
A Situationally Aware Voice-Commandable Robotic
Forklift Working Alongside People in Unstructured

Outdoor Environments

Matthew R. Walter, Matthew Antone, Ekapol Chuangsuwanich, Andrew Correa, Randall Davis,
Luke Fletcher, Emilio Frazzoli, Yuli Friedman, James Glass, Jonathan P. How, Jeong hwan Jeon,

Sertac Karaman, Brandon Luders, Nicholas Roy, Stefanie Tellex, Seth Teller

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139 USA
mwalter@csail.mit.edu

Abstract

One long-standing challenge in robotics is the realization of mobile autonomous
robots able to operate safely in human workplaces, and be accepted by the human
occupants. We describe the development of a multi-ton robotic forklift intended
to operate alongside people and vehicles, handling palletized materials within ex-
isting, active outdoor storage facilities.The system has four novel characteristics.
The first is a multimodal interface that allows users to efficiently convey task-level
commands to the robot using a combination of pen-based gestures and natural lan-
guage speech. These tasks include the manipulation, transport, and placement of
palletized cargo within dynamic, human-occupied warehouses. The second is the
robot’s ability to learn the visual identity of an object from a single user-provided
example and use the learned model to reliably and persistently detect objects de-
spite significant spatial and temporal excursions. The third is a reliance on lo-
cal sensing that allows the robot to handle variable palletized cargo and navigate
within dynamic, minimally-prepared environments without GPS. The fourth con-
cerns the robot’s operation in close proximity to people, including its human super-
visor, pedestrians who may cross or block its path, moving vehicles, and forklift
operators who may climb inside the robot and operate it manually. This is made
possible by interaction mechanisms that facilitate safe, effective operation around
people.

This paper provides a comprehensive description of the system’s architecture and
implementation, indicating how real-world operational requirements motivated key
design choices. We offer qualitative and quantitative analyses of the robot operating
in real settings and discuss the lessons learned from our effort.

Put the pallet
of pipes on
the truck

Figure 1: (left) The mobile manipulation platform is designed to safely coexist with people within
unstructured environments while performing material handling under the direction of humans.

1 Introduction

Robots are increasingly being seen not only as machines used in isolation for factory automation,
but as aides that work with and alongside people, be it in hospitals, long-term care facilities, manu-
facturing centers, or our homes. Logistics is one such area in which there are significant benefits to
having robots capable of working alongside people. Among the advantages is improved safety by
reducing the risks faced by people operating heavy machinery. This is particularly true in disaster
relief scenarios and for military applications, the latter of which motivates the work presented in
this paper. It is not uncommon for soldiers operating forklifts on forward operating bases (FOBs)
or elsewhere in theater to come under fire. Automating the material handling promises to take sol-
diers out of harm’s way. More generally, robots that can autonomously load, unload, and transport
cargo for extended periods of time offer benefits including increased efficiency and throughput,
which extend beyond applications in military logistics.

The military domain raises two primary challenges for material handling that are common to
more general manipulation scenarios. Firstly, the domain provides limited structure with dynamic,
minimally-prepared environments in which people are free to move about and the objects to be
manipulated and interacted with vary significantly and are unknown a priori. Secondly, any solu-
tion must afford effective command and control mechanisms and must operate in a manner that is
safe and predictable, so as to be usable and accepted by existing personnel within their facilities.
Indeed, a long-standing challenge to realizing robots that serve as our partners is developing in-
terfaces that allow people to efficiently and reliably command these robots as well as interaction
mechanisms that are both safe and accepted by humans.

Motivated by a desire for increased automation of logistics operations, we have developed a voice-
commandable autonomous forklift (Fig. 1) capable of executing a set of commands to approach,
engage, transport and place palletized cargo in minimally-structured outdoor settings. Rather than
carefully preparing the environment to make it amenable to robot operation, we designed and
integrated capabilities that allow the robot to operate effectively alongside people within existing
unstructured environments, such as military Supply Support Activities (outdoor warehouses). The
robot has to operate safely outdoors on uneven terrain, without specially-placed fiducial markers,
guidewires or other localization infrastructure, alongside people on foot, human-driven vehicles,

and eventually other robotic vehicles, and amidst palletized cargo stored and distributed according
to existing conventions. The robot also has to be commandable by military personnel without
burdensome training. Additionally, the robot needs to operate in a way that is acceptable to existing
military personnel and consistent with their current operational practices and culture. There are
several novel characteristics of our system that enable the robot to operate safely and effectively
despite challenging operational requirements, and that differentiate our work from existing logistic
automation approaches. These include:

• Autonomous operation in dynamic, minimally-prepared, real-world environments, out-
doors on uneven terrain without reliance on precision GPS, and in close proximity to peo-
ple;

• Speech understanding in noisy environments;

• Indication of robot state and imminent actions to bystanders;

• Persistent visual memories of objects in the environment;

• Multimodal interaction that includes natural language speech and pen-based gestures
grounded in a world model common to humans and the robot; and

• Robust, closed-loop pallet manipulation using only local sensing.

