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1. INTRODUCTION 
 

The use of response surface methods generally begins with a process or system 

involving a response y that depends on a set of k controllable input variables (factors) x1, 

x2,…,xk. To assess the effects of these factors on the response, an experiment is conducted 

in which the levels of the factors are varied and changes in the response are noted. The 

size of the experimental design (number of distinct level combinations of the factors as 

well as number of runs) depends on the complexity of the model the user wishes to fit. 

Limited resources due to time and/or cost constraints are inherent to most experiments, 

and hence, the user typically approaches experimentation with a desire to minimize the 

number of experimental trials while still being able to adequately estimate the underlying 

model.   

There are many different ways to assess a design’s capability to estimate the 

underlying model. For instance, one can focus on the quality of parameter estimates 

(often quantified by the D-criterion) or the precision of model predictions such as with 

the minimization of average prediction variance [(V, Q or IV-criterion) or minimization 

of worst prediction variance (G-criterion)]. The use of these ‘alphabetic optimality’ 

criteria for comparing competing designs is well documented (see Myers and 

Montgomery 2002 pp. 390-402). 

Embedded in the calculation of each of the alphabetic optimality criteria is the 

information matrix of the estimated model parameters. The information matrix is based 
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on the error structure and the error structure is a function of how one randomizes the run 

order of the experimental trials. Frequently, experiments are designed assuming a 

completely random run order. However, if the levels of one or more factors’ are difficult 

and/or costly to change, the practitioner is not as inclined to run the experiment using a 

completely randomized run order. Instead, the practitioner may select a run order 

involving fewer changes of the hard to change factor. The resulting experiment generally 

involves two separate randomizations: one for the run order of the levels of the hard to 

change factors and one within each level combination of the hard to change factors, to 

randomize the run order of all possible combinations of the easy to change variables. 

When there are separate randomizations for hard to change factors and easy to change 

factors, the error structure is that of a split plot design. Letsinger, Myers, and Lentner 

(1996), Ganju and Lucas (1999), and Ju and Lucas (2002) describe split plot designs 

resulting from factor levels on consecutive runs of an experiment not being reset. 

Although the selected experimental design may have nice statistical properties for 

complete randomization, if the design is run as a split-plot, the design’s statistical 

properties may not be well understood and hence are unlikely to be optimal. Ganju and 

Lucas (1999) point out that split-plot designs chosen by random run order are not as 

appealing as those chosen by a good design strategy. Design strategies for split-plot 

randomization have received considerable attention in the literature of late. Huang, Chen 

and Voelkel (1998) and Bingham and Sitter (1999) derive minimum aberration two-level 

fractional factorial designs for screening experiments. Anbari and Lucas (1994) 

considered the G-optimality criterion for several competing split-plot designs. Goos and 

Vandebroek (2001 and 2004) proposed exchange algorithms for constructing D-optimal 

split-plot designs. Liang, Anderson-Cook, and Robinson and Myers (2004, 2005) 

considered graphical techniques for assessing competing split-plot designs over the 

design region in terms of G- and V-efficiency. Bisgaard (2000), noting that the benefits of 

running a split plot design are the savings obtained by reducing the number of whole-plot 

setups, formulated cost functions indicating the relative costs of performing each of the 

sub-plot tests to the cost of setting up the individual whole-plot tests.  

With the exception of Bisgaard (2000), optimal strategies for split-plot designs, in 

large part, have been focused on objective criteria that reflect the statistical properties of 



 3

the design (the D-criteria involves quality of parameter estimates, while G- and V-

optimality involve quality of prediction). The fact that the split-plot error structure is a 

result of hard-to-change factors often implies that there is greater cost/time involved in 

changing the levels of the whole plot factors than there is in changing the levels of the 

subplot factors. As a result, the practitioner may desire to use design selection criteria that 

not only reflect the statistical properties of the design but also the cost of the experiment. 

For instance, suppose we have three factors, one hard to change (w) and two easy to 

change (x1 and x2) variables, each at two levels run as a full factorial design. Consider the 

three competing designs in Table 1 with 2, 4 and 8 whole plots, respectively. The 

numbers in the columns for each design specify which whole plot will contain that 

combination of factor combinations. For any design that has more than one observation 

per whole plot, the level of w remains unchanged within a whole plot, making it possible 

to collect these observations without changing whole plot levels. Goos and Vandebroek 

(2004) state that Design 2 is the best possible eight run split plot design for estimating the 

pure linear model in terms of D-efficiency. The authors go on to state that when there is 

more variation among whole plots than there is among subplots, Design 1 is always more 

D-efficient than Design 3, the completely randomized design.  

 

Table 1: Eight runs factorial design in split-plot structure. The Design 1, 2 and 3 indicates 
the index of the whole plot, and corresponding w level represents the whole plot level.  

w x1 x2 Design 1 Design 2 Design 3
-1 -1 -1 1 1 1
-1 -1 +1 1 2 2
-1 +1 -1 1 2 3
-1 +1 +1 1 1 4
+1 -1 -1 2 3 5
+1 -1 +1 2 4 6
+1 +1 -1 2 4 7
+1 +1 +1 2 3 8
 

Although Design 2 may be the best possible 8 run split-plot design in terms of D-

efficiency, a consideration of ‘cost’ in terms of ease of experimentation, time, etc., may 

suggest other alternatives. For instance, suppose the only appreciable cost in 

experimentation is due to changes in the hard to change factor. If this is the case, Design 

1 is twice as appealing as Design 2 (Design 1 requires two set-ups for the levels of w and 
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Design 2 requires four) and four times more appealing than Design 3 (Design 3 involves 

eight set-ups). Clearly there is a trade-off between “good statistical properties” and “cost 

of experimentation”. Although alphabetic optimality criteria are useful in determining 

split-plot designs, these criteria do not reflect the different costs which are likely 

associated with hard to change and easy to change factors. 

Dompere (2004) states “there are two important sides to any decision…the two 

sides are simply the costs that may be incurred in order to receive the benefits that may be 

associated with a particular decision.” Relating this to split-plot experimentation, a design 

that may have nice statistical properties in terms of the estimated model may not be 

appealing from a cost perspective. In the split-plot setting, we often need to find the right 

balance of designs with good statistical properties and are within the experimenter’s 

budget  

In this manuscript, we propose cost adjusted D, G, and V optimality criteria for 

split-plot designs. We adjust the D, G, and V optimality criteria for cost, where the 

expressions for cost are similar to that of Bisgaard (2000) with adjustments made to allow 

for unequal whole plot size. With the cost adjusted optimality criteria, the user is 

presented with single objective functions that simultaneously account for the desired 

statistical property (efficient parameter estimation or model prediction) and cost of 

experimentation. Utilizing the new objective functions, we demonstrate strategies for 

choosing optimal split-plot designs and then illustrate these ideas with two examples. In 

the next section we discuss the cost formulations and then we develop the appropriate 

cost adjusted D, G, and V expressions for split-plot designs. Finally, two examples are 

provided which demonstrate the trade-off between ‘good statistical properties’ and ‘cost 

reduction’. 

 

2. COST FORMULATIONS 

 

In practice, if a completely randomized experiment is run, it is generally the case 

that changing the levels of a factor is uniformly difficult across all factors. As a result, the 

cost or time associated with the experiment is related only to the number of experimental 

units (EUs). In split-plot experiments, there are generally two types of EUs –whole plots 
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and sub plots. In industrial experimentation, whole plot factors are those factors whose 

levels are hard/costly to change and subplot factors are those factors whose levels are 

relatively easy to change. Thus, in considering the cost of running an industrial split-plot 

experiment, the total cost is a function of both the cost associated with whole plot units as 

well as the cost associated with subplot units. Similar to Bisgaard (2000), we write the 

cost of a split-plot experiment as  

     WP SPC C a C N= +     (1) 

where C denotes the total cost of the experiment, a denotes the number of whole plot 

units, N is the total number of subplot units, and WPC  and SPC  are the costs associated 

with individual whole plot and subplot, respectively. Note that cost for measuring the 

observation is considered a part of cost of subplot. 

In practice, it may be difficult for the practitioner to ascertain the exact costs 

associated with whole plots or subplots, i.e. precise values for WPC  and SPC , but it may be 

more feasible to specify the relative cost of these quantities, i.e. SP WPr C C= . Hence, the 

cost of the experiment is proportional to a rN+ , i.e.  

