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In this article, a co-evolutive method is used to evolve neural controllers for general
obstacle-avoidance of a Braitenberg vehicle. During a first evolutionary process, Evolu-
tion Strategies were applied to generate neural controllers; the generality of the obtained
behaviors was quite poor. During a second evolutionary process, a new co-evolutive
method, called Uniform Co-evolution, is introduced to co-evolve both the controllers
and the environment. A comparison of both methods shows that the co-evolutive ap-
proach improves the generality of controllers. © 2002 Wiley Periodicals, Inc.

1. INTRODUCTION

Navigation is a fundamental requirement for au-
tonomous mobile robots. Approaches based on classi-
cal paradigms (abstraction, planning, heuristic search,
etc.) were not completely suitable for unpredictable
and dynamic environments. Other approaches con-
sider “reaction” as the new paradigm to build intel-
ligent systems. One classical instance of this kind of
architecture is the subsumption architecture that was
proposed by Brooks1 and has been successfully imple-
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mented on several robots of MIT and other institutes.
The base of the subsumption architecture is “behav-
ior.” Each behavior reacts in a situation and the global
control is a composition of behaviors. Different sys-
tems, from finite state machines to fuzzy controllers,2

have been used for the implementation of these be-
haviors. The rules of these behaviors could be de-
signed by a human expert, designed “ad-hoc” for the
problem, or learned by using different artificial intelli-
gence techniques. Machine learning has been applied
to shape the behavior of autonomous robots; some
approaches use Genetic Algorithms to evolve fuzzy
controllers,3 Classifier Systems to teach controllers,4,5

or Neural Networks to learn behaviors.6

In this work, a neural network ought to learn a be-
havior, “navigation,” by using Evolution Strategies7,8

(ES) as a machine learning technique to obtain the
right association between inputs and outputs. The
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neural network is a feed forward network with eight
input units and two output units directly connected
to motors. This architecture has appeared in previous
works9 as an efficient way to learn a simple behavior:
“avoid obstacles” by using Genetic Algorithms.

A general problem of machine learning tech-
niques is the overadaptation to the environment used
in the learning phase. In this way, an overadapted
controller is able to navigate only in this environ-
ment. This problem becomes harder when evolution-
ary methods are used. An excessive adaptation to the
environment could abort the generalization capability
of a solution. Overadapted behaviors are not useful
when a robot has to work in environments that differ
from the ones used in the learning phase. Therefore,
the robot ought to learn a behavior useful for any sit-
uation, what is called a generalized behavior.

A new co-evolutive method, Uniform Co-
evolution (UC), is proposed to obtain a general navi-
gation behavior. Some previous works have proven
the usefulness of co-evolution10–13 to improve the
evolutionary computation techniques from different
perspectives. The final performance of the system
is improved as a consequence of the incremental
adaptation among constituents. More recently, some
works aimed at establishing the theoretical basis in
co-evolution have been reported.14–16

In Section 2, a description of the problem is out-
lined. Section 3 is related with the application of Evo-
lution Strategies in predefined environments and the
overadaptation of the learned controllers is shown.
The Uniform Co-evolution method is described in
Section 4. In Section 5, the generalization capabilities
of co-evolutive controllers and the comparison of the
behaviors obtained with a simple ES and UC method
is presented, and finally, some conclusions are out-
lined in Section 6.

2. PROBLEM DESCRIPTION

In this work, a simulator based on an autonomous
robot named Khepera6 is used. The sensory inputs
come in from eight infrared proximity sensors that
give some information about the obstacles and the
distance and the angle to a light source. The robot has
two wheels controlled by two independent motors.
In order to prove the different configurations of the
controllers, a simulator (SimDAI) developed in a pre-
vious work17 has been used. In the simulator, the
characteristics of the turtle robot model18 and the
physical restrictions of the Khepera robot have been
considered. SimDAI is a working prototype of a mo-

Figure 1. Objects configuration (environments).

bile robot simulation environment for experiment-
ing with robot navigation and control algorithms.
Each mobile robot is completely independent, can
navigate and interacts with other robots in a 2-D sim-
ulated world of obstacles, which is separately mon-
itored. This simulator has been used in many other
works3–5,19 in machine learning domains. Six environ-
ments (different objects configurations, Figure 1) are
used in the learning phase. In Figure 1, the final goal
position appears as a spot.