This paper presents a comprehensive review of the design and integration of our overall system in
light of the requirements of automating material handling for military logistics. We present each of
the different components of the system in detail and describe their integration onto our prototype
platform. We focus in particular on the capabilities that are fundamental to our design approach
and that we feel generalize to a broader class of problems concerning human-commandable mobile
manipulation within unstructured environments. We evaluate the performance of these individual
components and summarize the results of end-to-end tests of our platform within model and active
military supply facilities. Some of the capabilities that we detail were originally presented within
existing publications by the authors (Correa et al., 2010; Teller et al., 2010; Walter et al., 2010;
Karaman et al., 2011; Tellex et al., 2011; Walter et al., 2012). The contribution of this paper is to
provide a comprehensive, unified description of our overall system design, including its success-
ful implementation within the target domain, together with an in-depth discussion of the lessons
learned from our three year effort.

The remainder of the paper is organized out as follows. Section 2 describes existing work related
to the general problem of material handling and the specific research areas that are fundamental
to our approach. Section 3 discusses the requirements of automating military logistics and their
influence on our design approach. Section 4 introduces the prototype forklift platform, including
its sensing, actuation, and computing infrastructure. Section 5 describes in detail the different
capabilities that comprise our solution and their integration into the overall system. Section 6
analyzes the performance of the key components of the system and summarizes the results of
end-to-end deployments of the platform. Section 7 reflects on open problems that we feel are
fundamental to realizing robots capable of effectively working alongside people in the material
handling domain. Section 8 offers concluding remarks.

2 Related Work

There has been significant interest in automating material handling for mining (Nebot, 2005),
heavy industries (Tews et al., 2007), and logistics (Durrant-Whyte et al., 2007; Wurman et al.,
2008; Hilton, 2013). The state-of-the-art in commercial warehouse automation (Wurman et al.,
2008; Hilton, 2013) is comprised of systems designed for permanent storage and distribution fa-
cilities. These indoor environments are highly prepared with flat floors that include fiducials for
localization, substantial prior knowledge of the geometry and placement of objects to be manipu-
lated, and clear separation between people and the robots’ workspace. The structured nature of the
facilities allows multiagent solutions that involve an impressively large number of robots operating
simultaneously, backed by centralized resource allocation. In contrast, the military and disaster
relief groups operate storage and distribution centers outdoors on uneven terrain, often for no more
than a few months at a time. The facilities offer little preparation, precluding the use of guidewires,
fiducials, or other localization aides. The objects in the environment are not standardized and the
robot must manipulate and interact with different pallets and trucks whose geometry, location, and
appearance are not known a priori. Further, people are free to move unconstrained throughout the
robot’s workspace on foot, in trucks, or in other manually-driven forklifts.

More closely related to our approach are solutions to automating forklifts and other autonomous
ground vehicles that emphasize the use of vision (Cucchiara et al., 2000; Seelinger and Yoder,
2006; Kelly et al., 2007; Pradalier et al., 2010) and LIDAR (Bostelman et al., 2006; Lecking
et al., 2006) to mitigate the lack of structure. Of particular note is the work by Kelly et al. who
proposed vision-based solutions for localization, part rack detection, and manipulation that allow
material handling vehicles to function autonomously within indoor environments with little-to-
no additional structure (Kelly et al., 2007). Our system similarly emphasizes local sensing over
external infrastructure, using vision for object recognition and LIDARs to estimate pallet and truck
geometry and to detect people, obstacles, and terrain hazards. Whereas Kelly et al. have known
CAD models of the objects to be manipulated, we assume only a rough geometric prior, namely
that the pallets have slots and the height of the truck beds is within a common range. Unlike Kelly et
al., whose system is capable of stacking part racks with the aid of fiducials and unloading enclosed
tractor trailers, we only consider loading pallets from and to the ground and flatbed trailers, albeit
in less-structured outdoor environments.

The most notable distinction between our system and the existing state-of-the-art is that our method
is intended to work with and alongside people. To that end, we developed methods that allow users
to command the robot using pen-based gestures and speech, and designed the system so that its
actions are both safe and predictable, so as to be acceptable by military personnel. In the remainder
of this section, we place in context our work in vision-based object detection, multimodal interface
design, and human-robot interaction that enable the robot to work alongside people. For a descrip-
tion of work related to other aspects of design, we refer the reader to our earlier work (Teller et al.,
2010; Walter et al., 2010).

2.1 Persistent Visual Memories

We endowed the robot with the ability to reliably and persistently recognize objects contained
in its operating environment using vision. As we demonstrate, this capability enables people to
command the robot to interact with cargo and trucks simply by referring to them by name. A
key challenge is to develop an algorithm that can recognize objects across variations in scale,
viewpoint, and lighting that result from operations in unstructured, outdoor environments.

Visual object recognition has received a great deal of attention over the past decade. Much of the
literature describes techniques that are robust to the challenges of viewpoint variation, occlusions,
scene clutter, and illumination. Generalized algorithms are typically trained to identify abstract
object categories and delineate instances in new images using a set of exemplars that span the
most common dimensions of variation. Training samples are further diversified through variations
in the instances themselves, such as shape, size, articulation, and color. The current state-of-
the-art (Savarese and Fei-Fei, 2007; Hoiem et al., 2007; Liebelt et al., 2008) involves learning
relationships among constituent object parts represented using view-invariant descriptors. Rather
than recognition of generic categories, however, the goal of our work is the reacquisition of specific
previously observed objects. We still require invariance to camera pose and lighting variations, but
not to intrinsic within-class variability, which allows us to build models from significantly fewer
examples.

