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Energy usage by mobile robots is becoming a larger concern as autonomous systems increase mission durations.
Understanding and characterizing energy usage is key to reliable mission operation. This paper presents a
methodology for characterizing energy usage of a ground robot traveling at a constant speed applicable to both
open and “black box” (proprietary) platforms. To address testing area limitations, we introduce a “rounded
box” path to approximate straight line travel. For a case study, this methodology was applied to an iRobot
Packbot on grass and asphalt surfaces. Our results show a decrease in electrical energy used with increasing
speed for soft grass and constant energy usage on asphalt. For both surfaces, a similar electrical-to-mechanical
efficiency curve is obtained. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Battery energy storage is a limiting factor for electrically
powered unmanned ground vehicles (UGVs). If the battery
is completely depleted, the robot is stranded and must be
retrieved by a human operator, potentially in dangerous
situations. To prevent battery depletion, it is necessary to
estimate how much energy will be used over the remainder
of the mission. Locomotion is one major energy expenditure.

Current fielded robots rely on different methods of
avoiding battery depletion and UGV immobilization. The
most basic, for semiautonomous or human-controlled mis-
sions, is a range estimation based on current battery state of
charge and estimating energy usage based on past data [see
Sadrpour, Jin, & Ulsoy (2012) for example]. In this case, the
UGV range estimate is relayed to the user, who can make
decisions about aborting the mission. More autonomous
systems can return to a base station to recharge [see Berenz,
Tanaka, & Suzuki (2012) for one example of scheduling
charging based on a risk/reward analysis of running out
of energy]. In both of these cases, an understanding of en-
ergy usage is necessary for the methods to function.

Here, we focus on evaluating currently fielded robots.
There exist a number of commercially available robots (such
as the Packbot and Talon) and many more research plat-
forms at laboratories throughout the world. Many com-
mercial platforms are in operation in military, police, and
search-and-rescue operations. Based on our discussion with
our research collaborators in the U.S. Army, these energy

characterizations are needed to maximize the performance
of robots that are currently in the field.

In this paper, we present a methodology for determin-
ing energy usage by a small ground robot, and we apply this
methodology to the Packbot as a case study. This methodol-
ogy is based on empirical energy data recorded during UGV
operation, not determined from a terramechanics model of
the system. While this methodology is general, it is partic-
ularly helpful for characterizing and understanding com-
mercially available robots, where internal configurations
are unknown due to proprietary constraints (“black box”).
This methodology characterizes energy usage by determin-
ing the following information: 1) energy usage per distance
traveled at a given speed, 2) the most efficient speed on
a given terrain, and 3) a terrain-independent electrical-to-
mechanical efficiency curve. From these data, a path planner
can optimize the path based on the known terrains and mis-
sion goals to reduce energy consumption. Additionally, this
methodology can be used to compare different robots for a
given application or aid in designing a robot to meet cer-
tain mission goals. Our methodology consists of conducting
a series of tests at a constant forward velocity; to create a
sufficiently long path, we introduce a “rounded box” path.
Preliminary results were presented in Broderick, Tilbury,
and Atkins (2012).

This methodology is not based on a knowledge of the
internal configuration of the robot. The methodology only
requires a way to drive the robot on a specified path at a
constant velocity and record the electrical and mechanical
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energy used during the test. In the case of the Packbot pre-
sented in this work, we did not have access to the internal
details, due to the proprietary black box nature of the robot,
and we could only calculate the mechanical energy to within
a scaling factor.

This paper is organized as follows. Section 2 summa-
rizes relevant research. Section 3 presents the proposed
methodology for characterizing the energy usage of a
ground robot at a constant speed. Section 4 describes the
Packbot platform used as a case study for this methodol-
ogy. Results from the tests on the Packbot are presented in
Section 5, and the conclusions are presented in Section 6.

2. BACKGROUND

Ground robot energy usage has been studied previously
in a variety of settings. Richmond, Mason, Coutermarsh,
Pusey, & Moore (2009) present an overview of recent work,
focusing on locomotion and power. A case study comparing
energy usage and coverage was presented by Mei, Lu, Hu,
and Lee (2004). They consider an omnidirectional robot cov-
ering an open area with no obstacles and using three differ-
ent coverage schemes: scan lines, spiral, and square spiral.
Simulating the robot at different velocities, they calculated
the efficiency of coverage paths. By comparing efficiencies
at different velocities, the most efficient velocity is deter-
mined for the particular robot. Mei, Lu, Hu, & Lee (2005)
also present an experimental movement power model of
a ground robot at different velocities. This work adds to
their earlier power analysis by looking at the other primary
battery limitation: total energy storage. Boice et al. (2010)
present a comparison of power used by the Packbot while
traveling over different terrains at different speeds. Using
motor current measurements, they conclude that traveling
faster draws more current, but no analysis is done for energy
use over a distance.

Power use requirements for tracked vehicles is given
in Morales et al. (2006) and Morales, Martinez, Mandow,
Garcia-Cerezo, and Pedraza (2009), including losses due to
track slip caused by turning. The power required to drive
the vehicle at a constant velocity is modeled as linear in
the absolute velocity of track speed. This research models
energy use over a distance, not the power draw at each
point in time. In Morales et al. (2009), the authors present
some experimental results that show similar trends with
decreasing total energy usage at higher velocities, but their
paths are much shorter and focus on analyzing energy lost
due to turning.

