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This paper introduces novel methods for terrain classification and characterization with
a mobile robot. In the context of this paper, terrain classification aims at associating terrains
with one of a few predefined, commonly known categories, such as gravel, sand, or as-
phalt. Terrain characterization, on the other hand, aims at determining key parameters of
the terrain that affect its ability to support vehicular traffic. Such properties are collec-
tively called “trafficability.” The proposed terrain classification and characterization sys-
tem comprises a skid-steer mobile robot, as well as some common and some uncommon
but optional onboard sensors. Using these components, our system can characterize and
classify terrain in real time and during the robot’s actual mission. The paper presents
experimental results for both the terrain classification and characterization methods. The
methods proposed in this paper can likely also be implemented on tracked robots, al-
though we did not test this option in our work. © 2006 Wiley Periodicals, Inc.

Parts of Section 4 of this paper were presented at the SPIE Defense and Security Conference, Unmanned Ground Vehicle Technology VII,
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1. INTRODUCTION

Most research on off-road mobile robot sensing fo-
cuses on obstacle negotiation, path planning, and po-
sition estimation. These issues have conventionally
been the foremost factors limiting the performance
and speeds of mobile robots. Very little attention has
been paid to date to the issue of terrain classification,
which aims at associating terrain with well-defined
categories, such as gravel, sand, or dirt.

A related but different type of terrain analysis is
terrain characterization, that is, determining character-
istics of the terrain that affect the driving perfor-
mance and safety of small mobile robots traversing
the terrain. Yet, trafficability is of great importance if
mobile robots are to reach speeds that human-driven
vehicles can reach on rugged terrain. For example, it
is obvious that the maximal allowable speed for a
turn is lower when driving over sand or wet grass
than when driving on packed dirt or asphalt. In order
to emphasize that the characterization methods dis-
cussed in this paper relate to the trafficability of the
terrain, we use the term “terrain trafficability charac-
terization” throughout this paper.

The main difference between characterization
and classification is that characterization tells us how
the terrain affects driving behavior �e.g., slippery and
soft� without attempting to identify the terrain. Ter-
rain classification, on the other hand, does not nec-
essarily tell us how the terrain affects driving behav-
ior, but it tells us what type of terrain it is. An example
for the significance of this distinction is this: In order
for a mobile robot to drive safely but at the highest
possible speed over an asphalt road, it is very impor-
tant to know whether the asphalt is wet or dry. It is
less important to know that the terrain is made of as-
phalt, as long as the robot knows what cornering
forces or break distance the terrain will support. In
contrast, a remote human operator may want to
know if the robot is still driving over grass or if it has
reached a gravel-covered parking lot adjacent to a tar-
geted building. In this example, terrain classification
can help pinpoint the location of the robot on, say, an
aerial map that the operator is using.

In the remainder of this section, we review rel-
evant earlier research about terrain classification and
characterization.

1.1. Terrain Classification

In the context of this paper, “terrain classification” is
the act of identifying the type of the terrain being
traversed, from among a list of candidate terrains.

Early work on terrain classification—not specifi-
cally for robotics applications—focused on analyz-
ing the texture of video images and synthetic aper-
ture radar images. A survey of work performed with
these two types of sensors can be found in Weszka,
Dyer & Rosenfeld �1976� and Belhadj, Saad, El As-
sad, Saillard & Barba �1994�, respectively. Another
popular sensor modality for terrain classification is
video; because video cameras are small, lightweight,
emit no detectable energy, and they are inexpensive.
Examples for work on wheeled mobile robots can be
found in Talukder et al. �2002�, and for legged robots
in Larson, Voyles & Demir �2004�. With the arrival of
three-dimensional range sensors, researchers have
also used range information for terrain classification
purposes �Vandapel, Huber, Kapuria & Hebert,
2004�.

Our proposed terrain classification system uses
typically available on-board sensors, such as gyros,
accelerometers, encoders, as well as motor current
and voltage sensors. In addition, the paper describes
a number of less commonly used sensors and their
effectiveness with regard to terrain classification.
These sensors are downward-facing ultrasonic and
infrared sensors, as well as microphones. Signals
from each sensor modality are fed into trained neu-
ral networks �NNs�, one NN for each sensor modal-
ity. The output of each NN is a number between zero
and one that indicates the likelihood of the present
terrain being one of five previously defined and
trained terrains. Somewhat related work has been
proposed by Sadhukhan �2004� and Brooks, Iag-
nemma & Dubowsky �2005�. However their work
was limited to the use of accelerometers.

1.2. Terrain Characterization

Terrain characterization has been the subject of sev-
eral studies, although these earlier studies were typi-
cally aimed at larger vehicles and the characteriza-
tion process was manual. Perhaps the best known
and widely cited works are those of Bekker �1956,
1960, 1969� and Wong �2001�. From the point of view
of terramechanics, soil can be characterized by deter-
mining the terrain parameters. Many approaches to
terrain characterization require offline analysis
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and/or dedicated equipment �Nohse et al., 1991;
Shmulevich, Ronai & Wolf, 1996�. Terrain character-
ization without dedicated equipment was proposed
for the Sojourner rover and its 1997 Mars mission
�Matijevic et al., 1997�. Based on this method, So-
journer used one of its wheels to characterize terrain.
A real-time approach based on the measurement of
wheel sinkage in soft soil using a video camera was
proposed in Iagnemma, Kang, Shibly & Dubowsky
�2004�.