Some of the more effective solutions to object instance recognition (Lowe, 2001; Gordon and
Lowe, 2006; Collet et al., 2009) learn 3D models of the object from different views that they then
use for recognition. Building upon their earlier effort (Lowe, 2001), Gordon and Lowe (Gor-
don and Lowe, 2006) perform bundle adjustment on Scale Invariant Feature Transform (SIFT)
features (Lowe, 2004) from multiple uncalibrated camera views to first build a 3D object model.
Given the model, they employ SIFT matching, Random Sample and Consensus (RANSAC) (Fis-
chler and Bolles, 1981), and Levenberg-Marquardt optimization to detect the presence of the ob-
ject and estimate its pose. Collet et al. take a similar approach, using the Mean Shift algorithm in
combination with RANSAC to achieve more accurate pose estimates that they then use for robot
manipulation (Collet et al., 2009). These solutions rely upon an extensive offline training phase
in which they build each object’s representation in a “brute-force” manner by explicitly acquir-
ing images from the broad range of different viewing angles necessary for bundle adjustment. In
contrast, our one-shot algorithm learns the object’s 2D appearance rather than its 3D structure and
does so online by opportunistically acquiring views while the robot operates.

With respect to detecting the presence of specific objects within a series of images, our reacqui-
sition capability shares similar goals with those of visual tracking. In visual tracking, an object
is manually designated or automatically detected and its state is subsequently tracked over time
using visual and kinematic cues (Yilmaz et al., 2006). General tracking approaches assume small
temporal separation with limited occlusions or visibility loss, and therefore slow visual variation,
between consecutive observations (Comaniciu et al., 2003). These trackers tend to perform well
over short time periods but are prone to failure when an object’s appearance changes or it dis-
appears from the camera’s field-of-view. To address these limitations, “tracking-by-detection”
algorithms adaptively model variations in appearance online based upon positive detections (Lim

et al., 2004; Collins et al., 2005). These self-learning methods extend the tracking duration, but
tend to “drift” as they adapt to incorporate the appearance of occluding objects or the background.
This drift can be alleviated using self-supervised learning to train the model online using individual
unlabeled images (Grabner et al., 2008; Kalal et al., 2010) or multiple instances (Babenko et al.,
2009). These algorithms improve robustness and thereby allow an object to be tracked over longer
periods of time despite partial occlusions and frame cuts. However, they are still limited to rela-
tively short, contiguous video sequences. Although we use video sequences as input, our approach
does not rely on a temporal sequence and is therefore not truly an object “tracker”; instead, its goal
is to identify designated objects over potentially disparate views.

More closely related to our reacquisition strategy is the recent work by Kalal et al. that combines an
adaptive tracker with an online detector in an effort to improve robustness to appearance variation
and frame cuts (Kalal et al., 2009). Given a single user-provided segmentation of each object,
their Tracking-Modeling-Detection algorithm utilizes the output of a short-term tracker to build an
appearance model of each object that consists of image patch features. They employ this model
to learn an online detector that provides an alternative hypothesis for an object’s position, which
is used to detect and reinitialize tracking failures. The algorithm maintains the model by adding
and removing feature trajectories based upon the output of the tracker. This allows the method to
adapt to appearance variations while removing features that may otherwise result in drift. While
we do not rely upon a tracker, we take a similar approach of learning an object detector based upon
a single supervised example by building an image-space appearance model online. Unlike Kalal et
al.’s solution, however, we impose geometric constraints to validate additions to the model, which
reduces the need to prune the model of erroneous features.

2.2 Multimodal User Interface

A significant contribution of our solution is the interface through which humans convey task-level
commands to the robot using a combination of natural language speech and pen-based gestures.
Earlier efforts to develop user interfaces for mobile robots differ with regards to the sharing of
the robot’s situational awareness with the user, the level of autonomy given to the robot, and the
variety of input mechanisms available to the user.

The PdaDriver system (Fong et al., 2003) allows users to teleoperate a ground robot through a
virtual joystick and to specify a desired trajectory by clicking waypoints. The interface provides
images from a user-selectable camera for situational awareness. Other interfaces (Keskinpala et al.,
2003) additionally project LIDAR and sonar returns onto images and allow the user to switch to
a synthesized overhead view of the robot, which has been shown to facilitate teleoperation when
images alone may not provide sufficient situational awareness (Ferland et al., 2009). Similarly, our
interface incorporates the robot’s knowledge of its surroundings to improve the user’s situational
awareness. Our approach is different, in that we render contextual knowledge at the object level
(e.g., pedestrian detections) as opposed to rendering raw sensor data, which subsequent user stud-
ies (Keskinpala and Adams, 2004) have shown to add to the user’s workload during teleoperation.
A fundamental difference, however, is that our approach explicitly avoids teleoperation in favor of
a task-level interface; in principle, this enables a single human supervisor to command multiple

robots simultaneously.