An in-depth, well-to-wheel analysis of an electric ve-
hicle is presented in Campanari, Manzolini, and de la Igle-
sia (2009). A similar analysis can be carried out for small
tracked ground vehicles such as the Packbot; however, such
an analysis is beyond the scope of this research and, in our
case with the Packbot, is not possible due to the black box
nature of the robot. We are interested in a simple, empir-

ical calculation of energy usage that can be used for path
planning or range estimation.

For automotive applications, fuel consumption at
different speeds has been studied and modeled [see
El-Shawarby, Ahn, & Rakha (2005), Rakha, Ahn, Moran,
Saerens, & den Bulck (2011), and Wang, Fu, Zhou, & Li
(2008)]. Since fuel is the main energy source for the vehi-
cles, measuring fuel consumption is analogous to the en-
ergy usage calculations in this paper. In all three papers, a
minimum fuel consumption per distance traveled is found
in the 60–80 km/h range, depending on specific vehicle con-
figurations. Since there is a large difference in scale between
the vehicles studied in those papers and the ground robots
studied in this paper, it is necessary to repeat the analysis
for ground robots. In particular, aerodynamic forces become
very large at high speeds for automobiles [see Wong (2008)];
for small ground vehicles, the low speeds and low profile
result in low aerodynamic drag.

2.1. Energy-usage Application

Estimation of ground robot range based on battery energy
is highly dependent on being able to predict future energy
needs. Saha, Goebel, Poll, & Christophersen (2007) present
work on estimating range based on historical data and antic-
ipated operation conditions. Sadrpour et al. (2012) present
an algorithm to estimate the energy required to complete
the mission based on knowledge of future mission goals
and terrain. Ceraolo and Pede (2001) estimate the remain-
ing range for an electric car based on battery dynamics and
estimated future current draw. The results presented in this
paper can be used to augment these algorithms to better es-
timate future energy usage based on a knowledge of desired
future velocities and terrains to be traversed. Zhang, Wang,
Kobayashi, & Shirai (2012) present a range calculation for
electric vehicles based on nine different criteria, including
current location, battery state of charge, and driving style.
Data from this research (or similar tests for different robots)
can be used to augment range estimation methods.

For autonomous robots, Berenz et al. (2012) present
a method for determining when to return to a recharging
station. They use a risk/reward analysis to determine the
best time to return to the recharging station. One critical part
of the algorithm is estimating the remaining range, which
can be characterized using the methods described in this
paper.

In addition to estimating stored energy availability in
batteries, the energy consumption of a ground robot can be
used to help plan future paths based on energy usage. Ooi
and Schindelhauer (2009) derive a path planner for a mobile
communication network based on minimizing energy con-
sumption. This method can be augmented with the results
presented here for better prediction of energy costs. Similar
methods can be used to better optimize other path planners,
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consistent with ideas presented in Barili, A., Ceresa, M., and
Parisi (1995).

2.2. Track-ground Interaction

The theory of terramechanics dates back to the initial work
by Bekker (1969). These principles have been extended
by Wong to form the basic foundation of terramechanics
(Wong, 2008). For a detailed analysis of many aspects of
skid steering and tracked vehicles, see Wong and Chiang
(2001). From an empirical perspective, we are concerned
with two main aspects: tractive effort and rolling resistance.

The tractive effort is the force that the track applies
to the ground. For tractive effort, the friction coefficient is
based on slip between the track and the ground (Wong,
2008). While tractive effort and slip are necessary compo-
nents of understanding UGV mobility, we are interested in
energy analysis. To estimate the tractive force in our tests,
we would need to experimentally determine the slip-friction
curve and develop a slip estimator to use during the tests.
Research in slip detection is ongoing and not a focus of this
paper.

Rolling resistance, another focus of terramechanics, is
one source of mechanical energy loss for ground vehicles.
Track-ground (and wheel-ground) interactions have been
well studied in the literature. Wong presents the basic theory
of track-ground interaction (Wong, 2008). For both wheels
and tracks, one of the primary sources of energy loss is
through compaction of the terrain. The pressure required
to compact the soil is key in the derivation. Wong treats
this pressure solely as a function of the depth of the track
(wheel) sinkage.

Grahn extended the analysis for wheel-ground inter-
action by including a dependence for the pressure on com-
paction velocity (Grahn, 1991). The author found that the
rolling resistance decreased as the wheel velocity increased
from 0 to 16.6 km/h. Pope found a 9.3% decrease in rolling
resistance as the wheel velocity increased from 0.036 to
0.274 km/h (Pope, 1971). Crenshaw investigated the rolling
resistance in high-speed tests and found three regions of in-
terest: decrease in rut depth and rolling resistance with in-
creasing velocity at low (0–37 km/h) speeds, rut depth and
resistance increases with velocity at medium (37–93 km/h)
speeds, and decreases at high speeds (above 93 km/h)
(Crenshaw, 1971). Shmulevich summarized the previous re-
sults and created a simulation model to predict the effect
of velocity on rigid-wheel performance for off-road terrain
(Shmulevich, Mussel, & Wolf, 1998). Their model showed
a decrease in the motion resistance ratio for driven, rigid
wheels. While these authors focused on wheel-ground in-
teractions, we could not find any extensions of these mod-
els to tracked vehicles. We expect similar trends to hold for
tracked vehicles.