In this paper, we propose a fully self-contained
terrain characterization method for skid-steer mobile
robots. With “self-contained” we mean that our sys-
tem does not require any special-purpose instru-
ments to be attached to the robot. Rather, the pro-
posed method monitors typical onboard sensors,
such as gyros and motor current sensors. The unique
advantage of this approach is that it can be applied
during real time and during an actual robot mission.
In numerous runs, we collected data on five different
terrains: Gravel, sand, asphalt, grass, and dirt. Sen-
sor data were collected while the robot performed
carefully prescribed maneuvers. We then analyzed
the data with our proposed method, which yielded a
curve that is characteristic for a particular terrain.

2. THE EXPERIMENTAL PLATFORM

The mobile robot used in all experiments was a Pio-
neer 2-AT �P2AT�, shown in Figure 1. The robot was
equipped with a large number of sensor modalities.
We categorize these sensors as follows:

1. Inertial Sensors �see Figure 2�: This system,
developed originally at the University of
Michigan, is also know and referred to as the
FLEXnav Proprioceptive Position Estimation
�PPE� system �Ojeda, Reina & Borenstein,
2004�. The FLEXnav PPE system used in this
project comprises:

• Two medium-quality Coriolis gyros for
the x and y axis;

• One high-quality fiber-optic gyro for the z
axis; and

• Three single-axis accelerometers.

2. Motor Sensors: Two current and two voltage
sensors for measuring torque and momen-
tary power consumption for the left-hand
and right-hand side motors. While the P2AT

has a pair of drive motors on each side, each
pair is mechanically coupled and acts effec-
tively as one motor.

3. Range Sensors �see Figure 3�:
• One ultrasonic range sensor, which uses a

23 kHz ultrasonic transmitter and one re-
ceiver; and

• One infrared range sensor.

Figure 1. This Pioneer 2-AT �P2AT� was used in all
experiments.

Figure 2. The Inertial Navigation Unit �IMU� built for
this project comprises a KVH fiber optic gyro for the z axis
and two Coriolis gyros for the x and y axes, as well as a
two-axes accelerometer.
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4. Other Sensors:
• One microphone �see Figure 3�; and
• Two wheel encoders.

A laptop computer provided the computing
power, and data acquisition was performed using a
16-input 16-bit PCMCIA data acquisition card. Figure
4 shows a hardware diagram of the complete system,
comprising the P2AT platform, computers, and sen-
sors. Software developed specifically for this project
includes a library of motion primitives that perform
a number of predefined motions. These motions are
described in more detail in the following sections.

3. TERRAIN CLASSIFICATION

In our study, we attempted to identify which one of
five different candidate terrains the robot traveled on:
Gravel, grass, sand, pavement, or dirt. Our hypoth-
esis was that each terrain type has a unique signature
when “viewed” by a certain sensor modality. The out-
put signals from each one of the available sensor mo-
dalities were sampled and stored for subsequent off-
line analysis in MATLAB. The analysis consisted of
data preprocessing, as needed for each sensor modal-
ity, followed by classification, by means of a NN. The
NN is explained in greater detail in the following sec-
tion. It is perfectly feasibly to do the preprocessing
and NN analysis in real time; although in our work
here, we used MATLAB functions for convenience.

3.1. Neural Networks for Terrain Classification

In recent years, applications using NNs have proven
to be successful in many areas. Most of them are in
the field of pattern recognition. Multilayer feedfor-
ward networks are universal approximators
�Hornik, Stinchcombe & White, 1989�, and can ap-
proximate any function with any desired degree of
accuracy, provided that an adequate number of hid-
den processing elements are available. Therefore, we
can expect a properly dimensioned and trained NN
to perform as an efficient classifier. NNs present sev-
eral advantages that make them desirable for pattern
classification applications. NNs can represent linear
and nonlinear models and learn those relations di-
rectly from the training data. In addition, they can
generalize this knowledge to new situations. NNs
are not dependent on statistical distributions or
spectral responses and can be made tolerant to noise
variations.

We performed all described terrain classification
experiments using a feed-forward NN with five out-

Figure 3. Three sensor modalities were mounted in front
of the robot, pointing downward: A microphone, an infra-
red range sensor, and an ultrasonic range sensor.

Figure 4. Pioneer 2-AT hardware components.
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puts, as shown in Figure 5. Each output can vary
from zero to one, in proportion to the likelihood that
a given signal presented in the input of the NN be-
longs to one of the five subject terrains: Gravel,
grass, sand, pavement, or dirt.

All classification experiments were performed
based on just one single sensor modality at a time.
That is, one NN per signal of interest was created,
trained, and tested. Although data from several dif-
ferent sensor modalities can be fed into one single
NN, we refrained from doing so. This was in order
to avoid increasing the number of neurons in the
NN, which would have increased the size and train-
ing time considerably. Alternatively, and more likely
to be successful, one can combine the outputs of
multiple sensor-specific NNs to improve the final
overall performance. This is particularly true when
the sensors characteristics are complementary. How-
ever, implementation and testing of such multi-NN
systems was beyond the scope of this project.

