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Abstract

In many quality control applications, use of a single (or several distinct) quality

characteristic(s) is insufficient to characterize the quality of a produced item. In

an increasing number of cases, a response curve (profile), is required. Such profiles

can frequently be modeled using linear or nonlinear regression models. In recent

research others have developed multivariate T 2 control charts and other methods for

monitoring the coefficients in a simple linear regression model of a profile. However,

little work has been done to address the monitoring of profiles that can be represented

by a parametric nonlinear regression model. Here we extend the use of the T 2 control

chart to monitor the coefficients resulting from a parametric nonlinear regression

model fit to profile data. We give three general approaches to the formulation of

the T 2 statistics and determination of the associated upper control limits for Phase

I applications. We also consider the use of nonparametric regression methods and

the use of metrics to measure deviations from a baseline profile. These approaches

are illustrated using the vertical board density profile data presented in Walker and

Wright[1].

KEY WORDS: Multivariate statistical process control; T 2-chart; Vertical density
profile; Nonlinear regression; Functional data; Minimum volume ellipsoid.



1. INTRODUCTION

In statistical process control (SPC) applications, manufactured items are sampled

over time and quality characteristics are measured. Often a product’s quality can

be determined through measuring several characteristics at each sampling interval.

Multivariate T 2 control charts and other methods have been developed for this sce-

nario. See, for example, Fuchs and Kenett [2] and Mason and Young [3]. Increasingly,

however, a sequence of measurements of one or more quality characteristics are taken

across some continuum producing a curve or surface that represents the quality of

the item. This curve or surface is referred to as a profile. Woodall, Spitzner, Mont-

gomery, and Gupta [4] give an introductory overview of the emerging field of profile

monitoring.

Profile data consist of a set of measurements with a response variable y and one

or more explanatory variables xj, j = 1, . . . , k, which are used to assess the quality of

a manufactured item. For example, the density profile of a particleboard is measured

on a vertical cross-section, which reveals patterns in board density across the depth of

the board. Another example is the estimated dose-response curve of a manufactured

drug. Once a batch of the drug is produced, several different doses of the drug are

administered to subjects and the responses measured. The resultant dose-response

curve summarizes the quality of the particular batch of the drug, indicating the

maximal effective response, minimal effective response, and the rate in which the

response changes between the two (see Williams, Birch, Woodall, and Ferry [5]).

In these examples, a single measurement is insufficient to adequately assess quality.

Instead, a relationship between two variables, referred to as the profile, should be

monitored over time. Profile data is multivariate, but it is not appropriate to apply

standard multivariate control chart methods since this leads to overparameterization.

It is more efficient to model the structure of the data via regression techniques.
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In Phase I analysis, we are concerned with distinguishing between in-control con-

ditions and the presence of assignable causes so that in-control parameters may be

estimated for further product or process monitoring in Phase II analysis. If out-of-

control observations are included in the estimation of in-control parameters, then the

subsequent monitoring procedure will be less effective. Therefore it is imperative

in Phase I that abnormal profiles be identified and excluded from further analysis.

Further, we seek to identify step or ramp shifts (if any) in the mean profile, so that

in-control parameters may be estimated to reflect what would be expected from a

stable process.

Profiles can take on several different functional forms, depending on the specific

application. For many calibration problems, the profile can be represented by a simple

linear regression model (see, e.g., Mahmoud and Woodall [6] and Gupta, Montgomery,

and Woodall [7]). Kang and Albin [8] proposed two methods, including a multivariate

T 2 control chart, to monitor such profiles. Specifically, we let the subscript i index

each individual profile (i = 1, . . . , m) in the historical Phase I data. In the simple

linear regression case, the ith profile is modeled as

yij = βi0 + βi1xij + εij,

where yij is the jth measurement (j = 1, . . . , n), εij is the jth random error, and xij is

the jth value of the explanatory variable corresponding to the ith profile. It is assumed

that the values of xij are the same for all i. This assumption is often reasonable since

in many engineering applications product or process profiles are measured at fixed

values of the explanatory variable at each sampling stage. Kang and Albin’s [8]

multivariate T 2 chart is used to monitor simultaneously the β0, the y-intercept, and

β1, the slope. Kim, Mahmoud, and Woodall [9] proposed an alternative approach

with better statistical properties such that individual control charts can be used for

the y-intercept and slope independently.
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In general we refer to any profile that can be modeled by the linear regression

function

yij = βi0 + βi1xij1 + βi2xij2 + · · ·+ βikxijk + εij (1)

as a linear profile, where xijl, l = 1, . . . , k, are k predictor variables. The predic-

tor variables can be the original variables themselves or any function of the vari-

ables. In matrix notation, we let yi = [yi1, yi2, . . . , yin]′ be the vector of responses

for profile i, βi = [βi0, βi1, . . . , βik]
′ be the vector of parameters to be monitored,

x′ij = [1, xij1, xij2, . . . , xijk] be the vector of explanatory variables for item i, and

εi = [εi1, εi2, . . . , εin]′ be the corresponding vector of random errors. After collecting

the x′ij vectors into an n× p matrix, where p = k + 1, as

Xi =




x′i1

x′i2
...

x′in




.

model (1) can be written in matrix form as

yi = Xiβi + εi, i = 1, . . . ,m.