In addition to energy loss due to compaction, tracked
vehicles encounter energy loss due to skid steering. Guo

and Peng (2013) present results for energy loss due to steer-
ing as a function of turning radius. Using a power loss
model for turning with tracked robots, the authors show
that at smaller turning radii, there is larger power loss and
one track switches from propulsion to braking. Choosing
a sufficiently large turning radius limits the difference in
torques between the motors and results in little power loss
compared to straight line travel. While their tests were per-
formed on sand, we would expect similar results for the
terrains used in this research. Their work justifies our use
of a rounded box test path with a sufficiently large turning
radius to approximate straight-line travel.

3. TESTING METHODOLOGY

As ground robots become more widespread, there is a
much greater need for methods and standards to ana-
lyze robot performance. In this paper, we are interested
in one particular aspect of robot performance: energy us-
age while moving. Previous standards have been focused
on robot speed (ASTM Standard E2829, 2011), common ter-
rains (ASTM Standard E2826, 2011), and obstacles (ASTM
Standard E2801, 2011). While these standards are beneficial,
they do not address energy usage. Our method adds the
metric energy used for motion.

Energy usage for straight-line motion and turning must
both be characterized. The test methodology presented in
this paper is general, but our tests focus on straight-line en-
ergy usage on consistent, traversable terrain. One example
of predominantly straight-line motion, and the motivation
behind our work, is an area coverage task. The coverage
task consists of long, straight segments connected by short
turning segments. The energy usage is a function of many
variables; this methodology considers speed and terrain as
the primary variables affecting energy use.

The methodology for determining energy usage con-
sists of selecting a series of tests, recording the necessary
data during the tests, and processing the data to analyze en-
ergy usage after the tests. Figure 1 depicts the important as-
pects of our method. First, a set of test paths and trajectories
is designed based on the desired velocities and terrains for
which energy use will be characterized; wide turns can be
introduced to the planned paths based on area constraints.
Using an autonomous or semiautonomous controller, the
UGV is driven based on the computed trajectories. If neces-
sary, the robot can be augmented with additional sensors,
e.g., GPS for localization, to complete the feedback con-
troller. During the tests, the electrical voltage and currents,
motor speeds, and distance traveled are recorded from the
UGV. Additional sensors, such as GPS or inertial measure-
ments, may also be recorded and used by an autonomous
driving controller to follow the reference trajectory for each
test. After all the tests are run, the recorded data are ana-
lyzed to produce the following characterizations:
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Figure 1. Flow of methodology.

1. Energy usage per distance traveled for a specific terrain
2. Most efficient speed for straight-line travel for a specific

terrain
3. Terrain-independent electrical-to-mechanical efficiency

curve

As the metric, we chose energy usage per distance trav-
eled, instead of instantaneous power usage, to analyze long-
duration missions for ground robots. As mission duration
increases, the total energy stored becomes more important
than instantaneous power draws since energy used per dis-
tance shows the most efficient way to travel between differ-
ent points. While power can be integrated to measure en-
ergy usage, measuring energy usage per distance changes
the metric from a time-based measurement to a distance-
based measurement.

To characterize ground robot energy usage, we propose
a series of tests, each with the robot traveling at a constant
speed. Ideally, these tests would be run in a straight line to
avoid any additional energy loss due to turning. Because of
limited operating areas, a “rounded box” path can be used.
This path consists of straight sides with sufficiently large
radius turns between the sides. The sides of the box should
be as long as possible given operating area constraints. To
obtain sufficient data, the total length of the path should be
a significant portion of the vehicle’s range.

Turns should have a radius sufficiently larger than the
robot track or wheel base to minimize the amount of lateral
slip at the contact points. Using a power consumption model
for turning, such as the one presented in Guo and Peng
(2013), the minimum radius that meets a desired power
tolerance (i.e., less than 10% increase in power draw due
to turning) can be computed. While the radius will depend
on terrain and robot characteristics, we found that a turn
radius of about eight times the track length was sufficient
for our setup; we expect other robots to be similar.

For each of the independent variables, namely speed
and terrain, a set of desired test points must be defined. For
speed, a maximum and minimum speed should be chosen
based on robot capabilities and the desired application. In-
termediate speeds can be chosen based on the fineness of
the data desired; more tests produce more data points at
the cost of additional resources required for testing. Five
to eight test speeds will provide a good tradeoff between
quantity of data recorded and testing duration require-
ments for ground robot applications in which test time is
constrained.

Terrain selection for the tests should be based on the re-
quired application. While there will always be variations in
terrain parameters in real-world applications, a set of basic
terrains can be chosen to predict the general performance
of the robot. This set should include at least one nonde-
formable terrain (e.g., asphalt) and one deformable terrain
(e.g., grass or sand) for a general robot designed for outdoor
off-road missions.

The ground robot should be driven at the desired speed.
This can be achieved through purely autonomous operation
or semiautonomous operation, with the speed regulated by
the controller and a human steering the robot. Autonomous
operation requires more setup and sensors, but it provides
more repeatability between tests. If the robot already has au-
tonomous capabilities, this entails programming the robot
to follow the path at the desired speed. Otherwise, an addi-
tional controller, either onboard the robot or on an external
computer, must be designed to drive the robot on the pre-
scribed trajectory. If necessary, a localization sensor, e.g.,
GPS, can be added to complete the autonomous feedback.
In both cases, the controller must be well-designed to limit
overshoot in steering and maintain the reference trajectory
in the presence of measurement noise. For semiautonomous
operation, a user interface must be provided that allows for
selection of the speed.

