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Abstract

Statistical process monitoring (SPM) provides a way, by means of monitoring schemes, to be alerted

when a process significantly changes, and to initiate investigations for potential causes of variation. How-

ever, these schemes can only determine if the process is stable or unstable and they cannot provide any

additional information. Several researchers have recommended the integration of machine learning (ML)

approaches into SPM as a solution for the shortfalls of the techniques used to construct traditional mon-

itoring schemes. This paper introduces a new multivariate extended homogeneously weighted moving

average (MEHWMA) monitoring scheme and investigates its performance in terms of the run-length

distribution using simulation. In addition, the proposed MEHWMA scheme is integrated with a support

vector machine to allow for the classification of the out-of-control events which facilitates the identifica-

tion of the root causes of variation in the process. A numerical illustrative example is provided using

real-life data.

Keywords: Enhanced monitoring scheme; Extended HWMA; Machine learning; Performance metrics;

Multivariate process; Support vector machine.
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1 Introduction

In today’s competitive markets, the quality of a product or a service is the key that gives a significant

advantage over other competitors; see for example Montgomery (2020). To keep a business ahead of the

competition, it is required to continuously monitor the production, manufacturing and business processes.

This can be accomplished by using statistical process monitoring (SPM) tools.The most popular tool used

in SPM is the control chart (or monitoring scheme) with examples being the Shewhart, cumulative sum

(CUSUM), exponentially weighted moving average (EWMA) and homogeneously weighted moving aver-

age (HWMA) schemes (Roberts (2000), Abbas (2018) and Montgomery (2020)). A modern monitoring

scheme is a graphical representation that has a charting statistic on the vertical axis and the sample

number or time on the horizontal axis. In addition, it has two main thresholds, namely the lower and

upper control limits (LCL and UCL), that divide the vertical axis into two regions: the in-control (IC)

region (within the control limits) and the out-of-control (OOC) region (on or beyond the control limits).

Monitoring schemes can be classified based on the types of data, charting statistic, distributional

assumptions, monitoring strategies, and number of quality characteristics. Depending on the number

of quality characteristics, monitoring schemes are divided into either univariate or multivariate schemes.

A univariate monitoring scheme is used to monitor a single quality characteristic, while a multivariate

scheme monitors two or more quality characteristics. More details on univariate and multivariate moni-

toring schemes can be found in Maravelakis et al. (2002), Bersimis et al. (2007) and Malela-Majika et al.

(2022a,b). A monitoring scheme can additionally be grouped as either a memoryless or a memory-type

scheme. The former uses only the most recent information to decide whether the process is IC or OOC.

The latter, on the other hand, incorporates current as well as past information to decide whether the

process is IC or not; see for example Adegoke et al. (2019). Memoryless-type schemes are more efficient

in detecting large shifts in the process parameter, while memory-type schemes are better at detecting

small and moderate shifts. Among the existing memory-type schemes, the cumulative sum (CUSUM)

and the EWMA schemes are the most popular in SPM (see Page (1961) and Roberts (2000)). Naveed

et al. (2018) proposed the extended EWMA (EEWMA) scheme for monitoring the process mean. They

reported that the EEWMA scheme outperforms both the EWMA and Shewhart schemes in detecting

up- or downwards step shifts in the mean. More recently, Abbas (2018) introduced the HWMA scheme

to improve the detection ability of the EWMA scheme in monitoring small shifts. The HWMA scheme

assigns a certain weight to the most recent observation and the rest of the weight is assigned homoge-

neously, i.e. equally, between all previous observations. Therefore, the HWMA scheme has been shown

to be superior to the Shewhart and EWMA schemes in detecting small sustained shifts. It is generally

more beneficial to use more efficient schemes such as memory-type schemes as they allow faster detection

of OOC shifts in the process parameters and they give the chance to get the process back IC before
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the quality of the products or services suffers too heavily. For a recent account on the improvement of

memory-type schemes, readers are referred to Chan et al. (2021), Anwar et al. (2022) and Anwer et al.

(2022).

The aforementioned schemes allow for the detection of any abnormality in the process by giving a signal

that initiates an investigation of the causes of variation. However, these schemes cannot provide further

information on what caused the OOC signal, the size of the shift or if there are any special patterns present

in the data. These shortfalls become very apparent in the multivariate process case as multiple quality

variables of a process are combined into a single charting statistic. Multivariate monitoring schemes are

also not able to identify which specific quality characteristic moved OOC; see Demircioglu Diren et al.

(2020). To overcome this problem, one would suggest to combine a multivariate scheme with two or more

univariate schemes. This, however, would increase the false alarm rate and increase the cost of inspection.

Therefore, a more reliable solution would be to integrate a multivariate monitoring scheme with machine

learning (ML) tools or techniques. Some of the ML techniques used recently in SPM include artificial

neural networks (ANN), multivariate adaptive regression splines (MARS), and support vector machines

(SVM); see Chowdhury and Janan (2020) and Yeganeh et al. (2021). Based on the works by Apsemidis

and Psarakis (2020) as well as Chowdhury and Janan (2020), SVMs have been shown to be useful in

SPM as they provide good results even when compared to other ML techniques such as the ANN, and

thus SVMs will be used and integrated with the new monitoring scheme.

In this paper we introduce new univariate and multivariate extended homogeneously weighted moving

average (EHWMA and MEHWMA) schemes for monitoring the location parameter of a process. In

addition, since traditional multivariate monitoring schemes cannot identify which one of the variables

(or quality characteristics) caused the OOC situation, the MEHWMA scheme is integrated with a SVM

trained to determine which quality characteristic went OOC.