We assume that Xi is the same for each profile and that the vectors εi are independent

and identically distributed (i.i.d.) multivariate normal random vectors with mean

vector zero and covariance matrix σ2I. For an example of profile monitoring where

the covariance matrix is allowed to take on a more general form, see Williams, et al.

[5].

Jensen, Hui, and Ghare [10] proposed a control chart based on the F -distribution

to monitor the k +1 parameters (coefficients) from a multiple linear regression model

for Phase II applications. Given the parameter vector estimator for item i, β̂i, and

the target parameter vector β0, one plots on their control chart the well-known F

3



statistic

Fi = (β̂i − β0)
′X′

iXi(β̂i − β0)/(k + 1)s2
i

against i, where s2
i =

∑n
i=1(yi − ŷ)2/(n − p). A Phase I procedure for this general

linear case has yet to be developed.

In many cases, however, profiles cannot be well-modeled by a linear regression

function. Walker and Wright [1] proposed a nonparametric approach for compar-

ing profiles using additive models. Such models do not have a specific functional

form and have no model parameters to estimate, but rather one employs smoothing

techniques such as kernal smoothing or spline smoothing to model a profile. Nonpara-

metric regression techniques provide great flexibility in modeling the response. One

disadvantage of nonparametric smoothing methods is that the subject-specific inter-

pretation of the estimated nonparametric curve may be more difficult, and may not

lead the user to discover as easily assignable causes that lead to an out-of-control sig-

nal. Ding, Zeng, and Zhou [11] proposed an alternative nonlinear profile monitoring

method based on a two stage process of (1) data reduction from a high-dimensional

space to a lower-dimensional subspace and (2) employing the control charts methods

described in Sullivan [12].

Often, however, scientific theory or subject-matter knowledge leads to a natural

nonlinear function that well-describes the profiles. Hence, an alternative method is

to model each profile by a nonlinear regression function. A nonlinear profile of an

item can be modeled by the nonlinear regression model given generally by

yij = f(xij,βi) + εij, (2)

where xij is a k × 1 vector of regressors for the jth observation of the ith profile,

εij is the random error, βi is a p × 1 vector of parameters for profile i, and f is

nonlinear in the parameters. The random errors εij are assumed to be i.i.d. normal

random variates with mean zero and variance σ2. In many applications, there is only
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one regressor (k = 1), but there are multiple parameters to monitor (p > 1). An

example of this form of the model is the 4-parameter logistic model, often used to

model dose-response profiles of a drug, given by

yij = Ai +
Di − Ai

1 +

(
xij

Ci

)Bi
+ εij, (3)

where yij is the measured response of the subject exposed to dose xij for batch i,

i = 1, . . . , m, j = 1, . . . , n. In Equation (3), we have k = 1 and p = 4, giving four

parameters to monitor, each parameter having a specific interpretation. For example,

Ai is the upper asymptote parameter, Di is the lower asymptote parameter, Ci is the

ED50 parameter (the dose required to elicit a 50% response), and Bi is the rate

parameter for the ith batch. Another example is the “bathtub” function described in

Section 3 where the density of particleboard is measured across the vertical profile.

Note that for any given application, the specific form of the nonlinear function, f , in

Equation (2) must be specified by the user.

In Section 2 of this paper we give a brief review of nonlinear regression. We

introduce the multivariate T 2 statistic in the context of monitoring nonlinear profiles.

We then introduce three formulations of the T 2 statistic and discuss the determination

of the upper control limits for the corresponding charts. In addition, a control chart

to monitor the variance σ2 in the context of monitoring profile data is proposed.

Finally, we discuss a nonparametric regression approach to monitoring the profiles.

In Section 3 we illustrate the T 2 control charts and the nonparametric approaches

using the vertical density profile data of Walker and Wright [1]. In Section 4 we

discuss the effects that autocorrelation in the error terms may have on the analysis.

Finally, in Section 5 we discuss potential alternative methods and give directions for

future research topics in nonlinear profile monitoring.
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2. METHODOLOGY

We begin a Phase I analysis with a baseline dataset consisting of m items sam-

pled over time. For each item i we observe a response yij and a set of predictor

variables xij, i = 1, . . . , m, j = 1, . . . , n, resulting in the quality profile for item i,

i.e., (yi1,xi1), (yi2,xi2), . . . , (yin,xin). In this section we develop the methodology to

analyze the profiles to gain understanding of the product or process in a Phase I

setting.

