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Abstract

We develop Shiryaev-Roberts schemes based on signed sequential
ranks to detect a persistent change in location of a continuous sym-
metric distribution with known median. The in-control properties of
these schemes are distribution free, hence they do not require a para-
metric specification of an underlying density function or the existence
of any moments. Tables of control limits are provided. The out-of-
control average run length properties of the schemes are gauged via
theory-based calculations and Monte Carlo simulation. Comparisons
are made with two existing distribution-free schemes. We conclude
that the newly proposed scheme has much to recommend its use in
practice. Implementation of the methodology is illustrated in an ap-
plication to a data set from an industrial environment.

Keywords: Distribution free, CUSUM, Sequential ranks, Shiryaev-
Roberts, Gordon-Pollak
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1 Introduction

Statistical process control schemes, including CUSUMs and Shiryaev-Roberts
schemes, are designed to signal a persistent change in some characteristic of
a process as soon as possible after its onset. The change manifests itself
as a sustained change in the distribution along a sequence of independent
and identically distributed observations X1, X2, . . . which occurs at an index
τ , known as the the change point. Thus X1, X2, . . . , Xτ , the “in-control”
observations, have a common density function f while Xτ+1, Xτ+2, . . ., the
“out-of-control” observations, have common density g 6= f . Perhaps the most
widely known CUSUM is the one introduced by Page (1954) which aims to
detect an increase in the mean from δ = 0 to a value δ > 0 in a normal
distribution with known variance σ2. The CUSUM sequence Ci, i ≥ 0, is
defined by setting C0 = 0 and applying the recursion

Ci = max

{
0, Ci−1 +

Xi

σ
− ζ

}
, i ≥ 1. (1)

An alarm is raised as soon as Ci exceeds a control limit h > 0, indicating
that the mean has possibly increased and that an out-of-control situation
prevails. Here, ζ is a positive reference value or drift allowance. This is often
set equal to δ1/2 where δ1, the target shift, is the smallest change (drift) in
the mean of X/σ that is judged to be of practical import. Alternatively, ζ is
sometimes chosen with a view to producing a specified form of out-of-control
behaviour. The CUSUM behaves like a random walk with a reflecting barrier
at 0 and is sure to produce an alarm somewhere along the sequence even if no
change ever occurs. In the latter case, we have a false alarm. Because false
alarms are inevitable, the control limit h is chosen so that a predetermined
expected run length, known as the in-control average run length (ICARL),
is guaranteed if no change ever occurs.

Girshick and Rubin (1952) introduced a control scheme based on a recur-
sion that can be expressed as

Di = log(1 + exp(Di−1)) + 2ζ

(
Xi

σ
− ζ

)
, i ≥ 1 (2)

with D0 = −∞ . A continuous time version of this scheme was developed
by Shiryaev (1963) with the objective of detecting the onset of a drift in a
Brownian motion. Roberts (1966) compared the performance of the CUSUM
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and some other schemes with the scheme (2) and found the latter to have
merit. Schemes based on the recursion (2) have subsequently become known
in the literature as Shiryaev-Roberts (S-R) schemes.

The assumption of normality and of a known variance are enduring prob-
lems in the application of these schemes to observed data. Versions that
are distribution free under a broad class of in-control distributions would be
extremely useful in statistical practice. Lombard and Van Zyl (2018) devel-
oped distribution-free CUSUMs that can detect deviations from a specified
median in a symmetric continuous distribution. The scale parameter does
not figure directly in the construction of these CUSUMs and no moment
conditions are required to assure their validity. This development frees one
from the restriction to an underlying normal distribution and the difficulties
in designing CUSUMs that operate efficiently when the variance is estimated
or the distribution is non–normal; see, for instance, Bagshaw and Johnson
(1974), Jones et Al. (2004) and Diko et Al. (2020).

Gordon and Pollak (1994) constructed a distribution free S-R type scheme
which they dubbed the NPSR (non parametric Shiryaev-Roberts) scheme, for
detecting shifts away from a known median in a symmetric distribution. The
NPSR is based on the signs of the data and the ranks of their absolute values
and requires specification of three adjustable parameters. These permit it
being ”tuned” to any given symmetric distribution. However, the NPSR
does not seem to have enjoyed widespread adoption among practitioners.
This is possibly due to the complexity of the scheme which does not allow
a simple recursion such as (2) and to computational difficulties surrounding
the generation of control limits for a wide range of ICARLs. These difficulties
seem to have thus far inhibited a fuller evaluation of the NPSR’s properties.

