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At 110m in diameter and over 350m in depth, the cenote Zacatén in central Mexico is a unique flooded sinkhole.
A platform for conducting preliminary sonar tests is tethered in place.

Abstract

We describe a Simultaneous Localization and Mapping
(SLAM) method for a hovering underwater vehicle that
will explore underwater caves and tunnels, a true three
dimensional (3D) environment. Our method consists of
a Rao-Blackwellized particle filter with a 3D evidence
grid map representation. We describe a procedure for
dynamically adjusting the number of particles to provide
real-time performance. We also describe how we adjust
the particle filter prediction step to accommodate sen-
sor degradation or failure. We present an efficient oc-
tree data structure which makes it feasible to maintain
the hundreds of maps needed by the particle filter to ac-
curately model large environments. This octree structure
can exploit spatial locality and temporal shared ances-
try between particles to reduce the processing and stor-
age requirements. To test our SLAM method, we utilize
data collected with manually-deployed sonar mapping
vehicles in the Wakulla Springs cave system in Florida
and the Sistema Zacatén in Mexico, as well as data col-
lected by the DEPTHX vehicle in the test tank at the

Austin Applied Research Laboratory. We demonstrate
our mapping and localization approach with these real-
world datasets.

1 Background

Zacatén is a flooded cenote (sinkhole) in Tamaulipas,
Mexico, that has been measured at over 350m deep (Gary
2002). The depths of the cenote remain unexplored, but
during a preliminary expedition in May 2005, we discov-
ered that the upper 200m of Zacatdn is roughly a cylin-
der 110m wide that tapers slightly with depth (Figure
1). Zacatén is the deepest of a series of similar water-
filled formations, which are thought to have formed as
hydrothermal groundwater dissolved through a layer of
limestone (Gary 2002). Zacatén has a small river flow-
ing out through a tunnel near the surface, which indi-
cates that water is flowing in from somewhere below the
mapped regions, perhaps through navigable tunnels.
The mineral-rich water in Zacatén supports colorful
microbial mats in the photic zone and has exotic geo-
chemical features which make it an excellent match



Figure 1: An north-facing side view of the first 200m of Za-
caton. This is the raw sonar data from a single dive, plotted as
a point cloud in orthographic projection.

for the exploration and sampling mission of the DEep
Phreatic THermal eXplorer (DEPTHX). The goal of the
DEPTHX project is to autonomously explore and map
Zacatén, including any underlying tunnel systems, and
then to use various environmental signatures (such as
thermal plumes) to direct focused sample collection —
with the goal of detecting and sampling unusual micro-
biota. In this paper, we address the mapping and lo-
calization capabilities required to fulfill the requirements
implied by these goals. In particular, we emphasize ro-
bustness, navigation through tunnels, and precision lo-
calization in a large volume.

A typical Autonomous Underwater Vehicle (AUV)
uses a combination of depth sensors, inertial sensors, and
Doppler velocity sensors to compute a dead-reckoned es-
timate of its position while at depth (for an overview

of underwater navigation methods, see (Leonard et al.
1998)). With high accuracy attitude and depth sen-
sors the uncertainty in the AUV’s 3D pose (roll, pitch,
yaw, x, Yy, z) is primarily in x and y. Most under-
water navigation systems are based on Kalman Filters
which merge Doppler velocity and inertial measure-
ments (Larsen 2000). Corrections to the unbounded drift
error inherent in such systems have been achieved by us-
ing the global positioning system (GPS) while on the sur-
face (Healey et al. 1998) or beacon-based long baseline
(LBL) acoustic positioning systems (Whitcomb et al.
1999). But frequently surfacing for GPS fixes may not be
possible or desirable, and LBL beacons, which are typi-
cally used in long-duration open-water operations, must
be deployed and surveyed before use. Neither of these
approaches is viable in Zacatén. Simultaneous localiza-
tion and mapping (SLAM) offers an attractive method to
bound dead-reckoning error because it allows the vehicle
to be completely self-contained and unrestricted — and it
yields a map of the environment.

In (Fairfield et al. 2005) we evaluated different sonar
geometries for SLAM in 3D underwater tunnels. In
(Fairfield et al. 2006), we demonstrated SLAM in a con-
strained scenario with real-world sonar data from Za-
catén. In this work, we show that will be able to perform
3D SLAM in real-time on the DEPTHX vehicle. Our
key innovation is our Deferred Reference Count Octree
data structure, which makes real-time 3D SLAM possi-
ble. We also introduce simple methods for adjusting the
particle count in order to maintain real-time performance
in the face of varying world geometry, and adjusting the
prediction model in response to degraded sensor quality.

The rest of the paper is laid out as follows: Section 2
describes related work in localization, estimation, and
mapping. Section 3 outlines our approach to the prob-
lem. Section 4 describes the map representation and Sec-
tion 5 describes the particle filter, including the adaptive
particle count and sensor-based prediction. We finish
with Experiments, Results, and Conclusions.

2 Related Work

Simultaneous Localization and Mapping SLAM is the
process of building a map of the environment from sen-
sor data, and then using that map to localize. SLAM
methods usually depend on the detection of features from
sensor data, and combine observations of these features
with an Extended Kalman Filter (EKF) (Smith et al.
1990). In the underwater domain, sonar sensors are not
capable of providing the resolution necessary to resolve
and recognize features. There has been work on off-line
SLAM methods using tunnel cross-sections, or slide im-



ages, which can be derived from sparse sonar ranges as
long as the environment is tunnel-shaped (Bradley et al.
2004). In the case where there are free floating artifi-
cial features, scanning sonars have been shown to have
high enough resolution to support feature-based SLAM
(Williams et al. 2000). Alternatively, in clear water with
good lighting, SLAM has been demonstrated via video
mosaicing (Eustice et al. 2005) and also a combination of
vision-based feature detection and sonar (Williams and
Mahon 2004).