The remainder of this paper is structured as follows: In Section 2, a brief background is given on the

existing EWMA, EEWMA , HWMA, and the multivariate HWMA (MHWMA) schemes. In Section 3,

the EHWMA monitoring scheme is introduced along with its properties. The zero-state performance of

the EHWMA scheme is evaluated for both the univariate and multivariate cases in Section 4. Section

5 investigates the zero and steady-state performances of the proposed schemes using the conditional

expected delay. Section 6 provides details on how a SVM can be used in SPM. Moreover, this section

provides an illustrative example based on real-life data where the MEHWMA scheme is integrated with

a SVM. Lastly, Section 7 presents the concluding remarks.
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2 Mathematical background

2.1 The EWMA scheme

The EWMA monitoring scheme was first introduced as the geometrically weighted moving average scheme

and only later became known as the EWMA scheme; see Roberts (2000). It was designed to incorporate

current information from the process as well as that from the previous charting statistic. Let Xt (for

t = 1, 2, 3...) be a sequence of independently and identically distributed (i.i.d.) normal random variables

from a process with IC mean µ0 and standard deviation σ0. The EWMA statistic at time t is given by:

Zt = ϕXt + (1− ϕ)Zt−1, (1)

where ϕ is the smoothing parameter with ϕ ∈ (0, 1] and a starting value of Z0 = µ0. The expected value

and variance of the EWMA statistic defined in (1) are given by:

E (Zt) = µ0 (2)

and

V (Zt) = σ2
0

(
ϕ

2− ϕ

)(
1− (1− ϕ)2t

)
, (3)

respectively. The EWMA control limits are defined by:

UCLZt
/LCLZt

= E(Zt)± LZ

√
V (Zt), (4)

where LZ is the control limit constant chosen such that the attained IC average run-length (ARL) is

equal to a pre-specified IC ARL (denoted by ARL0). The EWMA scheme gives a signal if the charting

statistic defined in (1) plots on or beyond the control limits defined in (4).

2.2 The extended EWMA scheme

More recently, Naveed et al. (2018) introduced the EEWMA scheme by extending the EWMA with an

additional weighting parameter allowing the charting statistic to give a positive weight to the most recent

data and negative weights to the oldest ones. The addition of the new parameter resulted in a lower

variance than that of the conventional EWMA statistic. Thus, the charting statistic of the EEWMA

scheme at the tth sampling time is defined as follows:

EZt = ϕ1Xt − ϕ2Xt−1 + (1− ϕ1 + ϕ2)EZt−1, (5)
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where ϕ1 ∈ (0, 1] and ϕ2 ∈ [0, ϕ1) are the smoothing parameters, X0 = EZ0 = µ0, and the expected value

and variance of the EEWMA statistic are equal to:

E (EZt) = µ0 (6)

and

V (EZt) = σ2
0

[
(ϕ2

1 + ϕ2
2)

(
1− (1− ϕ1 + ϕ2)

2t

2(ϕ1 − ϕ2)− (ϕ1 − ϕ2)2

)
−2ϕ1ϕ2(1− ϕ1 + ϕ2)

(
1− (1− ϕ1 + ϕ2)

2(t−1)

2(ϕ1 − ϕ2)− (ϕ1 − ϕ2)2

)]
,

(7)

respectively. If ϕ2 = 0, then the EEWMA monitoring scheme reduces to the EWMA scheme and therefore

EZt = Zt. The control limits of the EEWMA scheme are defined by:

UCLEZt
/LCLEZt

= E(EZt)± LEZ

√
V (EZt), (8)

where LEZ represents the control limit constant of the EEWMA scheme. Thus, the EEWMA scheme

gives a signal if the charting statistic defined in (5) plots on or beyond the control limits defined in (8).

2.3 The HWMA scheme

The HWMA monitoring scheme was proposed in order to improve the sensitivity of the EWMA scheme

in detecting very small shifts; see Abbas (2018). Thus, the design of the HWMA scheme is similar to

that of the EWMA scheme, except that instead of using the previous value of the charting statistic, the

average of all the previous process observations is used. It also uses a similar weighting structure to the

one of the EWMA scheme. Therefore, the HWMA statistic is defined as:

Ht = ϕXt + (1− ϕ)X̄t−1, (9)

where ϕ ∈ (0, 1] is the smoothing parameter, X̄t−1 is the average of the previous t− 1 observations (i.e.

X̄t−1 = 1
t−1

∑t−1
k=1 Xk) and the starting value is X̄0 = µ0. The mean and variance of the HWMA statistic

are equal to:

E (Ht) = µ0 (10)

and

V (Ht) =

 ϕ2σ2
0 , for t = 1(

ϕ2 + (1−ϕ)2

t−1

)
σ2
0 , for t > 1

, (11)
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respectively. Thus, the HWMA control limits are defined by:

UCLHt
/LCLHt

= E(Ht)± LH

√
V (Ht), (12)

where LH is the control limit constant chosen such that the attained IC ARL value is equal to the desired

ARL0 value. Therefore, the HWMA scheme gives a signal if the charting statistic defined in (9) plots

beyond the control limits defined in (12).

2.4 The multivariate HWMA scheme

The HWMA statistic was later expanded to the multivariate case and denoted as MHWMA (Adegoke

et al. (2019)). Let yt (t = 1, 2, ...) be a p-variate random vector of size n from a multivariate population

with known mean vector µ0 and covariance matrix Σ0. When n = 1, the MHWMA statistic can be

defined as:

Ht = ϕyt + (1− ϕ)ȳt−1, (13)

where ȳt−1 is a p×1 vector where the elements are the averages of the previous t−1 observations of each

p-variate, Ht is a p× 1 vector and ȳ0 = µ0. The mean vector and covariance matrix of Ht are given by:

E (Ht) = µ0 (14)

and

ΣHt
=

 ϕ2Σ0, for t = 1(
ϕ2 + (1−ϕ)2

t−1

)
Σ0, for t > 1

. (15)

In the case where p = 1, the MHWMA statistic reduces to the HWMA statistic. If p = 1 and ϕ = 1 it

also reduces to the Shewhart X̄ scheme. However, if p > 1 and ϕ = 1, it reduces to the χ2 monitoring

scheme in the case where the parameters are assumed known. If the parameters are unknown, it reduces

to the T 2 monitoring scheme.