Skubic et al. provide a higher level of abstraction with a framework in which the user assigns a
path and goal positions to a team of robots within a coarse user-sketched map (Skubic et al., 2007).
Unlike our system, the interface is exclusive to navigation and supports only pen-based gesture in-
put. Existing research related to multimodal robot interaction (Holzapfel et al., 2004; Perzanowski
et al., 2001) exploits a combination of vision and speech as input. Perzanowski et al. introduce
a multimodal interface that, in addition to pen-based gestures, accommodates a limited subset
of speech and hand gestures to issue navigation-related commands (Perzanowski et al., 2001).
Our approach is analogous as it combines the supervisor’s visual system (for interpretation of the
robot’s surroundings) with speech (Glass, 2003) and sketch (Davis, 2002) capabilities. However,
we chose to design a multimodal interface that uses speech and sketch as complementary, rather
than as mutually disambiguating modes.

Our interface accompanies pen-based gestural interactions with the ability to follow commands
spoken in natural language. The fundamental challenge to interpreting natural language speech
is to correctly associate the potentially diverse linguistic elements with the robot’s model of its
state and action space. The general problem of mapping language to corresponding elements in
the external world is known as the symbol grounding problem (Harnad, 1990). Recent efforts
propose promising solutions to solving this problem in the context of robotics for the purpose
of interpreting natural language utterances (Skubic et al., 2004; MacMahon et al., 2006; Dzifcak
et al., 2009; Kollar et al., 2010; Tellex et al., 2011, 2012; Matuszek et al., 2010, 2012). Skubic
et al. present a method that associates spoken references to spatial properties of the environment
with the robot’s metric map of its surroundings (Skubic et al., 2004). The capability allows users
to command the robot’s mobility based upon previous spoken descriptions of the scene. That
work, like others (MacMahon et al., 2006; Dzifcak et al., 2009), models the mapping between
the natural language command and the resulting plan as deterministic. In contrast, our method
learns a distribution over the space of groundings and plans by formulating a conditional random
field (CRF) based upon the structure of the natural language command. This enables us to learn
the meanings of words and to reason over the likelihood of inferred plans (e.g., an indication of
potential ambiguity), and provides a basis for performing human-robot dialog (Tellex et al., 2012).
In similar fashion, other work has given rise to discriminative and generative models that explicitly
account for uncertainty in the language and the robot’s world model in the context of following
route directions given in natural language (Kollar et al., 2010; Matuszek et al., 2010).

2.3 Predictable Interaction with People

Our robot is designed to operate in populated environments where people move throughout, both
on foot and in other vehicles. It is important not only that the robot’s actions be safe, which is
not inconsequential for a 2700 kg vehicle, but that they be predictable. There is an extensive body
of literature that considers the problem of conveying knowledge and intent for robots that have
human-like forms. Relatively little work exists for non-anthropomorphic robots, for which making
intent transparent is particularly challenging. The most common approach is to furnish the robots
with additional hardware that provide visual cues regarding the robot’s indented actions. These

include a virtual eye that can be used to indicate the direction in which the robot intends to move or
a projector that draws its anticipated path on the ground (Matsumaru et al., 2005). We similarly use
several visual means to convey the current state of the robot and to indicate its immediate actions.
Additionally, we endow the robot with the ability to verbally announce its planned activities.

In addition to conveying the robot’s intent, an important factor in people’s willingness to accept its
presence is that its actions be easily predictable (Klein et al., 2004). Several researchers (Alami
et al., 2006; Takayama et al., 2011; Dragan and Srinivasa, 2013) have addressed the problem of
generating motions that help to make a robot’s intent apparent to its human partners. In particular,
Takayama et al. show how techniques from animation can be used to facilitate a user’s ability to
understand a robot’s current actions and to predict future actions. Dragan and Srinivasa describe
a method that uses functional gradient optimization to plan trajectories for robot manipulators that
deliberately stray from expected motions to make it easier for humans to infer the end effector’s
goal (Dragan and Srinivasa, 2013). In our case, we use the same visual and audible mechanisms
that convey the robot’s state to also indicate its actions and goals to any people in its surround.
Having indicated the goal, the challenge is to generate motion trajectories that are consistent with
paths that bystanders would anticipate the vehicle to follow. This is important not only for pre-
dictability, but for safety as well. We make the assumption that paths that are optimal in terms of
distance are also predictable and use our anytime optimal sample-based motion planner to solve
for suitable trajectories. A growing body of literature exists related optimal sample-based motion
planning (Karaman and Frazzoli, 2010a,b, 2011; Marble and Bekris, 2011; Jeon et al., 2011) and
we refer the reader to the work of Karaman and Frazzoli for a detailed description of the state-of-
the-art in this area.

