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Abstract

The challenge in the DARPA Learning Applied to Ground RobosGR) project
is to autonomously navigate a small robot using stereo wiamthe main sensor.
At the end of three years, the system we developed outpeetbath 9 other teams
in final blind tests over previously-unseen terrain. In théper we describe the
system, as well as the two learning techniques that led $ostitcessonline path
learning andmap reuse.

1 Introduction

The DARPA LAGR project began in Spring 2005 with the ambitigoal of achieving vision-only
autonomous traversal of rough terrain. Further, the ppeimg teams were to be tested “blind” —
sending in code to be run on a robot at a remote, unseen sigatdpe was that by using learning
algorithms developed by the teams, significant progreskldmimade in robust navigation in dif-
ficult off-road environments, where tall grass, shadowagdtkdl, and other obstacles predominate.
The ultimate goal was to achieve better than 2x performamee @ Baseline system already de-
veloped at the National Engineering Research Consortium (NERE}Xtsburgh. All participant
teams used the same robotic hardware provided by NERC (Figa)E testing was performed by
an independent team on a monthly basis, at sites in Floriela, lampshire, Maryland, and Texas.

Although work in outdoor navigation has preferentially disaser rangefinders (Montemerlo and
Thrun, 2004; Bellutta et al., 2000; Guivant et al., 2000), LFA@ses stereo vision as the main



sensor. One characteristic of the vision hardware is thathdgerception is good only at fairly
short range — its precision deteriorates rapidly after 7sooEven where good stereo information
is available, it is often impossible to judge traversapitih the basis of 3D form. For example, tall
grass that is compressible can be traversed, but small esimaot, and they might have similar
3D signatures. The robots would often slip on sand or leases ,be unable to climb even small
grades if they were slippery. These conditions could notdierchined even at close range with
stereo vision.

Another area that the testing team was keen on developinghwability of the robots to make de-
cisions at a distance. Many of the tests had extensive cghds, dead ends, or paths that initially
led towards the goal but then turned away. Here, the robdtamat rely on local information to
find a good way out. The expectation was that the teams woudd wdth such situations using
long-range vision sensing, that is, be able to tell from theearance of the terrain whether it was
traversable or not.

Throughout the project life, we evaluated the potentiakafhing methods and appearance-based
recognition. The emphasis was always on general methotle/thdd work well in all situations,
not just artificial ones designed to test a particular ghilike bright orange fencing that could
easily be recognized by its distinctive color. In the end, a@averged on the following basic
capabilities, which constitute our novel contributionstihe problem of autonomous navigation
with vision.

Online Color and Texture Segmentation
It became clear from the early stages of the project thatemity methods for recognizing
vegetation or terrain were not sufficient. We concentratedieveloping fast combined
color/texture methods that could be used online to learmsegations of the image. These
methods advance state-of-the-art in appearance-basegstgion, and are the key to our
online path-finding method. This method reliably finds patbhsh as the one in Figure
1(b), even when the particular appearance of the path is new.

Precisely Registered Maps
If the robot’s reconstruction of the global environmentaslty, it cannot make good plans
to get to its goal. After noticing navigation failures frotmetvery noisy registration pro-
vided by GPS, we decided to give high priority to precisestgtion of local map infor-
mation into a global map. Here, we developed realtime visdametry (VO) methods
that are more precise than existing ones, while still beorgmutable at frame rates. To our

(a) LAGR Robot (b) LAGR Robot

Figure 1: (a) LAGR robot with two stereo sensors. (b) Typmaidoor scene as a montage from
the left cameras of the two stereo devices.



knowledge, this is the first use of VO as the main registratiethod in an autonomous nav-
igation system. VO enabled us to learn precise maps during,and so escape efficiently
from cul-de-sacs. In the last stage of the project, we alsoadiered that the precision of
VO made it possible to reuse maps from a previous run, thesgbiging problem areas
completely. Thigun-to-run learning was unique among the teams, and on average halved
the time it took to complete a course.

Efficient Planner and Controller
The LAGR robot was provided with a “baseline” system thatduseplementations of
D* (Stentz, 1994) for global planning and Dynamic Window Apach (DWA) (Fox et al.,
1997) for local control. These proved inadequate for neadtcontrol — for example, the
planner could take several seconds to compute a path. Wéogdedean efficient global
planner based on previous gradient techniques (Konoli@@)x as well as a novel local
controller that takes into account robot dynamics, andchesa large space of robot mo-
tions. These techngiues enabled the robot to compute dgioizal paths at frame rates,
and to average 85% of its top speed over most courses.

In the end, the teams were tested in a series of courses Pes2g). Over these tests, we averaged
about 4x the score of Baseline, the best of any team. In evstyder score beat or tied the best
other team; and in the aggregate, we score almost twice hsakithe best other team.

1.1 System overview

This work was conducted as part of the DARPA Learning Apple@&tound Robotics (LAGR)
project. We were provided with two robots (see Figure 1, eaith two stereo devices encom-
passing a 110 degree field of view, with a baseline of 12 cm. rdhets are near-sighted: depth
information degrades rapidly after 6m. There is also antimeunit (IMU) with angular drift of
several degrees per minute, and a WAAS-enabled GPS. TheeseRentium-M 2 GHz computers,
one for each stereo device, one for planning and map-ma&imgypne for control of the robot and
integration of GPS and IMU readings. In our setup, eachstesenputer performs local map mak-
ing and visual odometry, and sends registered local mapetplanner, where they are integrated
into a global map. The planner is responsible for global milagy and reactive control, sending
commands to the controller.

In the following sections, we first discuss local map craatrom visual input, with a separate sec-
tion on learning color models for paths and traversableoregyiThen we examine visual odometry
and registration in detail, and show how consistent glokebsrare created. The next section dis-
cusses the global planner and local controller. Finallypnesent performance results for several
tests in Spring 2006.

2 Related work

There has been an explosion of work in mapping and locatizdBLAM), most of it concentrating
on indoor environments (Gutmann and Konolige, 1999; Led@ad Newman, 2003). Much of
the recent research on outdoor navigation has been drivBABRPA projects on mobile vehicles



(Bellutta et al., 2000). The sensor of choice is a laser randefj augmented with monocular or
stereo vision. In much of this work, high-accuracy GPS igluseegister sensor scans; exceptions
are (Guivant et al., 2000; Montemerlo and Thrun, 2004). miast, we forego laser rangefinders,
and explicitly use image-based registration to build aatimaps. Other approaches to mapping
with vision are (Rankin et al., 2005; Spero and Jarvis, 208@)ough they are not oriented to-
wards realtime implementations. Obstacle detection ustieigeo has also received some attention
(Rankin et al., 2005).

