts are outliers,
the posterior expected value of the corresponding distri-
bution for σ2 would tend to be larger than the rest. If
one did not discard that value in the estimation of σ2, that
estimate would be larger, which would lead to fewer out-
liers being detected. On the other hand, by estimating σ2

taking into account only the variability within play, one is
underestimating the variability due to the pass of time.
One way to estimate upper bounds for σ2 that take into
account all natural sources of variability would be to
implement the idea used in Section 4.2 using all acts of
all the plays in the same genre at once, instead of using
5 acts of a given play at a time. It is important to remark
that different estimates of σ2 will lead to a different num-
ber of outliers, but the relative degree of outlierness of
observations will be similar.

As a prior distribution for the β0j, β1j,β2j determining
μ(i, j), one assumes independent normal (0,1002) distribu-
tions. The prior for the parameter k determining the
variability of νij for the outlier rows will be uniform
(2.5, 25). Here, the smallest possible value for k is again
set to be 2.5. The larger this smallest possible value for
k, the harder for an act in a play to appear as an outlier,
and hence the harder it is to detect false outliers. The
prior on γ will be normal (0,1002), and the prior the
inverse of σ2δ is chosen to be gamma (0.1,0.001), which
corresponds to a reference prior distribution.

Figure 5 presents the posterior probability that each
one of the acts in the First Folio edition is an outlier,
estimated through E[ζi|y] for i=1,…, 175. It is natural to
classify an act as an outlier if that probability is larger
than .5 and as a nonoutlier otherwise. Table 3 presents
the list of 175 acts classified either as outlier or as
nonoutlier based on that criteria. In a similar way, both
Figure 5 and Table 3 present the posterior probabilities
that each one of the plays is an outlier, estimated through
E[ωp|y] for p=1,…, 35.



TABLE 3 List of the 35 plays of the First Folio editiona

Act E [ωp|y]
Play 1 2 3 4 5

The Tempest XXXX XXXX .21

The Two Gentlemen of Verona .04

The Merry Wives of Windsor .04

Measure for Measure .03

The Comedy of Errors XXXX .17

Much Ado about Nothing .03

Love's Labour's Lost XXXX XXXX XXXX XXXX .68

A Midsummer Night's Dream XXXX XXXX .27

The Merchant of Venice .03

As You Like It .03

The Taming of the Shrew .04

All's Well that Ends Well .03

Twelfth Night .03

The Winter's Tale .04

King John .06

Richard II .04

Henry IV, Part 1 .04

Henry IV, Part 2 XXXX XXXX XXXX .37

Henry V XXXX XXXX XXXX XXXX XXXX .80

Henry VI, Part 1 .04

Henry VI, Part 2 .06

Henry VI, Part 3 .05

Richard III .04

Henry VIII .05

Coriolanus XXXX .19

Titus Andronicus XXXX XXXX .33

Romeo and Juliet XXXX .25

Timon of Athens .04

Julius Caesar .03

Macbeth .04

Hamlet .03

King Lear .03

Othello XXXX .16

Antony and Cleopatra .03

Cymbeline .03

aThe acts in bold are classified as outliers based on estimates of their posterior probability of being so, E[ζi|y]. Whole plays can be classified through estimates of
the corresponding probability, E[ωp|y].
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According to that classification, the only play with all
its 5 acts considered to be outliers is Henry V. Merriam30

suggests that Shakespeare reworked a Marlowe (or Peele)
original play to create Henry V. The only play with 4
acts considered to be so is Love's Labour's Lost, which
has a title page stating that the play was newly corrected



FIGURE 5 Posterior probability that

each act (dots) and each play (segments)

in the First Folio edition is an outlier,

estimated through E[ζi|y] and E[ωp|y],

respectively. Acts are grouped by play and

by genre
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FIGURE 4 Box plots of a sample of 10 000 observations from the posterior distribution for σ2 based on the 5 acts of each one of the plays in the

First Folio edition. In the outlier detection implementation in Section 4, one uses the average of the 35 estimated E[σ2|y] as the value for σ̂2
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and augmented by Shakespeare, which has lead some
scholars to suggest that it was a revision of an earlier
version by someone else, maybe the same Peele suggested
as a precursor author for Henry V. The posterior probabil-
ities that these 2 plays are outliers, E[ωp|y], are .80 and
.68, respectively. These 2 plays are the only ones with
an E[ωp|y] larger than 0.5.

Besides these 2 plays, it is also worth remarking
the fact that Henry IV, Part 2 has 3 acts classified as out-
liers. One of the 3 plays with 2 acts classified to be so is
Titus Andronicus, which is the first known printing of a
Shakespearean play and is considered by many to be a
collaboration between Shakespeare and at least one other
dramatist.

The Derbyite theory of Shakespeare authorship
defends that the true author of some of the works of
William Shakespeare was William Stanley; the plays
attributed to Shakespeare most often linked to Stanley
are Love's Labour's Lost, A Midsummer Night's Dream,
and The Tempest, which are 3 of the 6 plays with 2 or
more acts identified as outliers by our method. Note
though that there are several reasons that could explain
why an act behaves as an outlier, besides the fact that it
could have been written by another author.
5 | FINAL COMMENTS

We have presented Bayesian hierarchical models that
characterize the stable pattern as well departures from
that pattern in rows or a contingency table and help
identify which observations follow the mainstream pat-
tern and which ones do not. These models have been
tried first on a simulated example to check that they work
for unstructured tables, and then it has been used to
explore the existence of heterogeneities in the drama by
Shakespeare.

A critical aspect of the outlier detection method is the
calibration of σ2. In the simulation example, there was no
need to calibrate, and the same results can be obtained by
using a reference prior for σ2. Instead, in the example of
Shakespeare, outliers are not so easy to identify, and
one needs to resort to calibrating σ2. As it has been illus-
trated in Section 3, different estimates of σ2 will lead to a
different number of observations being identified as out-
liers, but the relative degree of outlierness of observations

will be similar across different values for σ̂2. And the
same applies about the choice of the smallest value
allowed for k, and about the choice of the threshold value
for E[ζi|y] and for E[ωp|y] used to decide which acts and
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plays qualify as outliers. Different choices of these values
lead to more or less outliers, but observations are ranked
similarly from being more to being less outliers.

In the ideal case where one knows a subset of rows to
be nonoutliers to start with, the computational burden of
the method used on tables of sizes similar to the ones
considered here is negligible. When one needs to resort
to more sophisticated calibration techniques, the compu-
tational burden will largely depend on table sizes.
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