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In this paper, a systematic methodology for the dynamic analysis of tendon-driven robotic
mechanisms is presented. The approach utilizes the recursive Newton-Euler equations to
compute the kinematic and dynamic equations of all links that locate on the transmission
line of a tendon-driven robotic mechanism. The inertias of the intermediate links in the
mechanism are taken into account. It is shown that the dynamic equations can be estab-
lished in a recursive manner from the end-effector links toward the proximal links and
can be solved at the proximal end without the need of solving the simultaneous system
equations. The joint reaction forces and the tension in each segment of tendon can be also
obtained. The methodology can be applied to both endless and open-ended tendon
drives. © 2003 Wiley Periodicals, Inc.
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1. INTRODUCTION

For decades, the study of tendon-driven systems has
remained interesting to researchers in many fields
such as design of dexterous mechanical hands, par-
allel cable-suspended manipulators, and teleoperat-
ing robots. The main advantages of using tendon
drives lie in that actuators can be controlled from the
outset of system, resulting in a compact and light-
weight design of the mechanical device. In addition,
a well designed tendon transmission system has little
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backlash. However, the use of a tendon transmission
may bring some drawbacks, such as extra mechanical
components, the creation of frictions and hysteresis
loss upon the system, resulting in the complexity of
the mechanical system.

For this reason, there has been a wide interest
in the study of mechanics of tendon transmission
systems. The mechanics of a multi-pulley train with
flexible drives was studied by Chen.1 The kinematics
and statics of articulated tendon-driven robotic
mechanisms were addressed by Morecki et al.,2

Sulisbury,3 and Tsai and Lee.4 However, the dynamics
of such a mechanical system was accomplished on an
Periodicals, Inc.
m). • DOI: 10.002/rob.10082
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individual basis5,6 or performed on single DOF
devices.7,8 Hollars and Cannon5 took into account
tendon flexibility and pulley inertia and analyzed the
dynamics of two-degree-of-freedom (DOF) manipu-
lators. Prisco and Bergamasco6 modeled the dynam-
ics of the 2N type of tendon-driven manipulator us-
ing the Lagrangian equation. Instead of using the
Lagrangian approach, we present a systematic meth-
odology for the dynamic analysis of tendon-driven
manipulators. The methodology incorporates the re-
cursive Newton and Euler formulation such that the
joint forces, tendon forces and equations of motion
can be both explicitly and systematically obtained.
This paper is organized as follows. First, we review
the kinematics of tendon-driven robotic mechanisms.
Then, we present the dynamic analysis of the links.
Finally, we show how the forward and inverse dy-
namics can be analyzed systematically using the pro-
posed approach. Several examples will also be used
to demonstrate the procedure.

2. ASSUMPTION

In a previous paper,4 some general assumptions
about the structural characteristics have been intro-
duced for the kinematic and static analysis of tendon-
driven manipulators. In what follows, we shall intro-
duce two additional assumptions for tendon-driven
manipulators regarding the dynamic analysis.

(i) Tendons are lightweight such that the weight/
inertia, flexural bending, and shear effects of
tendons will not be included.

(ii) For sakes of clarity and simplicity, the frictions
in the pulley bearings and other moving parts
of the transmission are not included. Never-
theless, these terms may be added in the mod-
eling where the force control is important.

Tendon drives can generally be classified into
two types of routing4,9 as (1) the open-ended type and
(2) the endless type of routing. In the open-ended ten-
don routing, as shown in Figure 1(a), one end of the
tendon is fixed to a moving link to be controlled while
the other end is attached to a driving actuator. From
the moving link to the driving actuator, each tendon
routing forms a transmission line. A unique charac-
teristic of such open-ended tendon drives is that ten-
dons transmit the forces in a unidirectional sense. On
the other hand, the routing of the endless tendons is
shown in Figure 1(b) in which two pulleys of constant
center distance are wrapped around by an endless
tendon. The driven pulley is attached to a link to be
controlled and the driving pulley is installed on a ro-
tary actuator or fixed to a driven pulley of prior pul-
ley train stage. From the driven link to the driving ac-
tuator, the tendon-and-pulley also forms a
transmission line. In an endless tendon drive, the pul-
ley can be driven in both directions. One side of the
tendon will be under higher tension while the other
side is under lower tension.