C a rN∝ + .      (2) 

Writing the cost in this manner allows flexibility for specifying the relative costs of the 

two cost components without having to specify their exact values. Generally speaking, 

WPC  is greater than SPC  due to the time/effort involved with changing levels of the whole 

plot factors. As WPC  increases relative to SPC , r approaches zero. On the other hand, if 

obtaining the measurement of the response for each observation is expensive, then SPC  

may be relatively large compared to WPC  and the r will increase. When WPC = SPC , r = 1. 

It is noteworthy that the completely randomized design (CRD) can be thought as a 

special case of a split-plot design where each observation can be treated as a separate 

whole plot. Also the number of whole plots and subplots are equal and the total cost of 

the experiment is given by 

    ( ) ( )1WP SP WPC C C N C r N= + = + .   (3) 

The expression in (3) is proportional then to the standard penalty of N commonly used for 

the D-, G-, and V-optimality criteria in completely randomized experiments. In the next 
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section, we review the general model for split-plot designs and present some alphabetic 

optimality criteria for split-plot designs. We then present cost adjusted D-, G-, and V-

criteria which utilize the expressions for cost discussed above. 

 

3. THE SPLIT-PLOT MODEL AND COST ADJUSTED D-, G-, AND V- 

OPTIMALITY CRITERIA 

 

When the experiment is run as a split-plot design with a whole plots, the 

following linear mixed model can be written to explain the variation in the n× 1 response 

vector, y, 

     εδβ      ++= ZXy .    (4) 

Regarding notation, X is the N × p design matrix expanded to model form for p 

parameters including the intercept; Z is an N× a classification matrix of ones and zeroes 

where the ijth entry is 1 if the ith observation (i = 1,…,N) belongs to the jth whole plot (j = 

1,…,a); δ  is an a× 1 vector of random effects where the jδ  elements are assumed i.i.d 

( )2N 0, δσ  with 2
δσ  denoting the variability among whole plots; ε  is the n× 1 vectors of 

residual errors where the iε  elements are assumed i.i.d ( )2N 0, εσ and 2
εσ denotes the 

variation among subplot units. It is also assumed that and δ ε  are independent.  

The covariance matrix of the responses in a split-plot design is  

( ) 2 2 2 'Var  =  = '  +  =  + n ndδ ε εσ σ σ∑   y ZZ I ZZ I    (5) 

where nI is an n × n identity matrix and 2 2=d δ εσ σ  represents the variance component 

ratio. For simplicity of presentation, we will assume that observations are sorted by the 

whole plots, implying 
1

 = { , , }
an ndiagZ 1 1 , where 

jn1  is an 1jn ×  vector of one’s and jn  

is the size of the jth whole plot. Assuming sorted observations by whole plots allows one 

to conveniently write the covariance matrix as 

    
1

 = 

a

∑ 
 ∑  
 ∑ 

0

0
     (6) 

where each nj × nj matrix j∑  is given by 
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2 2 2

2 2 2

+
 = 

+
j

ε δ δ

δ ε δ

σ σ σ

σ σ σ

 
 ∑  
  

.   (7) 

Note that the variance of an individual observation is the sum of the subplot and whole 

plot error variances, 2 2+ε δσ σ . A popular method for estimating the variance components 

is restricted maximum likelihood (REML).  

 The vector of fixed effects parameters, β , is estimated via generalized least 

squares, yielding 

     ( ) 1' 1 ' 1ˆ  = β ∑ ∑
−− −X X X y .    (8) 

The covariance matrix of the estimated model coefficients is given by 

    ( ) ( ) 1' 1ˆVar β ∑
−−= X X .    (9) 

When the design is completely randomized, ( ) ( ) 1' 2ˆ ˆ=Var σ
−

X Xβ . Comparing the 

expressions for the estimated model coefficients for split-plot designs and CRDs is 

important as it lends insight into the greater complexity associated with optimal design 

strategies for split-plot designs vs. the CRD. For example, if one wishes to obtain the 

optimal design in terms of ability to estimate model parameters, the optimal CRD 

depends only on the settings of the levels of the terms in X. The optimal split plot design 

in terms of parameter estimation will depend on the structure of X, the variance ratio, d, 

the number of whole plots, a, and the dimensionality of each of the j∑  (determined by 

the number of subplots within each whole plot), and subplot levels arrangements in whole 

plots.   

 

3.1 Cost Adjusted D-Optimality Criterion 

 Strategies for choosing an optimal design depend on the goal of the researcher. If 

the desire is to have quality model parameter estimates, one strategy is to find a design 

with high D-efficiency. The D-efficiency criterion is defined in terms of the scaled 

moment matrix. For CRDs, the scaled moment matrix is ' = NM X X , scaled by 2 Nσ . 
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Note scaling by 2σ (the observation error variance), causes M  to be unitless and the 

scaling by 1 N  causes M to be reflective of design size. Since the cost of a CRD is 

determined by the design size, the scaling by 1 N  is essentially a scaling for cost. The D-

optimal design is then the design that maximizes ( )' = pNM X X  where p denotes the 

number of model parameters. The moment matrix for split-plot designs is ( )' −1∑X X . 

Scaling the information matrix in a similar fashion to the scaling in the CRD, we can 

define the scaled moment matrix for split-plot designs as 

    
( )( )2 2 '

 = 
cost

δ εσ σ −1∑+ X X
M . 

Note that ( )( )
1

2 2 ' ' ' 1
2 2 ( )δ ε
δ ε

σ σ
σ σ

−
−

   + = =   +  
X X X X X R X−1 ∑
∑ , where R denotes the 

observational correlation matrix. Rewriting M we have 

     
( )'

 = 
cost

X RX
M     

Since R is the correlation matrix, M is unitless as desired. Since the cost of a split-plot is 

not as simple as the design size, N, we must adjust for an expression for cost that allows 

for potentially different costs associated with whole plots and subplots. A natural divisor 

is the expression for cost provided in (2), yielding ( )'= a rN+M X RX . The cost-

adjusted D-efficiency is then defined as 

     
( )

( )

1/

1/

p

eff p

D

D
D

Max D
Ω∈

=
M

M
.  

Since the upper bound for the determinant is generally unknown, we can consider relative 

performance for two or more designs by looking at the cost adjusted D-criteria,  

     

1/'
1/ = 

p
pD

a rN
=

+

X RX
M ,   (10) 

where a good design maximizes this criterion. 
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3.2 Cost Adjusted G- and V-Optimality Criteria 

 The predicted value of the mean response at any location 0x  is given by 

    ( ) 1' ' ' '
0 0 0

ˆˆ  =  = 
−

y x x X X X y−1 −1β ∑ ∑ , 

where 0x  is the point of interest in the design space expanded to model form. The 

prediction variance is then given by 

    ( ) ( ) 1' '
0 0 0ˆ  = Var

−
y x X X x−1∑ .   (11) 

If interest is in finding a design with precise estimates of the mean, G- and V-efficiency 

of the design are popular choices. As with D-efficiency, the desire is to work with a scale 

free quantity that provides a penalty for design cost. In the CRD, the prediction variance 

is given by 

      ( ) ( ) 12 ' '
0 0ˆ  = Var σ

−
y x X X x   

and the proper scaling and cost penalty is 2 Nσ  (observation error divided by the design 

size). The scaled prediction variance for the CRD is then given by 

    
( ) ( ) 10 ' '

0 02

ˆ
 = 

NVar
SPV N

σ
−   =

y x
x X X x . 

The scaling of the prediction variance for split-plot designs can be done in a similar 

fashion by scaling by 2 2( ) ( )a rNδ εσ σ+ +  (observation error divided by the design cost). 

The cost penalized scaled prediction variance (CPPV) for the split plot design is then 

given by 

( ) ( ) ( )

( ) ( )

11
0 ' '

0 02 2 2 2

1' ' 1
0 0

ˆ+
 = = +

            = +

a rN Var
CPPV a rN

a rN

δ ε δ εσ σ σ σ

−−

−−

          + +  

y x
x X X x

x X R X x

Σ

 (12) 

By minimizing the average or maximum CPPV over the entire design region, one 

can obtain the best balance between quality and cost in terms of V- or G-efficiency. 

Anbari and Lucas (1994) used the lower bound of the maximum scaled prediction 

variance for CRD (p, the number of model parameters) to evaluate G-efficiency of split-
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plot designs and claimed some super-efficient designs. Apparently p is not a reasonable 

lower bound for split-plot design because the two errors structure and the various values 

of variance component ratio play role in the G-efficiency. It should be pointed out that 

the actual bounds for the D-, G-, and V-efficiencies for SPDs needs further investigation, 

and here we focus more on relative efficiencies for comparisons between competing 

designs. 