Journal of Field Robotics DOI 10.1002/rob
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There are two main ways of measuring energy usage:
change in energy storage (e.g., battery state of charge) or
integrating instantaneous power measurements over time.
The battery or other power source must provide up-to-date
energy storage, while the instantaneous battery power can
be calculated from the battery voltage and current mea-
surements, if a direct battery power measurement is not
available. Instantaneous mechanical power can be calcu-
lated from the motor speed and torque, which is propor-
tional to motor currents.

After the set of tests is complete, the recorded data
are analyzed to compute the energy per distance traveled
and the efficiency of the electrical to mechanical conversion,
which includes the motor and additional power component
efficiencies. While the total average energy per distance for
the entire trajectory is a useful metric, breaking the tests
up into shorter segments enables extraction of more infor-
mation about the statistics of energy usage. The length of
the shorter segments should be based on the quality of the
sensors used: tests with higher-quality sensors can be bro-
ken into shorter segments while still limiting sensor noise
impact on results. The electrical-to-mechanical efficiency is
calculated by dividing the mechanical energy output by the
electrical energy input, and it represents losses due to the
motor, power electronics, and other drivetrain components.

Alternatively, the cost of transport, defined as the en-
ergy used per meter per kilogram, can be calculated by
dividing the energy per distance by the platform mass. This
metric is commonly used to assess and compare bipedal
robots [for example, see Collins, Ruina, Tedrake, & Wisse
(2005)]. While this makes the total energy used dependent
on the current system configuration, it also allows for esti-
mating energy usage when the UGV has an increased mass
due to additional loads (e.g., sensors, manipulators, etc.).

This methodology computes an energy characteriza-
tion for straight-line travel of a ground robot. It does not
attempt to study complex ground-robot interactions, but it
creates an empirically determined energy characterization
of driving. For complex and variable terrains, these tests can
serve as a basis for estimating energy usage by determining
a scale factor as the robot operates. We leave a derivation of
such methods for future work.

As the field of ground robots continues to develop,
a standard set of proving tests can be created to compare
different robots in the different settings, similar to specifi-
cations used in the automotive industry [SAE International
(2012), for example]. These standard tests can be devised
through robotic competitions, as described by Jacoff et al.
(2012).

4. CASE STUDY: PACKBOT PLATFORM AND TEST
SETUP

For our tests, we used an iRobot Packbot, shown in Figure 2.
The University of Michigan Mobile Robotics Lab (UM MRL)

Figure 2. Packbot used in experiments.

provides an external interface to the proprietary Packbot in-
terface. The UM MRL interface accepts forward velocity v

and angular velocity ω commands and provides data feed-
back from the Packbot. This interface is run on a Gumstix
processor attached to the Packbot, and all communication
takes place over a wireless network using a standard router
located on the robot. Both devices are powered by the Pack-
bot battery and consume less power than the drive system
when active.

The UM MRL interface also provides real-time data
from the Packbot, including the electrical and mechanical
energy usage information discussed in the previous section.
In this paper, we use two different energy values: electrical
energy input and mechanical energy output. The mechan-
ical power is calculated from the motor current, which is
proportional to motor torque and the motor shaft speed.
Since the motor speeds are not provided by the interface,
they can be calculated from the ground robot forward and
angular velocities, as calculated by the interface from the
wheel encoders, using the Packbot width 2B and track drive
wheel radius R. The UM MRL interface thus provides

Pmech = KmKr (Ilωl + Irωr )

= KmKr

(
Il

v − ωB

R
+ Ir

v + ωB

R

)
,

(1)

where Km is the motor constant and Kr is the gear ratio
from the motors to the drive wheels. Due to proprietary
data restrictions, Km and Kr are unknown values. We there-
fore utilize the scaled mechanical power Pmech/(KmKr ) =
Ilωl + Irωr in this paper. Since we are dealing with a black
box model of the robot, we do not know if the motor current
measurements occur directly before the motors or if there
are additional electronic components between the sensor
and the motors. Therefore, we treat motor and any addi-
tional electronics together as a unit. This may result in in-
accurate mechanical power calculations from Eq. (1); how-
ever, we will assume that any errors are small in the range
in which the motors are being operated.
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Figure 3. Integrating battery power produces comparable re-
sults to the battery energy estimate.

To filter the motor current data, we used Tikhonov
regularization to reduce spikes in the measured current
(Tikhonov and Arsenin, 1977). We imposed smoothness
constraints on the current values to limit current spikes in
the recorded data. Regularization minimized the following
equation:

∣∣Ir,l − Iopwr,l

∣∣2 + λ2|Lwr,l |2, (2)

where wr,l is the first-order difference in the respective mea-
sured currents, L is the differential operator, Iop is the
integral operator, and λ is the regularization parameter.
Each motor current was smoothed individually. We selected
λ = 1 to reduce motor current spikes without flattening the
data significantly. This method was chosen over a simple
low pass filter to limit the amount of data lost due to filter
transients.

The Packbot data allow two methods to measure elec-
trical energy usage: 1) estimation of remaining battery life
and 2) the integral of the instantaneous battery power draw.
For our setup, the Packbot estimates the battery energy re-
maining, presumably based on the state of charge of the
battery, and the battery draw. We record the battery draw
and integrate over time to produce our own estimate of
power used. Figure 3 compares these two energy calcula-
tions for three consecutive experiments on the same battery
charge. As described in detail later, these trials consist of
the Packbot running at a constant speed for a certain dis-
tance. The energy used for the second and third trials is
nearly identical and the first run ends with a similar slope
between the two energy estimates. The discrepancy in the
first trial is presumed to be caused by overestimating the
energy remaining when the battery is mostly full. Similar
trends are present in other sets of consecutive experiments.