The number of NN inputs, n, can vary depend-
ing on the sensor modality being tested and the pre-
processing applied to the signal. In all cases, we first
used the discrete Fourier transform �DFT� to decom-
pose the signal into its frequency components, and
the result of the DFT was then used as the input for

the NN. The DFT is the discrete or finite implemen-
tation of the Fourier transform, which can be used to
represent a signal as a function of sinusoidal basis
functions. We computed the DFT of the input signal
at fixed intervals of 128 samples. This is essentially a
periodogram, which in turn is an approximation of
the signal power spectrum or power spectrum density.
For a detailed explanation of the DFT and peri-
odogram see Papoulis �1991�. The sampling fre-
quency of the signals was 200 Hz, and the output of
each DFT was made up of 64 components represent-
ing the frequency content in the range from
0 to 100 Hz. For most of the signals, we used n=32
inputs. This number of inputs corresponds to fre-
quencies from 0 to 50 Hz. In the few cases where
sensor data were used in the time domain, we set
n=25 inputs. Regardless of the number of inputs, all
tested NNs had one intermediate layer. In our analy-
sis, we also tried NNs with two intermediate layers,
but found that this did not improve the classification
performance.

For each terrain, we performed two separate ex-
periments; each one on two different locations that
were at least 3 m apart from each other. In all cases,
we used one data set for training the NN and the
other one for testing it. For each NN, the number of
process elements per layer was determined by care-
fully tuning the size of the NN until it provided the
best classification performance. However, regardless
of the quality of the tuning, the NN accuracy is
greatly reduced when signals corresponding to dif-
ferent terrains have similar signatures, as will be
seen later. In that case, the NN does not classify the
terrains correctly.

There is a tradeoff in selecting the appropriate
number of process elements. If too many are se-
lected, the NN learns to classify the training data set
correctly, but it performs poorly with the test data
set. On the other hand, if the number of neurons is
too small, the NN is not able to learn all the patterns.
Therefore, as we designed each NN, we started with
a large NN and then gradually reduced the number
of neurons until the performance deteriorated. The
process of deleting units, or connections, is usually
called “pruning” �Reed, 1993�.

We also considered the question of how much
training was sufficient. An overtrained NN tends to
perform well with the training data set only. We
avoided this problem by training the NN until its
performance was about the same for both the train-

Figure 5. Structure of the neural net used for terrain
classification.
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ing and the test data set. This technique is known as
“early stopping” �Nelson & Illingworth, 1991�.

Dimensioning and training a NN is a trial-and-
error process and can be time consuming. However,
once a NN is trained, its parameters are fixed. It
would not be difficult to implement the NNs in such
a way that they can be used in real time, although
we did not do so in our project. After each NN was
trained, we analyzed its performance based on the
results obtained with the testing data set. We used
the maximum output as the criteria to determine
which output is being activated, that is, all the out-
puts were compared and the one with the highest
value was the one that identified the terrain.

The NN performance was computed using two
parameters: Success rate, SR, and false alarm rate, FR.
The success rate performance parameter indicates
how often the NN correctly identified each terrain.
SR was computed as the ratio between the success-
fully classified samples, SCS, and the total number of
samples of the specific terrain being tested, TS. It
was expressed in terms of a percentage as follows:

SR = 100
SCS

TST
. �1�

The false alarm performance parameter indi-
cates how often the NN misclassified a terrain, that
is, how often the input sample corresponding to one
kind of terrain was classified by the NN as a differ-
ent type of terrain. FR was computed as the ratio
between the number of unsuccessfully classified
samples, UCS, and the total number of all other
samples not corresponding to the type of terrain be-
ing tested TSNT. The final result was expressed as a
percentage using

FR = 100
UCS

TSNT
. �2�

Desirable performance is characterized by a high
SR score and a low FR score. The sum of SR and FR
does not have to add up to 100%. In fact, both pa-
rameters are independent since one is measured
based on samples that correspond to a specific type
of terrain �1�, while the other is measured based on
the samples that do not correspond to the type of
terrain to being tested �2�.

3.2. Terrain Classification: Experimental Results

For the experiments discussed in this section, the
P2AT was programmed to travel along a 4�4 m
square-shaped path at a speed of 30 cm/s. As men-
tioned before, two experiments on different locations
were performed for each terrain; one for training the
NN, and the other one for testing and reporting the
results. In the remainder of this section, we discuss
briefly the peculiarities of each sensor class �Inertial,
Motor, Range, Encoder, and Microphone� and pro-
vide plots that illustrate some of the results. Due to
space limitations, we include plots for only a few of
the sensor modalities, specifically, the best-
performing one in each sensor class. Also included
with each illustration is a table that summarizes the
performance of the respective sensor modality and
its associated NN in numeric form. Section 3.3 gives
tabular and graphical summaries of the performance
of all the sensor modalities and their associated
NNs.