In the following sections we examine first and second order model SPDs utilizing 

the cost adjusted D-, G-, and V-criteria developed above. For simplicity of presentation, 

we discuss experiments with three factors – one whole plot variable, w, and two subplot 

variables, x1 and x2. Section 4 involves a study of a first order design in which the 

candidate set of design points is the 8 runs of a 23 factorial design. All possible sequences 

of run orders are permuted and their corresponding split-plot designs are constructed. By 

evaluating the estimation and prediction properties of these designs with and without cost 

penalization, we demonstrate that the selected design is influenced by not only the split-

plot error structure but also the relative costs between whole plots and subplots. The best 

design in terms of a joint consideration of cost and quality is often different from the 

optimal design when only quality is considered. As might be expected, designs with a 

smaller number of whole plots are preferred as the whole plots become more expensive. 

In Section 5, five variations of the central composite design (CCD) are studied for the 

second order model. The study shows that under different scenarios, the CPPV penalizes 

designs with larger numbers of whole plots proportional to the relative cost of the whole 

plots to subplots. We also provide some design strategies for second order split plot 

designs. 

 

4. EFFECT OF COST IN DESIGNS WITH FIRST-ORDER MODEL  
 

In this section, we consider an example with 8 design points for a first-order 

model with fixed effects modeled as 1 2 0 1 2 1 3 2( , , )f w x x w x xβ β β β= + + + . The 8 designs 

points are the usual factorial runs in a 23 factorial experiment with one whole plot factor, 

w, and two subplot factors x1 and x2. All possible sequences of different run orders are 

generated and the corresponding SPD can be constructed based on the assumption that 
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the whole plots level changes are expensive so that the same consecutive whole plot 

(hard-to-change) factor levels are not reset. Then cost penalized evaluations are 

performed for the obtained experiments in terms of D-, G- and V-efficiency under 

different combinations of cost ratio, r, representing the relative cost of the whole plot and 

subplot, and variance component ratio, d, indicating the relative size of variability from 

the two components. The comparisons between all the designs with different number of 

whole plots and sizes demonstrate desired split-plot settings under different conditions of 

the real experiments.  

By permuting the run order (1,2,3,4,5,6,7,8), all possible SPDs with 8 runs can be 

obtained by matching the values in the sequences to the 8 factorial runs listed in standard 

order. From the sequences, the split-plot structure with the number and structure of the 

whole plots can be extracted. Note that this is different from the way the design is set-up 

(CRD) by Joiner and Campbell (1976), who did not take into account the correct error 

structure for a design when some factors levels are assumed not reset. Here we assume 

that consecutive runs with same whole plot level are not reset and consequently are 

considered part of the same whole plot. Because of the assumed low cost of changing 

subplot levels, the subplot levels for runs in a same whole plot are always assumed to be 

reset. This applies regardless of whether the adjacent observations within a whole plot 

have the same subplot levels or not. Consequently, the observations from different whole 

plots are assumed to be independent, but observations within the same whole plot are 

assumed dependent. The generated split-plot designs have a relatively low unbalanced 

level with the number of whole plots at each of  +1 and –1 being the same or have at most 

a difference of 1. For each run order sequence and corresponding split-plot design, the 

determinant of estimates variances, average and maximum prediction variance with and 

without cost adjustment are calculated. The quality without cost penalization indicates the 

precision of the parameters estimates and predicted value. Cost penalized evaluation tells 

us the desirability of a design when its expense is taken into account. Design performance 

is strongly related to the variance component ratio, d, through the correlation matrix of 

observations. Bisgaard and Steinberg (1997) stated that the whole plot variance is usually 

larger than subplot variance in prototype experiments. Letsinger et al. (1996) studied a 

split-plot experiment in chemical industry with 2 2/δ εσ σ = 1.04. Vining, Kowalski and 
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Montegomery (2004) estimated the variance terms using pure error and obtain the 

variance ratio 5.65. Webb, Lucas and Borkowski (2002) described an experiment with 

variance ratio 6.92 in a computer component manufacturing company. Kowalski, Cornell 

and Vining (2002) studied a mixture experiment with process variables where the 

estimated variance ratio is 0.82. In this paper, specific values of d=0.5, 1 and 10 are 

considered in more details, representing the situations that the whole plot variance is half, 

same and ten times the subplot variance, respectively. For the cost ratio, r=0, 0.5, and 1 

are considered, and represent the scenarios that subplot costs nothing, the whole plot 

costs twice as much as a subplot, and they are equally expensive.  

An exhaustive search provides 31 distinct SPDs in terms of cost penalized 

precision of estimation and prediction. We consider all those designs that alternate 

between the two levels of the whole plot factor on adjacent whole plots. They are listed in 

the Table 2. Designs are equivalent (in terms of isomorphism) if they have at least one of 

the following four relations,  

- The whole plots are changes from +/-1 to -/+1. 

- The order of any whole plots with same whole plot level can be changed. 

- The subplots levels are switched between +1 and –1. 

- The subplots within each whole plot are permuted. 

 

Table 2: 31 distinct designs, one combination (w, x1, x2) represents a design point and indicates 
the levels of the three factors at this point, a is the number of whole plots, ID is the identification 
of the design in the list. The units in the same cell of the table are within the same whole plot.  
ID a Whole plots       

1 2 

(-1, -1, -1) 
(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

      

2 3 (-1, -1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
 (-1, 1, -1)      

3 3 (-1, -1, -1) 
(-1, -1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, 1, -1) 
 (-1, 1, 1)      

4 3 (-1, -1, -1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1)  
(-1, 1, -1) 
(-1, 1, 1) 

     

5 4 (-1, -1, -1) 
(-1, -1, 1) 

(1, -1, -1) 
(1, -1, 1) 

(-1, 1, -1)  
(-1, 1, 1) 

(1, 1, -1) 
(1, 1, 1)     

6 4 (-1, -1, -1) 
(-1, -1, 1) 

(1, -1, -1) 
(1, 1, -1) 

(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, 1)     

7 4 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, 1, -1)     
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(1, -1, 1) (-1, 1, -1) 
(-1, 1, 1) 

(1, 1, 1) 

8 4 (-1, -1, -1) (1, 1, 1) 
(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 

    

9 4 (-1, -1, -1) (1, -1, -1) 
(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

    

10 4 (-1, -1, -1) (1, -1, 1) 
(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, 1, -1) 
(1, 1, 1) 

    

11 4 (-1, -1, -1) 
(-1, 1, -1) 

(1, -1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1)     

12 4 (-1, -1, -1) (1, -1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1)     

13 4 (-1, -1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1) 

(1, -1, 1) 
(1, 1, -1)     

14 5 (-1, -1, -1) (1, -1, -1) 
(1, -1, 1) (-1, -1, 1) (1, 1, -1) 

(1, 1, 1) 
(-1, 1, -1) 
(-1, 1, 1)    

15 5 (-1, -1, -1) (1, -1, -1) 
(1, -1, 1) (-1, 1, -1) (1, 1, -1) 

(1, 1, 1) 
(-1, -1, 1) 
(-1, 1, 1)    

16 5 (-1, -1, -1) (1, -1, 1) (-1, 1, -1) 
(1, -1, -1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, 1)    

17 5 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, 1, -1) 
(-1, 1, 1)    

18 5 (-1, -1, -1) (1, -1, -1) 
(1, -1, 1) (-1, 1, 1) (1, 1, -1) 

(1, 1, 1) 
(-1, -1, 1) 
(-1, 1, -1)    

19 5 (-1, -1, -1) (1, -1, -1) (-1, 1, 1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1)    

20 5 (-1, -1, -1) (1, -1, 1) (-1, 1, 1) 
(1, -1, -1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1)    

21 5 (-1, -1, -1) (1, -1, -1) 
(1, 1, 1) (-1, -1, 1) (1, -1, 1) 

(1, 1, -1) 
(-1, 1, -1) 
(-1, 1, 1)    

22 5 (-1, -1, -1) (1, -1, -1) 
(1, 1, 1) (-1, 1, 1) (1, -1, 1) 

(1, 1, -1) 
(-1, -1, 1) 
(-1, 1, -1)    