It has been proven that by means of connections
between sensors and actuators, a controller is able to
solve any autonomous navigation robotic behavior.20

This theoretical approach is based on the possibility of
finding the right connections of a feed-forward Neural
Network (NN) without hidden layers for each partic-
ular problem. (See Fig. 2.) The input sensors consid-
ered in this approach are the ambient and proximity
sensors, si , in Figure 3. The NN outputs are the wheel
velocities. The NN architecture is shown in Figure 2.

Figure 2. Neural network architecture.
2
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Figure 3. Connections between sensors and actuators in
the Braitenberg representation of a Khepera robot.

The velocity of each wheel is calculated by means
of a linear combination of the sensor values (Figs. 2
and 3):

vj = f

(
5∑

i=1

wi j × si

)
(1)

Where wi j are searched weights, si are sensor input
values, and f , described in Eq. 2, is a function for con-
straining the maximum velocity values of the wheels.

f (x) =



−1, x < −1
x, −1 ≤ x ≤ 1
1, x > 1

(2)

The aim of the autonomous robot is to reach a goal
in a complex environment while avoiding obstacles
found in its path. Optimization methods do easily
find a good controller for a specific environment. The
objective of this work, however, is to obtain robust
controllers with good performance in any environ-
ment. In the proposed model, the robot starts without
information about the right associations between en-
vironmental signals and actions responding to those
signals. The number of inputs (robot sensors), the
range of the sensors, the number of outputs (num-
ber of robot motors) and their description are the only
previous pieces of information. From the initial situa-
tion, the robot is able to learn through experience the
optimal associations between inputs and outputs.

The learning of weights could be defined as a
search problem in a domain of real values. This prob-
lem could be re-defined as an optimization problem,
and then ES will be used. ES have proven a high de-
gree of successful in this kind of problems. Two dif-
ferent methods will be applied: a simple ES (in a fixed
environment) and a co-evolutive method.

3. APPLYING EVOLUTION STRATEGIES
FOR LEARNING NAVIGATION

ES developed by Rechenberg7 and Schwefel,8 have
been traditionally used for optimization problems
with real-valued vector representations. As Genetic
Algorithms21 (GA), ES are heuristic search techniques
based on the building blocks hypothesis. Unlike GA,
however, in ES the search is focused in the gene mu-
tation. This adaptive mutation is based on the fitness
value of the individual. Recombination plays an im-
portant role in the search also, nevertheless, not as
important as that of the adaptive mutation.

In this approach, each individual is composed of a
20 dimensional, real-valued vector, representing each
of the weights and their corresponding variances. The
individual represents one robot behavior, the conse-
quence of applying the weights to Eq. 1. The evalua-
tion of behaviors is used as the fitness function.

3.1. Experiments

The experiments are focused on the automatic learn-
ing of controllers for the robot navigation problem.
The objective is to obtain a controller able to navigate
in any environment, that is, independently of the ini-
tial and goal positions and the objects configuration.

The first type of experiments, calledfixed, a (µ + λ)-
ES, µ = 6, λ = 4, was applied in order to find the neu-
ral network weights. The same environment was used
during all the evolutive process. That means that the
starting and goal positions, as well as the obstacles
configuration, remained constant. Two hundred gen-
erations were used as a termination criterion. Five
runs with different random seeds were performed in
each evolutive process. The (6 + 4)-ES has been per-
formed over ten different environments. An environ-
ment consists of an objects configuration (Fig. 1) and a
robot starting position and initial orientation (Table I).