Following ideas from Lombard and Van Zyl (2018), we propose in this
paper an alternative distribution-free S-R scheme that is based on the signs
si of the observations and on the sequential ranks r+i of their absolute values.
The sequential rank r+i of |Xi| in the sequence |X1|, . . . , |Xi| is the number
of observations that are less than or equal to |Xi|,

r+i = 1 +
∑i−1

j=11 (|Xj| < |Xi|) , i ≥ 2

where 1 (·) denotes the indicator function and r+1 = 1. Under any continuous
in-control distribution, successive sequential ranks are mutually independent
and uniformly distributed on the integers 1, 2, . . . i, hence are distribution free
- see Barndorff-Nielsen (1963, Theorem 1.1). Furthermore, the r+i sequence
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is then also independent of the sequence of signs

si = 1 (Xi > 0)− 1 (Xi < 0)

see Reynolds (1975, Theorem 2.1). Thus, upon replacing Xi in (2) by a
function J(Rs

i ) of the signed sequential ranks

Rs
i =

sir
+
i

i+ 1
, (3)

a new family of distribution-free S-R type change detection schemes appears.
In view of their distribution free property, tables of control limits are easily
generated by Monte Carlo simulation. Furthermore, by an appropriate choice
of the function J , the scheme can be tuned to have good properties in any
given distribution. For instance, if the in-control distribution is expected to
be near normal, then upon replacing the Xi in (2) by

X∗
i = Φ−1((1 +Rs

i )/2), (4)

where Φ−1 denotes the inverse of the standard normal cdf, there results a
distribution-free S-R scheme that can be expected to be competitive with
the parametric version when the data indeed come from a normal distribu-
tion. A key fact is that the in-control distribution of (1+Rs

i )/2 approximates
a uniform distribution as i increases, whence the distribution of X∗

i approx-
imates that of a normally distributed Xi. Furthermore, the out-of-control
distribution of X∗

i approximates a shifted normal distribution. This con-
struction is reminiscent of the manner in which the Van der Waerden two
sample signed-rank statistic is obtained - see Hájek, Šidák and Sen (1999,
page 118).

The paper is structured as follows. In Section 2 the original Shiryaev-
Roberts scheme and the Gordon and Pollak (1994) NPSR scheme are dis-
cussed. In Section 3, we introduce the signed sequential rank S-R schemes,
hereafter referred to as SSR S-R schemes. These schemes are constructed
specifically with a view to detecting a change away from a known median
in an unspecified symmetric distribution, thus generalizing the normal dis-
tribution based S-R scheme. Tables of control limits guaranteeing a nomi-
nal in-control ARL are provided. In Section 4 we discuss the specification
of an appropriate reference value ζ in the sequential rank schemes and in
Section 5 we deal in some detail with the out-of-control run length proper-
ties of the Wilcoxon SSR S-R scheme, that is, the SSR S-R scheme based
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on the Wilcoxon score J(u) = u. In particular we indicate how its out-of-
control behaviour may be assessed on a theoretical basis by using both formal
and informal calculations. It is seen that the Wilcoxon SSR S-R scheme is
quite efficient in normal distributions and can usefully serve as an omnibus
distribution-free scheme. The results of some pertinent Monte Carlo simula-
tions are reported in Section 6. Specifically, the performance of the Wilcoxon
SSR S-R scheme is compared to that of the Wilcoxon SSR CUSUM and the
NPSR scheme. Finally, in Section 7, implementation of the schemes is illus-
trated by application to a new data set that has not been considered in the
literature before. In Section 8 we provide a summary of our main results and
conclusions and indicate some areas for further research.

2 The Shiryaev-Roberts and Gordon-Pollak

schemes

An important aspect of any sequential change detection scheme is the extent
to which the realized ICARL agrees with the nominal value, which we denote
generically by ARL0. Successful implementation of the normal S-R scheme
(2) requires that σ be known and that the underlying distribution be normal.
We now examine the extent to which deviations from these assumptions
affect its in-control behaviour. Suppose first that σ (= 1) is unknown to the
analyst and that a Phase I estimated standard deviation σ̂m, computed from
m observations, is used as a proxy for σ. Then the analyst will rescale the
Phase II data, replacing Xi byXi/σ̂m, and run the S-R scheme on the rescaled
data. Consequently, since Xi/σ̂m does not have unit variance, the ICARL
will differ from the nominal ARL0. To illustrate, suppose ARL0 = 500 is
desired and that an estimate σ̂50 = 1.1 has been found from some Phase I
data. Application of the S-R scheme to the rescaled data will then produce
an ICARL of 1081 (estimated from 105 Monte Carlo trials). To provide some
context to this result we note that when σ = 1,

Pr [σ̂50 > 1.1] = Pr [σ̂50 < 0.9] = 0.125,

which means that about one in every four estimates will be larger that 1.1 or
smaller than 0.9. Table 1a shows Monte Carlo estimated true ICARL values
for m = 50, two estimates σ̂50 of σ, two reference values ζ and three ARL0

values.
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Table 1a Estimated ICARL when σ is
estimated from 50 observations.

ARL0

σ̂50 ζ 100 500 1,000
1.1 0.25 130 875 1,983

1.1 0.5 158 1,081 2,495

0.9 0.25 75 305 544

0.9 0.5 64 245 424

The sizes of the discrepancies between nominal and true ICARLs are
clearly a cause for concern. To ameliorate the situation one can increase the
size of the sample on which the estimate is based. However, doubling the
number of Phase I observations does not improve the situation much - see
Table 1b, in which

Pr [σ̂100 > 1.08] = Pr [σ̂50 < 0.92] = 0.125.

Table 1b Estimated ICARL when σ is
estimated from 100 observations.