3.2.1. Inertial Sensors: Gyros and Accelerometers

We created and trained one NN each for each one of
the three onboard gyros ��x, �y, and �z� and for each
one of the three onboard accelerometers �ax, ay, and
az�. In each case, we used the DFT of the sensor sig-
nal as the input for the NN. Figure 6 shows the pe-
riodogram for the X axis gyro, �x, for all five ter-
rains, and Figure 7 shows the resulting NN output.
The somewhat confusing-looking Figure 6�b� holds a
large amount of information: Each horizontal “row”
of plotted data corresponds to one of the five out-
puts of the NN. For example, the first row represents
the “gravel” output, that is, the output of the NN
that should ideally be “1.0” when the robot traveled
over gravel and “0” on all other terrains. Each row is
divided into five sections, and each section is 170
samples long. Each group of 170 samples was
sampled on a different terrain, as follows: First
group of 170 samples: Gravel; second group of 170
samples: Grass; third group of 170 samples: Sand;
fourth group of 170 samples: Pavement; and fifth
group of 170 samples: Dirt.

Table I shows the success rate and the false
alarm rate for each terrain in tabular form. The pe-
riodogram of all inertial sensors shows the same
physical effect: The vibration of the robot seen by the
different sensors along their corresponding sensitive
axes. Overall, the X-axis gyro data produced the best
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performance among the inertial sensors. In all cases,
the NNs associated with the inertial sensors were
quite successful at classifying gravel and pavement.
However, these sensors and their associated NNs
were less successful on dirt and often failed to dis-
tinguish between sand and grass.

3.2.2. Motor Sensors

There are four motors on the P2AT; one pair drives
the two left-hand wheels, and the other drives the
two right-hand wheels. Since the motors of a pair are
mechanically linked, we treat each motor pair as a
single motor. For terrain classification, two motor-
related sensor modalities are of interest: Current sen-
sors �I� and voltage sensors �V�. For each sensor mo-
dality, two NNs were used; one to classify terrains
using the signal in the frequency domain, and the
other one for classification using time domain
signals.

Since motor currents vary at much slower fre-
quencies than other observed physical properties of
the moving robot �e.g., vibration and dc level�, we

downsampled the time domain signal of the current
measurements by a factor of 5 in order to provide to
the NN sufficient significant data to perform the
classification. When using the current data in the
time domain, the NN performed well for pavement,
dirt, and sand, as illustrated in Figures 8 and 9. The
good performance with sand could be especially
useful if this sensor and its NN were used in combi-
nation with inertial sensors, which performed
poorly on sand.

For the current sensor data in the frequency do-
main, the result was a profile similar to that ob-
served with the inertial sensors, but with worse clas-
sification results. Also, while previewing the motor
sensor data, we found that both the voltage and the
current sensors have a low-frequency component
that is likely introduced by the controller. For the
frequency domain analysis, we computed the differ-
ence of the left and right motor currents and volt-
ages, rather than their average. We did so in order to
eliminate the effect of the controller-induced low-
frequency component without losing low-frequency
terrain information. Since the controller affects both

Figure 6. Periodogram of the output of the x-axis gyro on the five different terrains.
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the left and right motors at the same time and to the
same degree, this measure completely eliminated the
controller-induced low-frequency oscillations. Yet,
the variations of the two signals that were due to the
interaction between the ground and the wheels were
preserved. This difference was then fed into the NN.

Analysis of the motor voltage data, which was
also downsampled by a factor of 5, produced mixed
results. The frequency domain data of the voltage
sensor and its associated NN were not very effective

in classifying terrains. As in the case of the motor
current data, the time domain voltage data were
more useful, but slightly less so than the motor cur-
rent data.

3.2.3. Range Sensors

We used an infrared �abbreviated “IR”� and an ultra-
sonic range sensor �abbreviated “Son”� attached to
the robot and pointing downward to the ground �as
was shown in Figure 3�. In both cases, we classified
terrains based on the periodogram of the signal �in
the frequency domain� and based on the range sig-
nal itself �in the time domain�. Both sensors per-
formed marginally better with the frequency domain
data, but the overall performance of the NN with
these sensors was not as good as that obtained with
inertial sensors. Nonetheless, as in the case of the
motor voltage sensors, the range sensors and their
NNs could be used in a complementary way with
the inertial sensors. Figures 10 and 11 show the re-
sults for the infrared sensor and the NN classifica-
tion based on the periodogram of the data.

Figure 7. NN output for the x-axis gyro after classifying a sequence of DFT sensor data from different terrains. The graph
shows a matrix of �5�170��5 samples that were fed into the NN. In this matrix, an ideal result would be one in which
outputs are 1 on the diagonal and 0 everywhere else. While some of the terrains are very distinguishable, grass is clearly
indistinguishable from sand with this sensor modality.

Table I. NN performance of the X-axis gyro.

Success rate
�%�

False alarm
rate �%�

Gravel 90.0 2.9

Grass 71.2 7.9

Sand 70.0 6.2

Pavement 98.8 0.9

Dirt 83.5 3.7

Average 82.7 4.3
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3.2.4. Microphone

These signals �abbreviated “Mic”� were collected us-
ing a downward facing microphone mounted in
front of the robot, and sampled using the data acqui-
sition card at 200 Hz. As in the previous cases, we
only used the 0 to 50 Hz components of the DFT
transform, after we found that using the whole spec-
trum did not improve the performance of the NN.
Although the overall performance of this sensor mo-
dality was not very good, it showed a significantly
high success rate for classifying grass.