3.2. Measure of the Controllers’ Fitness

To obtain the controller fitness value, the simulation
has been run for a period of 2,000 cycles. Simultane-
ously, a log of its behavior is recorded. The measures
that will be taken into account to calculate the fitness
value are the following:

• Number of cycles necessary to reach the goal,
T . If the goal is not reached, then the value is
2,000.

• Length of the robot’s trajectory, L .

3
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Table I. Object configuration and robot starting position
in fixed experiments.

Training example,
robot initial position: Object

Experiment (x, y, angle) configuration

1 (50, 50, 315) 1
2 (450, 400, 90) 2
3 (50, 400, 0) 3
4 (50, 300, 0) 4
5 (450, 300, 270) 4
6 (300, 400, 90) 3
7 (200, 50, 0) 3
8 (250, 400, 0) 5
9 (425, 250, 115) 3

10 (200, 20, 180) 6

• Number of collisions, C .
• Number of cycles in which the robot stayed in

the same position, S.
• Euclidean distance between the robot’s starting

and final positions, Do .
• Euclidean distance between the robot’s starting

position and the goal position, Dm.

Equation 3 shows the lineal combination and weights
used to calculate the fitness value of a controller,
obtained from the measurements of its behavior.

fitij = 20T − 1.5L + 10C + 10S + 10Dm − 1.5Do (3)

To adjust the weights of Eq. 3 some previous experi-
ments were performed.

Table II. Probability of a robot trained in a specific objects configuration reaching the
goal in all object configurations, fixed experiments.

Validation object configuration

1 2 3 4 5 6 Average

1 0.024 0.02 0.02 0.02 0.02 0.02 0.02
2 0.63 0.32 0.23 0.35 0.14 0.31 0.33
3 0.73 0.34 0.35 0.43 0.23 0.44 0.42
4 0.86 0.42 0.32 0.57 0.32 0.38 0.48Training

object
configuration

5 0.84 0.34 0.29 0.47 0.16 0.38 0.41
6 0.88 0.34 0.20 0.42 0.12 0.44 0.40
7 0.87 0.38 0.34 0.58 0.39 0.47 0.51
8 0.68 0.42 0.34 0.34 0.29 0.58 0.44
9 0.49 0.35 0.23 0.34 0.34 0.37 0.35

10 0.82 0.42 0.38 0.63 0.22 0.57 0.51

Average 0.68 0.34 0.27 0.41 0.22 0.40 0.39

3.3. Generalization Capabilities
of Evolution Strategies

Table II shows the percentage of controllers obtained
in the learning process that have been able to reach
the goal. The average of the column must be a mea-
sure of the navigation difficulty of the environment.
Thus, the environment of experiment 1 is the easiest
(as it was expected) and number 5 is the hardest. The
average of the row is the generalization level obtained
by the best controller evolved in an object’s environ-
ment. The controller evolved in experiment 1 was the
worst; it has no navigation skill. Controllers evolved
in experiments 7 and 10 are the best. It is not possible
to give a correlation between the difficulty of an en-
vironment and the navigation skill that a controller is
able to get. The generalization of controllers decreases
due to overadaptation to training environments.

4. UNIFORM CO-EVOLUTION

New extensions to classical evolutive techniques were
proposed to improve the generalization level. One
of these is co-evolution, which was proposed23 as a
method to obtain more general solutions without an
increment of domain information. In this work, we
propose a new co-evolutive method called Uniform
Co-evolution (UC) to treat this problem. The architec-
ture of UC is composed of a population of solutions
and a set of populations of examples (one population
of examples for each individual in the population of
solutions). See Figure 4.

4
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Figure 4. Uniform Co-evolution architecture.

The solutions and examples systems are described
below:

• The Solutions Generator System (SGS) consists
of a population of solution individuals (SIi ). To
compute their fitness, it is necessary to face each
individual with a set of different situations,
examples, represented by a population in the
Examples Generator System (explained below).
The objective of this system is to gradually gen-
erate better solutions for a particular problem.
Any evolutionary computation method can be
used, in which an individual represents one
problem solution. The evolution of the SGS fol-
lows the dynamics of the evolutionary compu-
tation method selected.