It can be noted that after the removal of tendons
and intermediate/idle pulleys, the tendon-driven ro-
botic mechanism becomes a serial type open-loop
chain. We call the links that constitute the open-loop
chain the primary links, and all other links the inter-
mediate links. An intermediate link is said to be car-
ried by a primary link i if it is connected to link i by

Figure 1. (a) Open-ended type tendon routing. (b) End-
less type tendon routing.
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a revolute joint. As shown in Figure 1(a), links 0, 1, 2
and 3 are the primary links, and links 4 and 5 are
the intermediate links. Intermediate links 4 and 5 are
carried by primary link 1.

3. KINEMATICS OF PRIMARY LINKS

To facilitate the analysis, we sequentially num-
ber each primary link from the base to the distal
link as 0 to n . Meanwhile, a local coordinate system
(xi , yi , zi) is attached to the distal joint of link i
according to the Denavit and Hartenberg (D-H)
convention.10 Let � i ,i�1 be the joint angle from xi�1
axis to xi axis, ai ,i�1 be the offset distance between
zi�1 and zi axes, and � i ,i�1 be the twist angle. Then,
the coordinate transformation from the ith coordinate
Xi to the (i�1)th coordinate Xi�1 can be written as

Xi�1� i�1AiXi , (1)

where matrix i�1Ai is given as
� C� i ,i�1 �C� i ,i�1S� i ,i�1 S� i ,i�1S� i ,i�1 ai ,i�1C� i ,i�1

S� i ,i�1 C� i ,i�1C� i ,i�1 �S� i ,i�1C� i ,i�1 ai ,i�1S� i ,i�1

0 S� i ,i�1 C� i ,i�1 di ,i�1

0 0 0 1
�

and where C� i ,i�1=Cos(� i ,i�1), S� i ,i�1�Sin(� i ,i�1),
C� i ,i�1�Cos(� i ,i�1), S� i ,i�1�Sin(� i ,i�1).

Since the primary links form an open-loop chain,
their velocities and accelerations can be derived from
the forward recursive method,11 computing from the
proximal moving link toward the end-effector link, as

i�i�
iRi�1� i�1�i�1� �̇ i ,i�1

i�1Zi�1�, (2)

i�̇i�
iRi�1� i�1�̇i�1� �̈ i ,i�1

i�1Zi�1� i�1�i�1

� �̇ i ,i�1
i�1Zi�1�, (3)

iVi�
iRi�1

i�1Vi�1� i�i�
iPi ,i�1 , (4)

iV̇i�
i�̇i�

iPi ,i�1� iRi�1
i�1V̇i�1� i�i�� i�i�

iPi ,i�1�,
(5)

iV̇ic�
i�̇i�

iric�
iV̇i�

i�i�� i�i�
iric�, (6)

where � i is the angular velocity vector of link i , Vi is
the velocity vector of the origin Oi , Vic is the velocity
of the center of mass of link i , ric is position vector
defined from the mass center of link i to Oi ,
i�1Zi�1��0, 0, 1�T is a unit vector defined along the
Zi�1 axis, iRi�1 is the transpose of the upper left 3
�3 submatrix of i�1Ai , and iPi ,i�1 is the vector as

iPi ,i�1��ai ,i�1 ,di ,i�1S� i ,i�1 ,di ,i�1C� i ,i�1�T. (7)
4. KINEMATICS OF INTERMEDIATE LINKS

A local coordinate system (xj , yj , zj) is defined for
each intermediate link according to the D-H conven-
tion. Consider an intermediate link j which is located
on the primary link i . The coordinate transformation
matrix from the jth coordinate system to the ith co-
ordinate is given by

iBj�� C� j ,i �C� j ,iS� j ,i S� j ,iS�
j ,i a j ,iC� j ,i

S� j ,i C� j ,iC� j ,i �S� j ,iC� j ,i a j ,iS� j ,i

0 S� j ,i C� j ,i dj ,i

0 0 0 1
� .