Underwater localization has also been demonstrated in
cases where there is variation in the sea-floor and the ve-
hicle has a prior map of the bathymetry (Williams 2003,
Leonard et al. 1998). Many underwater environments are
characterized by large monotonous regions where there
has been promising work with Synthetic Aperture Sonar
(SAS) to support range-and-bearing SLAM (Newman
et al. 2003).

Particle Filters As an alternative SLAM method to
EKGFs, particle filters provide a proven implementation of
Bayesian filtering for systems whose belief state, process
noise, and sensor noise are modeled by non-parametric
probability density functions (for a good summary of
particle filters, see (Arulampalam et al. 2002)).

(Fox 2003) describes Kullback-Leibler distance
(KLD) sampling, which estimates the number of sam-
ples needed at each iteration such that the error between
the true density distribution and the discrete particle fil-
ter approximation is below some bound. This approach
is applied to the bathymetry-map localization mentioned
above by (Bachmann and Williams 2003). In short, they
conclude that too few particles will poorly approximate
the true posterior and too many particles take too long to
process (so that measurements have to be thrown away).
Our approach uses as many particles as possible in real-
time without discarding any data.

Rao-Blackwellized particle filters (RBPFs), in which
each particle contains both a position and a map, have
proven an effective way to do SLAM with evidence grids
(Murphy 1999, Doucet et al. 2000). This becomes im-
portant as we consider how to incrementally map a fully
3D environment.

3D Maps In the area of 3D maps, there has been work
on land using laser range data. (Thrun et al. 2003)
maps mine tunnels with a planar floor plan using scan
matching to recover the 2D vehicle pose from which
the 3D map is reconstructed in a post-processing step.
Other terrestrial work builds maps from planes fitted to
point clouds (Mahon and Williams 2003, Weingarten and
Siegwart 2005, Héahnel et al. 2003). Unfortunately, lasers
do not maintain coherence underwater, so they cannot be
used to resolve fine features.

The 2D evidence grid is the classic featureless map
(Martin and Moravec 1996), a uniform discretization of
space with the value of each cell assigned the probabil-
ity of occupancy. Since the entire space must be repre-
sented in memory, even two dimensional evidence grids
are large and expensive to copy.

In the 3D evidence grid representation, space is di-
vided into a grid of cubic volume elements, or voxels,
which contain the occupancy evidence inferred from sen-
sors. While 2D evidence grid-based SLAM is well estab-
lished in the indoor mobile robot domain, it has limited
applicability in truly 3D environments — largely because
the 2D map simplification is only suitable in “two and
a half”’-dimensional environments, meaning those where
only a single height needs to be associated with each 2D
grid cell.

The latest version of Distributed Particle (DP) SLAM
by Eliazar and Parr (2006) is a similar approach to ours,
in that it uses evidence grids, a RBPF, and a sophisticated
data structure that exploits the similarity between parti-
cles of common ancestry to reduce the cost of copying
and storing particle maps. However, in order to get lin-
ear ray-tracing performance, they must repeatedly pro-
cess their data structure to create a cache of uniform
“local maps”, a complex and memory intensive process,
even for 2D maps. The Deferred Reference Count Octree
(DCRO) we introduce below avoids this caching step and
yields the additional advantages of full 3D, sparse spatial
representation, and overlap between particles with com-
mon ancestry — all inherent properties of the relatively
simple DRCO data structure.

3 System Description

The DEPTHX vehicle (Figures 2 and 3) has a full suite
of underwater navigation sensors, including a Honeywell
HG2001 Inertial Measurement Unit (IMU), two Paro-
scientific Digiquartz depth sensors, and an RDI Navi-
gator 600 Doppler Velocity Log (DVL). There is also
a Conductivity, Temperature, and Depth (CTD) sensor
for measuring the speed of sound so that DVL veloc-
ity measurements can be corrected. Under certain cir-
cumstances, these sensors can provide excellent dead-
reckoned navigation — on the order of 0.5% of distance
traveled (Larsen 2000). Over the course of a ~ 4 hour
2km mission, this would yield an error of around 10m,
which would be perfectly acceptable in open water con-
ditions but is a serious concern within confined tunnels.
Additionally, we must anticipate that there may be times
when the DVL will not provide velocity measurements,
at which point the quality of the dead-reckoned solution
will degrade significantly. In summary, we need to be
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Figure 2: A model of the DEPTHX vehicle structure and com-
ponents. Eleven pressure vessels house computing, batteries,
sensors, and science instruments. Diameter is approximately
2m, weight 1.3 metric tons. (©Stone Aerospace, 2006.

Figure 3: The DEPTHX vehicle in the test tank.

conservative about our expectations for dead-reckoning.

In addition to the standard dead-reckoning sensors,
DEPTHX has a mapping system: an array of 54 pencil-
beam sonars that provide a constellation of range mea-
surements around the vehicle. The DEPTHX sonar ar-
ray is in the shape of three great circles (Figure 3, and
for a comparison of sonar geometries see Fairfield et al.
(2005)). This means that DEPTHX will be able to
observe previously mapped regions while exploring —
which is vital for SLAM. The sonars have long ranges
(some 100m and others 200m) but lack the resolution,
update rate, and point density of a laser scanner, making
feature recognition and association difficult. The depths
of Zacat6n are completely unexplored and have unknown
geometries, which makes it even more difficult to design
feature detectors. For these reasons we have selected a
data-driven representation, 3D evidence grids, as our ba-
sic world representation. The difficulty in generalizing

the 2D evidence grid approach to full 3D comes from
the growth of the computational cost of accessing, mod-
ifying, and storing the map due to the third dimension.
Likewise, there is an increase in the number of pose di-
mensions which must be estimated from three (heading,
x, y) to six (roll, pitch, yaw, z, y, z). However, the IMU
and depth sensors can provide excellent measurements
for all but z and y).