• The population of the Examples Generator
System (EGS) is composed of training exam-
ples. This population is arranged in a special
way. The examples are grouped in small blocks.
Thus, the EGS is a population of blocks of train-
ing examples. Each individual of SGS is related
with only one set of blocks. The evaluation of
each individual of SGS is calculated over its re-
lated m-blocks, each composed of r training ex-
amples. Thus, the evaluation is performed over
m×r training examples. This general scheme is
shown in Figure 4. In order to make the struc-
ture more comprehensible, the different blocks
have been called as follows:
– kEIij : the training k-example of the j-block

related with the i-individual of SGS.
– Bi

j : the j-block related with the i-individual
of SGS.

– PEi : the set of all Bi
j related with the

i-individual of SGS.

In the robot navigation problem, the SGS is the pop-
ulation of controllers (each SIi represents the weights
of a neural network) and EGS is composed of differ-
ent training examples (each kEIij represents a robot
starting angle and position). In order to explore the
solutions space, an (µ + λ)-ES is applied to the SGS.
Following the UC scheme, each solution of SGS has a
given set of training examples associated. In Figure 5,
a short scheme of the system and the evolutive algo-
rithms applied is shown.

The UC method automatically evolves solutions
and examples. The general procedure is as follows:

1. Initialization of the populations:
(a) SGS initialization (n-SI individuals)
(b) EGS initialization (n-PE of m-B blocks with

r-EI training examples)
2. Computation of the fitness

(a) Evaluation of each SIi over each individual
kEIij in its related PEi

(b) The fitness of each SIi is a combination of
the above evaluations. This calculation is
explained in more detail in Section 4.1.

(c) The fitness of each PEi is the fitness value
of the corresponding SIi .

3. Generation of new populations
(a) Selection of individuals from SGS.
(b) New SGS population, in this case a (6 + 4)-

ES, was applied to evolve neural network
controllers.

(c) The evolution of EGS is related with the
generation of new EIs for new solutions.
Two ad-hoc genetic operators: the Incre-
mental Genetic Operator (IGO) and a mod-
ified uniform crossover operator are ap-
plied. Both operators will be explained
below.

Solutions Generator
System (SGS)

Examples Generator
System (EGS)

(12.3,5.7,4.2,6.8,
6.3,–2.5,8.3,–4.5,

2.2,–0.6)

NN2 Contr.

NNn Contr

PE1

PE2

PEn

B1
1

B1
m

rEII
m

(x=10.5,y=5.7,a=3.5)

Evolution
Strategies

Crossover and 
Mutation

Incremental 
Mutation

Figure 5. Uniform Co-evolution applied to the robot
navigation problem.
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Figure 6. Uniform Co-evolution scheme to solve the robot navigation problem.

A brief scheme of the process is shown in Figure 6.
The evolutive process involves the generation of

two new populations with one evaluation of the fit-
ness value. Thus, the first step is to generate a new
population for both systems. The selection of an SGS
individual is carried out following the classical rules
of a (µ + λ)-Evolution Strategy. In Figure 7 the indi-
viduals SIi and SIk have been selected to mate.

The second step is the recombination of the geno-
type of the selected solution (SIi and SIk). This oper-
ation generates two new solutions SI′i and SI′k . (See
Fig. 8.) The recombination of the SGS individuals is
carried out by recombination of the first training ex-
ample of its related blocks. In Figure 8 the uniform
recombination of the first examples is shown. In the re-
combination of the SGS individuals, the genetic code

Figure 7. Generation of a new population in SGS and EGS.

does not change; only individuals of the EGS inter-
change their first training examples.

The third step is the generation of new blocks of
training examples. The IGO is applied to the first ex-
ample to obtain a new one. The successive application
of IGO to the last example generated produces a new
one until the block is completed. This process is shown
in Figure 9. The IGO uses the genotype of training ex-
amples and the fitness value calculated for this block.
The IGO will be explained in more detail in Section 4.2.
These steps are repeated until a new population of the
SGS is obtained. In addition, during this process, the
new EGS has been generated, too.