(8)

Suppose j , k , and i constitute a simple tendon-
and-pulley train where links j , k are pulleys and link
i is the carrier. Then, the relative rotations of links j
and k with respect to link i can be written as

� j ,i��kj�k ,i , (9)

where �kj is the pulley ratio for the pulley pairs
mounted on link i , positive according to a positive ro-
tation of pulley k resulting in a positive rotation of
pulley j about their predefined axes of rotation.

Suppose links i , j , and k are coaxial. Then, the
relative motion among these links can be related by
the coaxial condition as
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� i ,k�� i ,j�� j ,k . (10)

The velocity and acceleration of intermediate link
j can be also obtained by modifying Eqs. (2)–(6) as

j�j�
jQi

i�i� �̇ j ,i
jZj , (11)

j�̇j�
jQi

i�̇i� �̈ j ,i
jZj�

jQi
i�i��̇j ,i

jZj , (12)

jVj�
jQi

iVi�
j�j�

jPj ,i, (13)

jV̇j�
j�̇j�

jPj ,i�
jQi

iV̇i�
jQi

i�i�� j�j�
jPj ,i�,

(14)

jV̇jc�
jQi

i�̇i�� jPj ,i�
jrjc�� jQi

iV̇i�
jQi

i�i�� jQi
i�i

�� jPj ,i�
jrjc�� , (15)

where jQi is the transpose of the upper left 3�3 sub-
matrix of iBj , rjc is the position vector defined from
mass center of links j to Oj , and jPj ,i can be written
as

jPj ,i��aj ,i ,dj ,iS� j ,i ,dj ,iC� j ,i�
T. (16)

5. TENDON FORCES

Since each transmission line begins from the primary
link and ends at the link driven by the rotary actuator,
the tendon may route through one or more interme-
diate links. Consider the intermediate link j on the
distal joint of a primary link i�1 as shown in Figure
2. Let the carrier of the pulley pair (j , j�1) be the pri-

Figure 2. A typical intermediate link j carried by a pri-
mary link i�1.
mary link i , and the carrier of the pulley pair (j , j
�1) be the primary link i�1. Also, let the portion of
the tendon connecting intermediate links j and j�1
be Tj ,j�1 , and the other portion connecting links j and
j�1 be Tj ,j�1 .

For a general tendon-pulley pair, the tendon will
engage with the pulley at a constant direction with
respect to the carrier. In addition, for the pulley to run
in both directions, the direction of tendon acting on
the pulley should be tangential to the pitch circle of
the pulley plane. As shown in Figure 2, define the act-
ing angle of the tendon Tj ,j�1 as 	 j ,j�1 measured from
the x-axis of coordinate system on link i�1 in a right-
hand rule direction, and similarly the acting angle
of tendon Tj ,j�1 as 	 j ,j�1 measured from the same
system. Then, we can write the tendon force in the
(i�1)th coordinate system as

i�1Tj ,j�1�Tj ,j�1��Sin	 j ,j�1,�Cos	 j ,j�1,0�T,
(17)

where Tj ,j�1 is the magnitude of Tj ,j�1 . Similarly the
tendon force i�1Tj ,j-1 can also be obtained.

The tendon forces can be transformed to the jth
coordinate system on link j by multiplying a rota-
tional matrix jRi�1 :

jTj ,j�1� jRi�1
i�1Tj ,j�1 . (18)

From Eq. (18), it can be seen that the direction of
the tendon will depend on the acting angle and the z
component of Tj ,j�1 on the apex location. Only one
unknown magnitude is necessarily specified for the
tendon force Tj ,j�1 . In the absence of frictional and
flexural effects of tendon routing, the tendon forces
across the intermediate link j will be differentiated
due to the inertia effect of the intermediate link.