Figure 4. Comparing forward velocities from Packbot and
MIDG, v = 1.25m/s.

Also note that the battery energy estimate fluctuates up and
down over the course of the trial. Because of these obser-
vations, we chose to use the integral of the battery power
as our method to calculate the electrical energy used by the
Packbot.

Additionally, the battery power draw includes power
for peripheral electronics. To measure the auxiliary power,
we recorded the power data while the Packbot was station-
ary with all electronics operating for about 6,000 s. The av-
erage power usage over test was 30.8 W, with the maximum
and minimum measurements 32.1 and 30.1 W, respectively.
To calculate the energy used for motion, we subtracted the
average power for peripheral devices from the battery data
field before integrating.

To examine differences due to current battery state, we
ran each test several times on the same battery charge. The
tests were run on flat terrain. Figure 4 shows the velocity
profile for one test on asphalt using three different velocity
data fields recorded during the tests: track encoders (Pack-
bot), Global Positioning System (GPS), and Inertial Naviga-
tion System (INS) values. The periodic variations are due to
the slight slope in the surface used for testing.

For localization, the Packbot was augmented with a
MIDG IIc INS (Microrobotics, Inc., 2011), which includes
a GPS sensor. The MIDG provides 50 Hz localization
data from an extended Kalman filter, integrating GPS, ac-
celerometer, gyro, and magnetometer data to provide three-
dimensional location and attitude information. Both the raw
GPS and filtered INS outputs were recorded. We ultimately
turned off the magnetometer input to the Kalman filter due
to interference from the Packbot, after which the heading
was estimated from GPS and the integral of angular veloc-
ity about the vertical z axis (turn rate). An additional Gum-
stix processor interfaces with the MIDG and relays the data
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Figure 5. Schematic of data flow for the Packbot setup.

over the wireless network. The MIDG and its electronics are
powered by an external battery.

To drive the Packbot along a reference trajectory, we
used the following nonlinear trajectory-following controller
to calculate the commanded forward velocity vc and turn
rate ωc (Kanayama, Kimura, Miyazaki, & Noguchi, 1990):

[
vc

ωc

]
=

[
vr cos θe + Kxxe

ωr + vr

(
Kyye + Kθ sin θe

)
]

. (3)

In this controller, vr and ωr are the reference forward veloc-
ity and angular velocity, θe is the heading error, xe is the lon-
gitudinal position error, ye is the lateral position error, and
Kx , Ky , and Kθ are control gains. This controller is proven
to be stable using a Lyapunov analysis (Kanayama et al.,
1990). For these experiments, we use the position (x, y)INS

and heading θ for position control.
Figure 5 shows the different subsystems active for

our test setup. This figure expands the online portion of
Figure 1 to show the details of the test setup. The controller
and data recorder are implemented on an external laptop,
accepting data over a wireless network from the MIDG and
the UM MRL interface. With data being acquired by two
different systems, the data must be synchronized. Table I
summarizes all the recorded data fields. Driving commands
are calculated based on a reference trajectory and position
updates from the MIDG, and they are transmitted over the
wireless network.

This controller assumes that the robot can immedi-
ately respond to new commands, though in reality there
are communication and acceleration delays. Figure 6 shows
the Packbot following an L-shaped trajectory of moving
forward 5 m, turning 90 degrees, then moving another 5 m
forward. The dashed lines represent the reference trajectory.

Figure 6. Minimal delays in Packbot while completing an
L-shaped trajectory.

The actual trajectories from five different runs are shown in
the figure and consistently have a 0.3 s delay in responding
to commands. Notice that the delay also causes overshoot
on the velocity as the robot tries to return to the desired
location. We decided that this delay was acceptable for our
application.

We executed the rounded box paths on grass and as-
phalt surfaces to compare the energy use on different sur-
face types. The asphalt presents a hard surface that does not
exhibit sinkage and provides good traction for the Packbot.
The grass allows for more slippage and sinkage. The initial
grass tests, denoted as “soft grass,” occurred in the winter
on a sports field.

The rounded box path was 35 m long and 15 m wide
with a corner radius of 6 m. The size of the box was based
on limitations of the area under consideration and our test
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Figure 7. Rounded box trajectory, divided into straight and
turn segments based on commanded turn rate, v = 1.25m/s,
on asphalt.

setup. Based on experiments presented by Guo and Peng
(2013), as discussed in Section 2.2, we determined that the
6 m corner radius would not introduce significant energy
loss due to turning. For our robot, this radius is 8.6 times the
track length and 15 times the separation between the tracks.

For the Packbot, the total length of the path for our tests
was chosen to be 1,000 m, approximately one quarter of the
Packbot’s range. Figure 7 shows the executed path of 11 laps
around the rounded box.

The tests were run at at the following speeds: 0.75, 1.0,
1.25, 1.5, and 1.75 m/s. The Packbot used in these experi-
ments had a top speed of approximately 2 m/s. We decided
to limit our tests to 1.75 m/s to allow the Packbot to drive
faster than the nominal speed if needed to maintain the
planned trajectory. We did not go lower than 0.75 m/s be-
cause we were interested in looking at speeds that would be
practical while covering large fields; slower speeds would
mean prohibitively large energy losses due to constant
electrical loads.