4.1. Fitness Value Calculation

The UC method requires some measures in order to
calculate the final fitness value of every individual
of SGS, fitSOL. Below, the different steps followed to
obtain fitSOL are given in more detail. A summary of
this process is shown in Figure 10.

Figure 8. Recombination of SGS and EGS individuals.
6
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Figure 9. Generation of a new block of training examples.

Figure 10. Calculation of the fitness value of an individual of the SGS, fitSOL.

First, the calculation of fit ji , Eq. 4, is carried out us-
ing the evaluation function, �, where ssol is the geno-
type of the solution system and seje ji is the i-example
of the j-block associated with the individual of the
SGS.

�
(
ssol, se je j

i

) = fit ji (4)

This value, fit ji , is the fitness value of the classical evo-
lutionary computation techniques.

Next, the fitness value of each block of training
examples, fit jB , Eqs. 5–9, has to be calculated.

Let us associate each solution of the SGS with
m-blocks, each one of them composed of r training
examples. The first calculated parameter is α j

7
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(calculated for j-block). This parameter is an abso-
lute measure, related with how closely, in average,
the solution proposed by SGS solves the problem in
Eq. 5.

α j = 1 − fit
j − FMIN

FMAX − FMIN
, where fit

j =
∑r

i=1 fit
j
i

r
(5)

The highest and the lowest fitness values a solution
can ever reach are FMAX and FMIN. It is not necessary
to give exactly the boundary values of the range; an
estimation of FMAX and FMIN and is enough.

Parameter β
j
i , calculated over each training ex-

ample, is a relative reference. It gives a measure of the
proximity of fit ji to the highest and lowest values of
the fitness values in the block of training examples, to
which it belongs. See Eq. 6.



fit jmax = fit jmin, β

j
i = 0

fit jmax �= fit jmin, β
j
i = fit ji −fit jmax

fit jmin−fit jmax

(6)

The fit jmax and fit jmin values are the boundary fitness
values obtained by solutions over their set of training
examples. Therefore, each set of examples has a fit jmax,
the highest value, and a fit jmin, the lowest fitness value.
The parameter β

j
i is calculated for every example of

a set of training examples. It measures how good the
behavior of the solution over an example has been,
with regard to the solution behavior over the other
examples of the same set of training examples. Values
of parameter β

j
i are in the range [0, 1].

The parameter w j
i for each training example of

each set associated with the i-solution is calculated
with parameters α j and β

j
i . (See Equation 7.) This

parameter w j
i takes values in the interval [0,1]. The

normalization of this parameter produces the γ
j
i pa-

rameter. This parameter is of fundamental importance
in the UC method and has been named as Selection
Pressure Control (SPC), as in Eq. 8.

w j
i =

(
eα j − 1

)(
eβ

j
i − 1

) + (
e1−α j − 1

)(
e1−β

j
i − 1

)
(
e − 1

)2

(7)

γ
j
i = w j

i∑r
k=1 w

j
k

(8)

At this point, the fitness value of the set of training

examples, fit jB , can be calculated, as in Eq. 9.

fit jB =
r∑

i=1

γ
j
i fit

j
i (9)

The SPC weighs the fitness value of a training example
within its own set. The effect is to control the selection
pressure to avoid premature convergence.

At the beginning of the evolutive process, the so-
lutions are generated randomly; therefore, they will
obtain poor fitness values. At this evolutive point, the
strategy consists in rewarding any advantage, even
the slight ones that a solution could acquire. Therefore,
the best fitness values, obtained over a set of training
examples, must have much more weight in the calcu-
lation of fit jB . This is a way to increase the importance
of the training examples in which the solution shows
any good behavior. Therefore, the fitness values of the
set, fit jB , are biased to the best fitness values. As the
evolutive process develops, the contribution of all ex-
amples tends to be the same. When the solutions have
very good behaviors, then calculation of fit jB is biased
to the worst fitness values; that is, the performance
over the most difficult examples is more important.
In this phase, the objective is to adjust details of the
generalized solution.