3 Design Considerations

In this section, we outline the fundamental characteristics of our system design in light of the
demands of automating material handling for military logistics. The process of identifying these
requirements involved extensive interaction with military personnel. We made repeated visits to
several active military warehouses, where we interviewed personnel ranking from forklift opera-
tors to supervisors, and observed and recorded their operations to better understand their practices.
Military and civilian logisticians also made several visits to MIT early and throughout the project
where they operated and commented on our system. These interactions led us to identify require-
ments that are not specific to this application, but are instead general to mobile manipulation within
dynamic, unstructured, human-occupied environments. In particular, the system must

• depend minimally on GPS or other metric global localization and instead emphasize local
sensing;

• operate outdoors on uneven terrain, with little preparation;

• manipulate variable, unknown palletized cargo from arbitrary locations;

• load and unload flatbed trucks of unknown geometry;

• afford efficient command and control with minimal training;

• operate in a manner that is predictable and adheres to current practices so as to be accepted
by existing personnel;

• be subservient to people, relinquishing command or asking for help in lieu of catastrophic
failure;

• operate safely in close proximity to bystanders and other moving vehicles.

The military has a strong interest in reducing the reliance of their robotic platforms on GPS for
localization. This stems from a number of factors, including the threat of signal jamming faced
by systems that are deployed in theater. Additionally, achieving highly accurate positioning typ-
ically requires GPS/INS systems with price points greater than the cost of the base platform. An
alternative would be to employ Simultaneous Localization and Mapping (SLAM) techniques, lo-
calizing against a map of the environment, however the warehouse is constantly changing as cargo
is added and removed by other vehicles. Instead, we chose a framework that used intermittent,
low-accuracy GPS for coarse, topological localization. In lieu of accurate observations of the
robot’s global pose, we employ a state estimation methodology that emphasizes local sensing and
dead-reckoning for both manipulation and mobility. We also developed the robot’s ability to au-
tomatically formulate maps of the environment that encode topological and semantic properties of
the facility based upon a narrated tour provided by humans, thereby allowing people with minimal
training to generate these maps.

The forklift must function within existing facilities with little or no special preparation. As such,
the robot must be capable of operating outdoors, on packed earth and gravel while carrying loads
of which the mass may vary by several thousand kilograms. Thus, we chose to adopt a non-planar
terrain representation and a full 6-DOF model of chassis dynamics. We use laser scans of the
terrain to detect and avoid hazards and combine these scans with readings from an IMU to predict
and modulate the maximum vehicle speed based upon terrain roughness.

The forklift must be capable of detecting and manipulating cargo of which the location, geometry,
appearance, and mass are not known a priori. We use an IMU to characterize the response of
the forklift to acceleration, braking, and turning along paths of varying curvature when unloaded
and loaded with various masses, in order to ensure safe operation. We designed a vision-based
algorithm that enables the robot to robustly detect specific objects in the environment based upon
a single segmentation hint from a user. The method’s effectiveness lies in the ability to recognize
objects over extended spatial and temporal excursions within challenging environments based upon
a single training example. Given these visual detections, we propose a coupled perception and
control algorithm that enables the forklift to subsequently engage and place unknown cargo to
and from the ground and truck beds. This algorithm is capable of detecting and estimating the
geometry of arbitrary pallets and truck beds from single laser scans of cluttered environments and
uses these estimates to servo the forks during engagement and disengagement.

The robot must operate in dynamic, cluttered environments in which people, trucks, and other
forklifts (manually-driven or autonomous) move unencumbered. Hence, the forklift requires full-

surround sensing for obstacle avoidance. We chose to base the forklift’s perception on LIDAR
sensors, due to their robustness and high refresh rate. We added cameras to provide situational
awareness to a (possibly remote) human supervisor, and to enable vision-based object recognition.
We developed an automatic multi-sensor calibration method to bring all LIDAR and camera data
into a common coordinate frame.

Additionally, existing personnel must be able to effectively command the robot with minimal train-
ing, both remotely over resource-constrained networks and from positions nearby the robot. This
bandwidth and time delay requirements of controlling a multi-ton manipulator preclude teleopera-
tion. Additionally, the military is interested in a decentralized, scalable solution with a duty cycle
that allows one person to command multiple vehicles, which is not possible with teleoperation.
Instead, we chose to develop a multimodal interface that allows the user to control the robot using
a combination of speech and simple pen-based gestures made on a handheld tablet computer.

There has been tremendous progress in developing a robot’s ability to interpret completely free-
form natural language speech. However, we feel that the challenge of understanding commands
of arbitrary generality within noisy, outdoor environments are beyond the scope of current speech
recognition, sensing, and planning systems. As a result, we chose to impose on the human su-
pervisor the burden of breaking down high-level commands into simpler sub-tasks. For example,
rather than command the robot to “unload the truck,” the user would give the specific directives to
“take the pallet of tires on the truck and place them in storage alpha,” “remove the pallet of pipes
and put them in storage bravo,” etc. until the truck was unloaded. In this manner, the atomic user
commands include a combination of summoning the forklift to a specific area; picking up cargo
and placing it at a specified location. We refer to this task breakdown as “hierarchical task-level
autonomy.” Our goal is to reduce the burden placed on the user over time by making the robot ca-
pable of carrying out directives at ever-higher levels (e.g., completely unloading a truck pursuant
to a single directive).