23 6 (-1, -1, -1) (1, -1, 1) (-1, 1, -1) (1, 1, 1) (-1, -1, 1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, 1, -1)   

24 6 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, -1, 1) (-1, 1, -1) 
(-1, 1, 1) 

(1, 1, -1) 
(1, 1, 1)   

25 6 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, 1, -1) (-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, 1)   

26 6 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, 1, 1) (-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1)   

27 6 (-1, -1, -1) (1, -1, -1) (-1, 1, 1) (1, 1, 1) (-1, -1, 1) 
(-1, 1, -1) 

(1, -1, 1) 
(1, 1, -1)   

28 6 (-1, -1, -1) (1, -1, 1) (-1, 1, 1) (1, 1, -1) (-1, -1, 1) 
(-1, 1, -1) 

(1, -1, -1) 
(1, 1, 1)   

29 7 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, -1, 1) (-1, 1, -1) (1, 1, -1) 
(1, 1, 1) (-1, 1, 1)  

30 7 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, 1, 1) (-1, 1, -1) (1, -1, 1) 
(1, 1, -1) (-1, 1, 1)  

31 8 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, -1, 1) (-1, 1, -1) (1, 1, -1) (-1, 1, 1) (1, 1, 1) 

 

Among the designs in Table 2, we emphasize two different designs with the same 

whole plots settings. There are two distinct designs with 3 whole plots with sizes 2, 4 and 

2 respectively – design 2 and 3. Both designs are equally appealing from a cost 

perspective since both involve three whole plots. However, the designs are not equally 
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appealing in terms of estimation and prediction quality due to the different ways of 

splitting the four runs with w= −1 into two whole plots. In design 2, within the first and 

third whole plots, both x1 and x2 have different levels, hence they obtain the same and as 

much as amount of information from the contrasts within the whole plots. In design 3, the 

two subplots have the same level for x1 within the first and third whole plots, hence less 

information about x1 is obtained from the contrasts within the two whole plots in design 3 

than in design 2. We define the pattern in design 2 as “pattern A”, design 3 as “pattern 

B”. We can conclude that pattern A is more efficient for estimation and prediction than 

pattern B. We can also validate the conclusion from the information matrices. For equal 

whole plot and subplot variances (d=1), Design 2 has 1T −X R X = 

2.13 0.53 0 0
0.53 2.13 0 0

0 0 8 0
0 0 0 8

 
 
 
 
 
 

 with 

determinant equal to 273.07, and design 3 has 1T −X R X = 

2.13 0.53 0 0
0.53 2.13 0 0

0 0 5.33 0
0 0 0 8

 
 
 
 
 
 

 with 

determinant 182.04. We can see the two settings of subplot levels have equivalent effect 

on the estimate for the whole plot factor w and the subplot factor x2, but different effects 

on the subplot factor x1. The estimate of x1 from pattern A is more precise than from 

pattern B. Similarly, if a design has four whole plots and each of them has two subplots, 

the design where the four level combinations of subplot factors x1 and x2 with the same 

whole plot level are split into two whole plots as in pattern A (as for design 13 in Table 

2) is the best. This design has symmetric setting for the whole plot levels and subplot 

levels within all of the whole plots. 

First we consider D-efficiency. If the cost of the experiments is not a 

consideration, the best 5 designs are listed in Table 3 based on the determinant of 

estimates variances. These designs focus on the estimation property and minimize the 

volume of the confidence region for the regression coefficients. The highly efficient 

designs for different d values have only minor differences, which fortunately implies that 

the relative estimation performance of these top designs is quite robust to the changes in 

the variance components ratio. 
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Table 3: The best 5 designs with the best performances, i.e., the 5 highest values of 
1/ 41T −X R X . Higher value indicates more information for the parameters and thus more 

precise estimates. The sequence of whole plot sizes are listed in (n1,n2,…,na), where a is 
the number of whole plots of the design. 

 a ID Whole plot 
sizes  a ID Whole 

plot sizes  a ID Whole 
plot sizes 

4 13 2,2,2,2 4 13 2,2,2,2 4 13 2,2,2,2 
5 22 2,2,1,2,1 5 22 2,2,1,2,1 5 22 2,2,1,2,1 
6 28 1,1,2,2,1,1 6 28 1,1,2,2,1,1 4 12 1,2,3,2 
6 27 1,1,2,2,1,1 6 27 1,1,1,1,2,2 6 28 1,1,2,2,1,1

d=0.5 

7 30 1,1,1,1,1,2,1 

d=1 

5 21 2,2,1,2,1 

d=10 

5 21 2,2,1,2,1 
 

Interestingly, the best quality design is not the completely randomized design 

(CRD) (design 31 in Table 2), which implies that often split-plot designs are more 

efficient than completely randomized designs when hard-to-change factors exist. Note 

that this is true even when the higher expense and inconvenience of running the CRD is 

not accounted for. Goos and Vandebroek (2004) gave similar conclusions regarding the 

superiority of the split-plot scheme over the CRDs.  

The balanced design with 4 whole plots and each with whole plot size 2 (design 

13 in Table 2) provides the most precise parameter estimates. Notice this design follows 

“pattern A” as described above, where the 4 runs with same w level should be split 

according to pattern A for the two subplot factors, insuring that both x1 and x2 can obtain 

maximal information from the contrasts within each of the 4 whole plots, and thus 

resulting in the highest efficiency in terms of the parameter estimates. 

Taking into account the cost associated with changing the levels of the whole plot 

variable, the best 5 designs under different cost scenarios using equation (10) are 

provided in Table 4. The different cost scenarios select different best designs, but these 

designs are relatively robust to the changes of variance component ratio. This means that 

even if the guess of variance component ratio, d, provided by the practitioner before any 

data is collected is not precise, the best design obtained can still be close to or equal to 

the best one for the actual d value. For instance, if the guess is d=1 and the actual value is 

found to be d=3 after the data are collected from the experiment, the selected design 

based on d=1 is still optimal or at least highly efficient. This is good news for 
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practitioner, who frequently must select a design with little idea of the true value of d in 

real life experiments.  

Table 4: The best 5 designs with the best estimation precision with cost adjust (calculated 
by equation (10)). The larger value indicates higher cost penalized D-efficiency and thus 
more desirable.).  

 a ID Whole 
plot sizes  a ID Whole 

plot sizes  a ID Whole plot 
sizes 

2 1 4,4 2 1 4,4 2 1 4,4 
3 2 2,4,2 3 2 2,4,2 3 2 2,4,2 
3 4 1,4,3 3 4 1,4,3 3 4 1,4,3 
3 3 2,4,2 3 3 2,4,2 4 13 2,2,2,2 

r=0 
d=0.5 

4 13 2,2,2,2 

r=0 
d=1 

4 13 2,2,2,2 

r=0 
d=10 

3 3 2,4,2 
2 1 4,4 2 1 4,4 4 13 2,2,2,2 
3 2 2,4,2 3 2 2,4,2 3 2 2,4,2 
4 13 2,2,2,2 4 13 2,2,2,2 2 1 4,4 
3 4 1,4,3 3 4 1,4,3 4 12 1,2,3,2 

r=0.5 
d=0.5 

3 3 2,4,2 

r=0.5 
d=1 

4 12 1,2,3,2 

r=0.5 
d=10 

3 4 1,4,3 
4 13 2,2,2,2 4 13 2,2,2,2 4 13 2,2,2,2 
3 2 2,4,2 3 2 2,4,2 3 2 2,4,2 
2 1 4,4 4 12 1,2,3,2 4 12 1,2,3,2 
4 12 1,2,3,2 2 1 4,4 5 22 1,2,2,2,1 

r=1 
d=0.5 

3 4 1,4,3 

r=1 
d=1 

5 22 1,2,2,2,1 

r=1 
d=10 

2 1 4,4 
 

When the practitioner only cares about the cost of whole plots (r=0), the design 

with 2 whole plots is the best and the designs with small number of whole plots are 

preferred. However, this design has the unappealing property of non-estimability of 

whole plot error, which may present problems in the analysis and consequently is not a 

desirable design in practice. Hence, the best design selected turns out to be design 2 from 

Table 2. If the whole plot is slightly more or equally expensive to the subplot (r=1), 

designs with moderate number of whole plots are preferred. The balanced design with 4 

whole plots is best for estimation, and design 2 with 3 whole plots turn out to be second 

best design. Compared to the best 5 designs without cost penalizations, the desirable 

designs have smaller number of whole plots.  