For the three univariate monitoring schemes mentioned above, their UCL and LCL are calculated

using the formula: E (C)±L
√
V (C), where C is the charting statistic of the respective scheme and L is

the corresponding control limit constant. However, for the MHWMA statistic the approach is different.

Firstly, the T 2 value has to be calculated for Ht as

T 2
t = (Ht − µ0)

⊺Σ−1
Ht

(Ht − µ0), (16)

allowing the multivariate statistic to be converted to a scalar value that can easily be plotted and then
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the process is considered OOC if

T 2
t > h,

where h is the control limit chosen such that the attained IC ARL = ARL0.

3 Proposed univariate and multivariate EHWMA monitoring schemes

3.1 The univariate EHWMA scheme

The proposed EHWMA monitoring scheme is designed following the same approach as the one for the

EEWMA scheme described in Section 2.2. An additional smoothing parameter will be added to the

HWMA scheme to allow the resulting statistic (i.e. EHWMA statistic) to give negative weights to

previous process observations and a positive weight to the most recent observations in order to potentially

decrease the variance. If the second smoothing parameter is set to 0 then the statistic becomes equivalent

to that of the HWMA statistic. The EHWMA statistic will also be expanded to the multivariate case in

a similar way as described in Section 2.4.

For the univariate case, let Xt (for t = 1, 2, 3...) be a sequence of i.i.d. random observations from a

normal population with IC process mean µ0 and standard deviation σ0.

Then, the EHWMA charting statistic at time t (denoted as EHt) is defined as:

EHt = ϕ1Xt − ϕ2Xt−1 + (1− ϕ1 + ϕ2)X̄t−1, (17)

where ϕ1, ϕ2, X0 and X̄0 are defined as in Section 2. When ϕ2 = 0, the EHWMA scheme is reduced to

the HWMA scheme with smoothing parameter ϕ1. When ϕ1 = 1 and ϕ2 = 0, the EHWMA scheme is

reduced to the Shewhart scheme.

The expected value and variance of the proposed EHWMA statistic are given by:

E (EHt) = µ0 (18)

and

V (EHt) =


ϕ2
1σ

2
0 , for t = 1(

ϕ2
1 +

(
1−ϕ1−(t−2)ϕ2

t−1

)2
+
(

1−ϕ1+ϕ2

t−1

)2
(t− 2)

)
σ2
0 , for t > 1

, (19)

respectively. For more details on the derivations of the above properties of the EHWMA statistic, see

Appendix A. The lower and upper control limits of the proposed EHWMA scheme are given by:

UCLEHt
/LCLEHt

= E(EHt)± LEH

√
V (EHt) (20)
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respectively, where LEH is the control limit constant selected such that the attained IC ARL is equal

to some pre-specified ARL0. The EHWMA scheme gives a signal at the sampling time t if the charting

statistic defined in (17) plots beyond the control limits defined in (20).

3.2 The multivariate EHWMA scheme

For the multivariate case, let yt : p × 1 (t = 1, 2, ...) be a p-variate normal random vectors from a

multivariate population with mean vector µ0 and covariance matrix Σ0.

Then, the MEHWMA statistic at time t (denoted as MEHt) can be defined as:

MEHt = ϕ1yt − ϕ2yt−1 + (1− ϕ1 + ϕ2)ȳt−1, (21)

where y0 = ȳ0 = µ0. The expected mean vector and covariance matrix of the MEHWMA statistic are

mathematically defined by:

E (MEHt) = µ0 (22)

and

ΣMEHt
=


ϕ2
1Σ0, for t = 1(
ϕ2
1 +

(
1−ϕ1−(t−2)ϕ2

t−1

)2
+
(

1−ϕ1+ϕ2

t−1

)2
(t− 2)

)
Σ0, for t > 1

, (23)

respectively. The MEHWMA monitoring scheme will give an OOC signal if

T 2
t = (MEHt − µ0)

⊺Σ−1
MEHt

(MEHt − µ0) > hMEH

where hMEH is the control limit of the MEHWMA scheme selected such that the IC ARL = ARL0.

The expected value and variance of the MEHWMA statistic are derived similarly to the ones of the

EHWMA statistic. The optimal values of ϕ1, ϕ2, hMEH and LEH will be chosen to achieve a high desired

ARL0 value and a small OOC ARL (ARL1) value.

4 Zero-state performance of the EHWMA and MEHWMA mon-

itoring schemes

In this section, the zero-state performance and robustness of the EHWMA and MEHWMA schemes

are investigated using extensive simulations. The simulations for the univariate cases are conducted as
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follows:

1. Set the mean and variance of the process to µ0 and 1, respectively. When the process is IC, µ0 = 0.

However, for the OOC case, the mean is set to µ1 = µ0 + δ = δ where δ ̸= 0.

2. Set the value of the control limit constant.

3. Generate a sample of size n from a normal distribution with mean µ1 and variance σ2
0 , and compute

the sample mean, the charting statistic and control limits of the proposed scheme.

4. Compare the charting statistic to the control limits computed in Step 3.

5. Repeat steps 3 and 4 until the scheme detects an OOC event for the first time and record the

number of samples needed before the OOC signal is triggered.

6. Repeat Steps 3 to 5 for a predetermined number of iterations, and calculate the ARL as the average

number of samples taken before an OOC signal is triggered.

In this paper, we used 20000 iterations. The simulations for the multivariate cases are constructed in a

similar fashion, where the samples are taken from a p-variate distribution instead of a univariate one,

and the OOC mean is set to µ1 = µ0 +Σ0∆p, where µ0 is a p× 1 vector of zeros, µ1 is a p× 1 vector,

Σ0 = Ip×p identity matrix, and ∆p is a p × 1 vector with elements all equal to
√

δ2

p . For all of the

following results and comparisons, the values of LEH and hMEH have been chosen to achieve an ARL0

value of 200.