We recognize that an early deployment of the robot would not match the capability of an expert
human operator. Our mental model for the robot is as a “rookie operator” that behaves cautiously
and asks for help with difficult maneuvers. Thus, whenever the robot recognizes that it can not
make progress at the current task, it can signal that it is “stuck” and request supervisor assistance.
When the robot is stuck, the human supervisor can either use the remote interface to provide further
information or abandon the current task, or any nearby human can climb into the robot’s cabin
and guide it through the difficulty via ordinary manned operation. The technical challenges here
include recognizing when the robot is unable to make progress, designing the drive-by-wire system
to seamlessly transition between unmanned and manned operation, and designing the planner to
handle mixed-initiative operation.

Humans have a lifetime of prior experience with one another, and have built up powerful predictive
models of how other humans will behave in almost any ordinary situation (Mutlu et al., 2009). We
have no such prior models for robots, which in our view is part of the reason why humans are
uncomfortable around robots: we do not have a good idea of what they will do next. However,
the ability for robots to convey their understanding of the environment and to execute actions that
make their intent transparent have often been cited as critical to effective human-robot collabo-

LIDARS

Cameras

LED Signs

LED Lights

Speakers

Directional
Microphones

Figure 2: The platform is based upon (left) a stock 2700 kg Toyota lift truck. We modified the
vehicle to be drive-by-wire and equipped it with LIDARs, cameras, encoders, an IMU, and direc-
tional microphones for perception; and LED signage, lights, and speakers for annunciation. The
compartment on the roof houses three laptop computers, a network switch, and power distribution
hardware.

ration (Klein et al., 2004). A significant design priority is thus the development of subsystems to
support cultural acceptance of the robot. We added an annunciation subsystem that uses visible and
audible cues to announce the near-term intention of the robot to any human bystanders. The robot
also uses this system to convey its own internal state, such as the perceived number and location
of bystanders. Similarly, people in military warehouse settings expect human forklift operators
to stop whenever a warning is shouted. We have incorporated a continuously-running shouted
warning detector into the forklift, which pauses operation whenever a shouted stop command is
detected, and stays paused until given an explicit go-ahead to continue.

4 Mobile Manipulation Platform

We built our robot based upon a stock Toyota 8FGU-15 manned forklift (Fig. 2), a rear wheel-
steered, liquid-propane fueled lift truck with a gross vehicle weight of 2700 kg and a lift capacity
of 1350 kg. The degrees of freedom of the mast assembly include tilt, lift, and sideshift (lateral
motion). We chose the Toyota vehicle for its relatively compact size and the presence of electronic
control of some of the vehicle’s mobility and mast degrees of freedom, which facilitated our drive-
by-wire modifications.

4.1 Drive-by-Wire Actuation

We devised a set of electrically-actuated mechanisms involving servomotors to bring the steering
column, brake pedal, and parking brake under computer control. A solenoid serves to activate the
release latch to disengage the parking brake. Putting the parking brake under computer control

is essential, since OSHA regulations (United States Department of Labor Occupational Safety &
Health Administration, 1969) dictate that the parking brake be engaged whenever the operator
exits the cabin; in our setting, the robot sets the parking brake whenever it relinquishes control to
a human operator. We interposed digital circuity into the existing forklift wiring system in order
to control the throttle, mast, carriage, and tine degrees of freedom. Importantly, we integrated the
digital acquisition devices in a manner that allows the robot to detect any control actions made by
a human operator, which we use to seamlessly relinquish control.

4.2 Sensor Allocation

Fundamental to our design approach is the system’s reliance on local sensing in lieu of assuming
accurate global navigation. As such, we configured the forklift with a heterogeneous suite of
proprioceptive and exteroceptive sensors that include cameras, laser range finders, encoders, an
IMU, and a two-antenna GPS for periodic absolute position and heading fixes. We selected the
sensor type and their placement based upon the requirements of the different tasks required of the
vehicle.

For the sake of obstacle and pedestrian detection, we mounted five Sick LMS-291 planar LIDARs
roughly at waist height to the side of the forklift, two at the front facing forward-left and -right,
and three at the rear facing left, right, and rearward (Fig. 2). We positioned each LIDAR in a
skirt configuration, but pitched them slightly downward such that the absence of a ground return
would be meaningful. We oriented each sensor such that its field-of-view overlaps with at least one
other LIDAR. Additionally, we mounted a Hokuyo UTM-30LX at axle height under the carriage
looking forward in order to perceive obstacles when the forklift is carrying cargo that occludes the
forward-facing skirts.

The robot operates on uneven terrain and must be able to detect and avoid hazards as well as to
regulate its velocity based upon the roughness of the terrain. For this purpose, we positioned four
Sick LIDARs on the roof facing front-left and -right, and rear-left and -right. We mounted them in
a pushbroom configuration with a significant downwards canter (Fig. 2). As with the skirt LIDARs,
we oriented the sensors such that their fields-of-view overlap with at least one other.

Our approach to engaging palletized cargo and placing it on and picking it up from truck beds relies
upon laser range finders to detect and estimate the geometry of the palletized cargo and trucks. In
order to servo the lift truck into the pallet slots, we placed one Hokuyo UTM-30LX LIDAR in a
horizontal configuration on each of the two fork tines, scanning a half-disk parallel to and slightly
above the tine (in practice, we used only one sensor). Additionally, we mounted two UTM-3OLX
LIDARs on the outside of the carriage, one on each side with a vertical scanning plane, to detect
and estimate the geometry of truck beds.