3.2.5. Encoders

We made unconventional use of the left and right
wheel encoders �abbreviated “Enc”� for terrain clas-
sification. At steady state and on smooth terrain,
such as pavement, the left wheel encoder produced
the same number of tics per sampling interval as the
right one did, with minimal variations. On more
rugged terrain, however, there were disturbances af-
fecting the wheels and thus the control loops for the

left and right motor. Since these disturbances were
not the same for both sides, the number of encoder
ticks differed more dramatically than on flat terrain.
While Table II shows that this approach worked in
principle, it did not perform exceptionally well on
any terrain.

3.3. Summary of Experimental Results

As explained in Section 3.1, we quantified the accu-
racy of terrain classification with two parameters:
success rate, SR, and false alarm rate, FR. In this sec-
tion, we define an additional parameter: The classi-
fication effectiveness, CE. This parameter defines the
overall performance of the NN for classifying a spe-
cific type of terrain. It is computed as the difference
between the classification success rate and false
alarm rate:

CE = SR − FR. �3�

As we noted in Section 3.2, the sum of SR and FR

Figure 8. Motor current downsampled raw �time domain� signals for different terrains.
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does not have to add up to 100%. For example, a
poorly trained NN could show SR=100% and FR
=100%, which has an effectiveness of CE=0%.

The CE values for each sensor modality and for
each terrain in this study are summarized in Figure
12 and Table II. Figure 13 shows the best and the
overall average classification performance for each
terrain.

The results of Figure 12 and Table II provide a
good idea of which sensor modalities are effective
for each terrain. The most useful sensor modality is
the gyro, which produced the best performance for
three terrains: Gravel, pavement, and dirt. Given
that three-axis gyros are commonly found on off-
road mobile robots, their data are readily available
for terrain classification at no extra hardware cost.
Similarly, monitoring the motor currents in the time
domain provides the best classification performance
for sand; also at no extra hardware cost. Lastly, our
study found that the microphone provided the best
classification for grass, making that sensor a worth-
while low-cost addition to the sensor suite on mobile
robots.

In addition to the performance of individual
sensor modalities, we believe that from the results in
Table II one can predict which sensor combination

might provide the best classification performance.
However, in this study, we did not attempt to com-
bine multiple sensor modalities.

4. TERRAIN TRAFFICABILITY
CHARACTERIZATION

In many applications, knowing on which type of ter-
rain a robot is moving is not sufficient since the same
terrain can affect the robot quite differently under dif-
ferent conditions. For example, the driving character-
istics will be different on pavement depending on
whether it is dry or wet. However, the classification
system presented in Section 3 will be able only to de-
termine that the robot is moving on pavement. On the
other hand and from the point of view of trafficability,
two different terrains can be considered the same if
some parameters of interest are identical.

We now propose a method that relates motor cur-
rents with rates of turn, through what we call “motor
currents versus rate of turn �MCR� curves. Our hypoth-
esis is that key characteristics of the terrain can be
identified from MCR curves because there is a strong
correlation between motor currents, rates of turn, and

Figure 9. Motor current NN output after classifying time domain sensor data from different terrains �40 inputs per
terrain�.
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soil parameters. However, before we introduce the
MCR method, we present a brief theoretical analysis.

4.1. Theoretical Analysis

In the following analysis, we assume that the tires of
the robot behave as a rigid rim. This assumption is
acceptable for tires with sufficient inflation pressure
and stiffness of the carcass �Wong, 2001�. For a wheel
moving straight on horizontal ground, the average
tangential stress, �, developed in the contact patch
with the ground can be estimated using Janosi &
Hanamoto �1961� �see Figure 14�:

� = �c + � tan ���1 − e−j/K� , �3��

where c is the cohesion of the soil, � is the internal
friction angle of the soil, � is the normal or radial
stress, j is the shear displacement, and K is the shear
deformation modulus.

The normal or radial stress, �, the wheel sink-

age, z, and the wheel width, b, are related according
to the following equation �Bekker, 1956�:

��z� = �kc + k�b�� z
b
�n

, �4�

where kc is the cohesive modulus of terrain deforma-
tion, k� is the frictional modulus of terrain deforma-
tion, and n is the exponent of terrain deformation.

The maximum normal stress occurs at point �M
and can be computed using �Wong & Reece, 1967�

�M = �c1 + c1i��1, �5�

where �1 is the angle between vertical and leading
edge of wheel contact patch, and i is the wheel
slippage.

The normal pressure can be split into two re-
gions. The front region ��1�, located between the lo-
cation of the maximum pressure �M and the location
of �1. The rear region ��2�, located between the loca-

Figure 10. Periodogram of the output of the infrared sensor on the five terrains.
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tions of �M and �2. The angle �2 is measured between
the vertical and trailing edge of the wheel. It is nor-
mally small ��2�0� and can be neglected. The nor-
mal pressure for the front and rear regions can be
computed as a function of the angle �, as follows
�Wong & Reece, 1967�:

�1��� = �kc + k�b�� r
b
�n

�cos � − cos �1�n, �6�

�2��� = �kc + k�b�� r
b
�n�cos��1 −

�

�M
��1 − �M��

− cos �1�n

. �7�

Shear displacement j is related to wheel slippage i
and to angle � according to

j��� = r��1 − � − �1 − i��sin �1 − sin ��	 . �8�

Combining Eqs. �3� and �8�, the shear stress around
the rim can be calculated as

���� = �c + ����tan ���1 − e−r/K��1−�−�1−i��sin �1−sin ��	� .