A SLAM method applied to exploration must provide
near real-time localization estimates for vehicle control
and navigation. While onboard computational resources
are increasing, we must deal with limited resources: 1
Gb of RAM, and a 1.8 GHz Pentium M processor for
SLAM onboard the DEPTHX vehicle. The sonar array
cycles at 1Hz, so SLAM must run at that rate as well.

For general navigation within Zacatén, the vehicle
should remain more than 2m away from the walls. Dur-
ing sampling operations, the vehicle body will approach
to within 1m when the sample arm makes contact with
the wall. Our scientist team would like to be able to re-
peatably collect samples within 1m of a designated lo-
cation, which defines the positioning precision require-
ment.

The system must cope with sensors that can degrade
suddenly in performance, or fail entirely. It can do
this by adjusting the particle distribution according to
the current sensor error models or by switching to a
localization-only mode in which the maps are not up-
dated. It can also adjust the particle count so as to use as
many particles as possible while maintaining real-time
performance.

We use evidence grids because they can merge to-
gether the large number of noisy sonar measurements
into a useful map. The Rao-Blackwellized particle fil-
ter is a natural match for evidence grids, and also allows
the algorithm to represent non-Gaussian position distri-
butions. Before discussing the particle filter itself, we
describe the data structure that it will use to represent the
map.

4 Evidence Grids

An evidence grid is a uniform discretization of space into
cells in which the value indicates the probability or de-
gree of belief in some property within that cell. In 3D,
the cells are cubic blocks of volume, or voxels. The most
common property is occupancy, so evidence grids are
often also called occupancy grids (Martin and Moravec
1996). The primary operations on a map are inserting
new evidence, querying to simulate measurements, and
copying the entire map. We call the process of updat-
ing all of the voxels which are affected by a particular



Figure 4: A cut-away view of sonar data being inserted into a
3D evidence grid. The vehicle is modeled as a yellow oblong,
its sonar beams as red cones which leave traces of evidence
behind in the grid.

measurement an “insertion”, and likewise the process of
casting a ray within a map until intersects with an occu-
pied voxel we call a “query”. Often, the log-odds value
for each voxel 0

is stored in the map rather than the raw probabilities
because it behaves better numerically, and because the
Bayesian update rule for a particular voxel according to
the sensor model (like a conic beam-pattern) for some
measurement z becomes a simple addition (Martin and
Moravec 1996):

beam model map prior
’ p(9]2) 1—p(0)
log (6") log <1—p(9|z)) + log <p(9) >

+ log(0).

The first term on the right-hand-side is the sensor model,
and the second is the map prior. If the prior p(f) = 0.5,
the second term is zero and the initialization simply sets
all voxels to zero. The update for each voxel can be re-
duced to simply summing the value of the sonar model
with current voxel evidence. One important (and plainly
false) assumption underlying the Bayesian insertion is
that the cells are independent — that is that the occupancy
of one cell is independent of the occupancy of any other
cell. However, without this assumption evidence grids

Figure 5: An example of the sonar beam model carved into an
evidence grid.

become intractable since the repercussions of updating a
single cell could propagate through the entire map. The
drawback is that maps tend to be more noisy in response
to ambiguity in the measurements.

4.1 Sonar Model

As measurements are collected, the evidence they pro-
vide about the occupancy of each voxel is entered into
the map. A sonar beam model defines how a single
range measurement can be inserted into the evidence
grid. There are several methods which can be used to
construct a beam model, including deriving it from phys-
ical first principles (Urick 1983) or learning it (Martin
and Moravec 1996). We chose to use the simplest rea-
sonable approximation — a cone with a cap that is loosely
based on the beam-pattern of the sonar. The cone is
drawn as a bundle of rays with constant negative value,
with terminating voxels with constant positive values.
These log-odds values were experimentally chosen to be
-2 and 8. Likewise, the simplest method to query a sonar
range from the 3D evidence grid is to trace a ray until
some threshold (or other terminating condition) is met.
Using matrix transformations for each voxel is too com-
putationally expensive for operations such as filling in
evidence cones or simulating ranges. These tasks can
be decomposed into raster operations, which can be per-
formed by a 3D variant of the classic 2D Bresenham line
drawing algorithm, also called ray-tracing (Bresenham
1965).

4.2 Octree Data Structure

The main difficulties with 3D maps arise from the cost
of copy operations and the storage requirements that in-
crease with map size and resolution. If we store the ev-
idence log-odds as single bytes (with values between -
128 and 127), then an evidence grid 1024 cells on a side
requires a megabyte of memory in 2D and a gigabyte
in 3D. A typical memory bus can handle transfer rates
of around 400 Mb/s, and so would require over two sec-
onds to copy such a map. In the case of the Particle Filter
(Section 5), we need to store and copy hundreds of maps



Figure 6: Each level of an octree divides the remaining vol-
ume into eight octants, but the tree does not have to be fully
expanded.

per second. This requires a more efficient data structure
than a uniform array; the octree is one such structure.

An octree is a tree structure composed of a node, or
octnode, which has eight children that equally subdivide
the node’s volume into octants (Figure 6). The children
are octnodes in turn, which recursively divide the vol-
ume as far as necessary to represent the finest resolution
required. The depth of the octree determines the reso-
lution of the leaf nodes. The main advantage of an oc-
tree is that the tree does not need to be fully instantiated
if pointers are used for the links between octnodes and
their children. Large contiguous portions of an evidence
grid are either empty, occupied, or unknown, and can be
efficiently represented by a single octnode — truncating
all the children which would have the same value. As
evidence accumulates, the octree can compact homoge-
neous regions that emerge, such as the large empty vol-
ume inside a cavern. Note that even with compaction the
octree supports the insert, query, and copy operations,
and is a drop-in replacement for the uniform array: it
is possible to convert losslessly between the two repre-
sentations. Insert and query can be done with a tree-
traversing ray-tracing algorithm (see (Havran 1999) for
an overview). We employ our own Bresenham 3D top-
down approach, largely for its simplicity. Octrees have
been widely used in ray-tracing as a way to sort polygons
—not to store evidence, as we do here. Most applications
also do not need to copy octrees, as we do for the particle
filter (see below). The common approach to copying an
octree is simply to traverse the entire tree copying every
node (see the “Naive” row of Figure 7).