We mounted four Point Grey Dragonfly2 color cameras on the roof of the vehicle facing forward,
rearward, left, and right, offering a 360◦ view around the forklift (Fig. 2). We utilize the camera
images to perform object recognition. The system also transmits images at a reduced rate and
resolution to the handheld tablet to provide the supervisor with a view of the robot’s surround.

Finally, we equipped the forklift with four beam-forming microphones facing forward, rearward,
left, and right (Fig. 2). The robot utilizes the microphones to continuously listen for spoken com-
mands and for shouted warnings.

Our reliance on local sensing and our emphasis on multi-sensor fusion requires that we have ac-
curate estimates for the body-relative pose of the many sensors on the robot. For each LIDAR and
camera, we estimate the 6-DOF rigid-body transformation that relates the sensor’s reference frame
to the robot’s body frame (i.e., “extrinsic calibration”) through a chain of transformations that in-
clude all intervening actuatable degrees of freedom. For each LIDAR and camera mounted on the
forklift body, this chain contains exactly one transformation; for LIDARs mounted on on the mast,
carriage, or tines, the chain has as many as four transformations. For example, the chain for the
tine-mounted Hokuyo involves changing transformations for the tine separation, carriage sideshift,
carriage lift, and mast tilt degrees of freedom. We employ several different techniques to esti-
mate each of these transformations, including bundle adjustment-like optimization (Leonard et al.,
2008) for LIDAR-to-body calibration and multi-view, co-visibility constraint optimization (Zhang
and Pless, 2004) to estimate the camera-to-LIDAR calibration.

4.3 Annunciation

In order to facilitate a bystander’s ability to predict the robot’s actions, we endowed it with multiple
means by which to make its world model and intent transparent. Among these, we mounted four
speakers to the roof, facing forward, rearward, left, and right (Fig. 2). The forklift uses these
speakers to announce ensuing actions (e.g., “I am picking up the tire pallet”). In order to account
for environment noise and to provide for less intrusive notification, we affixed four LED signs
to the roof of the forklift. The signs display the robot’s current operational state (e.g., “Active”
or “Manual”) as well as its immediate actions. We also ran LED lights around the body of the
forklift, which we use to indicate the robot’s state (i.e., by color) as well as as a reflective display
to indicate its knowledge of people in its surround.

4.4 Computing Infrastructure

The software architecture includes several dozen processes that implement obstacle tracking, ob-
ject detection, motion planning, control, and sensor drivers. The processes are distributed across
four quad-core 2.53 GHz laptops running GNU/Linux, three located in the equipment cabinet on
the roof and one affixed to the carriage (Fig. 2). An additional laptop located near the seat serves
as a development interface. We employed a publish-subscribe model for inter-process communi-
cation (Huang et al., 2010) over a local Ethernet network. A commercial off-the-shelf 802.11g
wireless access point provides network connectivity with the human supervisor’s handheld tablet.
The rooftop cabinet also houses a network switch, power supplies and relays, as well as digital
acquisition (DAQ) hardware for drive-by-wire control.

The supervisor’s tablet, a Nokia N810 handheld computer, constitutes a distinct computational
resource. In addition to providing a visual interface through which the user interacts with the robot,
the tablet performs pen-based gesture recognition and rudimentary speech recognition onboard.

Task planner
Speech

recognizer

Tablet

Gesture
recognizer

Forklift

Object detection
(pallet, truck, obstacle

pedestrian, etc.)

Manipulation planner,
controller

Navigator

Motion planner

User interface

Supervisor

Speech

Sensors

Gas, brake, steering, mast controls

Lights
Speakers

LED display
Bystanders

Context
Analyser

Stylus
Gestures

Controller

Figure 3: High-level system architecture.

The tablet offloads more demanding natural language understanding to the robot.

4.5 Power Consumption

The power to each of the systems onboard the forklift is supplied by an after-market alternator
capable of supplying 1920 W. Devices requiring AC input, including the laptops, LED signs and
lights, and network hardware are powered by a 600 W inverter. The remaining DC hardware is
driven directly from the alternator via step-up and step-down regulators. The primary consumers
of power are the five laptops (165 W continuous), the LED signs and lights (140 W), the speaker
amplifier (100 W continuous), the three drive-by-wire motors (145 W continuous), and the Sick LI-
DARs (180 W continuous). In total, the continuous power consumption is approximately 1050 W.
While the alternator is more than sufficient to drive the system under continuous load, it nears
maximum capacity when the three drive-by-wire motors are at peak draw.

5 System Architecture

In this section, we outline a number of the components of our system that are critical to the robot’s
effective operation within unstructured environments. In similar fashion to our bottom-up design
strategy, we start with the low-level, safety-critical capabilities and proceed to describe more ad-
vanced functionality.

5.1 Software

Our codebase is built upon middleware that we initially developed as part of MIT’s participation
in the DARPA Urban Challenge competition (Leonard et al., 2008). This includes the Lightweight
Communications and Marshalling (LCM) utility (Huang et al., 2010), a low-level message passing

and data marshalling library that provides publish-subscribe inter-process communication among
sensor handlers, perception modules, task and motion planners, controllers, interface handlers, and
system monitoring and diagnostic modules (Fig. 3). As part of the project, we developed and
make heavy use of the Libbot suite (Huang et al., 2014), a set of libraries and applications whose
functionality includes 3D data visualization, sensor drivers, process management, and parameter
serving, among others.