ARL0

σ̂100 ζ 100 500 1,000
1.08 0.25 125 764 1,723

1.08 0.5 147 923 2,066

0.92 0.25 80 334 609

0.92 0.5 70 282 507

Suppose next that the variance is known to equal 1 but that the in-
control distribution is non-normal. The last three columns in Table 2 show
Monte Carlo estimates of the ICARL values of the normal distribution S-R
scheme when the data actually come from logistic, Laplace and Student t3
distributions, all standardised to unit variance. Each of the estimates was
made on 105 Monte Carlo trials. In the table, the first three columns show
the reference values ζ = 0.1, 0.15, 0.5 and 0.75, the nominal ICARL values
ARL0 = 500 and ARL0 = 1, 000 and the corresponding control limits h that
guarantee an ICARL equal to ARL0 under a normal distribution.

The differences between the estimated true in-control ARLs and the nom-
inal ARL0 values could be considered acceptable ”for practical purposes”
only in the logistic and Laplace cases at ζ = 0.1, which is a reference value

6



that would not be used frequently. The results shown in Tables 1a and 1b
and in Table 2 clearly indicate that distribution-free and scale invariant S-R
schemes would be valuable additions to the toolbox of a practitioner who
contemplates using an S-R type scheme.

Table 2 Comparison of estimated true and nominal
ICARL of Shiryaev-Roberts scheme
in non-normal distributions.

Estimated ICARL
ζ ARL0 h Logistic Laplace t3
0.1 500 6.10 512 513 581

1,000 6.79 1007 1020 1156

0.25 500 5.92 484 483 560

1,000 6.62 961 946 970

0.5 500 5.63 418 353 362

1,000 6.32 804 622 527

0.75 500 5.35 330 244 242

1,000 6.06 598 392 334

To the best of our knowledge the first, and to date only, distribution-free
S-R type scheme applicable to symmetric distributions with known median
is the NPSR of Gordon and Pollak (1994). The NPSR is based on a double
sequence Λn

k , 1 ≤ k ≤ n, n ≥ 1, of nonlinear two-sample rank and sign
statistics, not on signed ranks alone. An expression for Λn

k , which has a
somewhat complicated structure, can be found in eqn. (6) of Gordon and
Pollak (1994) who also provide efficient Matlab code for the calculation. The
run length is the first index n at which the sum Rn =

∑n

k=1Λ
n
k exceeds

a control limit, A, which makes the ICARL equal to a specified number
ARL0. Given a large nominal ARL0, Gordon and Pollak (1994) provide
an approximation to A in terms of ARL0 and a further three adjustable
parameters. However, the approximation needs to be supplemented by Monte
Carlo simulations to find a value of A that produces an ICARL sufficiently
close to ARL0 for use in a practical application. Here one encounters two
kinds of difficulties. The first difficulty is that the complicated structure of
Rn results in excessively time consuming simulations at large ARL0 values.
The second, and perhaps more important, difficulty is that a small fraction
of simulated run lengths are so large that the only way in which a practicable
scheme results is if the run length is truncated. Gordon and Pollak truncated
all run lengths at 2, 500. In our simulations we truncated all NPSR run
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lengths at 5, 000 and encountered a negligible proportion of NPSR run lengths
that had to be truncated.

3 Signed sequential rank schemes

The independence, distribution freeness and naturally sequential nature of
signed sequential ranks Rs

i from (3) makes them ideally suited to the con-
struction of CUSUM and S-R schemes for independently distributed time
ordered data. A class of signed sequential rank analogues of (1) and (2) is
obtained upon replacing Xi there by

X∗
i =

J (Rs
i )

vi
(5)

where J(u), −1 < u < 1 is an odd, square-integrable, function on the interval
(−1, 1) and where

vi =

√
1

i

∑i

j=1
J2

(
j

i+ 1

)
. (6)

It is customary in the rank statistic literature to refer to J(u) as a score
function. In particular, the Wilcoxon score

JW (u) = u, −1 ≤ u ≤ 1

leads to a particularly useful omnibus scheme. In this case

νi =
√

6(i+ 1)/(2i+ 1)

and the corresponding SSR S-R and CUSUM schemes are defined by

Di = log(1 + exp (Di−1)) + 2ζ

(
Rs

i

νi
− ζ

)
(7)

and

Ci = max

(
0, Ci−1 +

Rs
i

νi
− ζ

)
. (8)

For underlying distributions close to the normal, one could use an SSR scheme
based on the Van der Waerden score already mentioned in the introduction,
namely

JV (u) = Φ−1((1 + u)/2).
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However, the Pearson correlation coefficient between JW (Rs
i ) and JV (R

s
i )

tends as i → ∞ to
√
π/3 = 0.98, which implies that not much will be

lost if the computationally convenient JW is used in place of the somewhat
more complicated JV . Furthermore the large sample correlations between
the Wilcoxon score and the efficient scores in some heavy-tailed Student
t-distributions are quite high while their correlations with the Van der Waer-
den score are somewhat lower. Table 3 shows these correlations in four
t-distributions.

Table 3 Correlations of efficient scores in
Student tν distributions with Wilcoxon
and Van der Waerden scores.

Distribution
Score normal t4 t3 t2 t1

Wilcoxon 0.98 0.99 0.98 0.94 0.79
Van der Waerden 1.00 0.95 0.92 0.86 0.67

Consequently, the SSR S-R and SSR CUSUM schemes that are based on
the Wilcoxon score JW can be expected to be quite efficient in a broad range
of symmetric underlying distributions, obviating to a large extent the neces-
sity of tuning the scheme to any specific distribution. We will refer to them
as the Wilcoxon SSR S-R and the Wilcoxon SSR CUSUM respectively. The
latter one of these was dealt with in detail by Lombard and Van Zyl (2018).
The term VdW SSR S-R will be used to denote the SSR S-R scheme that
is based on the Van der Waerden score JV . Construction of these schemes
does not require knowledge of the numerical value of any scale parameter σ
because signed sequential ranks are scale invariant.