4.1 Results and discussion

4.1.1 Robustness of the proposed EHWMA and MEHWMA schemes

The proposed EHWMA and MEHWMA schemes are designed based on the assumption of normality.

Recall that a monitoring scheme is said to be IC robust if the characteristics of the IC run-length, such

as the ARL0 values are the same (or almost the same) across all continuous probability distributions. In

this paper, we considered the Student’s t distribution with 10, 100 and 1000 degrees of freedom (denoted

as t(10), t(100) and t(1000), respectively), the gamma distribution with shape parameter α= 1 and 10,

and scale parameter β= 1 (denoted as GAM(1, 1) and GAM(10, 1)), the lognormal distribution with

parameters µ = 0 and σ = 1 (denoted as LogN(0, 1)), and the Chi-squared distribution with 30 degrees

of freedom (denoted as χ2(30)). The characteristics of the IC run-length distribution of the proposed

EHWMA and MEHWMA schemes are displayed in Figures 1 and 2, respectively, using box-plots for

different pairs of parameters ϕ1 and ϕ2. The value of LEH has been chosen to achieve an ARL0 value

close to 200 for the normal case and thereafter used for the other distributions. Note that for each

9



box-plot, the extreme values represent the 5th and 95th percentile of the run-length (PRL) while the

lower, middle and upper horizontal lines represent the 25th, 50th (i.e. median) and 75th PRL values,

respectively. The attained ARL0 value is represented by a dot. From Figure 1, it can be seen that the

attained ARL0 value under the t(10) distribution is much smaller than the desired ARL0 for all pairs of

ϕ1 and ϕ2 considered, but as the degrees of freedom increase, the ARL0 value gets closer to that of the

normal. This is expected as the t distribution tends to a normal distribution as the degrees of freedom

increase. For the gamma and the lognormal distributions, the ARL0 values are also much smaller than

the one for the normal distribution. This is due to the heavier tails of these distributions compared to

the normal distribution. The attained ARL0 values for the Chi-squared distribution are also significantly

smaller than the ARL0 value of 200, but not as small as for the gamma and the lognormal distributions.

Similar findings can be observed when examining the IC PRL (PRL0) profiles, i.e. the PRL values for

each percentile are not the same across all continuous probability distributions considered in this paper.

When ϕ2 is kept fixed, the proposed EHWMA scheme loses its IC robustness as ϕ1 increases. However,

when ϕ1 is kept fixed, the attained ARL0 of EHWMA scheme increases as ϕ2 increases.

The results of the robustness of the MEHWMA scheme are given in Figures 2. The simulations for

these cases were built such that the p-variate characteristics are sampled from p independent distributions.

The distributions used were the same as the ones for the univariate cases. Here similar findings as the

ones of the univariate case are observed. Again, the value of hMEH was chosen to achieve a ARL0 value

of 200 for the normal case.

10



(a) (ϕ1, ϕ2) = (0.1, 0.05) and (0.1, 0.09)

(b) (ϕ1, ϕ2) = (0.5, 0.05) and (0.5, 0.25)

Figure 1: Box-plots of the run-length distributions for different distributions of the univariate case
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(a) p = 2

(b) p = 4

(c) p = 10

Figure 2: Box-plots of the run-length distributions for different distributions of the multivariate case
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4.1.2 OOC performances of the proposed EHWMA and MEHWMA schemes

The performance evaluation of the proposed EHWMA scheme is given in Table 1 where the ARL values

are computed for different shifts in the process mean of the quality characteristic being monitored for

different values of ϕ1 and ϕ2 when n = 1 for a nominal ARL0 = 200. Here the quality characteristic

is assumed to have a normal distribution. The shift values represent the number of standard deviation

units by which the mean was shifted from 0. This means, if the shift value is 0.5, the mean shifted from

µ0 = 0 to µ1 = 0+0.5(1) = 0.5. From Tables 1 and 2, it can be seen that when the shift δ = 0, the ARL

is close to 200 for each pair of ϕ1 and ϕ2 and then it starts dropping rapidly as the shift size increases.

In addition to the ARL, the expected ARL (EARL) is also computed to measure the overall performance

of the proposed schemes where EARL(δ1, δ2) is the average ARL over the shift sizes δ ∈ (δ1, δ2]. For

example, EARL(1, 2) for ϕ1 = 0.1 and ϕ2 = 0.01 is calculated as

EARL(1, 2) =
(5.3 + 4.0 + 3.3 + 2.7)

4
= 3.8.

The EARL(0, 1), EARL(1, 2), EARL(2, 3), EARL(0, 2), EARL(1, 3) and EARL(0, 3) are used to eval-

uate the overall performances of the proposed schemes for small, moderate, large, small-to-moderate,

moderate-to-large and small-to-large shifts, respectively. In Table 1, it can be seen that the EHWMA

scheme performs better for smaller values of ϕ1 and ϕ2 regardless of the size of the mean shift. The larger

the value of ϕ1 and/or ϕ2, the larger the EARL profile. The scheme seems to trigger OOC signals the

fastest on average for larger shifts in the process mean.

Table 2 presents the performance of the MEHWMA scheme when n = 1, ϕ1 ∈ {0.1, 0.25}, ϕ2 ∈

{0.01, 0.05, 0.09, 0.1, 0.2} for different values of p. Tables containing the results of additional pairs of ϕ1

and ϕ2 are given in the Github link provided in appendix B. Similar trends to the ones of the univariate

case are observed. The EARL increases as the values of ϕ1 and ϕ2 increase. Though smaller pairs

of ϕ1 and ϕ2 seem to trigger an OOC signal faster, depending on the process being monitored, other

combinations could result in better results (this is shown in Section 6.3). Moreover, it can also be

observed that as p increases, the performance of the MEHWMA scheme decreases. In other words, the

smaller the p value, the better the performance of the proposed MEHWMA scheme. Additional tables

for the standard deviation run length (SDRL), median run length (MRL), expected SDRL (ESDRL) and

expected MRL (EMRL) are also given in the Github link provided in appendix B for both the EHWMA

and MEHWMA schemes where the findings are summarised as follows (These tables are also available

from the corresponding author on request):

• In terms of the SDRL and ESDRL(δ1, δ2) profiles, similar findings to the ones of the ARL and

EARL(δ1, δ2) profiles are observed, respectively.