We now consider V- and G-efficiency for the 31 possible designs. The 5 designs 

with the smallest average and maximum prediction variance (PV) are listed in Table 5. 

Note that all the designs assume a cuboidal region, thus the average prediction variance is 
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calculated by 
1 1 1

1 21 1 1

1 (  or ) 
8

PV CPPV dwdx dx
− − −∫ ∫ ∫ , and the maximum prediction variance 

is found in the design region {(w, x1, x2): -1 ≤ w ≤ 1, -1 ≤  x1 ≤ 1 and -1 ≤  x2 ≤ 1}.  

The SPDs with large number of whole plots (more than 6 in this example) are 

highly V-efficient, while the high G-efficiency designs prefer a smaller or moderate 

number of whole plots. When the variability of whole plots accounts for small or medium 

proportion of the observational variance (d=0.5 or 1), the CRD is the most V-efficient 

design and the second highest G-efficient design. When the whole plot variance 

dominates (d=10), the CRD is no longer the best, but is still highly V- and G-efficient. 

This contradicts the results based on D-efficiency that show the SPDs’ superiority over 

CRD for estimation as shown above and by Goos and Vandebroek (2004). This example 

demonstrates that the CRD is still superior to the SPDs when one is interested in overall 

prediction performance in the design region and the variance component ratio is small. If 

the relative size of the whole plot variance is large, SPDs become superior to the CRD, 

but does not dominate as much as for D-efficiency. 

 

Table 5: The best 5 designs in terms of average and maximum prediction variance. 
Smaller value indicates better performance in terms of V- and G-efficiency.  

Average prediction variance Maximum prediction variance  a ID Whole plot sizes a ID Whole plot sizes 
8 31 1,1,1,1,1,1,1,1 6 28 1,1,1,1,2,2 
7 30 1,1,1,1,1,2,1 8 31 1,1,1,1,1,1,1,1 
6 28 1,1,1,1,2,2 4 13 2,2,2,2 
6 27 1,1,1,1,2,2 4 11 2,2,2,2 

d=0.5 

7 29 1,1,1,1,1,1,2 5 21 1,2,1,2,2 
8 31 1,1,1,1,1,1,1,1 6 28 1,1,1,1,2,2 
7 30 1,1,1,1,1,2,1 8 31 1,1,1,1,1,1,1,1 
6 28 1,1,1,1,2,2 4 13 2,2,2,2 
6 27 1,1,1,1,2,2 4 11 2,2,2,2 

d=1 

7 29 1,1,1,1,1,1,2 5 21 1,2,1,2,2 
6 28 1,1,1,1,2,2 6 28 1,1,1,1,2,2 
7 30 1,1,1,1,1,2,1 6 25 1,1,1,1,2,2 
6 25 1,1,1,1,2,2 8 31 1,1,1,1,1,1,1,1 
6 26 1,1,1,1,2,2 4 13 2,2,2,2 

d=10 

8 31 1,1,1,1,1,1,1,1 4 11 2,2,2,2 
 
When all the designs are evaluated using cost penalized prediction variance, the 

best 5 designs are listed in Table 6 and 7 for average and maximum CPPV using equation 
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(12) over the entire cuboidal region. The design with two whole plots is best for the cost 

penalized V- and G-efficiency for r=0, but this design has the critical limitation noted 

above for data analysis and should likely be avoided. Thus if only the whole plot cost is 

important (r=0) and whole plots variance account for small or medium portion of the 

observation variance, design 2 with whole plots sizes (2,4,2) is the highest V-efficient. 

The balanced design with 4 whole plots is the best or the second best if the whole plot 

cost is moderately more than or comparable to the subplot cost (r=0.5 or 1) and under 

small variance component ratio (d=0.5 or 1). If the whole plot variance proportion 

increases (larger d values), the designs with more whole plots are preferred for overall 

prediction property. Compared to the estimation performance, the good prediction 

requires more whole plots. 

 
Table 6: The best 5 designs in terms of average CPPV. Smaller value indicates better 
design and higher cost adjusted V-efficiency.  

 a ID Whole plot 
sizes  a ID Whole 

plot sizes  a ID Whole plot 
sizes 

2 1 4,4 2 1 4,4 2 1 4,4
3 2 2,4,2 3 2 2,4,2 4 13 2,2,2,2
3 3 2,4,2 3 3 2,4,2 4 11 2,2,2,2
3 4 1,4,3 4 13 2,2,2,2 4 12 1,2,3,2

r=0 
d=0.5  

4 13 2,2,2,2 

r=0 
d=1 

3 4 1,4,3

r=0 
d=10 

4 6 2,2,2,2
4 13 2,2,2,2 4 13 2,2,2,2 6 28 1,1,1,2,2,1
4 11 2,2,2,2 4 11 2,2,2,2 6 25 1,1,1,1,2,2
2 1 4,4 4 12 1,2,3,2 6 26 1,1,1,1,2,2
3 2 2,4,2 5 22 1,2,1,2,2 5 22 1,2,1,2,2

r=0.5 
d=0.5  

4 12 1,2,3,2 

r=0.5 
d=1 

4 6 2,2,2,2

r=0.5 
d=10 

5 21 1,2,1,2,2
4 13 2,2,2,2 4 13 2,2,2,2 6 28 1,1,1,2,2,1
4 11 2,2,2,2 5 22 1,2,1,2,2 6 25 1,2,1,2,2
5 22 1,2,1,2,2 6 28 1,1,1,1,2,2 6 26 1,2,1,2,2
4 12 1,2,3,2 4 11 2,2,2,2 7 30 1,1,1,1,1,1,2

r=1 
d=0.5 

5 21 1,2,1,2,2 

r=1 
d=1 

5 21 1,2,1,2,2

r=1 
d=10 

5 22 1,2,1,2,2
 

To minimize the worst prediction variance, the best five designs in terms of 

maximum cost adjusted prediction variance (CPPV) are listed in Table 7. The balanced 

four whole plot design (Design 13) is shown to be best in most situations and second best 

for d=10 when subplot and whole plot costs are comparable. 
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Table 7: The best 5 designs in terms of maximum CPPV. Smaller value indicates better 
design and higher cost adjusted G-efficiency).  

 a ID Whole 
plot sizes  a ID Whole 

plot sizes  a ID Whole 
plot sizes 

2 1 4,4 2 1 4,4 2 1 4,4
4 13 2,2,2,2 4 13 2,2,2,2 4 13 2,2,2,2
3 2 2,4,2 4 11 2,2,2,2 4 11 2,2,2,2
3 3 2,4,2 4 6 2,2,2,2 4 6 2,2,2,2

r=0 
d=0.5  

3 4 1,4,3 

r=0 
d=1 

3 2 2,4,2

r=0 
d=10 

4 10 1,1,3,3
2 1 4,4 4 13 2,2,2,2 6 28 1,1,1,1,2,2
4 13 2,2,2,2 4 11 2,2,2,2 4 13 2,2,2,2
4 11 2,2,2,2 4 6 2,2,2,2 4 11 2,2,2,2
4 6 2,2,2,2 2 1 4,4 4 6 2,2,2,2

r=0.5 
d=0.5  

3 2 2,4,2 

r=0.5 
d=1 

6 28 1,1,1,1,2,2

r=0.5 
d=10 

6 25 1,1,1,1,2,2
4 13 2,2,2,2 4 13 2,2,2,2 6 28 1,1,1,1,2,2
4 11 2,2,2,2 4 11 2,2,2,2 4 13 2,2,2,2
4 6 2,2,2,2 6 28 1,1,1,1,2,2 6 25 1,1,1,1,2,2
2 1 4,4 4 6 2,2,2,2 4 11 2,2,2,2

r=1 
d=0.5 

6 28 1,1,1,1,2,2 

r=1 
d=1 

5 21 1,2,1,2,2

r=1 
d=10 

4 6 2,2,2,2

The comparison of the designs in this example shows that taking the relative costs 

of whole plots and subplots into consideration makes an important difference for the 

evaluation of the split-plot experimental design. Frequently in industrial settings, the cost 

of the whole plots dominates the experimental cost. In these cases, split-plot designs with 

a minimum number of whole plots can have the best overall cost penalized quality. 