Tables 4 and 5 give control limits for a matrix of (ζ, ARL0) pairs for
the Wilcoxon SSR S-R and CUSUM schemes. The tables were generated by
Monte Carlo simulation using the method detailed in Lombard and Van Zyl
(2018).
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Table 4 Control limits for the Wilcoxon SSR S-R .
ARL0

ζ 100 200 300 400 500 1,000 2,000
0.05 4.55 5.24 5.65 5.93 6.16 6.85 7.55
0.10 4.49 5.18 5.60 5.86 6.10 6.80 7.48
0.15 4.43 5.14 5.53 5.83 6.05 6.73 7.24
0.20 4.37 5.07 5.47 5.76 5.98 6.68 7.38
0.25 4.31 5.01 5.41 5.70 5.92 6.59 7.27
0.30 4.29 4.95 5.34 5.61 5.83 6.51 7.18
0.35 4.21 4.86 5.28 5.55 5.74 6.41 7.08
0.40 4.13 4.78 5.17 5.43 5.66 6.31 6.96
0.45 4.04 4.68 5.07 5.33 5.54 6.18 6.83
0.50 3.95 4.58 4.95 5.24 5.43 6.03 6.69
0.75 3.38 3.95 4.26 4.50 4.67 5.22 5.77
1.00 2.65 3.09 3.36 3.55 3.69 4.12 4.54

Table 5 Control limits for the Wilcoxon SSR CUSUM.
ARL0

ζ 100 200 300 400 500 1,000 2,000
0.00 8.92 13.07 16.24 18.9 21.3 30.24 43.95
0.05 7.61 10.51 12.49 14.01 15.33 19.89 25.03
0.10 6.45 8.62 10.05 11.12 12.01 14.79 17.93
0.15 5.65 7.34 8.42 9.21 9.86 11.88 14.06
0.20 5.00 6.37 7.24 7.87 8.37 9.96 11.57
0.25 4.46 5.61 6.33 6.85 7.25 8.52 9.84
0.30 4.01 5.00 5.60 6.03 6.37 7.45 8.53
0.35 3.62 4.48 5.00 5.37 5.66 6.58 7.51
0.40 3.29 4.04 4.49 4.81 5.06 5.87 6.66
0.45 2.99 3.66 4.05 4.34 4.56 5.25 5.96
0.50 2.73 3.31 3.68 3.93 4.13 4.74 5.34
0.75 1.72 2.06 2.2 2.42 2.53 2.89 3.25
1.00 1.02 1.24 1.34 1.42 1.49 1.71 1.92
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4 Specification of the reference value

Consider a situation in which the median shifts after a considerable time τ
from 0 to δ 6= 0. Then, with

ξi =
Rs

i

νi
=

sir
+
i

vi(i+ 1)
,

a calculation which is detailed in the Appendix shows that for τ large and δ
small,

E[ξτ+1] ≈ θ0δ, (9)

with

θ0 =
√
12

∫ ∞

−∞

f 2(x)dx, (10)

f denoting the pdf of the in-control distribution. In analogy with the para-
metric scheme (2), the relation (9) suggests ζ = δ1θ0/2 as an appropriate
choice for targeting a shift of size δ1. Some values of θ0 that are likely to
be encountered in practice are given in Table 6. In the case of the t2 and
t1 (Cauchy) distributions the interquartile range served as the scale parame-
ter, that is, the shift δ is expressed in units of the interquartile range. Even
though the density function underlying the data is unknown, we can still use
these values of θ0 to make a priori an informed choice of θ0, hence of ζ , based
on the expected heaviness of the tails. On the other hand, if some Phase
I data are available, θ0 can be estimated non-parametrically as indicated in
Lombard and Van Zyl (2018, Section 3.1).

Table 6 Values of θ0 for a range of symmetric distributions.
Distribution

normal Laplace t4 t3 t2 t1
0.98 1.2 1.18 1.37 1.18 1.10

5 Run length properties

An important practical requirement is to assess a priori the properties of the
run length

N = min {i ≥ 1; Di ≥ h} (11)

with Di from (7). Given any specific out-of-control density or range of den-
sities, the behaviour of N can be assessed quite simply by Monte Carlo
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simulation. The question nevertheless arises whether it is possible to obtain
useful conclusions based on less information. To see that this is indeed possi-
ble, we observe that Di can be expressed as a functional of the partial sums
Si = ξ1 + · · ·+ ξi, namely

exp (Di) =
∑i−1

j=1exp
{
2ζ (Si − Sj)− ζ2(i− j)

}

- see, for instance, Pollak and Siegmund (1991, page 396). Because the partial
sums Si are for large i approximately normally distributed, we can expect the
behaviour of a Wilcoxon SSR S-R at a small out-of-control shift δ to be close
to that of a normal S-R scheme (2) with the same ζ and h at a shift θ0δ, pro-
vided ARL0 and the change point τ are large - see (9) and (10). Large values
of ARL0, hence h, and τ allows enough time for a normal approximation to
manifest itself. Indeed, Lombard and Van Zyl (2018, Appendix) showed via a
continuous time approximation involving Brownian motion that under these
conditions the ARL of any SSR CUSUM behaves in the indicated manner.
They also provided supporting numerical evidence - see their Tables 4.1 and
4.2 and Tables S3 and S4 in the Supplementary Material. The same method
substantiates the conclusion in respect of general SSR S-R schemes and the
following numerical evidence provides support specifically in respect of the
Wilcoxon SSR S-R scheme.