2.1 Nonlinear Model Estimation

For simplicity of notation, we write the scalar model given in Equation (2) in ma-

trix form by stacking the n observations within each profile as yi = (yi1, yi2, . . . , yin)′,

f(Xi, βi) = (f(xi1,βi), f(xi2,βi), . . . , f(xin,βi))
′, and εi = (εi1,εi2, . . . ,εin)′. The vec-

tor form is then given by

yi = f(Xi,βi) + εi, i = 1, . . . , m. (4)

For the nonlinear regression model given in Equation (4), estimates of βi for each

sample must be obtained. This is usually accomplished by employing the Gauss-

Newton procedure and iterating until convergence to obtain the maximum likelihood

estimates. Upon convergence of the algorithm, the estimated covariance matrix of

β̂i is the estimated Fisher information matrix. See Myers [13] or Schabenberger and

Pierce [14] for a concise discussion of nonlinear regression model estimation. A more

detailed treatment can be found in Gallant [15] and Seber and Wild [16].

Unlike linear regression, the small-sample distribution of parameter estimators in

nonlinear regression is unobtainable, even if the errors εij are assumed to be i.i.d.

normal random variables. Instead, asymptotic results must be applied. Seber and

Wild [16] give the asymptotic distribution of β̂i and the necessary assumptions and

regularity conditions for the asymptotic distribution to be obtained.
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2.2 Multivariate T 2 Control Chart

In order to develop the methodology to monitor nonlinear profiles, we first consider

the general framework of the multivariate T 2 statistic. Given a sample of m indepen-

dent observation vectors to be monitored, wi (i = 1, . . . ,m), each of dimension p, the

general form of the T 2 statistic in Phase I for observation i is

T 2
i = (wi − w̄)′ S−1 (wi − w̄) , (5)

where w̄ = 1
m

∑m
j=1 wi and S is some estimator of the variance-covariance matrix of

wi (Mason and Young [3]). We then plot the T 2
i statistics, i = 1, . . . , m, against i and

out-of-control signals will be given for any T 2
i value exceeding an upper control limit

(UCL). For determining the statistical properties of the T 2-chart it is usually assumed

that each of the wi vectors follows a multivariate normal distribution with common

mean vector µ and covariance matrix Σ. This assumption is critical to finding the

marginal distribution of T 2
i , as discussed in Section 2.3.

In the nonlinear regression model given in Equation (2), βi is a p × 1 vector of

parameters that determines the curve f(Xi, βi). We employ the the multivariate T 2

statistic to assess stability of the the p parameters simultaneously, i.e., to evaluate

the assumption βi = β, i = 1, . . . , m. We do not employ individual control charts for

each of the p nonlinear regression parameters since this may give misleading results

due to the built-in correlation structure of the parameter estimators in nonlinear

regression.

Once β̂i is obtained from each sample in the baseline dataset, we calculate the

average vector
¯̂
β and some corresponding estimate of the covariance matrix, replace

wi with β̂i and w̄ with
¯̂
β in Equation (5) to obtain

T 2
i =

(
β̂i − ¯̂

β
)′

S−1
(
β̂i − ¯̂

β
)

.

A large value of T 2
i indicates an unusual β̂i, suggesting that the profile for item i
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is out-of-control. In contrast to the traditional use of the T 2 statistic to monitor a

multivariate quality characteristic vector, we employ the T 2 statistic to monitor the

coefficient vectors of the nonlinear regression fit to each individual profile.

There are several choices for the estimator S. Here we discuss the effects of three

choices and later discuss under what conditions, if any, each should be used.

The first choice we consider for S is the sample covariance matrix, given by

SC =
1

m− 1

m∑
i=1

(
β̂i − ¯̂

β
)(

β̂i − ¯̂
β

)′
.

Consequently, the T 2
i statistics take on the form

T 2
C,i =

(
β̂i − ¯̂

β
)′

S−1
C

(
β̂i − ¯̂

β
)

. (6)

Use of the T 2
C values was mentioned by Brill [17] in the context of monitoring nonlinear

profiles of a chemical product. The advantage of this statistic is that it is very well

understood and widely used. However, as was shown by Sullivan and Woodall [18]

and Vargas [19], a T 2 statistic based on SC is ineffective in detecting sustained shifts

in the mean vector during the Phase I period. In fact, it was shown that as the step

shift size increased, the power to detect the shift actually decreased.

An alternative choice of S is one based on successive differences, proposed origi-

nally by Hawkins and Merriam [20] and later by Holmes and Mergen [21]. To obtain

the estimator, we define v̂i = β̂i+1 − β̂i for i = 1, . . . ,m− 1 and stack the transpose

of these m− 1 difference vectors into the matrix V̂ as

V̂ =




v̂′1

v̂′2
...

v̂′m−1




.

The estimator of the variance-covariance matrix is

SD =
V̂′V̂

2(m− 1)
.
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Sullivan and Woodall [18] showed that SD is an unbiased estimator of the true covari-

ance matrix if the process is stable in Phase I. The resulting T 2
i statistics are given

by

T 2
D,i =

(
β̂i − ¯̂

β
)′

S−1
D

(
β̂i − ¯̂

β
)

. (7)

Sullivan and Woodall [18] and Vargas [19] showed that a T 2 chart based on values of

T 2
D,i was effective in detecting both a step and ramp shift in the mean vector during

Phase I. Sullivan and Woodall [18] also showed that the T 2
D values are invariant to a

full-rank linear transformation on the observations.