Additionally, we had access to a grass runway at a lo-
cal airport. We were able to run the Packbot straight along
the length of the runway, as well as running the “rounded
box” configuration at the same location to compare energy
usage between straight and turn trajectories, verifying the
assumption that the turns do not introduce significant en-
ergy loss. These tests are labeled as “hard grass” since they
were run in the summer when the ground was hard. The
length of the runway is 1.04 km, though not all runs were
for the full length of the runway. For simplicity in setting up
the straight line tests, we used a constant speed controller
with human input for steering to keep the Packbot on the
runway. Table II summarizes the tests conducted to explore
Packbot energy usage.

Table I. Data recorded.

Measurement Source Variable Units

velocity Packbot v m/s
turn rate Packbot ω rad/s
battery power draw Packbot Pbatt W
battery energy remaining Packbot Ebatt J
motor currents Packbot Ir,l A
position (GPS and INS) MIDG (x, y)GPS,INS m
heading MIDG θ degrees
velocity (GPS and INS) MIDG (vx, vy )GPS,INS m/s

Table II. Summary of tests run.

Surface Path Speeds (m/s)

Asphalt Rounded box 0.75, 1, 1.25, 1.5, 1.75
Hard grass Rounded box 0.75, 1.75
Hard grass Straight line 0.75, 1.75
Soft grass Rounded box 0.75, 1, 1.25, 1.5, 1.75

5. CASE STUDY: TEST RESULTS AND ANALYSIS

Here, we present the data acquired following the method-
ology described in Section 3. Specifically, we present the en-
ergy usage per distance traveled for a set of speeds on two
different terrains, and the terrain-independent electrical-to-
mechanical efficiency curve.

Figure 8 shows the electrical and scaled mechanical
power usage for a portion of a test on asphalt, with turn
and straight segments delineated in different colors. We
used the turn rate command to differentiate between the
different segments, using a threshold value of ωthresh =
0.05 rad/s. The resulting x-y plot is shown in Figure 7. While
it is difficult to see from the graphs, the turn segments do
have a higher average power use. Table III summarizes the
average power used at different speeds and surfaces for
the straight and turn segments. Based on these data, we
conclude that the turns do introduce extra power draw, al-
though the increase is less than 7%. The periodic variation
visible in Figure 8 is due to a slight slope of the surface
where the test was conducted.

5.1. Energy usage

For each run, we recorded the energy used, as described in
Section 4, and divided by the actual distance traveled, as
recorded by the GPS. Each test was divided into individ-
ual laps around the rounded box trajectory based on the
GPS position. Figure 9 shows the cost of transport for the
different tests. As described in Section 3, the electrical en-
ergy per distance traveled is divided by the mass of the
Packbot, in this case 20 kg, to produce the cost of transport.
The boxes show the spread of the electrical energy used
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Figure 8. Electrical and mechanical power over time for one run, v = 1.25m/s on asphalt.

Table III. Average battery power draw for different speeds.

Speed 0.75 m/s 1 m/s 1.25 m/s 1.5 m/s 1.75 m/s

(a) Soft grass
Straight 76.9 W 87.1 W 102 W 115 W 127 W
Turn 82.3 W 93.6 W 104 W 117 W 126 W
(b) Asphalt
Straight 62.1 W 70.7 W 76.2 W 91.4 W 98.2 W
Turn 64.9 W 74.8 W 79.5 W 95.7 W 101 W

Figure 9. Statistical analysis of electrical cost of transport
for Packbot (white, soft grass; gray, asphalt) compared with
peripheral electronics (blue line).

for locomotion; the red center lines show the median value,
the boxes show the 25%–75% percentile of the data, and
the whiskers show the limit of the data not considered as
outliers, with outliers individually plotted. The continuous
blue line shows the energy used per meter traveled of the

Table IV. Variance and mean for individual laps (J/m).

0.75 m/s 1.0 m/s 1.25 m/s 1.5 m/s 1.75 m/s

(a) Soft grass
Mean 61.45 57.09 55.45 54.88 53.47
Variance 3.85 6.90 5.90 3.50 9.05
(b) Asphalt
Mean 41.36 40.24 36.74 40.61 38.14
Variance 1.20 2.23 2.93 4.19 3.68

Table V. Percentage decrease in energy usage from 0.75 m/s
in average energy per meter.

1.0 m/s 1.25 m/s 1.5 m/s 1.75 m/s

Soft grass 7.09% 9.76% 10.69% 12.99%

peripheral electronics. The power draw is assumed to be
constant for different speeds; dividing the power draw by
the speed gives the desired value of energy per meter.

There are two main trends in the data. The tests on
grass show that the average cost of transport decreases as
speed increases. Table V lists the percentage decrease in
energy usage for the different velocities tests, showing up
to 12.99% decrease in energy usage for the fastest speed.
For the asphalt cases, the cost of transport is significantly
lower and is roughly constant over the speeds tested. Look-
ing at Figure 9, we can compare the distribution of en-
ergy usage from the individual segments. On the soft grass,
there is considerable overlap in the distributions, with the
median value (red line) decreasing with increasing speed.
The asphalt tests show a decreased variation in energy
used, presumably due to the more uniform, harder surface.
Table IV shows the sample variance of mean for the
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Figure 10. Energy usage for consecutive 100 m segments.

Table VI. Energy per meter traveled of straight line and
rounded box tests on hard grass (J/m).