The out-of-control performance criterion we use here is the conditional
average delay time (CADT) Eτ [N − τ |N > τ ], where the subscript τ in
Eτ denotes that the expected value is computed under the assumption that
the change occurs at time t = τ + 1. The ARL0 value was set at 500,
the target out of control shifts were δ1 = 0.2 and δ1 = 0.5. The Laplace
distribution and the much heavier tailed t3 distributions both served as in-
control distributions. The design parameters θ0 (the tuning constant) and
(ζ, h) = (δ1θ0/2, h) =(reference constant,control limit) are shown in the sec-
ond row of Tables 7a and 7b. The entries in the tables are Monte Carlo
estimates (105 trials) of the conditional average delays, W(δ) and N (δθ0), of
the Wilcoxon SSR S-R and normal S-R schemes respectively at a range of
out-of-control means δ. The results are shown for changes of size δ at change
points τ = 0 and τ = 100. If the out-of-control behaviour of an SSR S-R
scheme is indeed similar to that of a normal S-R scheme, using normal data
only, with a θ0-adjusted out-of-control shift, we would expect to see

W(δ) ≈ N (δθ0) (12)
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to good approximation if δ is ”small” and τ is ”large”. Inspection of the
results in Table 7a indicates that the approximation is quite satisfactory at
τ = 100. Also, though rather unexpectedly, the approximation is also quite
good at τ = 0 (Table 7b) except at δ ≥ 0.5, that is, when the underlying
process is substantially out-of-control from the outset.

Table 7a Wilcoxon SSR S-R CADT approximations in Laplace and

t3 distributions. ARL0 = 500; change point τ = 100.

Laplace: (θ0 = 1.2) t3: (θ0 = 1.37)
(ζ, h) (0.12, 6.09) (0.3, 5.83) (0.15, 6.05) (0.35, 5.74)
δ W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ)

0.125 91 95 124 123 85 85 116 118

0.25 44 45 49 50 38 37 43 42

0.5 22 21 19 18 18 17 16 15

0.75 15 14 12 11 12 11 10 8

1.0 12 11 10 8 10 8 8 6

1.5 10 7 7 7 8 6 6 5

Table 7b Wilcoxon SSR S-R CADT approximations in Laplace and

t3 distributions. ARL0 = 500; change point τ = 0.

Laplace: (θ0 = 1.2) t3: (θ0 = 1.37)
(ζ, h) (0.12, 6.09) (0.3, 5.83) (0.15, 6.05) (0.35, 5.74)
δ W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ)

0.125 124 125 135 132 107 107 126 118

0.25 67 65 60 56 55 53 54 47

0.5 40 34 27 22 32 27 24 18

0.75 31 24 19 14 26 18 17 11

1.0 28 19 16 10 23 14 14 8

1.5 25 13 14 7 20 10 12 6

The preceding results indicate that in the absence of a specified out-of-
control density, useful estimates of out-of-control ARLs can be had if an
estimate of θ0 is available. The behaviour of the ARLs described above
and seen in Tables 7a and 7b can be deduced from formal limit theorems
involving contiguous and fixed alternatives. The approximation (12) is an
informal interpretation of Theorem 1 in Lombard (1981) which deals with
the convergence in distribution of signed sequential rank statistics under
contiguous alternatives to a drifted Brownian motion. Here, ”contiguous”
is interpreted informally as indicating that δ and the reference value ζ are
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”small” when h is ”large” - see also the Appendix in Lombard and Van Zyl
(2018). The failure of (12) when τ (= 0) is ”small” and δ (≥ 0.5) is ”large”
is to a large extent explained by Theorem 1.1 in Müller-Funk (1983) and
Theorem 2 in Lombard and Mason (1985) which deal with the convergence
in distribution of sequential rank statistics under fixed alternatives. In this
case there is distributional convergence to Gaussian processes, which are not
simply drifted Brownian motions, and for which run length distributions are
not available. As far as we are aware, similar approximation results are not
available for the NPSR.

To summarize, there are strong indications (except when the underlying
process is substantially out of control from the outset) that the out of control
behaviour of the two Wilcoxon SSR schemes can usefully be gauged from the
behaviour of their normal distribution counterparts by the simple device of
replacing in the latter any shift δ by θ̂0δ where θ̂0 is an estimator of θ0 made
from some Phase I data. Thus, for instance, if an estimate of the CADT
at a given shift δ and change point τ is required, then this can be had
by simulating observations X1, . . . , Xτ from a normal(0, 1) distribution and
observations Xτ+1, Xτ+2, . . . from a normal(θ̂0δ, 1) distribution.