To improve performance, we use our own custom
memory management for the octnodes. Octnode mem-
ory is created as needed in large blocks (about 10k
nodes) which are initialized as a FIFO linked list of free
nodes. The first word of each node points to the next

free node. As nodes (and entire octrees) are freed, nodes
are pushed onto the front of this linked list. When a new
node is needed, the first entry of the linked list is pulled
off and initialized with default values.

Reference Counting Octree (RCQO) The first real-time
challenge when using octrees is not the ray-tracing oper-
ation, but rather copying the maps during the resampling
step of the particle filter. Copying an octree is an ex-
pensive operation, but we can allow octrees to share sub-
trees by maintaining reference counts to the octnodes:
each node keeps track of the number of references to it-
self. We refer to this number as refCount. This means
that we replace naive copying with copy-on-write (see
the “Reference Counting” row of Figure 7). When an
octree needs to be copied, we simply increment the ref-
erence count. Then when either copy is modified only
subtrees which have a reference count greater than one
need to be copied. And of course once a copy has been
made, the reference count of the source is decremented.
We call this “copy-on-write”, and find it useful because
in the particle filter application, queries to the map are
much more common than insertions.

Deferred Reference Counting Octree (DRCQO) How-
ever, maintaining the bookkeeping for reference counts
requires a full traversal of the octree — or at least of the
modified subtree — which is almost as expensive as copy-
ing. Our novel solution is to maintain deferred reference
counts. Every octnode has a refCount and also a deferred
reference count, which we will call the defCount (see the
“Deferred Reference Counting” row of Figure 7). The
defCount represents reference counts which have not yet
been propagated to the children. This is similar to the
work of (Baker 1994). The true reference count of the
node is the sum of refCount and defCount — but changes
in defCount do not usually trigger a recursive traversal
through the subtree.

Copying a map now simply requires incrementing the
defCount of the node pointed to by the source, freeing
the node pointed to by the destination (if it is not new),
and setting the destination pointer to the source node (see
Procedure 1). If either of the two copies is modified then
the copy-on-write code will automatically push the def-
Count down the tree, copy the portion of the tree which
will be changed, and set the reference counts accordingly
(see the “Deferred Reference Counting” row of Figure 7
and Procedure 3).

LazyFreeNode applies the same deferred (or lazy)
principles of recursively freeing octnodes: if the octnode
has defCount > 0, then it can just decrement the def-
Count (see Procedure 2): what the children don’t know
won’t hurt them. If the defCount = 0, then LazyFree-
Node must call itself recursively on the children (who
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Figure 7: Octree diagram demonstrating the copy and write operations for three octree implementations: Naive, Reference
Counting, and Deferred Reference Counting. Blue (light gray) nodes are notes that must be accessed, and red (dark gray) nodes

are new nodes.

Procedure 1 DRCO CoPY(A to B)

Require: A and B are pointers to octnodes
1: A—defC++;
2: LAZYFREENODE(B); // See Procedure 2
3: B=A;

may decide they don’t need to tell their children, etc).

The ray-trace write, or “insert”, operation in the
DRCO must deal with properly updating all these counts
— the ray-trace read, or “query”, operation is unchanged.
When we want to insert updates into a map, copy-on-
write propagates the node’s defCount down to its chil-

dren, sets the refCount = refCount + defCount, and sets
defCount = 0 (since defCount represents the reference
counts that the node hasn’t told its children about) (see
Procedure 3). If the new refCount is > 1, the node must
be copied (maintaining the old connections to its chil-
dren). The deferred updating works because the insert
procedure always starts at the top of the octree — this
top-down property is part of our ray-trace implementa-
tion. DRCO’s yield a significant performance boost, and
allow us to represent maps that would not even fit into
memory as a uniform array (see the Results Section).

Compaction Compaction is the process of recursively
traversing the tree, replacing groups of homogeneous



Procedure 2 DRCO LAZYFREENODE(N)

Procedure 3 DRCO SETNODE(N, value)

Require: N is a pointer to an octnode
1: if N—defC > O then

2: N—defC--;

3: return

4: end if

5: N—refC--;

6: fori=1...8 do // Recursively free children
7: LAZYFREENODE(N—-child[i]);
8: end for

9: if N—refC == 0 then // Free the node
10: N—nextNode = globalFreeNode;
11: globalFreeNode = N;
12: end if

children with a single parent with the same value. As
regions of the map become well explored, fuzzy com-
paction can simplify regions with small amounts of
noise. Periodically compacting the octrees can yield sig-
nificant space savings, especially when the map will only
be used for querying — in which case the values can be
lossily thresholded to {O=empty, 1=occupied} (see Ta-
ble 1). Ray-tracing is also accelerated if the ray-tracing
algorithm takes advantage of these compacted regions.

Now that we have developed a data structure to main-
tain and duplicate large 3D evidence grids efficiently, we
can consider how to build maps and localize using a par-
ticle filter.

Original 5123 at Im map 100%
Lossless compaction 99.9%
{Empty, occupied} compaction 66%

Table 1: Example compaction results on a test map, as per-
centages of the original size of the map. Due to the amount
of noise in the real data used to construct the map, the lossless
compaction doesn’t do much.