However, other necessary properties, like the ability to estimate variance components, 

should also be considered. When cost and quality are both important, split-plot designs 

with a moderate number of whole plots are preferred. These designs perform well for a 

wide range of d values, which gives robustness to the initial guess of the variance 

component ratio. This exploration provides insights into how the split-plot structure and 

different scenarios of cost functions that are realistic in practice for split-plot designs 

influence choice of design, and thus provides a good foundation for more understanding 

of cost evaluation for SPDs. 

Discussion 

For this simple example with only a manageable number of run combinations, it is 

possible to consider all possible run orders. However, when the experimental design size 

becomes large, it is hard to search the design space exhaustively. Sampling is a feasible 

alternative in this situation. A large number of designs can be sampled from the design 
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space by randomly generating sequences of run orders. Joiner and Campbell (1976) 

outline this approach, but did not provide information about how this helps with design 

selection. Modified sampling is implemented following the rules: the level of each factor 

is generated at random and independently, and the only restriction is that the sampling of 

the eight runs is performed without replacement. Between runs, the decision of whether 

to change the factor level or not is determined by draw from a Bernoulli distribution with 

a fixed probability of changing level, Pw for whole plot factors and Px for subplot 

factors. The different factors could have different probabilities of changing levels. We 

may set the probability as 0.5 for each factor to accommodate as many designs as 

possible, or set the probability for each factor according to the extent that the factor is 

hard to change. The harder to change the factors will then have a smaller probability of 

changing levels. This rule is based on the assumption that the hard-to-change whole plot 

factors have levels that are more costly to change, thus the experimenter intends to reset 

the levels for this type of factor as small times as possible. The design selected is the best 

from among those sampled. 

Although this sampling is frequently more realistic than examining all 

permutations to find the best design, further study was needed to find the probability of 

finding the optimal or near-optimal designs by sampling. The chance to get the best or 

highly efficient designs can be explored by examining the frequency of the distinct 

designs (in Table 2) in the design space. Simulation shows approximately equal chances 

of getting efficient designs by permutation to by sampling with Pw=0.5 for all variables 

and the results are displayed in Figure 1, where the frequency of the designs in Table 2 is 

plotted versus the design efficiency. In the plots, the x-axis gives the relative efficiency 

(RE), which shows how close the design is to the most efficient design among the 31 

designs in terms of D-, V- and G-efficiency with or without cost penalty, and y-axis 

represents the accumulated frequency of obtaining the designs that are at least as efficient 

as the design with RE=x. Relative D-efficiency is RED = ( )
( )D

D
Max D∈Ω

M
M

, where Ω  is the 

design space including the 31 distinct designs, and the relative V- and G-efficiency are 

REV = {  prediction variance(D)}
 prediction variance(D)

DMin average
average
∈Ω , and REG = {maximum prediction variance(D)}

maximum prediction variance(D)
DMin ∈Ω , 

respectively. For instance, if a point (x=0.9, y=0.5) is on the curve, then the chance of 
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obtaining a design that is at least 90% efficient is 50%. If the sampling technique is 

applied, suppose there are m generated designs in the sample, then 50% of the m designs 

have at least relative efficiency 0.9, which infers the sampling works well for searching 

good designs. In Figure 1, the top plots represent the evaluation not taking the cost of 

experiment into consideration, the middle plots correspond to the situation that the cost of 

whole plot dominates the experiment cost (r=0), and the bottom plots for the situations 

that whole plot is even expensive as subplot (r=1). The two variance ratios, d=1 and 10 

are on the ledge and right sides, respectively. 

 

 

 
 

Figure 1: Accumulated frequency of getting highly efficient design for D-, G- and V-
optimality under different combinations of cost ratio and variance component ratio. 
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In the plots, the performances of sampling for V-efficiency are good in most 

situations, for instance, we have 20%-80% chance to get designs at least 90% highly V-

efficient, except for d=1 and r=0. For D- and G-efficiency, the performance of sampling 

is less efficient. When sample size increases, we might still obtain highly efficient design, 

but this is a less desirable choice. The chance of finding the highly efficient designs by 

sampling is substantially lower when whole plots are extremely expensive (r=0), which 

indicate that the inadvertent split-plot designs are not desirable under some conditions. 

However, if the desirable properties of superior split-plot designs are known, we may 

improve the chance to get highly efficient design by adjusting the probability of level 

changes for each factor. For instance, from the quality summary of the designs in Table 7 

we know that the design with small number of whole plots is desirable when r=0. 

Therefore, by reducing the probability of changing whole plot levels appropriately, i.e., 

Pw=0.1 or 0.2, the chance of obtaining more efficient designs would be enhanced. 

However, this technique is based on the knowledge of the desirable characteristics of 

optimal design. The more knowledge we have about the characteristics of good designs, 

more efficient the sampling can be made, when the exhaustive search of the best design 

in the design space is not feasible. 

 

5. COST ADJUSTED EVALUATION FOR CENTER COMPOSITE DESIGNS 
FOR SECOND ORDER MODEL 

 

For designs exploring the relationship of response with the factors or finding the 

optimal operation conditions for the factors, a second-order model should be considered. 

Some response surface designs, such as central composite design (CCD), Box-Behnken 

design (BBD), are popularly used, and are known to be highly efficient under a complete 

randomization structure. However, if the experiment is implemented with a split-plot 

structure, the designs can become less efficient for estimation of parameters and 

prediction of responses. The variance component ratio and structure of the variance 

matrix play important roles in performance. Moreover, the cost of the experiment is 

frequently an issue and is a function of the number of whole plots and subplots. The 

experimenter may want to balance between the quality of estimation and prediction of a 
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design and its economy. Letsinger, Myers, and Lentner (1996) compared popularly used 

response surface designs, such as CCD, BBD, small composite design and full factorial 

design, under split-plot scheme and concluded that central composite design is the most 

desirable design under various values of d for estimation and overall prediction over the 

design region. In this section, we focus on the study of different variations of central 

composite designs to show strategies for selecting split-plot designs when taking the cost 

into consideration. 

In this example we consider an experiment with one whole plot variable and two 

subplot variables for a second order model with the fixed effect in the form 
2 2 2

1 2 0 1 2 1 3 2 12 1 13 2 23 1 2 11 22 1 33 2( , , )f w x x w x x wx wx x x w x xβ β β β β β β β β β= + + + + + + + + + . When 

central composite design is run as a SPD, the simplest way to implement is to put the 

observations with same levels of whole plot factors in the same whole plot, so each whole 

plot level has only one whole plot, which is called restricted split-plot design (RSPD) 

(Letsinger et al. 1996, Goos and Vandebroek 2004) and named D1 or “standard CCD” in 

this paper (Table 8). Because previously the properties of CCD in split-plot structure 

were not well understood, this has been a common choice of SPD in practice. However, 

because there is no replications for the whole plot levels, the whole plot pure error is non-

estimable for this design. In addition, the design is quite unbalanced, where “balanced” 

for SPD means we have the same whole plot size for all whole plots. For the standard 

CCD, the size of the axial whole plots is one, while the size of whole plot with w=0 is 

four plus the number of subplot center runs. This might be wasteful if whole plots are 

limited, and possibly not appealing to the practitioner.  

 
Table 8: D1 - standard CCD with one whole plot variable, w, and two subplot variables, 
x1 and x2, axial levels for all variables are 3α± = ± ≈ ± 1.732, total number of runs is 16 
(N=16), it has 5 whole plots (a=5) and the whole plot sizes are (4,4,1,1,6). 

Whole plot w x1 x2 No. of Runs per whole plot 
1 -1 1±  1±  4 
2 1 1±  1±  4 
3 1.732 0 0 1 
4 -1.732 0 0 1 

0 ± 1.732 0 2 
0 0 ± 1.732 2 5 
0 0 0 2 
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Vining, Kowalski and Montgomery (2004) recommended imposing minimum and 

maximum whole plot size restrictions. They proposed a modified CCD (given in Table 

9), which satisfies the analysis condition that the generalized least square (GLS) 

estimates are equal to the ordinary least square (OLS) estimates. When whole plots are 

very expensive relative to the subplot cost, the total number of runs and whole plot sizes 

are not critical and only the number of whole plots may matter to the practitioner. Under 

this situation, they state the modified CCD can be a desirable design. In addition, because 

of the replications for the whole plot and subplot levels, the pure error can be estimated 

independently of the model. The quality of estimation and prediction of this design was 

not studied in their paper. Liang et al. (2004, 2005) used graphical tools to study and 

compare this design with the standard CCD. In terms of scaled prediction variance 

(SPV), the modified CCD performs poorly compared to the standard CCD.  