�9�

The normal stress ���� can be resolved for the
front and rear region using Eqs. �6� and �7�, respec-
tively. The torque T, with which the soil resists the
rotation of the wheel, can be computed as the inte-
gral of the shear stress over the contact patch with
respect to �:

T = r2b

�2

�1

����d� , �10�

where r is the wheel radius, and b is the wheel
width.

Assuming that �2=0, torque can be obtained
from

T = r2b�

�M

�1

�1���d� + 

0

�M

�2���d�� ,

Figure 11. NN output for the infrared sensor after classifying a sequence of DFT sensor data from different terrains. 170
samples per terrain were fed into the NN and are shown consecutively in each plot.
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T = r2b�

�M

�1 �c + �kc + k�b�� r
b
�n

�cos �

− cos �1�n tan ���1 − e−r/K��1−�−�1−i��sin �1−sin ��	�d��
+ 


0

�M ��kc + k�b�� r
b
�n�cos��1 −

�

�M
��1 − �M��

− cos �1�n

tan ���1 − e−r/K��1−�−�1−i��sin �1−sin ��	�d� .

�11�

In order to solve Eq. �10�, �1 must be deter-
mined. For this purpose, we use the following equa-
tion �Wong & Reece, 1967�:

W = rb�

�2

�1

����cos �d� + 

�2

�1

����sin �d�� . �12�

Equation �12� is too complex and cannot be
solved analytically. However, provided that W is
known, the right side of Eq. �12� can be computed
numerically for different values �1 until a value is
found that solves the equation. For a detailed expla-
nation of this method see Wong & Reece �1967�.
Once the torque has been determined, the motor cur-
rent I, which is known to be roughly proportional to
torques applied to the wheels, can be determined
according to

T = kII . �13�

The constant kI is the torque scale factor. By com-
bining Eqs. �11� and �13�, motor currents and slip-
page can be related, provided that all the other pa-
rameters are known. Using soil parameters for sand
�Wong, 2001� �see Table III� and the parameters of
P2AT, we plotted Figure 15, which shows the rela-
tionship between current I and slip i. This graph was

Table II. NN terrain classification effectiveness for different terrains and sensors. The notation “�f�” indicates that the
input variable was used in the frequency domain, while “�t�” indicates that the input variable was used in the time
domain. Underlined numbers: best performance; bold numbers: second best performance.

Gravel Grass Sand Pavement Dirt Average

�x�f� 87.1 63.3 63.8 97.9 79.8 78.4

�y�f� 91.9 46.3 47.5 91.5 77.3 70.9

�z�f� 86.1 33.7 49.3 91.4 46.0 61.4

ax�f� 84.6 52.5 41.9 78.6 44.0 60.3

ay�f� 83.6 41.6 48.6 90.0 60.6 64.3

az�f� 77.7 35.9 43.0 86.9 59.0 60.6

I�f� 65.7 12.9 36.2 91.9 35.9 48.5

I�t� 12.5 30.6 81.2 83.1 76.9 56.9

V�f� 67.8 8 51.9 76.3 37.9 48.4

V�t� 1.2 35.0 78.7 80.6 70.0 53.2

IR�f� 41.9 64.3 50.2 91.4 69.9 63.5

IR�t� 37.5 64.4 24.4 83.1 28.2 48.1

Son�f� 33.2 39.0 57.4 94.3 57.8 56.9

Son�t� 35.1 61.7 20.7 89.5 52.2 51.9

Mic�f� 76.1 72.4 37.5 87.4 28.2 60.3

Enc�f� 64 25 64.5 91.5 57.5 60.5
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created by simulating different amounts of slippage
and solving Eqs. �5�–�13�. The integrals were evalu-
ated numerically using the Simpson method.

As is evident in Figure 15, the shape of the slip-
page versus motor current relationship depends on
the robot and terrain parameters. Although it is not

possible to determine the soil parameters form these
relationships, it shows important information about
the soil conditions as explained in Ojeda, Cruz,
Reina & Borenstein �2005�. In Ojeda, Cruz, Reina &

Figure 12. Terrain classification effectiveness for different sensors and terrains �higher values are better�.

Figure 13. Classification effectiveness for different ter-
rains. Black: best performance; white: average
performance.

Figure 14. Wheel-soil interaction model �adapted from
Bekker, 1969�.
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Borenstein �2005�, some techniques are proposed for
automatic creation of the current versus slip curves,
but they are either limited for one specific terrain
�sand� or not immediately applicable for a skid-steer
platform.