S Particle Filtering

The goal of SLAM is to estimate the probability distribu-
tion at time ¢ over all possible vehicle states s and world
maps O using all previous sensor measurements Z; and
control commands U, (for a complete list of notation, see
Table 2):

p(87 @|Zt, Ut)

This distribution is called the SLAM posterior. The
recursive Bayesian filter formulation of the SLAM prob-
lem is straightforward (see Montemerlo et al. (2002) for
a derivation) but the integral is usually computationally

Require: N is a pointer to an octnode, value is some
constant
1: if N—defC + N—refC > 1 then

2 if N—defC > 0 then
3 for i = 1...8 do // Propagate defC to children
4: if N—-child[i] != 0 then
5 N—-child[i]—defC += N—defC
6 end if
7 end for
8 end if
9: newN= NEWNODE();
10: CoPYNODE(newN, N);
11: newN—refC =1;
12: newN—defC = 0;
13: newN—value = value;

14: N—refC = N—defC + N—refC - 1;

15: N—defC =0;

16: else

17: N—value = value;

18: end if

19: N = NEXTNODEINTOPDOWNTRAVERSE()
20: if N !=0 then

21: SETNODE(N, value)

22: end if

intractable to solve in closed form:
new posterior

p(8t,0|Zt,Up) = n %

/p(5t|5t—17ut)p(5t—1,@|Zt—1,Ut—1)dSt—l,

old posterior

measurement model

——~
p(2t]8¢,O) X

motion model

where 7 is a constant scale factor from Bayes’ rule.

The key insight of (Murphy 1999) is that the SLAM
posterior distribution can be factored into two parts, or
marginals: the path distribution and the map distribu-
tion. Furthermore, knowing the vehicle’s trajectory S
makes the observations U; conditionally independent, so
that the map sample © can be computed in a closed form.
The process of factoring a distribution such that one part
can be computed analytically is known as Rao-Blackwell
factorization (Doucet et al. 2000). As a result, following
(Montemerlo et al. 2002) we compute the posterior over
trajectories, we can factor the distribution as

p(sta ®|Zt7 Ut) =
p(St|Ze, U)p(©| Sy, Zy).
Particle filters are a Monte Carlo approximation to the

Bayesian filter. The particle filter maintains a discrete
approximation of the SLAM posterior using a (large) set



#par number of particles
#son Number of sonars
sgm) vehicle pose of the m-th particle at time ¢
= (roll, pitch, yaw, x,y, z)T
Sfm) trajectory of m-th particle from time O to ¢
= {sém), sgm), 3<2m>, sy
2zt sonar measurements at time ¢
Zt history of measurements from time O to ¢

={z0,21,22,...,2¢t}
2zt  n-th sonar measurement at time ¢
Ut vehicle dead-reckoned innovation at time ¢
U;  history of dead-reckoning from time O to ¢

n

= {U,o, UL, U2,y .« .y ut}
O™ map of m-th particle
0 a particular voxel = “*@
w,ﬁ’") m-th particle weight at time ¢

Table 2: Particle filter notation.

N(u,0) normal distribution with
mean g and std dev o
vehicle motion model with
noise model Nj,

= p(St |Ut7 8t—1)

sonar measurement model

= p(zt]st,©)

h(stfl,ut,Nh)

9(st,©,N(0,02))

Table 3: Model notation.

of samples, or particles. The m-th instance of the # 4,

particles represents both a sample pose St(m) from the
distribution of vehicle trajectories, and the sample map
©(™) which results from that trajectory combined with
the sensor measurements Z,. Since we update the parti-
cle maps at every time-step, they represent the combina-
tion of sensor measurements and vehicle trajectory — so
each particle only needs to store the current map ©(")
and pose s{™ (rather than the whole trajectory S.™).
For practical purposes, when SLAM is being used to
provide a pose for the rest of the vehicle control software,
we usually want to turn the set particles into a single
point estimate. If the posterior distribution is Gaussian,
then the mean is a good estimator, but other estimators
may be better if the distribution becomes non-Gaussian.
The particle filter algorithm has the following steps:

Initialize The particles start with their poses s initial-
ized according to some initial distribution and their
maps O (possibly) containing some prior informa-
tion about the world. This is called the prior distri-
bution.

Predict The dead-reckoned position innovation u; is
computed using the navigation sensors (IMU, DVL
and depth sensor). A new position s; is predicted
for each particle using the vehicle motion model
(see Table 3):

St = h(st,hut, N)

This new distribution of the particles is called the
proposal distribution.

Weight The weight w for each particle is computed us-
ing the measurement model and the sonar range
measurements (from the #,,, different sonars):

Hson
w=mn H p(nzt|5t7@)7

n=1

where 7 is some constant normalizing factor (dif-
ferent than the one used in the expression for the
Bayesian filter). In our implementation, the real
range measurements z are compared to ray-traced
ranges Z using the particle pose and map. We com-
pare the simulated and real ranges using the mea-
surement model

z = g(stvut7N(ngz))7

which is assumed to have a normal noise model, so

1 7(27;)2
p(z]$,0) = —=e 2=

\/2mo?

Substituting into the expression for particle weight
and taking the logarithm of both sides shows that
maximizing this weight metric is very close to min-
imizing the intuitive sum squared error metric:

Hson
1 iy i)2
longC—ﬁE ("*z2—-"2)",

=1

where C' = #4,, X log (\/ 27r02). An alternative

weighting method, called “point correlation” was
found to be slightly less informative (Fairfield et al.
2005).

Resample The O(n) algorithm described in (Arulam-
palam et al. 2002) is used to resample the set of par-
ticles according to the weights w such that particles
with low weights are likely to be discarded and par-
ticles with high weights are likely to be duplicated.
The set of particles is now our new estimate of the
new SLAM posterior.