 
Table 9: D2 - Modified CCD, total number of runs is 24, 6 whole plots and the whole plot 
sizes are (4,4,4,4,4,4) – balanced design. 

Whole plot w x1 x2 No. of  runs per whole plot 
1 -1 1±  1±  4 
2 1 1±  1±  4 
3 1.732 0 0 4 
4 -1.732 0 0 4 

0 ± 1.732 0 2 5 0 0 ± 1.732 2 
6 0 0 0 4 

 
Other variations of the CCD may also be of interest. Design D3 in Table 10 has 

the same number of runs as D1 but with one more whole plot. In D3, the six whole plot 

center runs is assigned into two whole plots in such a specific way to improve estimation 

and prediction for the whole plot and subplot terms. This is expected to bring benefit 

when the subplot cost dominates the cost of the experiment and the total number of runs 

is important.  

Because the center runs help the estimation of the quadratics, design D4 in Table 

11 augments one subplot center run within the whole plot factorial and center run. The 

whole plot axial runs are replicated three times. When the whole plots are extremely 

expensive, this design is expected to obtain better performance by increasing the number 
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of subplots accommodated in the whole plot while keeping the same number of whole 

plots.  

Similarly, D5 in Table 12 is obtained by adding one subplot center run to each 

whole plot of D2, and some of the redundant replications are removed to control the total 

size of the design. It has the same size of observations and same number of whole plots as 

D2, but we will see that this design performs much better than the modified CCD. 

 
Table 10: D3 – same number of observations as D1, but there is one more whole plot; 
total number of runs is 16, 6 whole plots and the whole plot sizes are (4,4,1,1,3,3).  

Whole plot w x1 x2 No. Runs per whole plot 
1 -1 1±  1±  4 
2 1 1±  1±  4 
3 1.732 0 0 1 
4 -1.732 0 0 1 

0 ± 1.732 0 2 5 0 0 0 1 
0 0 ± 1.732 2 6 0 0 0 1 

 
Table 11: D4 - N=22, 5 whole plots and the whole plot sizes are (5,5,3,3,6). 

Whole plot w x1 x2 No. Runs per whole plot 
1±  1±  4 1 -1 

0 0 1 
1±  1±  4 2 1 

0 0 1 
3 1.732 0 0 3 
4 -1.732 0 0 3 

± 1.732 0 2 
0 ± 1.732 2 5 0 
0 0 2 

 
Table 12: D5 – N=24, 6 whole plots and the whole plot sizes are (5,5,3,3,5,3). 

Whole plot w x1 x2 No. Runs per whole plot 
1±  1±  4 1 -1 

0 0 1 
1±  1±  4 2 1 

0 0 1 
3 1.732 0 0 3 
4 -1.732 0 0 3 

± 1.732 0 2 
0 ± 1.732 2 5 0 
0 0 1 

6 0 0 0 3 
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Different combinations of the variance component ratio, d, and the cost ratio, r, 

are presented below, which represent possible situations in practice where a split-plot 

experiment may be appropriate. The relative performance of the five candidates designs 

are of interest under these different scenarios. The cost penalty and quality are weighted 

in the evaluation for the following combinations: d=0.5, 1 and 10 and r=0, 0.5 and 1. The 

cost penalization by N represents the standard scaled prediction variance evaluation, 

which is popularly used for CRD, corresponding to the situations that only 

subplot/measurement cost is important and whole plot cost is negligible.  

Table 13 compares the five candidates in terms of cost adjusted D, G, and V-

efficiency. The best and second best designs are in “Bold” fonts and identified by “*” and 

“+”, respectively. When r=0, the cost measure focuses only on the number of whole 

plots, D4 is the best or second best for estimation and prediction, and the superiority is 

true for all variance ratio values. This design has the least number of whole plots with 

competitive performance and thus is superior to other designs. Therefore, augmenting the 

replications of subplot levels within the whole plot is helpful if the resource of whole 

plots is extremely limited. D5 has the best overall prediction performance for moderate or 

large variance ratio values. This design is much better compared to modified CCD “D2”, 

which implies the strategy of putting the subplot axial points with center runs in the same 

whole plot helps.  

Another extreme situation is that in the split-plot experiment the cost of whole 

plots are negligible and the cost of subplots/measurements are emphasized. Under this 

condition, D1 and D3 are the best and second best designs for estimation and prediction, 

respectively. This is the scenario where total number of runs of the experiment is most 

important.  

In practice, more realistic situations are frequently between the above two 

extreme scenarios where both the cost of whole plots and cost of subplot have to be 

considered, such as, r=0.1, 0.5 or 1. For the case r=1 or 0.5, D1 is the best for D- and G-

efficiency, and it has the second best average prediction (V-efficiency). D3 is the best for 

overall prediction and the second best for D- and G-efficiency. The two designs have 

same least total number of runs, which makes the design more competitive when the total 

size of design is important. D3 has one more whole plot than D1. We can see that high V-
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efficiency designs have more whole plots than the high D- and G-efficiency designs. This 

is consistent with the conclusions of example 1 for the first-order model. 

Table 13: The cost penalized D-, G- and V-efficiency, which are CPD, maximum and average 
cost penalized prediction variance (CPPV), for different combinations of d and r value, including 
the extreme case of penalization by the total number of runs, N. The best design and second best 
designs are in “Bold” fonts.  

Cost penalization 
 Design r = 0 r = 0.1 r = 0.5 r = 1 N 

d=0.5 
CPD D1 (4,4,1,1,6) 0.51+ 0.384+ 0.195* 0.121* 0.158* 

 D2 (4,4,4,4,4,4) 0.47 0.334 0.156 0.093 0.117 
 D3 (4,4,1,1,3,3) 0.42 0.327 0.178 0.113+ 0.156+ 
 D4 (5,5,3,3,6) 0.582* 0.404* 0.182+ 0.108 0.132 
 D5 (5,5,3,3,5,3) 0.502 0.358 0.167 0.100 0.125 

Average D1 (4,4,1,1,6) 2.3 3.04 5.98+ 9.661+ 7.36+ 
CPPV D2 (4,4,4,4,4,4) 2.218 3.11 6.65 11.089 8.872 

 D3 (4,4,1,1,3,3) 2.531 3.21 5.91* 9.28* 6.749* 
 D4 (5,5,3,3,6) 1.966* 2.83+ 6.29 10.617 8.65 
 D5 (5,5,3,3,5,3) 2.004+ 2.805* 6.012 10.020 8.016 

Maximum D1 (4,4,1,1,6) 3.737 4.933 9.716* 15.695* 11.958+ 
CPPV D2 (4,4,4,4,4,4) 3.649 5.108 10.946 18.244 14.595 

 D3 (4,4,1,1,3,3) 4.433 5.615 10.343 16.253+ 11.820* 
 D4 (5,5,3,3,6) 3.047* 4.388* 9.751+ 16.454 13.407 
 D5 (5,5,3,3,5,3) 3.458+ 4.841+ 10.373 17.289 13.831 

d=1 
CPD D1 (4,4,1,1,6) 0.598+ 0.453+ 0.23* 0.142* 0.187* 

 D2 (4,4,4,4,4,4) 0.507 0.362 0.169 0.102 0.127 
 D3 (4,4,1,1,3,3) 0.482 0.381 0.207 0.132+ 0.181+ 
 D4 (5,5,3,3,6) 0.666* 0.463* 0.208+ 0.123 0.151 
 D5 (5,5,3,3,5,3) 0.571 0.408 0.190 0.114 0.143 

Average D1 (4,4,1,1,6) 2.331 3.077 6.062+ 9.792+ 7.459+ 
CPPV D2 (4,4,4,4,4,4) 2.351 3.291 7.053 11.755 9.404 

 D3 (4,4,1,1,3,3) 2.455 3.11 5.728* 9.002* 6.547* 
 D4 (5,5,3,3,6) 2.065+ 2.973+ 6.607 11.148 9.086 
 D5 (5,5,3,3,5,3) 2.028* 2.840* 6.085 10.141 8.113 

Maximum D1 (4,4,1,1,6) 3.915 5.168 10.180+ 16.445+ 12.529+ 
CPPV D2 (4,4,4,4,4,4) 3.75 5.25 11.25 18.75 15 