An important characteristic about skidsteering is
that slippage is induced when the robot turns; how-
ever, in this case the amount of slippage in the outer
and inner tires is different. The following relation-
ship applies �Wong, 2001�:

� =
r�o�1 − io� − r�i�1 − ii�

B
, �14�

where � is the rate of turn of the robot, Io,I is the
outer and inner slippage, �o,I is the outer and inner

angular rate of the wheel, and B is the track of the
vehicle.

Therefore, by monitoring motor currents and
rate of turn, we can determine the MCR curves
which can be used to characterize the terrain. The
tangential stress for the outside, �o, and inside
wheels, �i, are also different and can be expressed as
follows �Wong & Chiang, 2001�:

�o = �c + �o tan ���1 − e−jo/K� , �15�

�i = �c + �i tan ���1 − e−ji/K� . �16�

The equation for computing the torque when the
robot turns is different than the one for straight mo-
tion �Wong & Chiang, 2001�:

To = r

A

�o sin �odA, �17�

Ti = r

A

�i sin �idA, �18�

where the angles �o and �i are measured between the
sliding velocities and the lateral directions of the
wheels. Equations �17� and �18� have been included
in this paper for completeness, and we have not at-
tempted to simulate them in this work. A detailed
explanation of their use for tracked vehicles can be
found in the general theory of skidsteering on firm
ground proposed in Wong & Chiang �2001�.

4.2. Terrain Characterization: Experimental Results

The following experiments where performed on five
different surfaces: Gravel, grass, sand, and pave-
ment. For this purpose, we commanded the P2AT to
move at a constant linear speed of 200 mm/s, while
the rate of turn was increased by 2.0°/s every 15 s
up to 30°/s. Therefore, the method, as described, is
not particularly suitable for terrain characterization
in real time, during an actual robot mission. In Sec-
tion 4.3, we present three possible real-time imple-
mentations that overcome this problem. Neverthe-
less, this method is the most accurate and it is
advisable to use it at the time of generating reference
curves.

Table III. Sand parameters used for simulations.

Parameter Value

� �deg� 28.00

c �kPa� 1.04

K �m� 0.025

kc �kN/mn+1� 0.99

k� �kN/mn+2� 1528.43

n 1.10

c1 0.18

c2 0.32

Figure 15. Theoretical wheel slippage vs motor currents
relationship.
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The MCR curve establishes the relationship be-
tween motor currents and the angular rate of the
robot. Since these two parameters are affected by the
floor characteristics �i.e., soil parameters�, they can
be used to determine terrain characteristics. Figure
16 shows the MCR curve characteristics obtained for
each one of the test surfaces. In this plot, the x axis
represents the angular rate of the robot as measured
by the gyroscope and the y axis shows the associated
motor current measured on the outer and inner mo-

tors. For each MCR curve, we fit a fourth-order poly-
nomial function to the data. The variance of the
curves from the polynomial fit is due to the distur-
bances caused by rugged terrain and wheel slip-
page. For comparison purposes, Figure 16 also in-
cludes the resulting polynomial curves for all the
terrains in one single plot.

The MCR curve can be used to predict the
power requirements of the robot while traveling on
a specific terrain, since it measures the actual motor

Figure 16. MCR curve characteristic for each one of the tested terrains. Black dots: outer wheel; dark gray dots: inner
wheel; and light gray solid line: the polynomial fit. The lower right plot shows the polynomial fit of the MCR curves for
all the tested terrains.
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currents and the operating voltage is known. An-
other use of the MCR curve is for determining driv-
ing parameters for safe handling on the specific
terrain.

The MCR curve can also be used to determine
the coefficient of motion resistance, fr. Motion or roll
resistance is the force that opposes the torque gener-
ated by the drive motor�s�. Motion resistance is the
combined effect of friction, hysterics, surface condi-
tion, tire inflation, wind resistance, etc. �Bekker,
1960�.

At low speeds, when the robot is turning at a
constant rate, the sum of all the tangential forces is
equal to zero; therefore, the following relations
apply:


 Ft = 0, �19�

Fo + Fi = Rto + Rti, �20�

where Fo,i is the outer and inner force developed in
the wheel contact patch, and Rto,i is the external mo-
tion resistances on the outer and inner wheels.

The forces Fo and Fi can be computed by means
of the motor currents using

Fo = Tor = kIIor , �21�

Fi = Tir = kIIir , �22�

where r is the wheel radius. Using Ro and Ri, the
coefficient of motion resistance, fr, can be computed
according to

fr =
�Rto + Rti�

W
, �23�

where W is the weight supported by each wheel.
The coefficient of motion resistance for all five ter-
rains is shown in Figure 17.

The MCR relationship can be affected consider-
ably by many factors, such as moisture content, sur-
face structure, or stratification �formation of layers�
of soil. In order to demonstrate this point, we col-
lected data on pavement, before and after rainfall.
The resulting MCR curves are clearly different, as is
evident from Figure 18. This can be a problem if the

goal is terrain classification. However, from the traffi-
cability point of view, the two surface conditions are
indeed different, even though they were measured
on the same terrain. The coefficient of motion resis-
tance for this experiment is shown in Figure 19.

There is an additional benefit: By measuring mo-
mentary torques applied to the wheels and compar-
ing those with the MCR curve, one can estimate the

Figure 17. Coefficient of motion resistance for different
terrains at different rates of turn. These data were obtained
directly from the polynomially fitted curves of Figure 16.