Our third choice for S is a robust estimator of the variance-covariance matrix

known as the minimum volume ellipsoid (MVE) estimator, first proposed by Rousseeuw

[22] and studied in profile monitoring for Phase I analysis by Jensen, Birch, and

Woodall [23]. In our application of the MVE method, we find outlier-robust esti-

mates for both the in-control parameter vector and the variance-covariance matrix

based on finding the ellipsoid with the smallest volume that contains at least half

of the β̂i vectors, i = 1, . . . , m. The MVE estimator of β is the mean vector of the

smallest ellipsoid, and the estimator of the variance-covariance matrix is the sample

covariance matrix of the observations within the smallest ellipsoid multiplied by a

constant to make the estimator unbiased for multivariate normal data. In a simula-

tion study, Vargas [19] studied the power properties of several different choices of S

in the context of the T 2 statistic given in Equation (5) and found that the T 2 statis-

tic based on the MVE estimators of β and the variance-covariance matrix was very

powerful in detecting multivariate outliers. We denote the MVE estimators of β and

the covariance matrix by β̂MV E and SMV E, respectively. Hence, the fourth choice of

T 2 is

T 2
MV E,i =

(
β̂i − β̂MV E

)′
S−1

MV E

(
β̂i − β̂MV E

)
, i = 1, . . . , m. (8)
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2.3 Control Limits

The distribution of the T 2
i statistics for monitoring nonlinear profiles is more

complex than in the linear profile case. Recall that the distribution of the parameter

estimators in nonlinear regression is difficult to obtain for small sample sizes. Instead

we employ the asymptotic distribution (as n → ∞) of β̂i, i = 1, . . . , m. Hence, in

order to determine the marginal distribution of T 2
i in this case, we assume that the

sample size, n, from each item in the baseline data set is of sufficient size such that

the distributions of β̂i, i = 1, . . . , m are approximately multivariate normal. The

subsequent upper control limits (UCLs) for the multivariate T 2 control charts are

determined based on this normality assumption.

In order to control the overall probability of a false alarm, based on some appro-

priate UCL, the joint distribution of the T 2
i values is required. However, these values

are correlated since
¯̂
β and S are used in all T 2

i statistics (i = 1, . . . ,m), thus making

the joint distribution of the T 2
i values difficult to obtain. As an alternative, Mahmoud

and Woodall [6] suggested using an approximate joint distribution assuming that the

T 2
i statistics are independent. We let α be the probability of a false alarm for any

individual T 2
i statistic. Then the approximate overall probability of a false alarm for

a sample of m items is given by αoverall = 1 − (1 − α)m. Thus, for a given overall

probability of a false alarm, we use α = 1−(1−αoverall)
1/m in the calculation of UCLs.

In their simulation study, Mahmoud and Woodall [6] found that this approximation

used to determine the UCLs performed well.

As noted in Tracy, Young, and Mason [24] , Gnanadesikan and Kettenring [25]

proved that for a stable process the marginal distribution of T 2
C,i is proportional to a

beta distribution, i.e.,

T 2
C,i

m

(m− 1)2
∼ B

(
p

2
,
m− p− 1

2

)
.

A formal proof can be found in Chou, Mason, and Young [26] . Note that it is assumed
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that the distribution of β̂i is approximately normal. Therefore, an approximate UCL

is

UCLC =
(m− 1)2

m
B1−α,p/2,(m−p−1)/2 (9)

where B1−α,p/2,(m−p−1)/2 is the 1− α quantile of a beta distribution with shape para-

meters p/2 and (m− p− 1)/2.

The marginal distribution of the T 2
D,i statistic is unknown. However, Williams,

Woodall, Birch, and Sullivan [27] gave an approximate distribution based on the chi-

squared distribution for large sample sizes and an approximate distribution based

on the beta distribution for small sample sizes. For large sample sizes, defined by

m > p2 + 3p, the UCL is given by

UCLD = χ2(1− α, p).

For small sample sizes, defined by m ≤ p2 +3p and p < 10, the UCL is a vector given

by

UCLD = (UCL1, UCL2, . . . , UCLm), (10)

where

UCLi = MV (m, i)BETA1−α,β(m,p,i),γ(m,p,i), i = 1, . . . , m,

and β(m, p, i) and γ(m, p, i) are functions of m, p, and i that define the two shape

parameters for the beta distribution. The specific forms of β(m, p, i) and γ(m, p, i)

given by Williams, et al. [27] , are included in the Appendix.

The exact marginal distribution of T 2
MV E,i is also unknown and intractable. Hence,

in order to find the UCL for T 2
MV E,i we used simulation.