Visual odometry systems use structure-from-motion methodestimate the relative position of
two or more camera frames, based on matching features betivese frames. There have been
a number of recent approaches to visual odometry (Nistek,e2@04; Olson et al., 2000). Our
visual odometry system (Konolige et al., 2007; Agrawal ameshélige, 2006; Agrawal and Kono-
lige, 2007) is most similar to the recent work of MouragnomletfMouragnon et al., 2006) and
Sunderhauf et al. (Sunderhauf et al., 2005). The main diffeg is the precision we obtain by the
introduction of a new, more stable feature, and the integraif an IMU to maintain global pose
consistency. Our system is also distinguished by realtmpamentation and high accuracy using
a small baseline in realistic terrain. It is the only systemown to the authors that has been in
regular use in demonstrations for over two years.

Our segmentation algorithm uses a compact descriptor tegept color and texture. In a seminal
paper, Leung and Malik (Leung and Malik, 2001) showed thatytaxtures could be represented
and re-created using a small number of basis vectors esttdaim the local descriptors; they

called the basis vectotextons. While Leung and Malik used a filter bank, later Varma and Zisse
man (Varma and Zisserman, 2003) showed that small localrexteighborhoods may be better
than using large filter banks. In addition, a small local heigrhood vector can be much faster to
compute than multichannel filtering such as Gabor filters targe neighborhoods.

Our planning approach is an enhanced reimplementationeofjthdient technique (Konolige,

2000), which computes a global navigation function overahst map. A similar approach is
used in wavefront planning (Latombe, 1991), although wargfplanners usually minimize Man-

hattan or diagonal distance, whereas we minimize Euclidéstance. Level sets (Kimmel and
Sethian, 1998) offer an equivalent method for computingppétat minimize Euclidean distance.
The underlying computation for all such planners is a vemmbn dynamic programming (Bell-

man, 1957). For reasons of efficiency, our planner treatsabet as a holonomic cylinder with

no kinodynamic constraints. These constraints could berporated into the planner by use of
sampling-based algorithms such as rapidly-exploringoamttees (RRTs) (LaValle, 2006).

We enforce kinodynamic constraints in our local controlf@ontrol algorithms such as DWA (Fox
et al., 1997) compute local controls by first determiningrgettrajectory in position or velocity
space (usually a circular arc or other simple curve), theerting the robot's dynamics to find
the desired velocity commands that will produce that ttajgc We instead explore the control
space directly, and simulate and evaluate the resultipgctaies, in a manner reminiscent of the
controller used in the RANGER system (Kelly, 1994), with tleg klifferences being the definition
of the state space and the trajectory evaluation functitve. Stanley controller (Thrun et al., 2006)
also rolls out and evaluates possible trajectories, buties/them into two categories (“nudges”
and “swerves”), based on their expected lateral acceteratioward et al. (Howard et al., 2007)
present a more general approach to constraining the searcbritrols by first sampling directly
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Figure 2: Visual processing. In (a), the paths from visuglindepict the processing flow in
constucting the local map. The interpretation of sterea gaints is in (b): nearby points (out to
6m) contribute to the ground plane and obstacle detectiothdr points can be analyzed to yield
probably freespace (“sight lines”) and extended groundgsa

in the vehicle’s state space.

3 Local map construction

The object of the local map algorithms is to determine, from tisual information, which areas
are freespace and which are obstacles for the robotiottaé map. Note that this is not simply a
matter of geometric analysis — for example, a log and a rowaggmay have similar geometric
shapes, but the robot can traverse the grass but not the log.

Figure 2(a) is an outline of visual processing, from imagdotal map. There are four basic
trajectories. From the stereo disparity, we compute a nahground plane, which yields free

space near the robot. We also analyze height differencestfre ground to find obstacles. Via the
technique of sight lines we can infer freespace to moremtigt@ints. Finally, from color and path

analysis, coupled with the ground plane, we determine pattgraversability of the terrain.

3.1 Stereo analysis and ground plane extraction

We use a fast stereo algorithm (Konolige, 1997) to computsgadty image at 512x384 resolution
(Figure 3, left). In typical outdoor scenes, it is possildeathieve very dense stereo results, The
high resolution gives very detailed 3D information for fingithe ground plane and obstacles.
Each disparity image poirt, v, d] corresponds to a 3D point in the robot’s frame.

Output from the stereo process is used in a number of ways didlgeam in Figure 2(b) summa-
rizes them. Most of our analysis is biased towards findingdpace, especially in areas that are
further from the robot. This strategy stems from the high obseeing false obstacles, closing off
promising paths for the robot.

The most important geometric analysis is finding the groulathga Although it is possible to



Figure 3: Left: disparity image from the left view of the rdlo Figure 1. Closer pixels are lighter.

Middle: extracted ground plane, in green overlay. Limit odgnd plane is shown by green bar;
sight line has a red bar. Right: Ground plane overlayed onmaigmage, in green. Obstacles are
indicated in purple.

detect obstacles using local variation in height [ref]ngsa ground plane simplifies processing
and yields more stable results. To extract a ground planeiseea RANSAC technique (Fischler
and Bolles, 1981), choosing sets of 3 noncollinear pointgdtlyesized planes are ranked by the
number of points that are close to the plane. Figure 3 showexample, with a green overlay
indicating the inliers. Points that lie too high above thewrd plane, but lower than the robot’s
height, are labeled as obstacles. This method is extrenralyles but has proven to work well
in practice, even when the ground has modest dips and rigesieason is that it only looks out
to 6m around the robot. A more sophisticated analysis worddlbthe ground plane into several
segments or model more complex shapes.