• In terms of MRL and EMRL(δ1, δ2) profiles, when ϕ1 is kept fixed for small shifts in the process

mean, the proposed EHWMA and MEHWMA monitoring schemes are more likely to give signals

the quickest for small values of ϕ2. However, when ϕ2 is kept fixed, the proposed schemes are likely

13



to give OOC signals for small values of ϕ1 for both small and moderate shifts in the process mean.

Note though that for large shifts in the process mean, when p and ϕ1 are kept fixed, the proposed

schemes are equally likely to give OOC signal as ϕ2 increases.

• The smaller the value of p, the worse the SDRL and MRL profiles.

• The IC SDRL profile is larger for large values of p. In other words, the proposed schemes is likely

to give more false alarms for large values of p.
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4.2 Performance comparison of the proposed schemes with the existing schemes

in terms of the zero-state ARL values

For comparison purposes, the performances of the existing HWMA, EWMA and EEWMA schemes are

investigated in a similar way to that of the new EHWMA scheme described in Section 4. The HWMA

and EWMA schemes are constructed using ϕ ∈ {0.1, 0.25, 0.5}, while the EEWMA scheme is constructed

using ϕ1 ∈ {0.1, 0.25, 0.5} and ϕ2 ∈ {0.01, 0.05}. Figure 3 provides a visual comparison of the competing

schemes in terms of the OOC ARL values. Figures 3 (a) to (c) compare the ARL values of the EHWMA

to that of the EWMA and HWMA, while Figures 3 (d) to (f) compare the performance of the EHWMA

scheme to that of the EEWMA scheme. The values of LZ , LEZ and LH , as explained in Section 2, are

chosen to achieve an ARL0 value of 200 for each scheme. The ARL values are computed for the shifts of

sizes 0.25 to 1 since for shifts larger than 1 the competing schemes perform similarly. From Figure 3, it

can be seen that the new EHWMA scheme performs better than the EWMA and EEWMA schemes in

almost all cases. The new scheme has smaller ARL values for different shifts meaning that it will detect

a small shift faster than the EWMA and EEWMA schemes. Comparing the new scheme to the HWMA

scheme, both seem to perform similarly in terms of the ARL values.

Figure 4 presents a visual comparison of the performances of the competing schemes for multivariate

cases. The MEHWMA scheme is compared to the multivariate versions of the HWMA, EWMA and

EEWMA schemes in terms of the ARL values using the same values for ϕ1 and ϕ2. The competing

schemes are compared when p ∈ {2, 3, 4}. In Figure 4, the first four graphs are for p = 2 characteristics,

the second four are for p = 3 characteristics, and the last four are for p = 4 characteristics. For each value

of p, Figures (i) and (ii) compare the ARL profile of the MEHWMA scheme to those of the multivariate

EWMA and HWMA schemes for different values of ϕ1 and ϕ2, while Figures (iii) and (iv) compare the

ARL profile of the MEHWMA scheme to those of the multivariate EEWMA scheme for different values

of ϕ1 and ϕ2 when δ ∈ {0.25, 0.5, 0.75}. The MEHWMA scheme can be seen to have smaller ARL values

compared to the multivariate EWMA and EEWMA schemes in most cases. This means that the new

MEHWMA scheme will detect small shifts faster than the existing multivariate EWMA and EEWMA

schemes. The MEHWMA scheme also has similar ARL values to that of the multivariate HWMA scheme

and seemingly it will detect small shifts at a similar rate.
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Figure 3: ARL performance comparison of the EHWMA, EWMA, HWMA, and EEWMA schemes for
different shift sizes δ.
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Pane 1: p = 2

Pane 2: p = 3

Pane 3: p = 4

Figure 4: ARL performance comparison of the multivariate EHWMA, HWMA, EWMA and EEWMA
schemes for different shift sizes δ.
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5 Performance comparison in terms of the conditional expected

delay

5.1 The conditional expected delay criterion

A number of researchers have argued that when the IC process distribution is unknown or unspecified,

then the OOC ARL metric is not a good criterion for the performance comparison of different schemes;

see for instance, Kenett and Pollak (2012) and Knoth (2022). In such case, they recommend the use of

the conditional expected delay (CED) criterion. Kenett and Pollak (2012) defined the CED as "the delay

from the first opportunity to detect a change and not from the time of change itself". Thus, the CED,

denoted as Dτ , is mathematically defined by:

Dτ = Eτ (R− τ + 1|R ≥ τ) , τ = 1, 2, ..., (24)

where R represents the number of samples until an alarm is raised and τ is the change point applied to

the following model:

µ =

 µ0 = 0, for t < τ

µ1 = δ, for t ≥ τ
, (25)

where µ0 and µ1 represent the IC and OOC process means, respectively.

When τ = 1, then the CED is equivalent to the zero-state ARL, and when τ > 1 the CED is equivalent

to the steady-state ARL.