Update The measurements z are inserted into the par-
ticle maps ©(m) (as described in Section 4) to up-
date the evidence of all the voxels 6 which lie in the
conic sonar beam model of each measurement rela-
tive to the particle position. This is when maps must
be copied and updated. We save duplicate insertions
by inserting before copying successfully resampled
particles.

Estimate Generate a position estimate from the parti-
cles.

Repeat from Predict

5.1 Modifications

Sensor-based prediction The particle filter algorithm
uses the current sensor models during the prediction
phase. For example, the IMU provides excellent heading
(£0.1°), while the DVL provides much worse heading
(£2°). If the IMU is available, the predict step takes the
heading value, adds Gaussian noise N (0,0.1°), and uses
the new value to dead-reckon the particle’s new position.
If the IMU fails, then the filter will fall back to the DVL
data, and generate more noisy predictions. This is vital to
the robustness of the SLAM method. In the case where
there are redundant sensors, it would make sense to use
a Kalman filter to combine the information and perform
the prediction step using the covariance estimates as the
prediction noise model.

An important observation is that when all DEPTHX
sensors are functioning, the particle filter only really es-
timates = and y as the particles are distributed in the zy
plane. However when sensors fail or degrade the par-
ticle filter distributes particles over the newly uncertain
dimensions. This will dramatically increase the risk of
under-sampling, but since the failure or degradation of a
sensor will also cause the vehicle to terminate the mis-
sion and return to the surface, SLAM can switch to a
localization-only mode (without map updates) in which
it can support many more particles, which may amelio-
rate the situation.

Adaptive particle count The processing time of a sin-
gle iteration of the SLAM algorithm varies significantly
depending on local world geometry. This is because of
the range-dependent ray-tracing time, but the implication
is that the particle filter could be using more particles
and still maintain real-time performance. Furthermore,
the Weighting and Resampling steps take approximately
the same amount of time given a fixed number of par-
ticles. How to best spend the available computational
resources: weighting more particles in the hopes of find-
ing good ones, or resampling more particles in order to
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maintain particle diversity? Our approach is to weight
as many particles as possible, but then to fully resample
according to those weights. With DRCO’s, resampling
particles is fast. We modify the particle filter algorithm
as follows:

1. Start with a huge number of particles (in our case
5000: more than could ever be supported computa-
tionally)

During the Weighting step, set all particle weights
to zero and then randomly pick particles and weight
them until the time limit is reached

3. Fully resample the particle set — particles which
were not weighted will always be replaced with
weighted particles

Note that it is important to randomly pick particles dur-
ing the weighting phase to avoid sorting effects, such that
the distribution is accurately sub-sampled.

5.2 Discussion

The idea of the adaptive particle count is to use as
many particles as possible in real-time without discard-
ing any data, which is the dual of the Kullback-Liebler
distance (KLD) sampling technique mentioned above.
The adaptive particle count method appears to provide an
improvement over an equivalent (from a real-time per-
formance perspective) fixed particle count, particularly
while in enclosed areas (see Figure 19). The most im-
portant contribution of adaptive particle count is the reli-
able real-time performance in the face of unknown world
geometry. However, it does not provide any guarantees
about avoiding under-sampling. We believe that a better
system would incorporate both KLD sampling and tem-
poral constraints to determine the particle count. In the
case where KLLD sampling cannot be satisfied within the
given time constraints the vehicle should probably termi-
nate the mission and resurface, but it still must provide a
SLAM solution.

The particle filter/octree combination is stable with re-
gard to the fraction of particles that are resampled at each
time step (which can vary between 0 and Npq,rt — 1). Al-
though discarding a particle is costly because of the po-
tential for a recursive freeNode, the node does not have
to be updated — which saves many ray insertions. What
does seem to be a good indicator of the duration of an
iteration is the average sonar beam length, which makes
sense.

The performance of the DRCO depends heavily on the
circumstances. It will be most efficient when the envi-
ronment and particle filter are amenable to the exploita-
tion of spatial locality (particles share most of the map



Figure 8: This figure shows the 3D trajectory of the DEPTHX
vehicle in the ARL test tank, as well as a rendering of the ve-
hicle and its sonar beams. The vehicle is surrounded by the
cloudy evidence map constructed by SLAM, where opacity in-
dicates occupancy.

in common when the vehicle is only modifying small re-
gions) and volumetric sparsity (octrees compactly repre-
sent a map that is mostly empty or full). Most large-scale
outdoor environments seem to be well suited for this type
of exploitation.

6 Experiments

We present two experiments. The first is a basic demon-
stration of SLAM in cylindrical test tank using data by
the actual DEPTHX vehicle. The second is demonstra-
tion of SLAM in a synthetic (partially simulated) envi-
ronment that closely models the challenging features we
expect to encounter in Zacaton.

6.1 ARL Tank Test

The large wooden test tank at the University of Texas at
Austin Applied Research Lab (ARL) is a cylinder 38 feet
(11.6m) deep and 55 feet (16.8m) in diameter. To test
SLAM in this environment, we had the DEPTHX vehi-
cle drive three cycles around a 3D box pattern (Figure
8), using dead-reckoning for localization and navigation.
The box pattern was 8m on a side and 5m deep, and each
cycle took about 13 minutes for a total run time of 40
minutes. The vehicle rotated ~ 5°/s during ascent and
descent in order to obtain better sonar coverage of the
walls.

6.1.1 Test tank results

We are still in the testing phase for SLAM and did not
use it to guide the DEPTHX vehicle. However, we did
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Figure 9: Planar XY view of the trajectories of the various lo-
calization solutions in the ARL test tank. The deadReck so-
lution looks quite square as it was used to navigate during
the test, but the true vehicle trajectory is shown by locOnly
(localization-only SLAM with 3000 particles).
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Figure 10: Distance between various localization solutions in
the ARL test tank. The ground truth was established using
localization-only SLAM with 3000 particles — dead reckoning
drifts away while SLAM error is bounded.

run SLAM in a diagnostic mode onboard DEPTHX and
demonstrated convergence of localization-only SLAM
with 500 particles and a prior map, which consumed less
than 20% of the onboard CPU.