Figure 18. MCR curve characteristic and polynomial fit
for wet pavement and dry pavement.
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amount of wheel slippage incurred on that terrain.
This, in turn, allows detecting and correcting �to
some degree� odometry errors. The authors devel-
oped such a technique in earlier work for planetary
rovers, with consistently good results �Ojeda, Cruz,
Reina & Borenstein, 2005�. Also, as is evident in Fig-
ure 16, some curves can be distinguished easily, as in
the case for pavement. This suggests that it is pos-
sible to perform terrain classification using the MCR
curves alone as reported by the authors in Ojeda,
Borenstein & Witus �2005�.

4.3. Real-Time Implementation

A drawback of the above described method is that it
requires a significant amount of time and a fairly
large ground surface area. In this section, we pro-
pose three methods that require less ground area
and are suitable for real-time implementation.

The first real-time implementation is a direct ex-
tension of the basic approach presented in Section
4.2. The only difference is that the robot stays at each
rate of turn for shorter periods of time. A tradeoff
exists between the amount of measurement noise
and the length of periods, at which each rate of turn
is held constant, especially on terrains that produce
noisy data, such as grass or gravel. Longer constant-
rate periods allow some averaging of the motor cur-
rent and rate of turn data pairs, thereby significantly

reducing the effect of noise. With very short
constant-rate periods, on the other hand, the MCR
curve may not accurately represent the terrain
characteristics.

In the second approach, the robot is subject to
sinusoidal rates of turn commands. This is done by
commanding the robot to move straight at a con-
stant speed, while a sinusoidal changing rate of turn
command is overlaid over the straight motion com-
mand. This method works well because it allows
collecting redundant data through multiple sinu-
soidal cycles, while still being of short duration,
since the rate of turn is varied rapidly and continu-
ally. Furthermore, it does not impose large changes
in the trajectory. Therefore, it is feasible to apply this
method while the robot moves toward a goal. The
sinusoidal path perturbations imposed by this
method cause only small deviations from the desired
straight-line path during a mission.

We also developed and tested a variation of the
previous method. With this method, the robot is sub-
ject to varying-frequency sinusoidal rates of turn
commands. As with the previous method, this
method allows the robot to collect redundant data
over the course of several sinusoidal-rate cycles. The
robot can progress toward the target, without devi-
ating significantly from its course. Varying the fre-
quency of the sinusoidal rate allows determining the
frequency response of the robot to changes in rate of
turn. The slippage conditions also vary with the fre-
quency. The authors successfully demonstrated how
this method can be used for performing terrain clas-
sification based on MCR curves �Ojeda, Cruz, Reina
& Borenstein, 2005�.

These three real-time variants for creating MCR
curves reduce not only the time necessary for col-
lecting the data, but they also reduce the size of the
terrain area necessary to collect the data. On the
other hand, the robot hardware may impose practi-
cal limitations on changes of the rate of turn. For
example, in the P2AT that we used in our experi-
ments, the maximum update rate of the internal mi-
crocontroller is 10 commands/s, and the robot can
only be commanded to increase rates of turn in in-
crements of 1°/s.

5. CONCLUSION

This paper addresses two related topics in mobile ro-
botics: Terrain classification and trafficability charac-

Figure 19. Coefficient of motion resistance for wet pave-
ment and dry pavement. These data were obtained di-
rectly from the polynomially fitted curves of Figure 18.
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terization. The presented method for terrain classifi-
cation is based on the analysis of multiple sensor
modalities with NNs. Among all tested sensor mo-
dalities, the X-axis gyro provides the best signal for
NN-based terrain classification purposes. The inertial
sensors are good at distinguishing terrains as long as
the terrain causes distinct vibrations. For the five
tested terrains, the NNs associated with the inertial
sensors were capable of classifying gravel and pave-
ment very well. The performance was not so good
when classifying dirt, which was often confused with
sand and grass.

As noted throughout this paper, we believe that
the performance of an NN-based terrain classification
system can be improved by combining multiple sen-
sor modalities, although we did not attempt to do
that in this study. There are two reasons for this as-
sessment. The first and obvious reason is that some
sensor modalities and their NNs performed better
than others. The second, less obvious reason is that
the combination of multiple sensor modalities in a
single NN would allow the designer to train each NN
for its “preferred” terrain instead of for all terrains.
For example, the X-axis gyro sensor GX�f� could be
used to classify gravel, pavement, dirt, and “grass OR
sand;” �where “OR” is the Boolean OR operator�,
while the voltage sensor Volt�t� can be trained to rec-
ognize “only sand.”

We also introduced the concept of MCR curves,
which contain important information about the soil
parameters. These MCR curves can be used for dif-
ferent purposes: Predicting power consumption re-
quirements, determining driving parameters for safe
handling, and estimating the coefficient of road resis-
tance. In this paper, we presented three possible ap-
proaches for real-time implementation of this
method, which can be used during an actual mission.

In future work, it might be possible to predict the
vehicle’s handling and performance on new upcom-
ing terrain, if the system was coupled with an appro-
priate look-ahead sensing system.
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