6. DYNAMICS ANALYSIS

For a given mechanism in a known state of motion,
the force and moments exerted by different links on
each other can be determined via Newton and Euler’s
equations. While solving the dynamics using Newton
and Euler’s equations, three force- and three
moment-balance equations can be established for
each link of the mechanism. Usually, the total number
of balance equations of the system will be equal to
that of the unknown variables. To solve the simulta-
neous equations in an efficient way, rather than solv-
ing all the unknowns simultaneously, one tries to
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solve them in a recursive manner such that an indi-
vidual link with six unknowns or a small subgroup of
links with fewer unknowns are identified and solved.
Once these equations are solved, the balance equa-
tions for the consecutive link or subgroup of links
may become solvable. This procedure continues until
all the unknowns in the system are solved. However,
in tendon-driven drives, the solution condition will
not be the same as above. The unknowns in any step
will always outnumber the balance equations due to
the redundancy of tendon forces. Hence, the proce-
dure of solution may be similar in recursiveness ex-
cept that the joint forces will first be expressed in ten-
don forces, then the balance equations need to be
solved simultaneously for n primary links in terms of
tendon forces that are connected to the primary links.
After the tendon forces are solved, the joint forces can
then be determined by back substituting the tendon
forces into the balance equations.

7. DYNAMICS OF PRIMARY LINKS

Figure 3 shows the free body diagram of a primary
link i which connects to link (i�1) at joint (i�1) and
link (i�1) at joint i . Assume that primary link i is
driven by the kth tendon or more. The force and mo-
ment balance equations for link i can be represented
in the following recursive forms:

ifi ,i�1�

k

iTi ,k� iFi
0� ifi�1,i�


j

ifj ,i (19)

and

ini ,i�1� iPic�
ifi ,i�1�


k
�� iri ,k� iPic�� iTi ,k�

� iNi
0� ini�1,i�

iric�
ifi�1,i�


j

ini ,j

�

j

� iric�
ifj ,i�, (20)

Figure 3. A typical primary link.
where iFi
0 and iNi

0 are the inertia force and moment
vectors of primary link i and can be obtained as

iFi
0�mi

iV̇ic, (21)

iNi
0�cIi

i�̇i�
i�i�� cIi

i�i�, (22)

where mi is the mass of link i and cIi is the inertia ten-
sor of link i with respect to a center of mass coordi-
nate system which has the same orientation as the ith
coordinate system.

The vector terms on the right-hand side of Eqs.
(19) and (20), fi�1,i and ni�1,i , are computed from the
balance equations of the preceding link while fj ,i and
nj ,i are the forces and moments from intermediate
links. For the end-effector link, these vectors repre-
sent the end-effector output force and moment. The
left-hand side of Eqs. (19) and (20) contain all the un-
known force and moment vectors: fi ,i�1 , ni ,i�1 and
Ti ,k . It can be seen that fi ,i�1 , ni ,i�1 and Ti ,k always
constitute more than six scalar unknowns. Hence
they cannot be solved one link at a time.

8. DYNAMICS OF THE INTERMEDIATE LINKS

Referring to Figure 4, the force and moment balance
equations for an intermediate link j can be written as

jfj ,i�
iFj
0� jTj ,j�1� jTj ,j�1 (23)

and

jnj ,i�� jrj ,j�1� jrjc�� jTj ,j�1

� jNj
0� jrjc�

jfj ,i�� jrj ,j�1� jrjc�� jTj ,j�1 . (24a)

Figure 4. A typical intermediate link j .
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Equation (24a) can be simplified as

jnj ,i�
jrj ,j�1� jTj ,j�1� jNj

0� jrj ,j�1� jTj ,j�1� jrjc�
jFj
0 ,

(24b)

where jFj
0 and jNj

0 are the inertia force and moment
of link j , and can be computed similarly by Eqs. (21)
and (22).

The tendon force Tj ,j�1 in Eqs. (23) and (24b) can
be computed from the moment balance equation of
the upper level intermediate link. Once the joint
forces and the moment of upper level links are
solved, the unknown forces and moments in Eqs. (23)
and (24b) can be solved associated with the unknown
forces and moments in the primary link. We also note
that any vector defined in its local coordinate system
on the intermediate link can be related to the coor-
dinate system of its corresponding primary link by
Eqs. (17) and (18).

We have derived the basic equations which are
required for the dynamic analysis of articulated,
tendon-driven robotic devices. In what follows, we
describe a systematic procedure for the derivation of
dynamic equations of the articulated, tendon-driven
robotic devices. Three examples will be used to illus-
trate the procedure.