3.2 Sightlines

Although we cannot precisely locate obstacles past 6-8ntamedetermine if there is freespace,
using the following observation. Consider the interpretedde of Figure 3, middle. There is a
path the goes around the bushes and extends out a good disTdreground plane extends over
most of this area, and then ends in a distant line of trees.tBles are too far to place with any
precision, but we can say thdtere is no obstacle along the line of sight to the trees. Given a
conservative estimate for the distance of the trees, we @ddriraespace up to this estimate. The
computation of sight lines is most efficiently accomplisivedisparity space, by finding columns
of ground plane pixels that lead up to a distant obstaclelifnedn Figure 3 middle). Note that the
example sight line follows the obvious path out of the bushes

3.3 Learning color and texture models

Our learning algorithm for color and texture models comssisttwo stages. In the first stage, we
cluster color and texture vectors over small local neighbods to find a small set of basis vectors
(textons (Leung and Malik, 2001)) that characterize ddfgérscene textures. In the second stage,
we cluster histograms of these textons over larger areastofore coherent regions with the same
mixture of textons using-means as our clustering algorithm. We use the CIE*LAB cgace to
represent colors because it is more perceptually uniforextufe information is incorporated by
taking the difference between a center pixel intensity amdosinding pixel intensities in a local
3x3 neighborhood. For the second stage, histograms camis&ected efficiently (irrespective of
window size) using integral images (Viola and Jones, 2001).
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Figure 4: Various steps of our segmentation algorithm orpacéy} outdoor image. (a) The image
from one of the stereo cameras. (b) Each pixel assigned tdaante(c) Each histogram of textons
gets assigned to a histogram profile. In this particular e@tanthe path is composed of two
segments. (d) A path is recognized (in yellow)

We use our segmentation algorithm to learn and subsequestbgnize both natural and man-
madepaths in outdoor images. Paths are characterized by their caatute and geometrical
properties. Training samples for a path can come from tpration or from a priori knowledge
that the robot is starting on a path. The robot can also sdarchaths by trying to identify
image clusters that have the geometry of a path. We deal wigh-gegmentation in the image
(wherein a path is split into multiple segments due to pdgdgiidfering textures) by grouping
multiple segments based on their overall geometry. We ctengeometrical properties of the path
composed of grouped segments such as width, length andlspaitinuity in order to verify if it
geometrically resembles a path. Once a path is identified,aibot learns the texton histograms of
the component segments as a model for the path.

For classification, the different clusters of the segmentexbe are compared to the learnt model
of the path using Euclidean distance on the cluster histogiraClusters that are within a certain
threshold are identified as potential paths. A final geomrr@tranalysis makes sure that these
potential path regions have the right geometry.

The learning process runs at 1Hz for training on a single areatd is typically performed at the
beginning (although it could be performed at regular irdé3to update the path model). Classi-
fication based on the learnt model runs at around 5Hz. Figwsteods the various steps of our
algorithm on one of our test runs. The path between bushdsidified in yellow in Figure 4(d).
For more details, please consult (Blas et al., 2008).



Figure 5: Reconstruction on a 130m autonomous run. Yellonecognized path, black is
freespace, and purple, gray and white are obstacles.

3.4 Results of local map construction

The combined visual processing results in local maps thaesent traversability with a high
degree of fidelity. Figure 5 shows the results of an auton@man of about 130m, over a span
of 150 seconds. We used offline learning of mulch paths ontastes then used the learned
models on the autonomous run. The first part of the run waggadomulch path under heavy
tree cover, with mixed sunlight and deep shadows. Cells oaiyl as path are shown in yellow;
black is freespace. Obstacles are indicated by purple f&olate certainty), and white-to-gray for
decreasing certainty. We did not use sight lines for this run

The path did not lead directly to the goal, and there were na@mprtunities for the robot to head

cross-country. About two-thirds of the way through the mmmore paths were available, and the
robot went through heavy grass and brush to the goal. Theé'sqlmse, as estimated from filtered

visual odometry (see Section 4.2), is in green; the filter&b@ath is in yellow. Because of the

tree cover, GPS suffered from high variance at times.

A benefit of using visual odometry is that wheel slips andstale easily detected, with no false
positives (Section 6.4). For example, at the end of the hanrobot was caught on a tree branch,
spinning its wheels. The filtered GPS, using wheel odomstoyed far off the global pose, while
the filtered visual odometry pose stayed put.

4 Constructing consistent global maps

In this section we provide solutions to two problems: repnti®ig and fusing the information
provided by visual analysis, and registering local maps antonsistent global map.



4.1 Map representation

For indoor work, a standard map representation is a&Dpancy grid (Moravec and Elfes, 1985),
which gives the probability of each cell in the map being qued by an obstacle. Alternatives
for outdoor environments include 2.5D elevation maps afidBid voxel maps (lagnemma et al.,
1999). These representations can be used to determineaalkinematic and dynamic paths for
an outdoor robot in rough terrain. We choose to keep the sinZi occupancy grid, foregoing any
complex calculation of the robot’s interaction with therén. Instead, we abstract the geometrical
characteristics of terrain into a set of categories, and foformation from these categories to
create aost of movement.

We use a grid of 20cm x 20cm cells to represent the global magh Eell has a probability of the
belonging to the four categories derived from visual analySecion 3): obstacle, ground plane
freespace, sight line freespace, and path freespace. hitt¢hese categories are not mutually
exclusive, since, for example, a cell under an overhangiagdh could have both path and obstacle
properties. We are interested in converting these pratiabilnto a cost of traversing the cell. If
the probabilities were mutually exclusive, we would simfdym the cost function as a weighted
sum. With non-exclusive categories, we chose a simpleipzation schedule to determine the
cost. Obstacles have the highest priority, followed by gbplane, sight lines, and paths. Each
category has its own threshold for significance: for exaniptee probability of an obstacle is low
enough, it will be ignored in favor of one of the other categ®r The combination of priorities
and thresholds yields a very flexible method for determimosgts. Figure 5 shows a color-coded
version of computed costs.

4.2 Registration and visual odometry

The LAGR robot is equipped with a GPS that is accurate to wighto 10 meters in good sit-
uations. GPS information is filtered by the IMU and wheel efes to produce a more stable
position estimate. However, because GPS drifts and jume@istowe, it is impossible to differen-
tiate GPS errors from other errors such as wheel slippagkthenresult is that local maps cannot
be reconstructed accurately. Consider the situation ofrEigu Here the robot goes through two
loops of 10m diameter. There is a long linear feature (a loW)zat is seen as an obstacle at the
beginning and end of the loops. Using the filtered GPS posdkition of the wall shifts almost
2m during the run, and obstacles cover the robot’s previ@acks.