At this point, each set of training examples has a
fitness value, fit jB , and the fitness value of the solution,
fitSOL, can be calculated finally, following Eq. 10.

fitSOL =

 1
m

m∑
j=1

fit jB


 ± KσfitB (10)

The selection operator uses the fitSOL value to choose
the solutions that will generate new ones. The fitSOL

value is calculated with two factors: the average and
the standard deviation of the fitness values of the set
of training examples related with it. The parameter K
is an experimental constant. The standard deviation
has the effect of improving the solutions with a ho-
mogenous behavior. The solutions obtained must be
general, and the average fitness value is not enough to
drive the evolution to get this objective. The standard
deviation is very different from the fitness value. At
the beginning of the evolutive process, all solutions
have similar poor behaviors; therefore, the standard
deviation has small values. Near the end of the evo-
lutive process, something similar happens; all the so-
lutions have reached a high level of performance.

8



Berlanga, Sanchis, Isasi, and Molina: Generalization Capabilities of Co-evolution in Learning Robot Behavior • 463

Table III. Objects configuration and robot starting
position in coevU experiments.

Training example,
robot initial position: Object

Experiment (x, y, angle) configuration

1 Evolve 1
2 Evolve 2
3 Evolve 3
4 Evolve 4
5 Evolve 5
6 Evolve 6

4.2. Generation of Training Environments

As has already been seen, the global evaluation of the
fitness value of a solution is performed over a meta-set
of examples. The robot starts from different positions,
the so-called training examples. A new genetic op-
erator, the Incremental Genetic Operator (IGO), was
proposed to generate new training examples. The IGO
uses a measure of distance between examples. The dis-
tance function, θ(fitiB), is shown in Eq. 11. The param-
eters used in the incremental mutation operator are
a = 400, b = 0.01, FMAX = 65000 yFMIN = 0. These pa-
rameters have been adjusted experimentally.

θ
(
fitiB

) = 400

(
1 − 1 − e− 2

65000 fit
i
B ln( 400−0.01

0.01 )

1 − e−2 ln( 400−0.01
0.01 )

)
(11)

This distance function smooths the convergence in or-
der to prevent the disorientation of the learning pro-
cess. The maximum distance value has been fixed to
400, because the environment has a size of 500 × 500
positions.

To generate a new training example, the function
of distance is applied to each parameter of a training
example. Let xrl , yrl , arl be the initial position and orien-

Table IV. Probability of a robot trained in a specific objects configuration reaching the goal in all object
configurations, coevU experiments.

Validation object configuration

1 2 3 4 5 6 Average Improvement

1 1.00 0.50 0.81 0.90 0.71 0.82 0.79 0.77
2 0.97 0.77 0.84 0.91 0.83 0.86 0.86 0.53Training

object
configuration

3 0.99 0.82 0.79 0.87 0.61 0.84 0.82 0.40
4 0.98 0.44 0.77 0.89 0.70 0.86 0.77 0.29
5 1.00 0.81 0.80 0.89 0.80 0.80 0.85 0.45
6 0.99 0.80 0.80 0.90 0.73 0.80 0.84 0.33

Average 0.99 0.69 0.80 0.90 0.73 0.83 0.82 0.42

tation of the r -training example of the l-set of training
examples. First, the distance, θ l , is calculated and then
the new example parameters are given by Eq. 12.

x′r
l = xrl + N(0, θl)
y′r
l = yrl + N(0, θl) (12)
a ′r
l = arl + N(0, θl)

Where the N(0, θ ) function is a Gaussian distribution
with average 0 and standard deviation θ .