5.2 Performance comparison of the competing schemes in terms of the CED

In this section, the MEHWMA scheme is compared to the existing MEWMA and MHWMA schemes

in terms of the CED criterion (i.e. in terms of the steady-state ARL values) when n = 1, p = 3 and

δ ∈ {0.25, 3} for a nominal ARL0 value of 200. The MEWMA and MHWMA schemes are designed using

smoothing parameters ϕ ∈ {0.1, 0.25}. For instance, MEWMA (0.1) indicates that the MEWMA scheme

is designed with ϕ = 0.1. The MEHWMA scheme is designed using (ϕ1, ϕ2)= (0.1, 0.05), (0.25,0.05) and

(0.25,0.1). Figure 5 displays the performance comparison of the MEWMA, MHWMA and MEHWMA

schemes in terms of the Dτ when τ = 1, 2, ..., 50. From Figure 5, it can be seen that for small smoothing

parameters, the MHWMA scheme outperforms both the MEWMA and MEHWMA schemes for small

shifts in the process mean and the MEHWMA (0.1,0.05) scheme performs better than the MEWMA (0.1)

scheme when τ ≤ 30; however, for τ > 30, the MEHWMA and MEWMA schemes are almost similar

in performance (see Figure 5(a)). For large shifts in the process mean, the MEWMA scheme performs

better followed by the MHWMA scheme (see Figure 5(b)). For moderate smoothing parameters, the
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MHWMA scheme performs better for small shifts followed by the MEHWMA scheme for small shifts in

the process mean (see Figure 5(c)). However, for large shifts, the MEWMA scheme outperforms both

the MHWMA and MEHWMA schemes (see Figure 5(d)). This comparison reveals that in steady-state,

the MEHWMA scheme is inferior to the competing MHWMA and MEWMA schemes in many cases.

(a) δ = 0.25 (b) δ = 3

(c) δ = 0.25 (d) δ = 3

Figure 5: Performance comparison of the MEWMA, MHWMA and MEHWMA monitoring scheme in
terms of the Dτ values when and n = 1 and δ = 0.25 and 3 for a nominal ARL0 = 200

6 Enhancement of the MEHWMA scheme using a support vector

machine

6.1 Support vector machine in SPM

A SVM is a supervised learning technique that separates classes through the construction of a hyperplane.

Before obtaining this hyperplane, the data have to be mapped into a higher dimensional space through

the use of a kernel function, such as the Gaussian radial basis or a polynomial function. This is done

to allow the hyperplane to be constructed linearly in this space if it cannot be done in the original

space; see Noble (2006). Knowing up to how many more dimensions the data need to be mapped into

is, unfortunately, a process of trial and error, and mapping the data to a too-high dimension can cause

21



overfitting. SVMs are designed to mainly deal with binary classification problems, but they can also be

applied to multi-classification problems by constructing multiple binary SVM in either the one-against-all

or one-against-one method. The one-against-all method constructs a SVM for each class that separates

the data as being either of that class or not. The one-against-one method, on the other hand, constructs

SVMs for each class against every other class where the final classification is then decided by which class

has the largest number of positive classifications. SVMs have shown to be useful in both classification and

pattern recognition problems and scales relatively well with dimensionality. SVMs do, however, require

parameter estimation and thus need to be combined with estimation algorithms (Cuentas et al. (2017)).

The most popular way SVMs are implemented into SPM is to solve the problems of pattern recognition;

see Apsemidis and Psarakis (2020). In SPM, there are different types of patterns that can be present in

the data. Some of these patterns include: an upward or downward trend, an upward or downward shift,

or a cyclical pattern. These patterns can occur while the charting statistic is still plotting in the IC region

and might not cause the monitoring scheme to consider the process as OOC. The effective use of SVMs

to determine patterns in SPM has recently been demonstrated by Shao and Hu (2020) and Chowdhury

and Janan (2020).

6.1.1 SVM classifier

Let {(xi, yi) , i = 1, 2, ..., N} be a set where xi ∈ Rp are the training vectors and yi ∈ {−1, 1} are the

indicator values for a two-class case. Thus, the optimal hyperplane can be found by minimising the

following quadratic optimisation problem:

min
w,b,ξ

{
1

2
w⊺w + C

N∑
i=1

ξi

}
, (26)

subject to

yi (w
⊺ϕ(xi) + b) ≥ 1− ξi, where ξi ≥ 0, (27)

where b is the bias term, C is the regularization or cost parameter, w is the vector of the hyperplane,

and ϕ(xi) maps xi into a higher dimension. Note that the slack variables, denoted ξi (i = 1, 2, ..., N),

are needed to relax the separability constraint defined in (27).

The decision function is given by:

sgn

(
N∑
i=1

yiαiK(xi,x) + b

)
, (28)

where αi ∈ [0, C], and K(xi,x) is a kernel function. If the decision function is not linear then a specific

kernel function is needed in order to apply linear classifiers. This is discussed in the next section.
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6.1.2 Kernel functions

Different kernel functions, denoted K(xi,xj), are documented in the literature. The most commonly used

ones include the polynomial, radial basis, and sigmoid (i.e. neural network activation) kernel functions

which are mathematically defined by:

K(xi,xj) = (x⊺
i xj)

p, (29)

K(xi,xj) = exp
(
−γ||xi − xj ||2

)
, γ > 0, (30)

and

K(xi,xj) = tanh (kx⊺
i xj + δ) , k > 0 and δ > 0, (31)

where p is a tunable parameter that is specified a priori by users.

6.2 The MEHWMA scheme incorporated with SVM

In this paper, a SVM will be implemented along with a MEHWMA scheme using the radial basis kernel

defined in (30). Note that the radial basis kernel was selected because its simplicity, high accuracy and

extended use in SPM. Once the MEHWMA scheme gives an OOC signal, a SVM will then determine the

variable (or quality characteristic) that caused the OOC signal. A SVM with a radial basis kernel will

be fitted using the svm function using the e1071 R package. The γ parameter of the kernel function as

well as the cost parameter C both need to be determined through additional steps. A dataset consisting

of samples that caused OOC signals and which variable was responsible for each signal will be used to

train the SVM. A Cross-validation procedure will then be used to train the model and determine the

parameters γ and C that optimize the models prediction accuracy.

6.3 MEHWMA monitoring scheme integrated with a SVM: An illustrative

example using real-life data

This illustrative example is based on bivariate data from Chen et al. (2005) which represents the pro-

duction of springs and contains samples of two variables namely, the spring inner diameter (X1) and the

spring elasticity (X2). Twelve samples of size 5 for X1 and X2 are given in Table 3. From Chen et al.