 D3 (4,4,1,1,3,3) 4.645 5.883 10.838 17.031 12.386* 
 D4 (5,5,3,3,6) 2.980* 4.291* 9.535* 16.091* 13.111 
 D5 (5,5,3,3,5,3) 3.310+ 4.634+ 9.930 16.550 13.240 

d=10 
CPD D1 (4,4,1,1,6) 1.854+ 1.405* 0.713* 0.442* 0.579* 

 D2 (4,4,4,4,4,4) 1.203 0.859 0.401 0.241 0.301 
 D3 (4,4,1,1,3,3) 1.455 1.149 0.623+ 0.397+ 0.546+ 
 D4 (5,5,3,3,6) 1.956* 1.358+ 0.611 0.362 0.445 
 D5 (5,5,3,3,5,3) 1.656 1.183 0.552 0.331 0.414 
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Average D1 (4,4,1,1,6) 2.356 3.109 6.124+ 9.893+ 7.539+ 
CPPV D2 (4,4,4,4,4,4) 2.677 3.748 8.072 13.387 10.708 

 D3 (4,4,1,1,3,3) 2.149+ 2.722* 5.013* 7.878* 5.731* 
 D4 (5,5,3,3,6) 2.303 3.316 7.368 12.434 10.133 
 D5 (5,5,3,3,5,3) 2.058* 2.881+ 6.173 10.289 8.231 

Maximum D1 (4,4,1,1,6) 4.193+ 5.535* 10.901* 17.610* 13.417+ 
CPPV D2 (4,4,4,4,4,4) 5.591 7.827 16.773 27.955 22.364 

 D3 (4,4,1,1,3,3) 4.982 6.311 11.626+ 18.269+ 13.286* 
 D4 (5,5,3,3,6) 3.972* 5.720+ 12.710 21.448 17.476 
 D5 (5,5,3,3,5,3) 4.723 6.612 14.168 23.614 18.891 

*: best designs; +: second best designs. 
 
The additional center runs to the axial levels in the same whole plot help with the 

estimation of quadratic terms. Splitting the w=0 whole plot of D1 into two whole plots 

for D3 does not substantially compromise the estimation of the subplot quadratic terms, 

however, it does improve the estimation of the whole plot quadratics. On the other hand, 

although the modified CCD (D2) has good properties from analysis standpoint, the 

quality of estimation and prediction is poor, because the subplot axial points are assigned 

separately from subplot center runs and hence the estimation of subplot quadratics is with 

whole plot error. However, by adjusting the locations of the designs points, augmenting 

subplot center run to the whole plot with subplot axial points or reducing the redundant 

replications of design points as D5 does, the performance can be improved.  

Liang et al. (2004, 2005) studied the prediction performance of split-plot designs 

using three-dimensional variance dispersion graphs (3D VDGs) and fraction of design 

space (FDS) plots. These graphical tools show the best and weakest prediction over the 

entire design region and for any particular sub region. In Figure 2, the global FDS plots 

for the five designs are displayed. See Zahran, Anderson-Cook and Myers (2003) for 

more details on FDS plots. The horizontal “FDS” axis represents the fraction of the 

design space with cost adjusted prediction variance at or below the given values by the 

vertical “CPPV” axis. Therefore, the maximum prediction variance is displayed by the y 

value at FDS=1 and the average of the curve shows the average prediction variance over 

the entire region, and thus the values of G and V-efficiency summarized in Table 13 can 

be read from the plots. For the case d=1 and r=0, D5 is the best design with the FDS 

curve having the smallest values and a flatter slope. As whole plot variability increases 

relatively to the subplot variance, D5 is still the most desirable design, which shows the 
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choice of the best design is robust to the changes of variance component ratio. D3 with 

the 6 whole plots and 16 observations performs much better for d=10 and r=0, because 

the larger size of whole plots helps the performance of SPDs when the proportion of 

whole plot variance in the system increases. This design is superior to the other designs 

under the situations that subplots are relatively expensive. Meanwhile, the superiority of 

the design over others is robust to the changes of d value. 

 

 
 

Figure 2: FDS plots for the five candidate designs under different situations of cost ratio 
and variance ratio 

  

From the surface plots of 3D VDG in Figure 3, we can see the distribution of the 

cost adjusted prediction variance for the two best designs under different cost and 

variance structures for split-plot design. See Liang et al. (2004, 2005) for more details on 

these plots. In the plots, “w” indicates the distance of the location from the center in the 

whole plot space, and “x” represents the location in the subplot space. The vertical axis 

tells the maximum cost adjusted prediction variance at that location in the combined 
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space. The plots show a common characteristic of the prediction variance distribution for 

desirable designs, namely that the prediction variance is stable and relatively small in the 

broad center area and prediction becomes worse for a small portion at the edge of the 

whole plot space. These plots can be helpful to understand the advantage and weakness 

of the designs for predicting response.  

  
Figure 3: Surface plots of maximum CPPV for D3 and D5 at different scenarios 

 
From comparisons of the five designs one can learn that under different weighting 

conditions of cost and quality, the best design differs significantly. When the whole plots 

are extremely expensive, one may set the number of whole plots as the largest number 

available and achieve the best performance by assigning as much subplots as possible in 

each whole plot. When the subplot/measurement are comparably expensive to the cost of 

whole plots, the design with fewer runs is desirable. When the subplot/measurement cost 

dominates and cost of whole plot is negligible, the scaled prediction variance can be used 

to evaluate the designs, and smaller sized designs are desirable. 

In addition, the example provides helpful information for practitioner to choose a 

split-plot design for second order model. The standard CCD has good performance when 

cost is incorporated, which provides theoretical support for extending this type of 

response surface design from completely randomized design to more complicated 

experiments in the way of restricted split-plot structure. Moreover, when the whole plot 

size is limited, for instance, the maximal number of subplot accommodated in the whole 

plot can’t exceed six in practice, running all combinations of subplot factors within each 

whole plot is not feasible, and thus we might have incomplete subplot levels within 

whole plots. The intuition would lead to the most balanced setting in the whole plots, 

such as the modified CCD does. However, this example shows that exact balanced or 
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symmetric setting of the subplot levels is less efficient. For instance, it is better to assign 

the subplot center runs with axial or factorial levels in the same whole plot rather than 

separating the axial points and center runs.  

 

6. CONCLUSIONS AND DISCUSSION 

 

For different problems or under different conditions of the experiment in real life, 

the split-plot experiment designs may focus on different aspects of the performance or 

cost. Incorporating the split-plot structure and cost structure into the evaluation of split-

plot design is helpful to better understand their effect on the desirability of the design. 

The proposed cost penalized D-efficiency, average and maximum cost penalized 

prediction variance (cost adjusted V and G-efficiency), including a special case of the 

scaled prediction variance, provide strategies for the practitioners rather than choosing 

the designs arbitrarily based on the available resources. The different weighting system 

between the practitioner’s interest on the cost and quality of estimation and prediction 

requires the experimenter to evaluate relative costs, as measured in time, effort or money 

for the whole plot and subplot units, for changing the levels of two types of experimental 

variables and for measuring the observations, based on the understanding of the practical 

conditions for running the experiments. This allows for more realistic design selection. 

From the study, we also learn that the standard scaled prediction variance evaluation for 

completely randomized design only makes sense under some special cases for split-plot 

design, and thus the generalization of SPV from CRD to SPD should be done carefully. 

Although the constraints on time/cost require the practitioner to use as small size 

of design as possible, other desirable properties, like the ability to estimate the whole plot 

and subplot error terms, and affordable precision for the whole plot factors should also be 

taken into account.  

In industrial experiments, an important problem for the practitioner is to select a 

response surface design with a desirable structure when there are restrictions on  

randomization. This study shows that by adapting central composite designs in a variety 

of ways, can help improve performance for different cost and variance ratio situations. 

Some desirable strategies for assigning subplot levels within whole plots are also 
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provided, which argue against the intuition that balanced design is always preferable. 

However, there may be some benefits during analysis. 

The estimation of cost ratio can be obtained from understanding of the conditions 

for a given split-plot experiment from experienced scientists or engineers. The variance 

component ratio is probably not as easy to estimate, if a pilot study or previous data are 

not available. However, the study in the two examples implies that the choice of a highly 

efficient design is frequently quite robust to the change of variance component ratio 

value. If the guessed or estimated d value is slightly different from the actual value in the 

experiment, we can still search for the optimal design based on this value and guarantee 

the obtained design highly efficient. This robustness means that good performance is 

likely even when the split-plot design is selected based on limited information about the 

variance component ratio.  
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