0.75 m/s 1.75 m/s

Straight line (hard grass) 39.46 40.60
Rounded box (hard grass) 42.02 44.45
Rounded box (asphalt) 41.36 38.14

different trajectories. Using the statistical variance, we see
that the variance is smaller for the runs on asphalt, with
the exception of 1.5 m/s. The variance can be influenced by
many factors, including differences in terrain between runs.

Looking at consecutive laps around the rounded box,
we see considerable variation in the energy use required.
Figure 10(a) shows the electrical energy usage of subsequent
laps for 0.75 and 1.75 m/s. Figure 10(b) shows the straight
line tests broken into 100 m segments. These tests show less
variability than the soft grass tests.

Comparing the energy used for peripheral electron-
ics with the energy used for motion shows that, on as-
phalt, for 0.75 m/s, the energy usage is split approximately
equally between locomotion and peripheral electronics. For
1.75 m/s on asphalt, the energy used for peripherals is about
half the energy used for locomotion.

To compare the energy consumption differences be-
tween straight line travel and the rounded box trajectory,
the results of the tests on hard grass are shown in Table VI.
For 0.75 m/s, the rounded box tests used 6.3% more en-
ergy than the average of the straight traversals down the
airport runway and 9.6% more for 1.75 m/s. These tests
show that the rounded box is a good estimate for straight
line travel on the hard grass. These values are similar to the

Figure 11. Scaled mechanical cost of transport for Packbot in
different conditions (white, soft grass; gray, asphalt).

values obtained for the asphalt tests, rather than the softer
grass, showing a strong dependence on soil conditions in
the energy required for travel.

In addition to the electrical energy usage, we looked
at the mechanical energy used. Figure 11 shows the scaled
mechanical cost of transport for the same tests presented in
Figure 9. The trends present in the electrical cost of transport
are not present in these results; the tests on soft grass stayed
relatively constant while the energy usage for the asphalt
tests generally increased with speed.

Since the mechanical energy used is closely related
to the motion resistance (assuming a constant normal
load), we expected to see the same trends summarized in
Section 2.2 for soft grass; however, the energy used does not
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Table VII. Scaled mechanical energy per meter traveled of
straight line and rounded box tests on hard grass [J/(KmKrm)].

0.75 m/s 1.75 m/s

Straight line (hard grass) 31.09 38.52
Rounded box (hard grass) 31.91 42.34
Rounded box (asphalt) 31.76 34.93

decrease with speed. There are many possibilities for this
discrepancy; however, due to the use of a fielded robot and
not a dedicated test setup, we are unable to conclusively an-
alyze the track-ground interactions of the Packbot during
use. We leave for future work further experimental analysis
of the track-ground interactions for the Packbot.

On both asphalt and the hard grass surfaces, the scaled
mechanical energy use increases with speed. In particular,
Table VII shows the comparison of the straight line and
rounded box trajectories for hard grass. In both cases, the
energy usage increases, although the increase is greater for
the rounded box trajectory. For the hard grass scenario, this
implies that the rounded box does increase the resistance,
though it is not the only factor involved.

5.2. Electrical-to-Mechanical Efficiency

Power loss in the motors and drive train is one source of loss
in the system. Using the electrical and scaled mechanical
energy, discussed in the previous section, we can calculate
the efficiency of the conversion from electrical to mechanical
energy. Since we are dealing with a “black box” model of
the Packbot, we must make the assumption that the gear
ratio from the track drive wheels to the motors is constant.
Based on this assumption, we can parametrize the efficiency
based on the track speeds.

To compute efficiency, we define

efficiency = η = Power Out
Power In

= Km(Ilωl + Irωr )
Battery Power

= KmKr

(
Il

v−ωB
R

+ Ir
v+ωB

R

)
Battery Power

. (4)

Since Km and Kr are unknown, we calculate the scaled ef-
ficiency, η/(KmKr ). In addition to regularizing the data, we
excluded some data points where, due to experimental con-
ditions, the battery power input dropped down to near 0,
resulting in large efficiency values that could skew the final
results.

Figure 12 shows the scaled efficiencies from the differ-
ent tests. Efficiency varies with vehicle speed, and the effi-
ciency values are consistent at the same speed on different
runs, including on different surfaces. This figure also cor-
responds closely to measured efficiency curves for ground
robots [see Logan, Pentzer, Brennan, & Reichard (2012) for

an example]. Also, interestingly, scaled efficiency for the
rounded box trajectory on hard grass at 1.75 m/s is signif-
icantly higher than that for other surfaces, possibly due to
the low state of battery charge for that test. Since dc mo-
tor efficiency varies with speed and torque [Say and Taylor
(1986), Chap. 10], it is interesting to note that there is lit-
tle difference in efficiency between surfaces. Since higher
speeds and lower torques are more efficient, we conclude
that the speed increase is more important for efficiency than
the increase in output torque.

Since our tests approach the maximum speed of our
Packbot, we could not test higher speeds to see if the effi-
ciency continues to increase or where the peak efficiency oc-
curs. In fact, as described in Logan et al. (2012), one method
for motor selection and gear design is to put the maximum
efficiency of the system at the largest power output. We ex-
pect the efficiency curve to have a peak, and we assume this
peak to be around 2 m/s, the maximum speed of the robot,
since we only observed efficiency increasing in the range
of tested speeds. Above this speed, the efficiency decreases
until the motor stall torque is reached and the motor outputs
no work. To shape the portion of the curve that we could
not test, we added three extra data points at higher speeds:
0.9 at 2.5 m/s, 0.8 at 3.5 m/s, and 0.7 at 4.5 m/s. Without
including these points, the polynomial fit increased rapidly
above 1.75 m/s, an infeasible result. We used a fourth-order
polynomial fit, which resulted in the following equation:

scaled efficiency = η

KmKr

= 0.0055v4 − 0.033v3 − 0.036v2

+ 0.3586v + 0.5613. (5)

This curve partially explains the results presented ear-
lier; the tests at a higher speed are operating in a more
efficient regime of operation and have lower power loss in
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Figure 12. Efficiency values consistent over the different runs.
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Table VIII. Estimated Packbot range at constant speed from full battery.