Our solution to the registration problem is to wssial odometry (VO) to ensure local consistency
in map registration. Over larger regions, filtering VO witRSinformation provides the necessary
corrections to keep errors from growing without bounds. \&eatibe these techniques in the next
two sections.

The LAGR robot presents a challenging situation for visutdraetry: wide FOV and short base-
line make distance errors large, and a small offset from thargl plane makes it difficult to track
points over longer distances. We have developed a robusthaslometry solution that functions
well under these conditions. We briefly describe it here;nfmre details consult (Agrawal and
Konolige, 2006; Konolige et al., 2007).



Figure 6: Three stages during a run using GPS filtered possta€lb points are shown in white,
freespace in black, and the yellow line is the robot’s patie linear feature is marked by hand in
red in all three maps, in its initial pose.

For each new frame, we perform the following process.

1. Distinctive features are extracted from each new frantberieft image. Standard stereo
methods are used to find the corresponding point in the nigage.

2. Left-image features are matched to the features exttacthe previous frame using our
descriptor. We use a large area, usually aroufidof the image, to search for matching
features.

3. From these uncertain matches, we recover a consensuggiosate using a RANSAC
method (Fischler and Bolles, 1981). Several thousand velgibse hypotheses are gen-
erated by randomly selecting three matched non-collinegtufes, and then scored using
pixel reprojection errors.

4. If the motion estimate is small and the percentage ofrmiglarge enough, we discard the
frame, since composing such small motions increases ekr&ept frame is called &ey
frame. The larger the distance between key frames, the bettesthmeate will be.

5. The pose estimate is refined further in a sparse bundlstadgat (SBA) framework (En-
gels et al., 2006; Triggs et al., 2000). SBA is a nonlineactaiptimization over camera
poses and tracked features. An incremental form of SBA cdncesthe error in VO by a
large factor at very litle computational overhead. A featilmat is long lived, that is, can be
tracked over more frames, will give better results.

Precise VO depends on features that can be tracked overrlsegeences. Hence, the choice of
a feature detector can have a large impact in the performafreiech a VO system. Harris corner
features are widely used for VO. We have found that althoughisicorners give good results and
are very efficient to compute, they fail in a lot of situation®utdoor environments. In addition,
these features are not very stable resulting in very shacktiengths. Other widely used feature
detectors such as SIFT (Lowe, 2004) and SURF (Bay et al., 200689 well but are not suitable
for a real time system. We have developed a novel feature ddabenSurE) (Agrawal et al.,
2008) that has improved stability and is inexpensive to asieapWhile the basic idea of CenSurE
features is similar to that of SIFT, the implementation is@xely efficient, comparable to Harris.
Details of our CenSurE feature detector are described in ai#glret al., 2008). Figure 7 shows
the CenSurE features tracked over several frames.

The IMU and the wheel encoders are used to fill in the relatogep when visual odometry fails.



Figure 7: CenSurE features tracked over several frames.

This happens due to sudden lighting changes, fast turne@bthot or lack of good features in the
scene(e.g. blank wall).

4.3 Global consistency

Bundle adjusted incremental motions between consecutweds are chained together to obtain
the absolute pose at each frame. Obviously, this is bounéstatrin accumulation of errors and

drifting. We use GPS and the IMU to correct the pose of thealehiWe perform two types of
filtering.

1. Gravity Normal —the IMU records tilt and roll based on gtawnormal, calculated from the
three accelerometers. This measurement is corrupted loy nottion, and is moderately
noisy.

2. GPS Yaw — the IMU yaw data is very bad, and cannot be usedltenirig (for example,
over the 150 m run, it can be off by 60 degrees). Instead, wethgeyaw estimate available
from the LAGR GPS. These yaw estimates are comparable todguaality IMU. Over a
very long run, the GPS yaw does not have an unbounded ernogudd an IMU, since itis
globally corrected; but for LAGR test courses it has enouglkethat this is not a concern.

To maintain globally consistent maps, we have turned offfaosition filtering based on GPS. We
completely ignore position estimates from the GPS in caloud) our pose. In addition, to limit the
effect of velocity noise from GPS on the heading estimate$ @&w is used only when the GPS
receiver has at least a 3D position fix and the vehicle is liage0.5 m/s or faster. Our filter is
a simple linear filter that nudges the tilt/roll (for gravitprmal) and yaw (for GPS yaw) towards
global consistency, while maintaining local consistency.

The quality of the registration from filtered VO, shown in &ig 8, can be compared to the filtered
GPS of Figure 6. The low wall, which moved almost 2m over therslbops when using GPS,
is much more consistent when VO is employed. And in caseseM@®S is blocked or degraded,
such as under heavy tree cover in Figure 5, VO still producagsinthat are locally consistent. It
also allows us to determine wheel slips and stalls with atmosfalse positives — note the end
of the run in Figure 5, where the robot was hung up and the whgete slipping, and wheel



Figure 8: VO in the same sequence as Figure 6. GPS filteredrpgtiiow, VO filtered path is in
green.

odometry produced a large error.

4.4 Results of visual odometry

In Test 17, the testing team surveyed a course using an aedif& GPS receiver. The ‘Canopy
Course’ was under tree cover, but the RTK GPS and the LAGR 1@B& functioned well. Sixteen
waypoints were surveyed, all of which were within 10 cm eaceording to the RTK readout (one
waypoint was deemed inaccurate and not included). Theltatgth of the course was about 150
meters. Subsequently, the LAGR robot was joysticked overcthurse, stopping at the surveyed
points. The robot was run forward over the course, and theretbaround and sent backwards to
the original starting position.

The course itself was flat, with many small bushes, cacti,rdmiitree branches, and other small
obstacles. Notable for VO was the sun angle, which was lowsantewhat direct into the cameras
on several portions of the course. Figure 9 shows two imagppsit@d by the robot. The left image
showa a good scene in the shadow of the trees, and the righéistews a poor image where the
sun washes out a large percentage of the scene. (The lines images are horizon lines taken
from VO and from ground plane analysis). The uneven imagédtguaakes it a good test of the
ability of VO under realistic conditions.

¢ Raw Left > Raw Left

Figure 9: Images from the Canopy dataset.