1. Example 1

Figure 5 shows a 2-DOF robotic mechanism driven by
endless tendons. Two motors are to be installed at the
joint axis 0 and drive links 1 and 3, respectively.

From the figure, we have 1P1,0��a1,0,0�T, 2P2,1
��a2,0,0�T and 3P3,0��0,0,0�T. Let 1r1c��s1,0,0�T,
2r2c��s2,0,0�T and 3r3c��0,0,0�T. Then, the necessary
kinematics of primary links 1, 2 and intermediate link
3 can be computed from Eqs. (2)–(6) and (11)–(15).
The position vectors required for Eq. (19), (20), (23)
and (24) are 1P1c���(a1�s1),0,0�T, 2P2c���(a2

Figure 5. A 2-DOF robotic mechanism driven by endless
tendons.
�s2),0,0�T. In addition, the directions of tendon
forces and their corresponding positions are identi-
fied as

2T2,1�
2R1 T2,1��S	2,1 ,C	2,1,0�T,

2T2,2�
2R1 T2,2�S	2,2 ,�C	2,2,0�T,

3T3,1�
3R1 T3,1�S	3,1 ,�C	3,1,0�T,

3T3,2�
3R1 T3,2��S	3,2 ,C	3,2,0�T,

2r21�
2R1 r2�C	2,1 ,S	2,1,0�T,

2r22�
2R1 r2�C	2,2 ,S	2,2,0�T,

3r31�
3R1 r3�C	3,1 ,S	3,1,0�T

and

3r32�
3R1 r3�C	3,2 ,S	3,2,0�T.

We note that T2,1�T3,1 , T2,2�T3,2 in the absence of
frictions along tendons.

From Eq. (9), angular displacement of intermedi-
ate link can be expressed in terms of the joint dis-
placement as

�3,1��23�2,1 . (25)

From the coaxial condition,4 the angular displace-
ment of base pulleys can be related to the joint angles
as

��3,0

�1,0
���1 �23

1 0 � ��1,0

�2,1
� . (26)

The dynamic loading on the bearing of link 2 and
tendon forces can be determined respectively from
the force and moment balance equations about the
mass center of link 2 as

2f2,1�
2F2
0�2T2,1�

2T2,2 , (27)

r2�T2,1�T2,2��cI2� �̈1,0� �̈2,1��m2�a2�s2�

��a1�S�2,1�̇1,0
2 �C�2,1�̈1,0�

��a2�s2�� �̈1,0� �̈2,1��, (28)
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where 2F2
0 is the inertia force acting on link 2. Simi-

larly, the actual forces (f3,0
0 , n3,0

0 ) and (f1,0
0 , n1,0

0 ) can be
determined form the balance equations about links 3
and 1, respectively. The motor torques required for
links 3 and 1 are

n3,0
0 �r3�T2,1�T2,2��cI3� �̈1,0��23�̈2,1�, (29)

n1,0
0 ��r1�r2��T2,2�T2,1��a1��a2�s2�S�2,1m2� �̇1,0

2

� �̇2,1
2 ���a2�s2�C�2,1m2� �̈1,0� �̈2,1��2m3s1�̈1,0

�� cI1�a1
2�m2�m3��m3s1

2��̈1,0 . (30)

By substituting Eq. (28) into Eqs. (29) and (30),
tendon forces (T2,1�T2,2) can be eliminated in the
moment balance equations (29) and (30). Hence, the
motor torques will be affected by the dynamic char-
acteristics of links regardless of the tendon tension.
However, the bearing forces f2,1 , f3,0 , and f1,0 will be
affected by the tension in tendons as seen in Eq. (27).
Usually, the pretensioning of tendons in an endless
routing cannot be actively adjusted. Thus, once the
pretensioning of tendons is adjusted, the static load-
ing on bearing is also determined.