To establish the ground truth trajectory of the vehi-
cle, we ran SLAM with 3000 particles in localization
only mode with a manually constructed 0.25m resolu-
tion map of the ARL tank. The dead-reckoned trajectory
drifted from the ground-truth by ~0.5m, which agreed
with our observations during the test. We then ran SLAM
using 500 particles (with no prior map), which yielded a
bounded localization error of ~0.1m (Figures 9 and 10).



Figure 11: This figure shows the two test dives superimposed
on the synthetic Wakatén map, which was constructed by merg-
ing portions of the Zacatén and Wakulla Springs datasets. Dive
1 went out to the furthest extremity of the tunnel and back,
while Dive 2 went around the loop.

To demonstrate SLAM in a more challenging scenario,
we turned to the synthetic Wakatén environment.

6.2 Wakaton

In May 2005, the DEPTHX team lowered a 32-sonar
probe, called the DropSonde, into Zacatén to a depth
of 200m (Figure 1) (Fairfield et al. 2006). A similar
probe, called the Digital Wall Mapper (DWM) was used
in 1998-1999 to map several kilometers of the Wakulla
Springs cave system in Florida (Stone et al. 2000). The
DWM was a diver-driven sensor sled, and the DropSonde
was simply lowered on a cable from a barge. Both probes
were based around a ring laser gyro IMU, two depth sen-
sors, and a ring of 32 pencil beam sonars arrayed radially.

The problem with using either of the DWM or Drop-
Sonde datasets to test our SLAM method was that neither
dataset contained sonar data with a reasonable geome-
try for SLAM. In both cases, the data was collected by
driving a ring of sonars along the axis of a cylindrical
tunnel. In this orientation, the sonars provide no “look-
back” to previously mapped regions, which is essential
for SLAM.

Our solution was to create a synthetic world by build-
ing partial maps from the datasets and merging them to-
gether. In the case of the DropSonde data, we recorded
all six degrees of freedom: the xy position of the barge
and the depth, attitude, and heading of the probe. To-
gether with the sonar data, this DropSonde pose data pro-
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vided an excellent map of the first 200m of Zacatén. The
Wakulla Springs data also contained excellent attitude,
heading, and depth, but there was no ground truth for x
and y position except for a few widely spaced waypoints.
Using these waypoints to estimate the IMU drift rates,
we generated a reasonable trajectory which was consis-
tent with the sonar data, and used this to construct maps
of two small tunnels, which we grafted onto the base of
the partial Zacatén map (Figure 11). By combining the
two datasets, we created a a high-fidelity model of Za-
catén including challenging hypothesized features, such
as small tunnels, loops, and bell domes. From this com-
bined model, which we called “Wakatén”, we could sim-
ulate sonar ranges for any desired sonar geometry with
any ground truth path, including loop closure. We gen-
erated virtual vehicle trajectories and then used sensor
noise models to simulate sensor readings for that trajec-
tory.

The sensor noise was generated from zero-mean nor-
mal distributions. We elected to use conservative (high)
noise values for three reasons: we have little information
about the performance of the various sensors on the in-
tegrated DEPTHX vehicle in Zacatén, we wanted to en-
courage particle diversity, and we wanted to cause a clear
distinction between dead-reckoning and SLAM on the
same dataset. Accordingly, the DVL velocity noise was
0.2m/s 1o, the IMU yaw noise was 1° 1o, the depth
sensor depth noise was 0.01m 1o, and the sonar range
noise was 1m lo. We compared the simulated sonar
ranges with real sonar data to verify that the synthesized
map generated realistic data. The two trajectories shown
in Figure 11 were used in the results section.

This method differs from pure simulation in several
important ways. The complex real-world geometry of
the tunnels is preserved, as are some of the noise charac-
teristics of the sonars. We were also able to use the real
attitude and depth data (from the IMU and depth sensors,
respectively), although we had to simulate the DVL data.

6.2.1 Wakaton results

Figure 12 shows that as the number of particles increases
beyond 100 the localization error decreases, although the
error does not go to zero. Below 100 particles the fil-
ter diverges, and so it actually performs worse than just
dead-reckoning (which is the same as 1 particle). This
is due to particle depletion, when the filter is unable to
adequately sample the posterior distribution with so few
particles.

Figure 13 shows that SLAM with 200 particles has a
relative accuracy of about 1m. The first dive has sig-
nificant absolute error (as shown in Figure 12), the sec-
ond dive (which used the map constructed during the first
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Figure 12: SLAM localization error during Dive 1 through
Wakatén with 1, 20, 50, 100, 200, and 400 particles. One par-
ticle is equivalent to dead-reckoning. With 20 and 50 particles,
the filter appears to diverge near the end of the dive. The per-
formance clearly improves as the number of particles increases
beyond 100 particles.

dive) is close enough that we will be able to consistently
return to within about a meter of the same location for
sampling.

Since the Wakatén environment is closely modeled on
what we expect to find in Zacatén and we used pes-
simistic sensor error models, we have a reasonable ex-
pectation that SLAM will succeed in Zacatén with a sim-
ilar number of particles (~ 500), although we certainly
expect to support more. We will be able to make stronger
predictions as we proceed with testing the DEPTHX ve-
hicle.