5. GENERALIZATION CAPABILITIES
OF CO-EVOLUTION

In order to measure the generalization capability of the
co-evolutive method, an Evolution Strategy, as that
described in Section 3, (µ + λ)-ES, µ = 6, λ = 4, was
used. These new experiments that use the uniform co-
evolution algorithm coevU, evolve the robot starting
position and orientation, while they keep the goal po-
sition and obstacles configuration fixed. (See Table III.)
Five learning processes with 200 generations in each
one were performed over each environment.

In the same way as in fixed experiments, to obtain
controllers fitness values, the simulation has been run
for 2,000 evolutive cycles, and Eq. 3 has been used to
obtain the fitness value of a controller. This is the value
applied in Equations 4, 5, and 8 to calculate the block
fitness value. In these experiments, the constant K in
Eq. 10 has an experimental value of 0.25.

5.1. Comparison of Generalization Capability

The coevU experiments show a high independence
from the objects’ configuration. In all the cases, the
probability to reach the goal is higher than in fixed ex-
periments. (See Table IV.) The Improvement column

9
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in Table IV shows the difference between the average
of the probability of reaching the goal with coevU and
fixed methods, respectively. An improvement of 40%,
on average, has been obtained. The solution found in
the objects configuration 1 is quite surprising. It has
obtained the same navigation capability than those
solutions evolved in objects configurations with ob-
stacles. This fact points out that the learning process
is independent of the objects configuration used in the
coevU case.

The above results probe that the UC is able to im-
prove the capability of reaching the goal. However,
in order to probe the generality of the controllers, the
probability of reaching the goal will be calculated. The
best controller obtained with experiments fixed and
coevU are compared (experiment 10 of Table I and ex-
periment 2 of Table III). The probability of reaching
the goal is calculated by quadrant. The objects envi-
ronment has been divided into four quadrants, as can
be seen in Figure 11.

If the solution is a general one, then the probability
of reaching the goal in every quadrant, in all different
training objects configurations, must be similar. The
generalization capability has been considered as the
probability of reaching the goal. The calculation of this
probability has been carried out, making 1,000 execu-
tions over all object configurations in Figure 1. Each
execution has a different starting position and orien-
tation of the robot, randomly generated. The proba-
bility of reaching the goal is summarized by quadrant
in Table V for fixed experiments and Table VI for coevU
experiments.

The comparison of Tables V and VI shows some
important results. In fixed experiments, the probabil-
ity of reaching the goal is related with the quadrant in
which the robot starts off, but it also depends on the
objects configuration used. Thus, the second quadrant
is the best to start moving in the objects configuration
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Figure 11. Quadrant decomposition of an object environ-
ment.

Table V. Probability to reach the goal, by quadrant, of the
best controller evolved in experiment fixed number 10.

Validation object configuration

2 3 4 5 6 Average

1st Quadrant 0.5 1.5 14.8 4.7 49.5 14.2
2nd Quadrant 56.8 11.4 17.9 37.2 14.0 27.5
3rd Quadrant 12.8 41.8 7.0 5.2 70.2 27.4
4th Quadrant 47.6 7.0 1.4 10.2 8.9 15.0

Table VI. Probability to reach the goal, by quadrant, of the
best controller evolved in experiment coevU number 2.

Validation object configuration

2 3 4 5 6 Average

1st Quadrant 95.5 97.9 97.7 91.0 95.4 95.5
2nd Quadrant 98.8 95.4 98.5 96.5 96.9 97.2
3rd Quadrant 95.6 99.6 96.5 93.6 97.7 96.6
4th Quadrant 99.7 98.8 96.3 95.7 97.7 97.6

2, but it is bad in the objects configuration 10. This cir-
cumstance absolutely changes in controllers evolved
with UC. Table VI shows that the differences of the
probability of reaching the goal between objects con-
figurations and quadrants are irrelevant. These con-
trollers have a general behavior; they reached the goal
from all starting positions.