2.4 Monitoring the Variance

In addition to checking the stability of each profile in the baseline dataset, it is

important to check the stability of the variability about each profile. This is anal-

ogous to monitoring the process variance in the standard univariate case. In the
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case of monitoring profiles, we seek to monitor the variability about each profile, or

the within-profile variability. Our measure of within-profile variability is the mean

squared error (MSE) defined as MSEi =
∑n

j=1(yij− ŷij)
2/(n−p), where ŷij is the pre-

dicted value of yij based on the nonlinear regression model in Equation (2). Wludyka

and Nelson[28] recommended a method to monitor variances based on an analysis-

of-means-type test utilizing S2
i = MSEi. In their paper, S2

i is plotted against i with

associated lower- and upper-control limits equal to (Lα,m,n−p)mS2 and (Uα,m,n−p)mS2,

respectively, where L and U are critical values given in their paper and S2 is the av-

erage of the S2
i values, i = 1, . . . , m. For large n, their approximate upper and lower

control limits are S2 ± hα,m,∞σ̂ where h is a critical value given in Nelson[29] and

σ̂ = S2
√

2(m− 1)/m(n− p). The S2
i statistics are plotted on a separate control

chart to monitor the variance of the error terms and lack of fit simultaneously with a

T 2 control chart for the nonlinear regression parameters. We recommend use of this

method when within-profile error terms are independent.

2.5 Nonparametric Approach

When a parametric form of a profile would be overly complex, nonparametric

procedures may be more appropriate. These include fitting each profile via some

smoothing method, such as local polynomial regression, spline smoothing, or wavelets.

Walker and Wright[1] give a spline-fitting approach to the vertical density profile

(VDP) of particleboard, which we use as an illustration in Section 3. However, these

authors discussed using splines to assess variation, not to monitor profiles in a Phase I

analysis to check for process stability. Winistorfer, Young, and Walker[30] illustrated

the use of splines to model the VDP of oriented strandboard generated from a 32

factorial design with 3 replicates. However, their spline-fitting method is used in the

context of comparing profiles among differing experimental conditions, not monitoring
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profiles in a Phase I or Phase II analysis.

For the case of a single explanatory variable, we denote the nonparametric fit of

profile i by ẏij, for the corresponding value of the explanatory variable equal to xj,

j = 1, . . . , n. The general nonparametric approach to monitoring profiles in Phase I

analysis is to establish a “baseline” curve with which to compare all other curves. A

natural choice of baseline profile is the average estimated profile across all m profiles,

denoted by ỹj =
∑m

i=1 ẏij/m, j = 1, . . . , n. Once a baseline curve is found, some

appropriate distance metric can be used to measure how “different” each individual

curve is from the baseline. Researchers at Boeing [31] proposed the following three

metrics:

1. Mi1 = sign(maxj |ẏij − ỹij|)

2. Mi2 =
∑n

j=1 |ẏij − ỹij|

3. Mi3 =
∑n

j=1 |ẏij − ỹij|/m.

The three metrics, Mi1, Mi2, and Mi3, are referred to as the maximum deviation,

sum of absolute deviations, and the mean absolute deviation, respectively. Further,

it may be of interest to compute the absolute value of Mi1, which obviously reflects

the magnitude of the dissimilarity between ẏij and ỹij disregarding the direction of

dissimilarity. We denote this metric by Mi4. Other metrics are proposed in Gard-

ner, et. al.[32], who note that metrics can be defined to detect changes in profiles

resulting from particular known process faults. One of these metrics is the sum of

squared differences between each estimated profile and the average profile, denoted

Mi5 =
∑n

j=1(ẏij − ỹij)
2. For a given metric, one plots the metric value for profile i

against i (i = 1, . . . ,m) and checks for unusual observations. Researchers at Boeing

[31] suggested using a standard univariate I-chart on the metrics to establish con-

trol limits. The method of smoothing splines with several dissimilarity metrics is
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illustrated in Section 3.

3. EXAMPLE

In this example to illustrate the application of the various approaches we use

the vertical density profile data from Walker and Wright [1], available at the web-

site http://filebox.vt.edu/users/bwoodall/VDP%20nonlinear%20profile%20data.txt.

In the manufacture of particleboard, the density properties of the finished boards are

quality characteristics that are monitored through time. It is well known that the den-

sity (in pounds per ft3) near the core of a particleboard is much less than the density

at the top and bottom faces of a board (see Young, Winistorfer, and Wang [33]). The

standard sampling procedure calls for a laser-aided density measuring device to scan

fixed vertical depths of a board and record the density at each depth. Since the depths

are fixed for each board, we denote the depth xij by simply xj. Density measurements

for this dataset were taken at depths of xj = (0.002)j inches, j = 0, 1, 2, . . . , 313. Cor-

respondingly, a sequence of ordered pairs, (xj, yij), j = 1, . . . , n, results for board i and

forms a vertical density profile (VDP) of the board. A baseline sample of twenty-four

particleboards was measured in this way, and the twenty-four profiles are illustrated

in Figure 1.

[Insert Figure 1 about here.]