Deferred Reference Count Octree The deferred ref-
erence count method rolls the cost of propagating ref-
erence counts into the insert operation, but the overall
performance improvement is substantial. Without de-
ferred reference counts, 70% of the SLAM processing
time during a Wakatén dive is consumed by maintain-
ing reference counts (for map copies) while only 30%
is being used for ray-tracing (for weighting and updat-
ing the maps). Deferred reference counting reduces the
map management overhead by a factor of ten, to 7%. But
this under-represents the actual performance gain in the
context of the particle filter: a major cost for the particle
filter comes from particles which are resampled (copy-
ing the pose and map from a more highly weighted par-
ticle) in one time-step, and then are resampled again in
the next time-step — without ever inserting anything into
their maps. DRCO’s give us this for free, simply incre-
menting and decrementing the defCount of the root node.

Octree ray-tracing is still three times slower than uni-
form ray-tracing in this implementation. However, due
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Figure 13: SLAM repeatability in Wakatén shows that with
200 particles the vehicle re-localized to within about 1m of its
first estimated trajectory. This figure shows the distance be-
tween the first estimated trajectory, and the second estimated
trajectory that used the map constructed during the first dive.

to the enormous gains in map efficiency, octree maps
allow the SLAM system to support hundreds of parti-
cles with high-resolution maps; something that isn’t even
possible with uniform maps (for example, the 400 parti-
cles with 0.5m resolution 5123m maps used in the exper-
imental scenario).

Figure 14 shows that the DRCO storage efficiency of
the particle filter increases with the number of particles
(due to increased amounts of overlap between particles).
Each particle takes about 1 Mb of memory, and about ten
seconds of computation time. Memory usage and com-
putation time increases cubically with map resolution, as
expected.

Adaptive Particle Count Figure 15 shows that SLAM
time is roughly split between the weighting and resam-
pling steps, and Figure 17 demonstrates that the amount
of processor time for a single SLAM iteration varies
significantly between when the vehicle is in the main
Wakatén cylinder and when it is in the much more con-
stricted tunnels. This encourages the idea that the parti-
cle filter could do better if it could vary its particle count:
Figure 19 shows the number of particles that were evalu-
ated for different values of the weighting time limit. Fig-
ure 16 shows the improved timing consistency for adap-
tive particle count version of the particle filter (although
there is still variation in the amount of time necessary for
the weighting step).

Real-Time Performance Figure 19 shows that for the
desired 2Hz SLAM timing, which is achieved with a
weighting time of 0.1s, the DEPTHX SLAM processor
(a 1.8 GHz Pentium M) is capable of supporting between
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Figure 14: There is a slightly sub-linear relationship between
number of particles and octree map memory in Wakatén (each
particle taking about 1 Mb of memory). The red line shows
what a linear relationship would be.
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Figure 15: Cumulative processing time of the SLAM loop with
200 particles is shared almost equally by two of the steps:
weighting and updating. It also shows that while the vehicle
is in the tunnels at the bottom of Wakatén, the iteration dura-
tion is shorter, as we would expect since the sonar ranges are
shorter.

100 and 600 particles, with an average of around 300.
We expect that map quality will degrade as the sonar
ranges increase as a natural consequence of the spread-
ing of the sonar beams, and also the fact that coverage
will tend to be more sparse (per unit area). At the same
time, localization quality may well be better with long
ranges because the vehicle will be sensing over a large
area, which should provide strong localization informa-
tion. It seems that as sonar ranges increase, precision
degrades but overall accuracy improves. The is true in
small tunnels. This phenomenon explains we see im-
proved performance with a varying number of particles
(Figure 20): the filter maintains accuracy in enclosed ar-
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Figure 16: Cumulative processing time of the time limited vari-
ant of the particle filter. For this run, the weighting step was
limited to 0.18s. Compare the improved consistency versus a
fixed number of particles (Figure 15).
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Figure 17: Processing time of the SLAM loop drops signif-
icantly while the vehicle is in the tunnels at the bottom of
Wakaton, as we would expect since the sonar ranges are shorter.
This indicates that the particle filter could use more particles
while in the tunnels.

eas because of the increased number of particles which
it can support.

7 Conclusions

The core result is that our method accurately localizes
the vehicle in the ARL tank test dive and over the course
of several synthesized test dives in the Wakat6n environ-
ment. This demonstrates improvement over pure dead-
reckoned navigation in both convergence in vehicle tra-
jectory (returning to a previously mapped path) and map
quality.

We have developed an efficient octree data structure
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Figure 18: Localization error over time for different time limits
for the weighting function. As expected, the particle filter per-
formance improves as the amount of time it is allowed to spend
weighting particles increases.
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Figure 19: Number of particles evaluated (weighted) over time
for different time limits for the weighting function (on the
DEPTHX SLAM processor). As expected, the particle filter
is able to evaluate more particles as the amount of time it is
allowed to spend weighting particles increases.

for manipulating 3D evidence grids. This is the key in-
novation which allows the efficient implementation of a
Rao-Blackwellized particle filter for 3D SLAM. Using
the ARL tank test and synthetic Wakatén environment,
we have demonstrated that the target computing platform
can support hundreds of particles — enough to provide an
accurate SLAM solution — in real-time. We also demon-
strated a robust real-time particle filter implementation
that adjusts the particle count in order to achieve accu-
rate timing in the face of varying environmental geom-
etry. This allows the algorithm to satisfy real-time con-
straints while using as many particles as possible, which
has demonstrably improved performance over the con-
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Figure 20: Comparison of localization performance of the two
variants of the particle filter. In blue, the particle count was al-
lowed to vary, but the weighting time limit was set to 0.18s. In
red, the particle filter used a fixed particle count of 200, which
is the maximum static number of particles that could be safely
specified to achieve the same 0.18s real-time performance (Fig-
ure 19).

servative static particle count.

The next phase of this research involves intensive in-
tegration and testing of SLAM on the DEPTHX vehi-
cle. This will include definitive characterization of the
SLAM algorithm, in particular the performance under
various failure conditions. We plan to conduct field ex-
periments in Zacatén in 2007.
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