2. Example 2

Let the mechanism in Figure 5 be driven by three
open-ended tendons, as shown in Figure 6. Then it is
necessary to determine the tendon forces among the
pulleys. The kinematics of links is computed as in Ex-
ample 1. The direction of tendon forces and their po-
sitions are

2T2,1�
2R1 T2,1��S	2,1 ,C	2,1,0�T,

2T2,2�
2R1 T2,2�S	2,2 ,�C	2,2,0�T,

Figure 6. A 2-DOF robotic mechanism driven by open-
ended tendons.
3T3,1�
3R1 T3,1��S	3,1 ,C	3,1,0�T,

3T3,2�
3R0 T3,2�S	3,2 ,�C	3,2,0�T,

4T4,1�
4R1 T4,1��S	4,1 ,C	4,1,0�T,

4T4,2�
4R0 T4,2�S	4,2 ,�C	4,2,0�T,

1T1,1�
1R0 T1,1��S	1,1 ,C	1,1,0�T,

and

2r2,1�
2R1 r2 �C	2,1 ,S	2,1,0�T,

2r2,2�
2R1 r2�C	2,2 ,S	2,2,0�T,

3r3,1�
3R1 r3�C	3,1 ,S	3,1,0�T

and

3r3,2�
3R0 r3�C	3,2 ,S	3,2,0�T,

4r4,1�
4R1 r4 �C	4,1 ,S	4,1,0�T,

4r4,2�
4R0 r4�C	4,2 ,S	4,2,0�T

and

1r1,1�
1R0 r1�C	1,1 ,S	1,1,0�T.

Note that T3,1�T2,1 , T4,1�T2,2 .
The displacement relation between the joint

angles and the base pulley angles is

Figure 7. The Stanford-JPL finger.
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Table I. Tendon forces vectors used in Example 3.
3T3,1�

3R2T3,1��S	3,1 ,C	3,1,0�T 3T3,2�
3R2T3,2�S	3,2 ,�C	3,2,0�T

8T8,1�
8R2T8,1�S	8,1 ,�C	8,1,0�T 8T8,2�

8R1T8,2��1,0,0�T
9T9,1�

9R2T9,1��S	9,1 ,C	9,1,0�T 9T9,2�
9R1T9,2��1,0,0�T

2T2,1�
2R1T2,1��1,0,0�T 2T2,2�

2R1T2,2��1,0,0�T
4T4,1�

4R1T4,1�1,0,0�T 4T4,2�
4R0T4,2��S	4,2 ,C	4,2,0�T

5T5,1�
5R1T5,1�1,0,0�T 5T5,2�

5R0T5,2��S	5,2 ,C	5,2,0�T
6T6,1�

6R1T6,1�1,0,0�T 6T6,2�
6R0T6,2�S	6,2 ,�C	6,2,0�T

7T7,1�
7R1T7,1�1,0,0�T 7T7,2�

7R0T7,2�S	7,2 ,�C	7,2,0�T
� �1,0

�3,0

�4,0

��� 1 0

1 �23

1 �24

� ��1,0

�2,1
� . (31)

Since there are four links in the devices, we can get
eight balance equations as follows:

f2,1�T2,1�T2,2�F2
0 , (32a)

P2c�f2,1��r2,1�P2c��T2,1��r2,2�P2c��T2,2�N2
0 ,

(32b)

f3,0�T3,1�T3,2�F3
0 , (32c)

P3c�f3,0��r3,1�P3c��T3,1��r3,2�P3c��T3,2�N3
0 ,

(32d)

f4,0�T4,1�T4,2�F4
0 , (32e)

P4c�f4,0��r4,1�P4c��T4,1��r4,2�P4c��T4,2�N4
0 ,
(32f)

f1,0�T1,1�F1
0�f2,1 , (32g)

P1c�f1,0��r1,1�P1c��T1,1�N1
0�r1c�f2,1 .

(32h)

Substituting the force f2,1 in (32a) into (32b) and
representing the tendon forces T3,1 and T4,1 in Eqs.
(32d) and (32f) in terms of T3,2 and T4,2 and again sub-
stituting into (32b) yields

r2T3,2�r2T4,2�b1 , (33a)

where b1�cI2( �̈1,0� �̈2,1)�m2(a2�s2)(a1(S�2,1�̇1,0
2

�C�2,1�̈1,0) � (a2�s2)(�̈1,0��̈2,1)) (r2/r3)
cI3(�̈1,0��23�̈2,1)