(2005), the IC mean vector and covariance matrix for the process are given by

µ0 =

28.29

45.85

 and Σ0 =

 0.0035 −0.0046

−0.0046 0.0226

 , (32)
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respectively. To detect which sample is OOC, the bivariate EHWMA (BEHWMA) scheme with smoothing

parameters ϕ1 = 0.25 and ϕ2 = 0.05 will be used. Then, from Table 2, in order to have an ARL0 value

close to 200, the value of hMEH needs to be set to 10.34. Once the OOC samples have been determined

by the scheme, a SVM is used to identify which characteristic caused the signal for each OOC sample.

The SVM will use the sample averages of X1 and X2 as input.

A radial SVM was trained using data that were simulated from a bivariate normal distribution with

the same IC mean and variance given in (32) where one variable was forced to be OOC by shifting its

mean. Since the data is bivariate, the radial function of the SVM first maps the data into 3 dimensions

and then fits a linear hyperplane separating the observations in this space. The contour of linear hyper-

plane can then be plotted in 2 dimensions which will then provide the prediction regions for the model.

The sigma parameter of the radial function was estimated by determining the value that maximises the

prediction accuracy of the model. The final model was fitted with a γ parameter of 1.69 and a cost

parameter of 1. This model achieves a 94.7% prediction accuracy when using 5-fold cross-validation, and

the prediction regions of the fitted SVM are given in Figure 6.

Table 3: Spring manufacturing process data

Sample Spring manufacturing process data
X1 X2

1 28.1 28.3 28.3 28.2 28.3 46.3 45.8 45.9 45.9 45.8
2 28.5 28.4 28.3 28.3 28.2 45.9 45.9 45.8 45.9 45.9
3 28.3 28.3 28.3 28.4 28.3 45.8 45.8 45.8 45.5 45.6
4 28.2 28.3 28.3 28.3 28.3 45.8 46.0 45.8 46.0 45.9
5 28.3 28.4 28.3 28.3 28.3 45.8 45.9 46.0 45.8 45.7
6 28.3 28.3 28.3 28.3 28.2 45.8 45.9 45.8 45.9 46.0
7 28.2 28.3 28.3 28.4 28.4 45.9 45.8 45.7 45.8 45.7
8 28.2 28.4 28.3 28.3 28.3 45.8 45.9 45.7 45.8 45.7
9 28.3 28.4 28.3 28.4 28.3 45.6 46.1 45.9 45.6 45.9
10 28.3 28.3 28.3 28.4 28.3 45.7 45.8 45.8 45.9 45.9
11 28.4 28.4 28.4 28.5 28.4 45.8 45.4 45.8 45.8 45.9
12 28.2 28.2 28.3 28.1 28.4 45.3 45.3 45.7 45.8 45.9
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Figure 6: Prediction regions of radial SVM

Applying the BEHWMA scheme to the data, the plot of T 2 statistics is shown in Figure 7, where the

red dashed line represents the control limit hMEH. It can be seen that the BEHWMA scheme gives an

OOC signal on the 11th and 12th samples as their T 2 values plot above hMEH. Using the proposed SVM

algorithm, it is determined that there was a significant change in X1 on the 11th sample and another

significant change in X2 on the 12th sample. Operators would then be recommended to make correctional

actions to restore the process. Since these results are in line with what was expected (see Chen et al.

(2005)), the BEHWMA and proposed SVM are shown to perform accurately in this case. The final results

of this example are summarized in Table 4.
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Figure 7: Bivariate EHWMA chart for spring manufacturing samples

Table 4: Final results for spring manufacturing process data

Spring manufacturing process data MEHWMA SVMSample X1 X2 T2 OOC? Cause
1 28.1 28.3 28.3 28.2 28.3 46.3 45.8 45.9 45.9 45.8 4.22 NO -
2 28.5 28.4 28.3 28.3 28.2 45.9 45.9 45.8 45.9 45.9 2.48 NO -
3 28.3 28.3 28.3 28.4 28.3 45.8 45.8 45.8 45.5 45.6 0.01 NO -
4 28.2 28.3 28.3 28.3 28.3 45.8 46.0 45.8 46.0 45.9 0.20 NO -
5 28.3 28.4 28.3 28.3 28.3 45.8 45.9 46.0 45.8 45.7 0.06 NO -
6 28.3 28.3 28.3 28.3 28.2 45.8 45.9 45.8 45.9 46.0 0.08 NO -
7 28.2 28.3 28.3 28.4 28.4 45.9 45.8 45.7 45.8 45.7 0.75 NO -
8 28.2 28.4 28.3 28.3 28.3 45.8 45.9 45.7 45.8 45.7 0.82 NO -
9 28.3 28.4 28.3 28.4 28.3 45.6 46.1 45.9 45.6 45.9 1.76 NO -
10 28.3 28.3 28.3 28.4 28.3 45.7 45.8 45.8 45.9 45.9 1.94 NO -
11 28.4 28.4 28.4 28.5 28.4 45.8 45.4 45.8 45.8 45.9 12.38 YES X1
12 28.2 28.2 28.3 28.1 28.4 45.3 45.3 45.7 45.8 45.9 39.89 YES X2

7 Concluding remarks

In this paper, new univariate and multivariate EHWMA schemes for monitoring the process mean and

mean vector have been introduced and their performances and IC robustness have also been evaluated

using intensive simulations. It has been found that the new schemes are not IC robust but perform better

for small smoothing parameters ϕ1 and ϕ2. Therefore, practitioners in the industries are recommended

to use small smoothing parameters. The new schemes have also been compared to existing monitoring

schemes and the results showed that they outperformed them in many cases in zero-state. However, in

steady-state, the proposed MEHWMA scheme is outperformed by the MHWMA and MEWMA schemes.