Young, Winistorfer, and Wang [33] introduced a statistical method to monitor

VDP data. With their method, one summarizes the density measurements into three

average density measurements: one near the core and one near each face. The three

averages are the quality characteristics that are subsequently monitored using a stan-

dard multivariate T 2 control chart. With this method one basically summarizes each

nonlinear profile into only three numbers with a corresponding loss of information.
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An alternative approach without such a considerable loss of information is to

model the profiles themselves parametrically. The nonlinear function we use to model

profile i is a “bathtub” function given by

f(xij,β) =





a1(xij − c)b1 + d xj > c

a2(−xij + c)b2 + d xj ≤ c
i = 1, . . . , m; j = 1, . . . , n, (11)

where β = (a1, a2, b1, b2, c, d). One advantage of this nonlinear model is the inter-

pretability of the model parameters. For example, a1, a2, b1, and b2 determine the

“flatness”, c is the center, and d is the bottom, or the “level” of the curve. Differing

values of a1 and a2 or different values of b1 and b2 allow for an asymmetric curve

about the center c. Figure 2 contains the “bathtub” function fit to board 1 from the

VDP data.

[Insert Figure 2 about here.]

The profile of board 1 is well-modeled by this parametric fit (R2 > 0.9999). For

each of the twenty-four boards in the baseline sample we fit the nonlinear model in

Equation (11), and calculated the T 2
C , T 2

D, and T 2
MV E statistics of Equations (6), (7),

and (8), respectively. based on the β̂i values. Parameter estimates for each of the

twenty-four boards and the corresponding T 2 statistics are given in Table 1. We plot

the six parameter estimates for each of the twenty-four boards in Figure 3.

[Insert Table 1 about here.]

[Insert Figure 3 about here.]

The control limits for the T 2
C , T 2

D statistics are calculated from Equations 9 and

10, respectively. We simulated the UCL for the T 2
MV E statistic to achieve an overall

probability of a signal equal to 0.05 for m = 24 boards. In our simulation, we sampled

from a multivariate normal distribution of dimension six, mean vector zero, and
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variance-covariance matrix I, since the in-control performance of the methods does

not depend on the assumed in-control parameter vector or the variance-covariance

matrix. We repeated our simulation 200,000 times, giving a standard error for the

estimated control limits less than 0.0005. The UCL values are 14.72 and 65.37, for

the T 2
C and T 2

MV E control charts, respectively, and the control limit vector for the T 2
D

control chart is given in Table 1.

In Phase I analysis, we are interested in identifying “outlying” or out-of-control

boards or a shift in the process which might affect the estimation of in-control para-

meters. We compared the four T 2 control charts for assessing process stability and

identifying outlying profiles. In Figure 4 we illustrate all four T 2 control charts for

the VDP data.

[Insert Figure 4 about here.]

Both the T 2
C and the T 2

D control charts indicate that board 15 has the only out-

of-control profile, although the profile for board 18 is borderline. Note that the T 2
D

statistic accentuates the same outlying observations of the T 2
C chart, but has a larger

UCL. As discussed in Sullivan and Woodall [18], the T 2
C control chart has greater

power to detect isolated outlying observations than the T 2
D control chart based on the

successive differences variance-covariance matrix estimator, however the T 2
D chart is

better for detecting a sustained shift in the mean vector. For this dataset, there is no

apparent sustained shift in the regression parameter vector.

The T 2
MV E control chart based on the minimum variance ellipsoid estimator indi-

cates that boards 4, 9, 15, 18, and 24 have outlying profiles. The most pronounced

outlier is board 15, which both the T 2
C and T 2

D charts also indicated as the most severe

outlier. As shown by Vargas[19], the T 2
MV E control chart is very powerful in detecting

multivariate outliers. Investigating the table of parameter estimates for these boards,

given in Table 1, it seems reasonable that the boards 15 and 18 are outliers, with
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boards 4, 9, and 24 worthy of further investigation.

As discussed in Section 2.5, an alternative approach to modeling the profiles with

a parametric curve is to employ nonparametric smoothing techniques to model the

profiles. Walker and Wright[1] employed spline smoothing with 16 degrees of freedom

to model the twenty-four boards of the VDP data. We replicated their spline fits

to each profile. After obtaining the spline fits to each profile, ẏij, i = 1, . . . ,m; j =

1, . . . , n, the average spline, ỹj, is calculated. For example, the spline fit to board 1

and the average spline are illustrated in Figure 5.

[Insert Figure 5 about here.]

The spline fit with 16 degrees of freedom provides a concise summary of the shape

of the profile from board 1. The average spline fit is systematically lower than the

spline fit to board 1. In order to determine which boards are in-control we calculated

dissimilarity metrics as given in Section 2.5. Since the metrics Mi2 and Mi3 differ only

by a constant, it is not helpful to consider both metrics simultaneously. Instead we

calculate the metrics Mi1, Mi3, Mi4, and Mi5, and then employ an I-chart based on

the moving range to establish control limits, as suggested by researchers at Boeing[31].