Since the initial heading of the robot is unknown, we used lagnment strategy that assumes
there is an initial alignment error, and corrects it by roigthe forward VO path rigidly to align
the endpoint as best as possible. This strategy minimizesivt@®s on the forward path, and may
underestimate them. However, for the return path, the €l be caused only by VO, and can
be taken as a more accurate estimate of the error.



For this test, our CenSurE features were not ready and we vdge@match frames along the
whole route using Harris corners. Figure 10 (a) shows the RMS between VO (with different
filters) and the RTK waypoints, on the return path. As noteovabthe forward VO path of the
robot has been aligned with the RTK path. As can be seen, thterbsults are obtained using
bundle-adjusted VO with gravity normal and GPS yaw filterihg this case, the errors between
waypoints is very small, amounting to 1% of distance traveled. Without filtering, the results are
worse (Figure 10(b)), amounting to about 3% of distanceetes At some points in the middle of
the return trip, the VO angle starts to drift, and at the entthefbackward trip there is about a 10m
gap. Note that this effect is almost entirely caused by thar & the yaw angle, which is corrected
by GPS yaw. It is also worth mentioning that the use of CenSadfufes substantially improves
the performance of VO although we do not have results of uSElSUrE on this dataset.
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Figure 10: Results of VO on the Canopy dataset. (a) RMS errordetwO (with different filters)
and the RTK waypoints, on the return path. (b) Trajectory widle adjusted VO (without any
filtering) compared to RTK groundtruth.

We present results of VO with CenSurE features on two othgelautdoor datasets collected
with a larger robot. These datasets have frame-registeadd truth from RTK GPS, which is
accurate to several cm in XY and 10 cm in Z. For these databets;amera FOV is 35 deg, the
baseline is 50 cm, and the frame rate is 10 Hz (512x384), se ikeoften large image motion.
We took datasets from Little Bit (9 km trajectory, 47K fram@sPennsylvania, and Ft Carson (4
km, 20K frames) in Colorado, to get variety in imagery. The FtS8a dataset is more difficult for
matching, with larger motions and less textured imageshédrekperiments, we use only CenSurE
features, which failed the fewest times1(7% for Little Bit, 4.0% for Ft Carson).

The VO angular errors contribute nonlinearly to trajectermpr. On the two datasets, we compared
RMS and max XYZ trajectory errors. In the case of matchingifail we substituted IMU data for
the angles, and set the distance to the previous value. le Takhe effects of bundle adjustment
and IMU filtering are compared.

In both datasets, IMU filtering plays the largest role in ging down error rates. This isn’t surpris-
ing, since angular drift leads to large errors over distaaeen with a noisy IMU, global gravity
normal will keep Z errors low. The extent of XY errors dependshow much the IMU yaw angle
drifts over the trajectory - in our case, a navigation-grMde has 1 deg/hr of drift. Noisier IMU



Table 1: Trajectory error statistics, in meters and peroétrgjectory

RMS error in XYZ | Max error in XYZ
Little Bit VO No SBA 97.41 (1.0%) 295.77 (3.2%)
VO SBA 45.74 (0.49%) 137.76 (1.5%)
VO No SBA + IMU 7.83 (0.08%) 13.89 (0.15%)
VO SBA + IMU 4.09 (0.04%) 7.06 (0.08%)
Ft Carson VO No SBA 263.70 (6.9%) 526.34 (13.8%)
VO SBA 101.43 (2.7%) 176.99 (4.6%)
VO No SBA + IMU 19.38 (0.50%) 28.72 (0.75%)
VO SBA + IMU 13.90 (0.36%) 20.48 (0.54%)

yaw data would lead to higher XY errors.

The secondary effect is from SBA. With or without IMU filtegnSBA can lower error rates by
half or more, especially in the Ft. Carson dataset, where #telimg is less certain.

4.5 Map Reuse

VO and IMU/GPS filtering enable us to construct consistenpsnan a single run. These maps
are useful for getting out of traps and cul-de-sacs in ther@mment, which occurred quite fre-
guently. In fact, the testing team was interested in longeasensing capabilities, and would use
natural or constructed traps as a way of rewarding robotsctiad detect them from a distance.
Unfortunately, the vision sensors on the robots were not gapable at a distance (see Section 7
and Figure 14(a)). So, our strategy was to use map informéerned in the first run to compute
an optimal path for the second and subsequent runs. Thisofyle@arning,run-to-run learning,
turned out to be the most powerful form of learning for thegeand the key to performing better
than any other LAGR team.

Ouir first successful test of map learning and reuse was irZbestthe end of the project (Figure 11
and Figure 14(a)). The direct line to the goal was through allstopse of trees, where there were
barriers of deadfall and tall grass. In the first run, the tat@ndered through this area, eventually
finding a way out to the goal. In the second run, the robotedartith the map constructed on

the first run, and headed around the problem area. Note thabtiot actually started into the

cul-de-sac, then decided to go around. The planner had a hioiizon of about 40m, and only

recognized the blockage at that point. In subsequent testsxtended the horizon of the planner
to the goal.

Our map-reuse technique is simple: at the start of a run, hrthte robot’s view to the start of
the previous run, using the same method as for matching §amé0O. If a good match is found,
the map from the previous run is brought in and adjusted tadbet’s current position. From
this point the robot’s position on the old map is “open lodp4t is, there is no re-registration or
localization of the robot within the map. Since VO perforroais generally within 1% over 100m,
this strategy was overwhelmingly successful during thestestill, a true visual SLAM algorithm
would work better in more difficult conditions, and we havedaaignificant progress here, closing
loops over 5 km datasets (Konolige and Agrawal, 2008); btantumately this research was done



(a) Test 25 Initial Run

(b) Test 25 Second Run

Figure 11: Map reuse during Test 25. The global map in (a) shibw first run: dark green is
freespace, light green is sightlines, red are obstacleg rdhot path estimated from VO is the
green line; the yellow line is the (noisy) GPS. Starting posiof the robot is the left side of the
screen; goal is on the right. Note the many extended condastades and cul-de-sacs. Image
(b) shows the robot’s trajectory for the second run, bypassie cul-de-sac obstacles and heading
around to the right.

too late to incorporate into the LAGR system.