6 Simulation results

In a numerical comparison of the normal distribution S-R and CUSUM
schemes, Moustakides, Polunchenko and Tartakovsky (2009) conclude that
the only marked difference in out-of-control performances is seen at small
shifts. The approximation argument formulated in Section 5 suggests that
this may also be the major difference between the signed sequential rank
analogues of the two schemes. To investigate this suggestion, we compared
in a simulation study the performances of the Wilcoxon SSR S-R with the
Wilcoxon SSR CUSUM of Lombard and Van Zyl (2018) and with the NPSR
of Gordon and Pollak (1994). We report below some of the results that are
indicative of the behaviours of the schemes. When there is no danger of con-
fusion, we will often refer in what follows to the S-R, the CUSUM and the
NPSR, dropping the ”Wilcoxon” and ”SSR” prefixes as well as the ”scheme”
suffix.

All three schemes were tuned to the detection of mean shifts in two distri-
butions, namely, the normal distribution and the Laplace distribution. The
use of the Laplace distribution is justified in view of the inclusion of the
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NPSR in the comparisons. The NPSR is derived from a mixture of two ex-
ponential distributions, the null instance of which is the Laplace distribution.
To begin with, we limit our reporting to target sizes δ1 = 0.5 and δ1 = 0.25
and ARL0 = 500. In the simulations, each estimated CADT of the S-R and
CUSUM is the result of 10, 000 independent Monte Carlo trials while the
estimates for the NPSR resulted from 5, 000 independent trials. The smaller
number of trials used in the case of the NPSR was necessary in order to keep
its runtimes within reasonable bounds. The somewhat ”wobbly” appearance
of some of the NPSR plots is a consequence of the reduced number of tri-
als, but we do not believe that this misrepresents the true behaviour of the
NPSR. In all the figures that follow, the dotted line represents the S-R, the
dashed line represents the NPSR and the solid line the CUSUM.

Beginning with the normal distribution, the tuning parameters used for
a target shift δ1 = 0.5 were ζ = 0.25 for the Wilcoxon SSR S-R and CUSUM
and (α, β, p) = (0.735, 1.324, 0.691) for the NPSR, the latter found by numer-
ical calculation from equations (10) and (15) in Gordon and Pollak (1994).
The control limits were h = 5.92 for the S-R, h = 7.25 for the CUSUM and
A = 375 for the NPSR. For a target shift δ1 = 0.25 the tuning parame-
ters used were ζ = 0.125 and (α, β, p) = (0.860, 1.155, 0.0.599) with control
limits h = 6.07 for the S-R, h = 10.94 for the CUSUM and A = 455 for
the NPSR. Suppose first that the data do come from a normal distribution.
Figures 1 and 2 show plots of the CADTs against a series of change points
τ = 0 : 50 : 500 involving actual shifts of sizes δ = 0.125 and δ = 0.5.
Clearly, the differences between the CADTs of the schemes are largest when
the underlying process is out of control from the outset. Also, while the
three schemes perform similarly when the actual shift is equal to the target
(δ = δ1, Figure 2), the CUSUM seems to fare rather poorly compared to the
other two when the actual shift is substantially less than the target (δ = δ1/4,
Figure 1). A striking feature in both plots is that the CADTs seem to have
reached stationary values at or near change point τ ≈ 50. This feature also
appeared in numerous other configurations (not shown here).

In Figures 3 and 4 the CADTs at two target shifts δ1 = 0.25 and δ1 = 0.5
are plotted against a series of actual shift sizes occurring at a change point
τ = 100. We notice that, as was seen in Figures 1 and 2, the CADT of
all three schemes increases as the actual shift decreases further away from
the target. However, this is not necessarily an indicator of poor perfor-
mance because a change of size much less than the target is often deemed
to be undesirable or even as constituting a false alarm. Clearly, the S-R
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and NPSR again perform quite similarly at small shifts but with somewhat
smaller CADTs there than the CUSUM.
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Figures 1 to 4 Conditional average delay simulation results.
Tuned for normal distribution.
Data from a normal distribution.

The preceding discussion indicates that the differences between the CADT
of the schemes are relatively small when all three are tuned for data coming
from a normal distribution. However, it is rather interesting to see what
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transpires when the data actually come from a non-normal distribution, that
is, when the schemes have been tuned to the wrong distribution. Figures 5
and 6 are the counterparts of Figures 1 and 2 for data coming from a Laplace
distribution. The most obvious difference between the two sets of figures is
that the NPSR has, in a manner of speaking, gone from ”best” to ”worst”.
All three schemes detect the change in the mean of the data from the heavier
tailed Laplace distribution sooner than before, but the improvement in the
CADT of the S-R and CUSUM schemes is markedly better than that of the
NPSR. This finding could perhaps be paraphrased by saying that the two
SSR schemes adapt better to erroneous tuning than the NPSR.
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Figures 5 and 6 Conditional average delay simulation results.
Tuned for normal distribution.
Data from a Laplace distribution.