+(r2 /r4) cI4( �̈1,0��24�̈2,1). Similarly, substituting the
force f2,1 in (32a) and f1,0 in (32g) into (32h) and re-
lating the tendon forces T3,1 and T4,1 in terms of T3,2
and T4,2 , we obtain

�r3T3,2�r4T4,2�r1T1,1�b2 , (33b)

where

b2��a1��a2�s2�S�2,1m2� �̇1,0
2 � �̇2,1

2 �2

��a2�s2�C�2,1m2�̈1,0��a2�s2�C�2,1m2�̈2,1�

�� cI1�a1
2�m2�m3��m3s1

2�2m3s1��̈1,0

�
�r1�r2�

r3

cI3� �̈1,0��23�̈2,1��
�r1�r2�

r4

cI4� �̈1,0

��24�̈2,1�.

Writing Eqs. (33a) and (33b) in matrix form becomes
Table II. Radius vectors used in Example 3.
3r3,1�

3R2�r3C	3,1 ,r3S	3,1 ,(r4–r5)/2�T 3r3,2�
3R2�r3C	3,2 ,r3S	3,2 ,�(r4–r5)/2�T

8r8,1�
8R2r8�C	8,1 ,S	8,1,0�T 8r8,2�

8R1r8�0,1,0�T
9r9,1�

9R2r9�C	9,1 ,S	9,1,0�T 9r9,2�
9R1r9�0,�1,0�T

2r2,1�
2R1r2�0,1,0�T 2r2,2�

2R1r2�0,�1,0�T
4r4,1�

4R1r4�0,0,1�T 4r4,2�
4R0r4�C	4,2 ,S	4,2,0�T

5r5,1�
5R1r5�0,0,1�T 5r5,2�

5R0r5�C	5,2 ,S	5,2,0�T
6r6,1�

6R1r6�0,0,�1�T 6r6,2�
6R0r6�C	6,2 ,S	6,2,0�T

7r7,1�
7R1r7�0,0,�1�T 7r7,2�

7R0r7�C	7,2 ,S	7,2,0�T
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AT�B, (33c)

where T��T3,2 ,T4,2 ,T1,1�
T, B��b1 ,b2�T, and

A�� r2 �r2 0

�r3 �r4 r1
� .

From Eq. (33), we conclude that once tensions in
the ground level tendons are specified, the forward
dynamics can be uniquely determined. On the other
hand, the inverse dynamics yields two linear equa-
tions in three unknowns. The general solution of ten-
don forces can be determined by the torque resolver
method.12 Once tensions in the ground level tendons
are determined, the tension of each segment of ten-
dons can be obtained from Eq. (24b) from proximal to
distal links while the bearing forces from distal to
proximal links.

3. Example 3

Figure 7 shows the structure of Stanford/JPL finger.3

The direction of tendon forces and their positions can
be respectively defined in Tables I and II. Note that
T3,1�T8,1 , T3,2�T9,1 , T4,1�T8,2 , T5,1�T9,2 , T6,1
�T2,1 , and T7,1�T2,2 .

The displacement relation between base/
intermediate pulleys angles and joint angles is4

�
�1,0

�8,1

�9,1

�4,0

�5,0

�6,0

�7,0

� ��
1 0 0

0 1 �38

0 1 �39

1 �84 �34

1 �95 �35

1 �26 0

1 �27 0

� � �1,0

�2,1

�3,2

� . (34)

Details of dynamic equations can be found in ref.
13. The dynamic equations governing the tension in
the ground level tendons are given as below,

AT�B, (35)