We plot each metric versus i with associated control limits to obtain control charts.

The four charts are given in Figure 6.

[Insert Figure 6 about here.]

The charts based on metrics Mi1 and Mi4 both give the same conclusion, that all

the profiles of the boards are in-control. This is not surprising since Mi4 is the absolute

value of Mi1, but both are given for illustrative purposes. The most extreme value

of the metrics came from board 14, with values of M14,1 = −5.79 and M14,4 = 5.79 .

This value represents the maximum (absolute) deviation of the spline fit to board 14

from the average spline fit.
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Similarly, the charts based on metrics Mi3 and Mi5 both give the same conclusion,

that the profile for board 6 is out-of-control. Referring to Figure 1, board 6 is the

one with the profile that is consistently lower than all other boards. The next most

extreme value of the two metrics is that of board 3, although it does not give an

out-of-control signal. Again, referring to Figure 1, board 3 is the one with the profile

that is consistently higher than all the other boards. It is apparent that these two

metrics measure how consistently different each profile is from the average profile

across the depth values, whereas metrics Mi1 and Mi4 measure the greatest extent

to which a profile is from the average at any particular depth value. It is important

to note that the results for the control charts on the metrics (Figure 6) do not show

the same results as the control charts based on the regression estimators in Figure

4. If the profile can be adequately represented by a parametric model, then this, in

general, will lead to more effective charts.

In addition to monitoring the regression parameter vectors of the profiles in a

Phase I analysis, we should monitor the variation about the profiles to check for

stability. As mentioned in Section 2.4, we recommend using the methods of Wludyka

and Nelson [28] to monitor the variance σ2. Use of their method is appropriate when

the error terms within a profile are independent. In our VDP example, however,

the within-profile density measurements are spatially correlated. A more appropriate

control chart in this case to monitor the process variance σ2 is a topic for further

research.

4. AUTOCORRELATION

Engineering applications that give rise to nonlinear profile data may lead to au-

tocorrelated error terms. A common source of autocorrelated errors is the spatial or

serial manner in which data are collected. The VDP data, for example, is spatially
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correlated because the density measurements are taken at close intervals along the

vertical depth of the particleboard. On the other hand, some nonlinear profiles may

have independent error terms. One example of this is typical dose-response data where

several doses of a particular drug are administered to different subjects and their re-

sponses are measured. The subsequent error terms in the nonlinear dose-response

curve are typically assumed to be independent.

When the error terms are autocorrelated due to either serial, spatial or any other

effects, the correlation structure should be taken into account in the analysis. Failure

to do so might yield misleading results in some cases, particularly with the control

chart to monitor σ2. In our example, given in Section 3, we estimated parameters of

a nonlinear regression model for each board. For our nonlinear model we assumed

that the errors εij are i.i.d. For the VDP data, it may be reasonable to assume that

the εij are correlated. If this is the case, perhaps an alternative approach would be

to employ either nonlinear mixed model methods or generalized estimating equations

(GEE) methodology. Both methods can be used to estimate the mean function, or

profile, while accounting for autocorrelation in the error structure. In the presence

of an autocorrelated error term, Jensen and Birch [34] show that profile analysis

based on a nonlinear mixed model offers an improved control chart performance over

a nonlinear profile analysis assuming an independent error term. A more detailed

treatment of these methods can be found in Schabenberger and Pierce [14] and Hardin

and Hilbe [35]. In the context of analyzing nonlinear profiles for Phase I applications,

this approach is a topic that requires further investigation.

5. DISCUSSION

In Phase I, we are interested in identifying outlying observations as well as identi-

fying step or ramp shifts in the mean vector over time. As shown by Vargas [19], the
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robust variance-covariance matrix and mean vector estimators employed in the T 2
MV E

statistic are very powerful in detecting multivariate outliers, but are not powerful in

detecting a step shift. However, the opposite is true of the T 2
D statistic. As shown by

Sullivan and Woodall[18], the T 2
D chart is powerful in detecting a step shift, but not

powerful in detecting multivariate outliers. One possible alternative is to employ both

the T 2
D and T 2

MV E charts simultaneously, the former chart sensitive to step shifts and

the latter sensitive to outliers. However, in examining both charts simultaneously,

one must be cautious of inflating the false alarm probability. This approach is also a

topic for further research.

We have not given a detailed treatment of the nonparametric approaches to moni-

toring profiles discussed in Section 2.5. Rather, we have only described some methods

that have been proposed and then illustrated their use with the VDP data. Some

issues that need to be addressed, for example, are the best nonparametric estimation

technique for a given scenario, the best metrics to apply, the strengths and weaknesses

of each metric, and the distributional properties of the metrics in order to establish

valid control limits.

The field of profile monitoring using control charts has potential to extend statis-

tical process control to a wide variety of engineering and pharmaceutical applications.