5 Planning

The LAGR robot was provided with a “baseline” system thailisgplementations of D* (Stentz,
1994) for global planning and Dynamic Window Approach (DW#px et al., 1997) for local
control. Using this system, we (as well as other teams) hegluint crashes and undesirable
motion. The main causes were the slowness of the plannerh@nthiture of the controller to
sufficiently account for the robot’s dynamics. The D* planieoptimized for very large-scale
environments. It uses dynamic programming to compute timénmoim-cost potential to the goal at
each cell; it needs significant resources to maintain thie@schecessary to unravel the minimum-
cost computations incrementally. In our environments (A200m, 20 cri cells) it would take
many seconds to compute a plan, even when only a small partiive map was filled. For large-
scale maps this may be acceptable, but we need much fagpensesto tactical maneuvers over
smaller scales (e.g., cul-de-sacs).

Instead, we re-implemented a gradient planner (Konoli@@02 Philippsen and Siegwart, 2005)



that computes optimal paths from the goal to the robot, gav@ost map. The gradient planner
is a wavefront planner that computes the cost of getting toa gr goals at every cell in the
workspace. It works by using a local neighborhood to updagecbst of a cell. If the cell's cost
is higher than the cost of a neighbor cell plus the local ftanost, then it is updated with the new
cost. The overall algorithm starts by initializing the gaath a zero cost, and everything else with
a very large cost. All goal cells are put onto an “open” lisheTalgorithm runs by popping a cell
of the open list, and updating each of the cell's neighbors; Aeighbor that has a lowered cost is
put back onto the open list. The algorithm finishes when thendist is empty.

There are many variations on this algorithm that lead tcedifit performance efficiences. Our
algorithm has several unique modifications.

e Unlike other implementations, it uses a true Euclidean imatather than a Manhattan or
diagonal metric, in performing the update step (Kimmel aethtan, 1998). The update
can be performed on the four nearest neighbors of a cell. 1Gnaspeaking, the two
lowest-cost neighbors can be used to determine the direofigpropagation of the cost
potential, and the cell updated with an appropriate digtdrased on this direction.

e The algorithm computes the configuration space for a cirqulbot, and includes safety
distances to obstacles. This is one of the interesting péittse gradient method. Since
there is already a method for computing the distance tramsfoom a set of points, the
configuration space can be computed efficiently. The olesfamints are entered as goal
points, and the update algorithm is run over each of thesegayenerating a new open
list. Each open list is processed fully, leading to a segeaiopen lists. At the end of
cycles, the distance to obstacles has been determinedrup tpwherec is the cell size.
Usually this is done to a distance of 3 or 4 times the robotusdenough to establish a
safety cushion to the obstacle. Finally, a cost is assathatth the distance: an infinite
cost within the robot radius to an obstacle, and a decreasisignoving away from this.

e The queue handling is extremely efficient, using threshasged queues, rather than a
best-first update, which has high overhead for sorting.ebadstwe use a 2-priority-queue
method. A threshold shuttles new cells to one queue or ther,oflepending on whether
their cost is greater or less than the threshold. The loweusue is always processed first.
When no more cells remain in it, the threshold is increaseds#étond queue becomes the
low-cost queue, and a new high-cost queue is initializeds Gheue strategy is the key to
the good performance of the algorithm: each update stepemspgery rapidly. Although
the complexity of the algorithm is the order of the area to deeced, and there is no “best
first” search from the goal to the robot position, still thérere rapidity of each step makes
it possible to cover reasonable areas (e.g., 80m x 80m) eratens of milliseconds.

e Rapid switching of global paths is avoided by including hyestés - lowering the cost along
the path. There is a tradeoff between sticking to the cupatit, and exploring some new
path if current readings indicate it might be better. We Iotlie cost enough so that it takes
a significant amount of new information to turn the path aside

Typically we run the global planner within a subregion of thieole map, since the robot is con-
tinuously moving towards the goal and encountering newsar@am longer runs, up to 200m, we
use an 80m x 80m area, the global planner runs in about 30 nsimelgion. Unless there is a
large cul-de-sac, longer than 80m, this area is sufficiemb@aoeuver the robot tactically around



200m

Figure 12:Line goals for a robot in a 200m environment. The line goal is placed 60m ahead of the robot, and its extent varies
with the distance to the goal.

obstacles. For more global planning, which occurs whertistaa run with a previously-made
map, we run the planner over the whole area, which can take ap@ ms for a large 100m x
200m map.

The global planner is optimistic in assuming the robot to ibeutar, with a diameter equal to the
width of the robot. Also, it does not take into account the madonomic nature of the robot’s
motion. Instead, we rely on a local controller to producesilgle driving motions (Section 6).

5.1 Line goals

One of the problems encountered in directing the robot tdgvarpoint goal is that the plans tend
to constantly urge the robot towards the center of the maps iEmot necessarily an efficient
strategy, because, for example, the robot will prefer tomear vegetation on the side of a path
that does not point directly towards the goal. Instead, wihenrobot is far from the goal, we
posit a relaxedsirtual goal line that allows the robot to pursue more indirect paths to thd goa
(Fig. 12). In experiments, the robot is able to navigate ntbae 50m off the center line to the
goal, and consequently find easily traversed paths thatduvoane been difficult to find if it had
headed directly to the goal (Fig. 5).

6 Control

Given the global cost information produced by the gradidanper, we must decide what local
controls to apply to the robot to drive it toward the goal.

6.1 Trajectory generation

We take an approach that is opposite to techniques such as DM&ad of searching the space
of feasibletrajectories, we search the space of feasildentrols. As is the case with most
differentially-driven platforms, the LAGR robot is comnded by a paifz, #) of desired transla-
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Flgure 13: The controller generates trajectories by sampling feasible velocities and simulating their application over a short
time horizon. Generated trajectories are purple, the chosen trajectory is yellow, the desired global path is cyan, and obstacles are
red. As shown in (a) and (b), the trajectories are smooth but not easily parameterizable as they depend on the vehicle's current
velocity and its acceleration limits. When forward motion is not possible, backward trajectories are considered (c).

tional and rotational velocitie'sThus we have a 2D space of possible commands to consider.