Next, consider a situation in which the procedures are tuned to a Laplace
distribution, for which θ0 = 1.2 in the SSR schemes. As mentioned ear-
lier, the use of the Laplace distribution is motivated by the NPSR scheme
which is derived from a mixture of two exponential distributions, the null
instance of which is the Laplace distribution. The tuning parameters at
δ1 = 1 are ζ = 0.60 for the Wilcoxon SSR S-R and CUSUM and (α, β, p) =
(0.57, 1.00, 0.88) for the NPSR. At δ1 = 0.5 the parameters are ζ = 0.3 and
(α, β, p) = (0.79, 1.00, 0.75). The NPSR tuning parameters were obtained by
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exact calculation from equations (10) and (15) in Gordon and Pollak (1994).
Figures 7 and 8 show the results when the schemes are tuned to the correct,
i.e. Laplace, and incorrect, i.e. normal, underlying distributions respectively.
In Figure 7 we see that the NPSR performs a little bit better than the S-R
and a lot better than the CUSUM, especially at early changes. When the
data come from the thinner tailed normal distribution then Figure 8 indi-
cates, as expected, that the detection capability of each of the three schemes
degenerates considerably. However, the S-R scheme seems to adapt itself
better to the mistuning than the other two schemes.
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Figures 7 and 8 Conditional average delay simulation results.
Tuned for Laplace distribution.

Finally, we compare some stationary average delay times (SADTs). The
SADT is the average delay time measured from the time of the last false
alarm, assuming that a stationary regime has established itself. Figures 1
and 2 already suggest strongly that stationarity sets in rather quickly and
that the NPSR and SSR S-R schemes would perform similarly and exhibit
smaller SADTs than the CUSUM. Here we take ARL0 = 500, a target mean
δ1 = 0.5 and change points τ = 500, 1, 000 and 1, 500 which ensures many
restarts, thus a stationary situation, before the change takes place. For each
of the schemes, the three SADT curves corresponding to the three change
points are virtually indistinguishable, confirming what was anticipated earlier
after looking at Figures 1 and 2, namely that a form of stationarity seems to
become in force rather early. Therefore, only the results for τ = 1, 000 are
plotted here.
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These results are shown in Figure 9. The NPSR and S-R schemes are
seen to behave very similarly and to have CADTs that are substantially
smaller than those of the SSR CUSUM at shifts that are substantially less
than the target. That the SADT performance of the S-R scheme is better
than that of the CUSUM is a result that is in line with what is known about
the behaviour of the corresponding parametric schemes - see Moustakides,
Polunchenko and Tartakovsky (2009). Finally, Figure 10 shows that if the
data actually come from a Laplace, rather than a normal, distribution then
the NPSR again goes from ”best” to ”worst”.
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Figures 9 and 10 Stationary average delay time simulation results.

7 Application

The data and the particular application from which they arose are similar to
those examined by Lombard and Van Zyl (2018) and consist of sequentially
observed pairs of replicate coal ash values (V1i, V2i), i ≥ 1. The measure-
ments V1 and V2 come from two nominally identical coal samples analyzed
by two independent laboratories. Denote the observations from the two lab-
oratories by Vk = T + ǫk, k = 1, 2 where T is the true ash content and
the ǫk denote measurement error. These errors should be independent and
identically distributed with zero means and common standard deviation σ.
Then the difference X = V1 − V2 = ǫ1 − ǫ2 is independent of T and should
be symmetrically distributed around zero. However, if the mean of X is
nonzero then there exists a bias between the laboratory results which would
call for an audit of their respective methodologies to identify the cause of
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the bias. Therefore, our interest is in monitoring the observed Xi sequence
for sustained deviations away from a zero mean. The preceding is a typical
matched pairs setup in which, were we dealing with a fixed sample of pairs,
the Wilcoxon signed rank test would typically be used. Since the data are
accruing one pair at a time, use of some sequential version of the test seems
appropriate. We will compare the results produced by the Wilcoxon SSR
S-R, SSR CUSUM and NPSR.

The three schemes considered thus far were designed to detect positive
shifts. Denote by S(k)(X), k = 1, 2, 3, any one of these schemes applied to the
data X = (X1, X2, . . .). To also detect negative shifts, we run simultaneously
the schemes S(k)(X) and S(k)(−X), that is, two schemes with the same ζ and
h, one on the X data and the other on the sign-changed data −X . This is
then the two-sided scheme with run length the smaller of the two constituent
run lengths. The resulting ICARL is often close to one half that of each
of the one-sided schemes. Thus, to find the control limits that produce
a nominal ARL0 in a two-sided scheme, the control limit applicable to a
nominal 2 × ARL0 in a one-sided scheme, adjusted after some Monte Carlo
simulation, is used.

A practical limitation of the NPSR is that it is not computationally fea-
sible to generate sufficiently accurate control limits guaranteeing ICARLs of
1, 000 or more at a wide range of reference values ζ . The data set shown in
Figure 11, indicates in retrospect a change point relatively soon after initial-
ization. Thus, we will implement the S-R, the CUSUM and the NPSR, using
a two-sided ARL0 of 400, making implementation of the NPSR feasible. In
all three schemes the target change size is set at δ1 = 0.25 and each scheme
is tuned to a t4 distribution. For the S-R and CUSUM, this results in a
reference value ζ = 0.15 (rounded to two decimal places) and control limits
h = 6.52 for the S-R and h = 11.3 for the CUSUM, found by interpolation
from Tables 4 and 5. The tuning constants for the NPSR at δ1 = 0.25,
namely α = 0.8912, β = 1.0774 and p = 0.6292, were found by numerical
computation from formulas (10) and (15) in Gordon and Pollak (1994). The
approximation

α× ARL0 = 0.8912× 800 = 712.96

to the ICARL of the (one-sided) NPSR (Gordon and Pollak, 1994, Theorem
2.2), supplemented with some Monte Carlo simulation, leads to a control
limit h = 725 for an ARL0 = 400 in a two-sided NPSR.
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Figure 11 Plot of 150 successive pairwise ash differences.