0.75 m/s 1 m/s 1.25 m/s 1.5 m/s 1.75 m/s

Grass 3.39 ± 0.06 km 3.94 ± 0.12 km 4.33 ± 0.13 km 4.60 ± 0.11 km 4.90 ± 0.11 km
Asphalt 4.21 ± 0.06 km 4.88 ± 0.10 km 5.66 ± 0.16 km 5.68 ± 0.19 km 6.22 ± 0.19 km

Table IX. Total distance and percentage of battery depleted
for the tests.

0.75 m/s 1.0 m/s 1.25 m/s 1.5 m/s 1.75 m/s

(a) Grass
Distance (km) 3.17 3.12 3.10 4.11 3.05
Battery

Discharge
(%)

91.55 77.96 70.94 88.53 62.09

(b) Asphalt
Distance (km) 4.08 4.16 4.08 5.11 4.51
Battery

Discharge
(%)

94.60 83.59 71.50 89.20 71.95

the motors and drivetrain. Path planners can use this curve
to plan efficient operation.

5.3. Range Prediction

Using the methodology proposed in Section 3, we have char-
acterized energy usage for the Packbot. As one example of
usage of the data, we present simple range estimates based
on the traveling speed. In this case, we will assume a con-
stant speed for the entire duration of the mission.

Using the data from Figure 9 and taking into account
the average power for peripherals, we can estimate the
range of the Packbot traveling at a constant forward ve-
locity v using the following formula:

range = Ebatt

Edist + Pperv

(J )
(J/m)

, (6)

where Ebatt is the available battery energy at the start of
the traversal (J), Edist is the average energy expended per
unit distance from Table IV (J/m), and Pper is the average
power for peripherals (W). Table VIII lists the estimated
range for a fully charged battery for the Packbot, with error
values based on the variance of energy usage. The accuracy
of these estimates depends on many factors, including the
variability of the terrain, the accuracy of battery charge es-
timate, and the variance of the energy usage data. Table IX
shows the range from the tests presented in the previous
section along with the percentage of the battery used. All
the tests for a particular velocity were run on the same bat-

Table X. Comparing Edist and Pper/v.

v Edist (soft grass) Edist (asphalt) Pper/v

0.75 m/s 61.45 41.36 41.04
1.25 m/s 55.45 36.74 24.62
1.75 m/s 53.47 38.14 17.59

tery with minimal breaks between tests, although the tests
were not run until the battery was depleted.

One interesting aspect of the error values in Table VIII
is the increase of the error range as speed increases, even
though the variance of the energy usage data varies with
speed. This is due to the relative size of Pper/v and Edist.
Table X compares the values of Edist and Pper/v from our
tests. When v is larger, the load from electronics is less per
unit distance, so the variance of Edist has a larger effect.
In addition, modifying the setup to change Pper would not
result in a uniform effect for all speeds; slower speeds would
have a larger range increase when Pper decreases than faster
speeds.

This range estimate can be used to augment battery
range estimation algorithms to improve accuracy. This is
a simple range estimation; research into estimating range
based on robot history and estimated future action is ongo-
ing (Sadrpour et al., 2012). Battery models under load can
also affect the range and thus the results of these projections
[see Lin et al. (2013) for an example of a battery model].

6. CONCLUSIONS

We have presented a methodology for characterizing en-
ergy usage for a mobile ground robot and results obtained
by applying this methodology to the iRobot Packbot. This
methodology entails running the robot through a series of
tests at different speeds and on different terrains. From
these tests, we record the energy used per distance trav-
eled and the electrical-to-mechanical efficiency. These data
can be used to produce more efficient path plans and to
better estimate the remaining range.

For the Packbot, our methodology showed that the
robot required less energy when traveling on asphalt than
on soft grass. On the soft grass, the energy requirements de-
creased with increasing speed, while the same trend was not
present on asphalt. The electrical-to-mechanical efficiency
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increased with speed up to the maximum speed allowed by
the Packbot, but it did not depend on the terrain.

In the case of our particular coverage application, we
had assumed that the UGV would be more efficient at lower
speeds, creating a need for balanced tradeoffs. However,
after completing this characterization of energy usage for
the Packbot, we discovered that there were more complex
relationships between speed and efficiency and adjusted
our trajectory planning based on these results, including the
electrical-to-mechanical efficiencies in the planning process
[see Broderick, Tilbury, and Atkins (2014)].

Data from these experiments can be used to improve
battery life prediction, and to better inform autonomous
planning and operation protocols for small robotic vehi-
cles. If the energy per distance at different speeds is known
for the terrains to be traveled upon, a range prediction can
be generated. Alternatively, an energy efficiency curve can
be used in conjunction with a more detailed terrain in-
teraction model to estimate the range for a given battery
state of charge. Models for energy usage with more compli-
cated maneuvers or more variable terrain are left for future
research.
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