A BEHWMA scheme has been integrated with a SVM to enable it to detect the variable that caused the

OOC signal using real-life data from a spring manufacturing process. The integrated SVM was shown to

26



perform accurately in correctly classifying which quality characteristic went OOC with 94.7% prediction

accuracy. Note that the proposed schemes are designed under the assumption of normality. In the case

where the underlying process distribution departs from normality, the properties and results provided in

this paper should be revisited. If there is doubt concerning the nature and shape of the underlying process

distribution, practitioners in the industries are advised to use non-parametric versions of the proposed

schemes (this will be investigated in future). Future research opportunities could include:

• Integrating other ML techniques such as the ANN, MARS, etc. to the MEHWMA scheme.

• Designing new SVMs with higher sets of hyperplanes to facilitate the integration of SVM to multi-

variate schemes when p is considerably larger.

• Integrating ML tools to non-parametric multivariate monitoring schemes to provide more robust

and efficient schemes when the assumption of normality is violated.
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Appendices

Appendix A:

Derivations of the properties of the EHWMA statistic

To derive the properties of the univariate EHWMA statistic, (17) can be rewritten for the cases t = 1

and t > 1.

For t = 1, we have:

EH1 = ϕ1X1 − ϕ2X0 + (1− ϕ1 + ϕ2)X̄0

= ϕ1X1 − ϕ2µ0 + (1− ϕ1 + ϕ2)µ0

= ϕ1X1 + (1− ϕ1)µ0, (A1)

And for t > 1,

EHt = ϕ1Xt − ϕ2Xt−1 + (1− ϕ1 + ϕ2)X̄t−1

= ϕ1Xt − ϕ2Xt−1 + (1− ϕ1 + ϕ2)

(
1

t− 1

t−1∑
i=1

Xi

)

= ϕ1Xt − ϕ2Xt−1 +

(
1− ϕ1 + ϕ2

t− 1

)(t−2∑
i=1

Xi +Xt−1

)

= ϕ1Xt +

(
1− ϕ1 + ϕ2 − (t− 1)ϕ2

t− 1

)
Xt−1 +

(
1− ϕ1 + ϕ2

t− 1

)(t−2∑
i=1

Xi

)

= ϕ1Xt +

(
1− ϕ1 + (1− (t− 1))ϕ2

t− 1

)
Xt−1 +

(
1− ϕ1 + ϕ2

t− 1

)(t−2∑
i=1

Xi

)

= ϕ1Xt +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)
Xt−1 +

(
1− ϕ1 + ϕ2

t− 1

)(t−2∑
i=1

Xi

)
. (A2)

Now, to derive the expected value of EHt we start with the case where t = 1. Using (A1) and the

properties of expected value, we get:

E (EH1) = E [ϕ1X1 − ϕ2µ0 + (1− ϕ1 + ϕ2)µ0]

= ϕ1E [X1]− ϕ2µ0 + (1− ϕ1 + ϕ2)µ0

= ϕ1µ0 − ϕ2µ0 + (1− ϕ1 + ϕ2)µ0

= µ0.
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Next, for the case where t > 1, we use (A2) and get:

E (EHt) = E

(
ϕ1Xt +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)
Xt−1 +

(
1− ϕ1 + ϕ2

t− 1

)(t−2∑
i=1

Xi

))

= ϕ1E (Xt) +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)
E (Xt−1) +

(
1− ϕ1 + ϕ2

t− 1

)(t−2∑
i=1

E (Xi)

)

= ϕ1µ0 +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)
µ0 +

(
1− ϕ1 + ϕ2

t− 1

)
(t− 2)µ0

=

(
(t− 1)ϕ1 + 1− ϕ1 − (t− 2)ϕ2 + (1− ϕ1 + ϕ2)(t− 2)

t− 1

)
µ0

=

(
tϕ1 − ϕ1 + 1− ϕ1 + (1− ϕ1 + ϕ2 − ϕ2)(t− 2)

t− 1

)
µ0

=

(
tϕ1 − 2ϕ1 + 1 + (1− ϕ1)(t− 2)

t− 1

)
µ0

=

(
tϕ1 − 2ϕ1 + 1 + t− tϕ1 − 2 + 2ϕ1

t− 1

)
µ0

=

(
t− 1

t− 1

)
µ0

= µ0,

and thus,

E (EHt) = µ0.

To derive the variance of EHt, we will again start with the case where t = 1 and use (A1), which results

in:

V (EH1) = V (ϕ1X1 − ϕ2µ0 + (1− ϕ1 + ϕ2)µ0)

= ϕ2
1V (X1) + 0 + 0

= ϕ2
1σ

2
0 . (A3)

Then, for the case where t > 1, using (A2) we get:

V (EHt) = V

(
ϕ1Xt +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)
Xt−1 +

(
1− ϕ1 + ϕ2

t− 1

)(t−2∑
i=1

Xi

))

= ϕ2
1V (Xt) +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)2

V ar [Xt−1] +

(
1− ϕ1 + ϕ2

t− 1

)2
(

t−2∑
i=1

V (Xi)

)

= ϕ2
1σ

2
0 +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)2

σ2
0 +

(
1− ϕ1 + ϕ2

t− 1

)2

(t− 2)σ2
0

=

(
ϕ2
1 +

(
1− ϕ1 − (t− 2)ϕ2

t− 1

)2

+

(
1− ϕ1 + ϕ2

t− 1

)2

(t− 2)

)
σ2
0 ,
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and thus, the variance of EHt is given by:

V (EHt) =


ϕ2
1σ

2
0 , for t = 1(

ϕ2
1 +

(
1−ϕ1−(t−2)ϕ2

t−1

)2
+
(

1−ϕ1+ϕ2

t−1

)2
(t− 2)

)
σ2
0 , for t > 1.

(A4)

Lastly, the control limits of the univariate EHWMA statistic are found by using the formula

UCLEHt
/LCLEHt

= E (EHt)± LEH

√
V (EHt), (A5)

where LEH is the control limit constant.

Appendix B:

R code used and additional tables

https://github.com/Luke-Pieters/EHWMA_Scheme_2021
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