This space is bounded in each dimension by velocity limiéd thflect the vehicle’s capabilities.
Because we are seekiggod, as opposed toptimal, control, we sample, rather than exhaustively
search, this rectangular region of allowed velocities. Yketa regular sampling«25 in each
dimension,~625 total), and for each sample simulate the effect of apglyihose controls to the
robot over a short time horizor-@s). The simulation predicts the robot’s trajectory as aisage

of 5-dimensionalz, y, 6, &, ) states with a discrete-time approximation of the vehidgisamics.

Of significant importance in this simulation are the vehigcleceleration limits. While the LAGR
robot can achieve a speed of 1.3 m/s, its low-level motorrodat (which we cannot modify)
follows a trapezoidal velocity profile that limits the trdatsonal acceleration to approximately
0.5 m/¢ (we determined this value empirically). Thus more than 2eds may elapse between
commanding and achieving a desired velocity. We found thagbility to accurately predict the
LAGR robot’s future state depends vitally on appropriategnation of these acceleration limits.
We expect this to be the case for any vehicle with a similaatgé ratio of maximum velocity to
maximum acceleration.

The generated trajectories, projected into they) plane, are smooth, continuous 2-dimensional

curves that, depending on the acceleration limits, may @edsily parameterizable. For the LAGR
robot, the trajectories are generally not circular arcg.(EB).

6.2 Trajectory evaluation

Each simulated trajectoryis evaluated by the following weighted cost:

C(t) = aObs + pGdist + yPdist + § % (1)

1We could instead work in terms of left and right wheel velocities; the twoaisispaces are equivalent, being related by a
simple geometric transformation.



whereObs is the sum of grid cell costs through which the trajectoryspaqtaking account of the
robot’s actual footprint in the gridY7dist and Pdist are the estimated shortest distances from the
endpoint of the trajectory to the goal and the optimal pathpectively; and is the translational
component of the velocity command that produces the t@jgctWe choose the trajectory for
which the cost (1) is minimized, which leads our controleptefer trajectories that: (a) remain
far from obstacles, (b) go toward the goal, (c) remain neardaptimal path, and (d) drive fast.
Trajectories that bring any part of the robot into colliswith a lethal obstacle are discarded as
illegal.

Note that we can computé(t) with minimal overheadObs is a simple summation over grid cell
costs,GGdist and Pdist were already computed by the planner for all map cells,aisda known
constant for each trajectory.

6.3 Supervisory control

We could generate, evaluate, and compare all potentiact@jes. However, given the kinematic
design (driven wheels in front, passive casters behind)sangdor configuration (forward-facing
cameras and forward-mounted bumper) of the LAGR robot, wedat useful to add supervisory
logic to direct the order in which candidate velocities anewdated and evaluated.

All forward velocities ¢ > 0) are tried first; if any legal forward trajectory is foundethest
one is selected. If there are no legal forward velocitiesntthe controller tries in-place rotations
(z = 0), and then backward velocities & 0). This preference ordering encourages the robot to
make forward progress whenever possible, and discouragasgdbackward (during which the
robot is essentially blind). If no legal trajectory is foyritie default behavior of the robot is to
move slowly backward.

6.4 Slip handling

Because the robot may have to traverse rough, steep terragnpécessary to detect and react
to conditions in which the wheels slip or become stuck. Weleynfwo mechanisms to handle

these situations. In both cases, we are comparing the maparted by the wheels to the motion
estimated by visual odometry (VO), which is sufficiently axate to be treated as ground truth
(Section 4.2).

First, the controller continuously compensates for theislieach wheel by reducing its maximum
speed. Our approach is similar to automotive traction cbnor each wheel, we monitor the slip
ratio s, defined as (Angelova et al., 2006):

wr —v

S =

€ [0,1] (2)

wr

wherew is the measured angular velocity of the wheeis the wheel radius, andis the actual
linear velocity of the wheel. We obtain directly from the wheel encoders. To computewe
difference sequential VO poses to produce translationdlratational velocities for the vehicle,
then use the vehicle geometry to distribute these velscligtween the two wheels. When the
slip ratio s for a wheel exceeds a minimum threshold)(25), we compensate by proportionally



reducing the maximum allowable speed for that wheel, whiddpces better traction on most
terrain. Importantly, the controller takes account of theent speed limits, ensuring that predicted
trajectories will be achievable under these limits. Thp slitios and speed limits are recomputed
at the frequency of VO pose estimationi5Hz).

While continuous slip compensation improves performaretare situations in which the robot
can become truly stuck, and require explicit escape meshemiThe robot usually becomes stuck
because of extremely slippery soil (e.g., sand), or grolunder (e.g., fallen branches). We detect
these conditions by looking for significant, time-extendéeparities among the velocities that are:
commanded by the controller, reported by wheel odomety,emtimated by VO (we maintain a
running window of each velocity). If a slip or stall is detedt or if the front bumper is triggered,
the robot enters a stochastic finite state machine of prepnoged escape maneuvers (e.g., drive
forward, turn in place, drive backward). These maneuver®aecuted blindly, on the assumption
that the vision system failed to identify the terrain as dangs and so is unlikely to yield good
advice on how to escape it.

7 Performance

For the LAGR program, the government testing group ran myitind demos of the perception
and control software developed by the teams, and compagegrformance to a baseline system
(see XXX in this issue). The target for the last series oftasthe end of the 3-year program was
to do better than 2x the baseline performance. We show hst®28 through 27, the last three,
because our system was essentially complete at this timea€mtest, the robot was given 4 runs,
and the best 3 were taken to give a combined score. The higblgistvable score is 1.0, calculated
by measuring the shortest path to the goal, and assumingltloé could move at maximum speed
(1.3 m/s) over this path. There are also penalties for ndinggeto the goal within a cutoff time.

7.1 End-of-project Tests

The tests themselves were through different types of teraaid with different degrees of difficulty.
Here is a summary of the courses.

25 83m straight-line distance to the goal, through a copseeafstwith a cul-de-sac and tall
grass (Figure 14(a)). Ideal behavior was to go around theecop

26a (93m) Narrow paths through tall bushes, with several falsast that might lead more
directly to the goal. Desired behavior was to avoid the faises.

26b (106m) A challenging course with man-made and natural cletaincluding a cul-de-sac
of parked cars; stacked pipes; hay bales; and rock pilesi@ig4(b)). The course to the
goal was indirect and involved narrow passageways, anchiintivas a challenge.