Figures 12 and 13 show the executions performed
to calculate the results shown in Tables V and VI. This
graphical representation allows us to extract some
qualitative conclusions. In Figures 12 and 13, filled
dots show the starting positions from which the robot
reached the goal. On the contrary, if the robot did not
get the goal position, an empty dot in the starting po-
sition is plotted. The selected objects configurations
are 2, 3, 4, 5, and 6 of Figure 1.

It can be observed in Figure 12 that a region exists,
different in every environment, in which the proba-
bility of reaching the goal is highest. In the best case,
Figure 12(e), in this objects configuration, the evolved
controller has the highest probability of reaching the
goal and corresponds to the environment used in the
learning process. The preferred starting position was
also the same as the one used in the learning process
(left-bottom). With a slight modification of the start-
ing position, the robot is not able to reach the goal.
This result indicates the poor generalization reached
due to the overadaptation problem. The analysis of
fixed type experiments shows two main problems: the
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Figure 12. Validation of the best controller obtained in fixed experiments.

overadaptation problem and the quality of the solu-
tions that depends on the training examples set. Thus,
the necessity of a new evolutive algorithm, the UC, is
justified.

On the other hand, following the UC method, the
learned controller shows a similar behavior in all val-
idated environments. In this way, there is no over-
adaptation of the controller; the performance of the
controller is not significantly better in the training en-
vironment. In Figure 13, it can be appreciated how
the robot, the best controller of experiment 2 evolved
with coevU, reaches the goal from almost all starting
positions, independently of the region from which it
starts. UC evolves a general controller by using just
one object configuration. This is a very different result
if compared with the best controller obtained in the
fixed experiment.

Taking a good look at the path followed by the
best controller obtained in both kinds of experiments.
This conclusion can be reaffirmed. In Figures 14(a) and
14(b) the paths of the robots have been plotted. This

can be used as a qualitative measure of the navigation
skills of the best controller obtained in the different
types of experiments.

In Figure 14(a) the object avoidance is very poor
and the controller crashes into the wall and the ob-
jects. Furthermore, only twice the goal was reached
under similar circumstances; there are two objects on
the right and a corridor between them. This was the
configuration used in the learning process. The learn-
ing method has enabled the controller to reach the goal
with minimal time and path; the solution is optimal
to the learning situation. When the starting conditions
are changed slightly, then the controller is not able to
navigate successfully. It is easy, just by seeing the be-
havior of the robot, to deduce which objects config-
uration was used in the learning process: the objects
environment where the robot got the highest success.
This proves that the generalization level achieved was
quite poor.

Figure 14(b) shows that the object avoidance is
quite good, but the path obtained is not optimal. In
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Figure 13. Validation of the best controller obtained so far in coevU experiments.
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Figure 14. Path followed by the best robot controller. (a) fixed (b) coevU. Small triangles show the robots’ starting positions
(the orientation is not drawn) and the robots’ paths are represented with lines.

many cases, there are shorter paths to avoid the ob-
jects. This is an expected result; the method and the fit-
ness function do not include any specific information
to increase the evolution pressure in order to obtain

optimal solutions. The controller has achieved right
associations between the sensorial inputs and wheel
velocities, the proximity sensors provide avoidance
of walls and obstacles, and the goal distance sensors
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permit the guidance to the goal. With these navigation
skills, the robot can move and find the goal in every
objects environments.

6. CONCLUSIONS

This article has presented the application of a new co-
evolutive method, Uniform Co-evolution, to the evo-
lution of Khepera controllers implemented as feed-
forward neural networks without hidden layers. The
results presented herein show that general behav-
iors are more likely to be generated through Uniform
Co-evolution than through (µ + λ)-ES. The solutions
obtained with classical ES were overadapted to the
training examples. The Uniform Co-evolution evolves
a general obstacle-avoidance behavior as the result
of a simultaneous evolution of robot controllers and
environments. The co-evolution fulfills an incremen-
tal evolutionary process, smoothing the convergence
rates.

Future research will be devoted to study of the
generality of the Uniform Co-evolution method and
the incorporation of the domain information to en-
hance the robot’s navigation skills in order to obtain
optimal solutions.
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