Plots of the paths of the three schemes, applied to the data shown in
Figure 11 are in Figures 12, 13 and 14. For visual presentation we plot
S(k)(X) with control limit h (the upper path) and −S(k)(−X), i ≥ 1 with
control limit −h (the lower path). The CUSUM scheme sounds an alarm at
i = 91 while the S-R and NPSR both do so at i = 93. These conclusions
seem to be in agreement with what is seen in Figure 11.

A distinguishing feature in a two-sided normal distribution CUSUM, also
evident in Figure 12, is that the upper (lower) CUSUM is at zero whenever
the lower (upper) CUSUM is non-zero. The usual CUSUM change point
estimator is then the last index at which the hitting CUSUM sequence, upper
or lower, was at zero. In the present instance, this estimator gives τ = 77 as
the change point. The same feature is not present in the S-R or the NPSR, so
that an alternative estimator must be sought. A straightforward approach is
to look upon the stopped sequence X1, X2, . . . , XN as consisting of samples
{X1, . . . , Xτ} and {Xτ+1, . . . , XN} from two distributions differing only in
location and to estimate τ by least squares, conveniently ignoring the fact
that the observed run length N is, in fact, a random variable. Then the least
squares estimator of τ is

τ̂ = arg max1≤k≤N−1 |Tk| (13)

where

Tk =
N∑

i=k+1

Xi/
√
N − k. (14)
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This suggests using the estimator (13) after replacing Xi in (14) by ξi from
(5). Denote this version of Tk by T ∗

k . A plot of |T ∗
k | against k is shown

in Figure 15. The maximum occurs at τ̂ = 78, which is almost the same
estimate as that found from the CUSUM.

0 10 20 30 40 50 60 70 80 90 100

time index

-15

-10

-5

0

5

10

15
S

S
R

 W
ilc

o
xo

n
 C

U
S

U
M

 p
a

th

Figure 12 Wilcoxon SSR CUSUM paths.
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Figure 13 Wilcoxon SSR S-R paths.
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Figure 14 NPSR paths.
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8 Summary

We develop a Shiryaev-Roberts type scheme based on signed sequential ranks
for detecting a change in the median from zero to a nonzero value in an un-
specified symmetric distribution. The scheme is distribution free and scale
invariant, meaning that a single set of control limits apply regardless of
the functional form of the underlying distribution. Monte Carlo simula-
tion results indicate that the scheme performs very well under a broad range
of circumstances. In particular, it seems to be more adept at detecting
small changes than a corresponding signed sequential rank CUSUM. Some
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Monte Carlo simulations involving the signed sequential rank schemes and
the distribution-free NPSR scheme developed by Gordon and Pollak (1994)
suggest that the distribution-free Shiryaev-Roberts and NPSR schemes of-
ten show better performance in terms of out-of-control run length than the
distribution-free CUSUM. The conceptual and computational simplicity of
the distribution-free Shiryaev-Roberts scheme makes it an attractive alterna-
tive to both the distribution-free CUSUM and NPSR schemes. The focus in
this paper has been on detecting a location change in a symmetric distribu-
tion. A matter for further research is the possibility of detecting scale changes
via an appropriate construction of a Shiryaev- Roberts type sequential rank
scheme. Furthermore, the possibility of constructing such schemes to deal
with the detection of location and scale changes in asymmetric distributions,
needs to be investigated.
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9 Appendix

Derivation of eqn. (9)

It is convenient to let Y, Y1, Y2, . . . be i.i.d. with a common symmetric
around zero distribution with cdf F . Then, if a shift of size δ 6= 0 occurs at
index τ + 1, the observations can be represented as X1 = Y1, . . . , Xτ = Yτ ,
Xτ+1 = Yτ+1 + δ. Furthermore, then

E [s(Yτ+1 + δ)1 (|Yj| < |Yτ+1 + δ|) |Yτ+1 = y]

= s(y + δ) Pr (|Y | < |y + δ|)
= s(y + δ) (2F (|y + δ|)− 1)

= 2F (y + δ)− 1.

Consequently,

E [ντ+1ξτ+1] =
1

τ + 2
E
[
s(Xτ+1)

∑τ

j=11 (|Yj| ≤ |Yτ+1 + δ|)
]

=
τ

τ + 2
E [2F (Y + δ)− 1] +

E [s(Xτ+1)]

τ + 2

= E [2F (Y + δ)− 1] + 0

(
1

τ

)
(15)

and by Taylor expansion

E [2F (Y + δ)− 1] = E [2F (Y )− 1] + 2δE [f(Y )] + 0
(
δ2
)

= 2δ
∫ +∞

−∞
f 2(y)dy + 0

(
δ2
)
. (16)

Also,

ντ =
√
3 + 0

(
1

τ

)
. (17)

Putting (15), (16) and (17) together, we get

E [ξτ+1] =
√
12δ

∫ +∞

−∞
f 2(y)dy + 0

(
δ2
)
+ 0

(
1

τ

)
.
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