27a (34m) A simple course on a grassy field with jersey barrieretcted directly across the
route (Figure 14(c)). Ideal behavior would be to avoid theibawithout getting close.

27b (34m) Similar to 27a, but using low hay bales for obstacla#y two gaps in the barrier
containing tall grass. The object was to identify the tadiggrand push through it directly
to the goal.



(a) Test 25 (b) Test 26b (c) Test 27a

Figure 14: Views of three final tests. In (a), a robot's-ey@wbf the beginning of Test 25. The
copse in the distance could be avoided on the right or lefe yiéllow line is the robot’s horizon

from a noisy INS, while the green line is the VO-stabilizedihon. In (b), a pipe corridor from

Test 26b — note the blocked left corridor. In (c), Test 27anshthe jersey barrier, with the goal
immediately behind.

[SRI score

WBaseline score

5 W Avg other teams / Baseline
EMax other teams / Baseline
BSRI/ Baseline

4 COSRI 1st run / Baseline |

1

0
25 26a 26b 27a 27b

Figure 15: Summary of results from the last 3 LAGR tests. Rawvescare given for the Base-
line software and the SRI system, where 1 is a perfect scorfagasis the robot can go). The
other scores are presented as a factor over Baseline; tle¢ pengormance for the project was 2x
Baseline.

The first four tests were designed to reward behavior thatcatoid paths that were temptingly
direct, but ultimately dead-ends. There were two method$oofg this — long-range perception
(>10m), and map memorization and re-use. For Test 26a, thewmaoutes through the bushes
were easily detected by our online learning algorithms, #edpath planner moved the robot
quickly along the center of the path. On the first run, the tdbimed twice to look briefly at side

paths that could have been more direct, but then turned loaitletmain route. Figure 15 shows
the scores for this run. The Baseline score is 0.23, and SRiie $s 0.83, which is better by a
factor of 3.6. In this test, since the long-range perceptibpaths worked well, the first run was
very good (2.9x Baseline), and subsequent map re-use ontyilmaed a modest amount, by not
turning to examine the dead-end paths. In fact, our scorleldave been higher, but the fourth
run failed because of a map registration error in the midéiteerun, closing off the narrow path.

In the other three tests (25, 26b, 27a), map re-use is theapyrignabler of good performance —
it improved by almost a factor of 2 from the first run. For exdmmpn Test 25, after wandering
through the copse and encountering the cul-de-sac and#sl gbstacles, the robot made its way
to the goal. On the second run, the robot avoided the copselgnthoosing a path around it as
less costly.



Test 27b was a learning-by-example test. The robots wergrskamples of the hay bales and tall
grass. Operators would drive the robots into the hay baldsoaar the grass, to give the robot

an idea of the traversability of each. Our online learnirgpathms correctly picked out the grass
as driveable, based on primarily on its texture, since theramas similar to the hay bales. We

also learned that hay bales were obstacles; however, weehdldessuppression of obstacles by
driveable objects a little too high, and the robot bumpedtiebales next to the grass area. After
a few bumps, it drove through the grass and onto the goal. beefjuent runs, of course, map
re-use allowed an optimal plan directly through the grass.

7.2 Analysis

There is no doubt that our system achieves both robustnesga@od performance, on a wide
variety of outdoor, unstructured terrain. Map buildingeelon VO to provide good localization,
efficient realtime stereo and robust ground-plane anafgsisbstacle detection, and sight lines
to identify distant regions that are likely to be navigab@nline path learning helps in the very
common situation of tracks through vegetation, or man-nagd@nd asphalt roads. Together these
techniques allow us to construct well-registered, pregia@s that serve well during the first run
to get the robot reliably to the goal. Even more importardlysubsequent runs, the path planner
is able to construct an optimal path to the goal from the sifatie run.

Moving quickly is very important to achieving good performea, especially since many small
obstacles such as branches could be traversed at speedjghiithang up the robot if it was

moving slower. As described in Section 6, the path planndracal controller combined to give

the robot a very agile feeling. Our average speed was oven/k,leven while exploring unknown
terrain (top speed of the robot is 1.3 m/s).

The government team was very interested in creating saenfritest the long-range perception
of the robot. Unfortunately, the robot’s vision sensors ey little resolution at distance. Depth
information from stereo was very uncertain after about 7merusing monocular information,
there were very few pixels available for long-range sensing~igure 14(left), a high-resolution
camera with a longer focal length clearly shows routes atatwe barrier. But with a similar
distance to the tree on the right image, looking through dimt cameras, there is very little to
show that the copse of trees could be avoided to the left —-apsrthere are a few more vertical
pixels of brown-colored grass on that side. But this infoliorats insufficient to reliably navigate
from the robot’s perspective, and teams that tried to dowlusld as often pick a bad way as a
good one.

What we could reliably learn is the map structure from the first With this in hand, subsequent
runs could be much more efficient. We had this technique wgrkeliably only in the last tests
(25-27), and it was difficult for the government team to remad set up tests that would allow
long-range perception to do as well as map learning andeetuas also difficult for other teams
to adopt our technique, because it required very good magtragon, and a badly-registered map
is worse than no map at all. In Test 26a, the narrow patf#r( wide) meant that even small
registration errors could cause a prior map to close off tireeoit path, which happened to us in
the fourth run. Note that the map re-use was run open-loder efgistering with an initial image
at the beginning of the run, we relied on VO to keep the robcdliaed.



We compared our results with the published results of therddams, both the average and the best
for each test (Figure 15. In all these tests, we had the best éor tied for the best). Typically we
out-performed the average team by a factor of two. In the whiffgtult test, 26b, even our first-run
score was almost as good as the best overall team score; migp enabled us to do even better.
The controller, planner, and visual odometry system weeel irs the best-in-class NIST system
(see XXX in this issue), and in fact NIST was our closest cditipa in two of the tests, including
the difficult Test 26b.

8 Conclusion

We have demonstrated a complete autonomous system faraaffrravigation in unstructured envi-
ronments, using stereo vision as the main sensor. The systesry robust - we can typically give

it a goal position several hundred meters away, and expectjét there. But there are hazards that
are not dealt with by the methods discussed in this papeereaid ditches are two robot-killers.
Finally, we would like to use visual landmarks to augment GétSjlobal consistency, because it
would give finer adjustment in the robot’s position, whicleigical for following routes that have
already been found.
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