With the increasing ease and efficiency in which processes and products can be mea-

sured, there is a need for statistical methodology to be developed which can accom-

modate the growing needs of industry. We have encountered a number of engineering

applications in which a response curve is needed to assess quality. In some cases,

the shape of the response curve can be well-represented by a parametric nonlinear

regression function. In this paper we have developed control chart methodology to

monitor such nonlinear profiles for Phase I applications. When a profile cannot be

easily described by a parametric function, nonparametric methods may be applied.
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APPENDIX

The function for β(m, p, i) is

β(m, p, i) = I{i=1,m}

(
p

2
− 1

a11(m− b11)

)
+ I{i=2,...,m−1} (a12p + b12) ,

and the function for γ(m, p, i) is given by

γ(m, p, i) = I{i=1,m}a21 + I{i=2,...,m−1}

[
a22

(
i− m + 1

2

)2

+ b22

]
,

where

I{i=1,m} =





1 if i = 1 or i = m

0 otherwise

I{i=2,...,m−1} =





1 if 2 ≤ i ≤ m− 1

0 otherwise

a11 = 6.356e−0.825p + 0.06

b11 = 0.5564p + 0.9723

a12 = 0.54− 0.25e−0.25(m−15)

b12 = −0.085 + 0.2e−0.2(m−22)

a21 = (−0.5m + 2)p +
1

3
(m + 3)(m− 5)

a22 = 0.99 + 0.38e0.38(p−13.5) − 1

0.25e−0.25(p−10)
(
m− 11 + (p−7)2

3

)

b22 = (0.07e−0.07(m−42) − 1.95)p + 0.0833m2
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Table 1: Estimated Parameter Values and T 2 Statistics for the VDP Data

Board â1 â2 b̂1 b̂2 ĉ d̂ T 2
C T 2

D T 2
MV E UCLD

1 6560 3259 5.63 4.40 45.98 0.29 2.65 1.91 6.00 27.88

2 470 291 3.01 2.74 42.08 0.32 7.56 5.27 6.97 22.29

3 1812 2871 3.99 5.02 47.66 0.34 5.83 7.17 8.64 22.27

4 6171 15009 4.25 7.39 46.63 0.39 12.21 17.28 1131.81 22.24

5 4963 2251 5.14 4.20 43.43 0.30 1.65 2.27 2.88 22.21

6 4556 3758 5.28 4.72 40.13 0.30 8.49 13.03 9.83 22.17

7 5542 3815 5.25 5.00 44.15 0.31 2.15 3.49 3.58 22.12

8 3664 2979 4.89 4.41 44.06 0.30 0.79 0.97 2.69 22.07

9 28041 8872 7.58 4.95 43.22 0.26 4.62 7.10 385.03 22.01

10 1640 1207 4.17 3.39 41.84 0.28 4.30 5.05 4.61 21.95

11 3492 1031 5.82 3.17 46.06 0.25 8.66 8.95 10.00 21.91

12 915 750 3.45 3.52 44.37 0.32 1.80 1.99 2.22 21.88

13 989 1392 3.58 4.05 45.47 0.32 3.42 4.42 5.18 21.88

14 1474 620 4.82 3.29 42.52 0.27 3.28 4.50 7.04 21.91

15 129068 5420 12.40 3.33 45.90 0.15 21.45 22.18 17018.91 21.95

16 10166 3822 5.83 4.86 44.19 0.30 3.83 5.60 12.93 22.01

17 1483 603 4.07 3.26 44.83 0.30 2.30 2.53 2.36 22.07

18 31156 31069 7.70 5.94 46.46 0.27 14.55 19.75 8221.00 22.12

19 418 198 3.22 2.67 42.84 0.30 4.58 3.90 5.16 22.17

20 3207 4741 4.88 5.02 44.45 0.30 5.34 5.59 34.00 22.21

21 672 773 3.37 3.37 44.46 0.31 2.64 3.42 2.79 22.24

22 3520 1807 5.10 4.01 45.52 0.29 1.71 1.37 1.73 22.27

23 1979 845 4.24 3.66 45.53 0.32 4.45 4.85 7.38 22.29

24 6095 26778 5.41 6.67 44.46 0.31 9.75 10.55 6676.21 27.88



Figure 1: Vertical Density Profile (VDP) of 24 Particleboards
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Figure 2: “Bathtub” Function Fit to Board 1
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Figure 3: Nonlinear Regression Parameter Estimates a1, a2, b1, b2, c, and d by Board
for the VDP Data
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Figure 4: The T 2 Control Charts for the VDP Data. (a) The T 2
C control chart based on

the sample covariance matrix, (b) T 2
D control chart based on the successive differences

estimator, and (c) T 2
MV E control chart based on the minimum volume ellipsoid.
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Figure 5: Spline Fit of Board 1 (Above) and Average Spline (Below) for the VDP
Data
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Figure 6: Control Charts on Metrics: (a) Mi1, the Maximum Deviation, (b) Mi3, the
Maximum Absolute Deviation, (c) Mi4, the Sum of Squared Differences, and (d) Mi5,
the Mean Absolute Deviation for the VDP Data
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