where T��T4,2 ,T5,2 ,T6,2 ,T7,2�
T,

A�� r3 �r3 0 0
r8 �r9 r2 �r2

�r4 �r5 r6 r7
� ,

and
B��m3�a3�s3��a1�S�2,1�̇1,0
2 �C�2,1�̈1,0���a2�s2�

�� �̈1,0� �̈2,1���I3� �̈1,0� �̈2,1� �̈3,2�

�r3� �
I4� �̈1,0��84�̈2,1��34�̈3,2�

r4

�
I5� �̈1,0��95�̈2,1��35�̈3,2�

r5
�

I8� �̈2,1��38�̈3,2�

r8

�
I9� �̈2,1��39�̈3,2�

r9
� .a1��a2�S�2,1m2�S��2,1

��3,2�m3��S�2,1m2s2��̇1,0
2 ��a2�C�2,1m2�C��2,1

��3,2�m3��C�2,1m2s2��̈1,0��I2� �̈1,0� �̈2,1���a2

�s2��S�3,2a2m3� �̇1,0
2 � �̇2,1

2 �2�C�3,2a2m3� �̈1,0

� �̈2,1���I8� �̈2,1��38�̈3,2��I9� �̈2,1��39�̈3,2�

�r2� �
I6� �̈1,0��26�̈2,1�

r6
�

I7� �̈1,0��27�̈2,1�

r7
�

�r8� �
I4� �̈1,0��84�̈2,1��34�̈3,2�

r4

�
I5� �̈1,0��95�̈2,1��35�̈3,2�

r5
� .0.5�2I1�̈1,0

�a1���2�C�2,1�
2h2m2�C�2,1C��2,1��3,2�m3�r4

�r5��2�m2�S�2,1S��2,1��3,2�m3�r6��̇1,0
2

��S�2�2,1�h2m2�m3�C�2,1S��2,1��3,2��r4�r5�

�2C��2,1��3,2�S�2,1r6���̈1,0���a2�s2��S�3,2m3

��2S�2,1r6� �̇1,0
2 � �̇2,1

2 �2�C�2,1�r4�r5�� �̈1,0� �̈2,1��

�2m2��C�2,1�h2�r6�� �̇1,0
2 � �̇2,1

2 �2�S�2,1r6� �̈1,0

� �̈2,1���C�3,2m3��C�2,1�r4�r5�� �̇1,0
2 � �̇2,1

2 �2

�2S�2,1r6� �̈1,0� �̈2,1����2�I4� �̈1,0��84�̈2,1

��34�̈3,2��I5� �̈1,0��95�̈2,1��35�̈3,2��I6� �̈1,0

��26�̈2,1��I7� �̈1,0��27�̈2,1���� .
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Similar to Example 2, once tensions in the ground
level tendons are specified, the forward dynamics can
be uniquely determined. On the other hand, the in-
verse dynamics yields three linear equations in four
unknowns. The example shows how the dynamic
equations of a complex tendon-driven robotic mecha-
nism can be derived.

9. SUMMARY

A systematic methodology for the dynamic analysis
of tendon-driven robotic mechanisms is developed.
The method uses the recursive algorithm to calculate
the kinematics and dynamics of links. First, the kine-
matics of primary and intermediate links are com-
puted recursively from the proximal link toward the
end-effector link. Then, joint forces and moments are
computed backwardly via the Newton-Euler equa-
tions. The force systems are established to evaluate
the actual joint forces among the coaxial links.

At the end, three examples are used to illustrate
the procedure of solving endless and open-ended
types of tendon drives. In the endless tendon drive,
we first solve the dynamics of links followed by the
equations of motion. In the open-ended tendon drive,
the dynamic force system will encounter the redun-
dancy of tendon tension. The inverse dynamics can
be solved from the end-effector level toward the base
link while tendon forces and joint forces can be ob-
tained from the base link toward the end-effector
link. It is hoped that the methodology can be helpful
for the dynamic analysis of complex tendon-driven
robotic mechanisms

NOMENCLATURE
iFi* Inertia force of link i with respect to frame i
iNi* Inertia moment of link i with respect to frame i

ifi ,i�1 Force acting on link i by link i�1 at joint i
iTi ,k The kth tendon-force acting on link i with respect to

frame i
ini ,i�1 Moment acting on link i by link i�1 at joint i

iPic Position vector defined from mass center of link i to
Oi�1

iric Position vector defined from mass center of link i to
Oi
iri ,k Position vector defined from Oi�1 to the mesh point
of the tendon

iPi ,i�1 Position vector defined from Oi�1 to Oi
iRi�1 Rotation matrix, which transforms (i�1)th coordi-

nate system to ith coordinate system
i�i Angular velocity of link i
iVi Velocity of the origin Oi

iVic Velocity of the center of mass of link i
� i ,i�1 Angular displacement between link i and link i�1

	 i , j Acting angle of tendon to pulley
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