5.2 Robot System Integrity

The architecture of the forklift is based on a hierarchy of increasingly complex and capable layers.
At the lowest level, kill-switch wiring disables ignition on command, allowing the robot or a user to
safely stop the vehicle when necessary. Next, a programmable logic controller (PLC) uses a simple
relay ladder program to enable the drive-by-wire circuitry and the actuator motor controllers from
their default (braking) state. The PLC requires a regular heartbeat signal from the higher-level
software and matching signals from the actuator modules to enable drive-by-wire control.

Higher still, the software architecture is a set of processes distributed across four of the networked
computers and is composed of simpler device drivers and more complex application modules. At
this level, there are many potential failure modes to anticipate, ranging from issues related to PC
hardware, network connectivity, operating systems, sensor failures, up to algorithmic and appli-
cation logic errors. Many of these failure modes, however, are mitigated by a software design
methodology that emphasizes redundancy and multiple safety checks. This stems from our use
of LCM message passing for inter-process communication, which is UDP-based and therefore
contains no guarantees regarding message delivery. The consequence is that the application pro-
grammer is forced to deal with the possibility of message loss. What seems onerous actually has
the significant benefit that many failure modes reduce to a common outcome of message loss. By
gracefully handling the single case of message loss, the software becomes tolerant to a diverse
range of failure types. As such, the software architecture is designed with redundant safety checks
distributed across each networked computer that, upon detecting a fault, cause the robot to enter a
paused state. These safety checks include a number of inter-process heartbeat messages that report
the status of each of the sensors, communication bandwidth and latency, and clock times, among
others. Higher-level algorithmic and logic errors are less obvious, particularly as their number and
complexity compound as the system grows. We identify and detect the majority of these failures
based upon designer input and extensive unit and system-wide testing.

A single process manages the robot’s run-state, which takes the form of a finite state machine that
may be active (i.e., autonomous), manual (i.e., override), or paused, and publishes the state at
50 Hz. If this process receives a fault message from any source, it immediately changes the state
of the robot into the quiescent paused state. All processes involved in robot actuation listen to
the run-state message. If any actuator process fails to receive this message for a suitably small
duration of time, the process will raise a fault condition and go into the paused state. Similarly,
the motion planning process will raise faults if timely sensor data is not received. Under this
configuration, failures that arise as a result of causes such as the run-state process terminating,
network communications loss, or one of the other sources identified above induce the robot into a

(a) Notional Warehouse

Receiving

Issuing

Travel LanesPerimeter Pallet
Bays

(b) Topological Map

Figure 4: Renderings of (a) a notional military warehouse and (b) the topological map for a par-
ticular facility, each with storage, receiving, and issuing areas that are connected by lanes of travel
(arrows).

safe state.

The only logic errors that this system does not address are those for which the robot appears to be
operating correctly yet has an undetected error. Sanity checks by different software modules can
help mitigate the effect of such errors but by definition some of these failures may go undetected.
As far as we are aware, only branch, sub-system, and system-level testing can combat these kinds of
failures. In an effort to better model potential failure modes, we developed and make extensive use
of introspective and unit testing tools, in addition to field trials. The unit tests involve environment,
sensor, and dynamic vehicle simulators that publish data of the same type and rate as their physical
counterparts. Additionally, we log all inter-process messages during field and simulation-based
tests. In the event of a failure, this allows us to more easily isolate the modules involved and to
validate changes to these subsystems. While testing helps to significantly reduce the number of
undetectable failures, we are not able to guarantee system integrity and instead rely upon user-level
control to stop the vehicle in the event of catastrophic failure.

5.3 Local and Global State Estimation

The forklift operates in outdoor environments with minimal physical preparation. Specifically,
we assume only that the warehouse consists of adjoining regions that we notionally model as
delivery (“receiving”) and pickup (“issuing”) areas, as well as a “storage” area with bays labeled
using a phonetic alphabet (e.g., “alpha bravo”). The robot performs state estimation and navigation
within the environment using a novel coupling of two 6-DOF reference frames that are amenable to
simultaneously integrating locally- and globally-derived data (Moore et al., 2009). The first is the
global frame with respect to which we maintain coarse, infrequent (on the order of 1 Hz) estimates
of the robot’s absolute pose within the environment. In our system, these estimates follow from
periodic GPS fixes, though they may also be the result of a SLAM implementation.

The second and most widely used is the local frame, a smoothly varying Euclidean reference frame
with arbitrary initial pose about which we maintain high-resolution, high-rate pose estimates. The

local frame is defined to be the reference frame relative to which the vehicle’s dead-reckoned pose
is assumed to be correct (i.e., not prone to drift). The local frame offers the advantage that, by
definition, the vehicle pose is guaranteed to move smoothly over time rather than exhibiting the
abrupt jumps that commonly occur with GPS. State estimates that are maintained relative to the
local frame are accurate for short periods of time but tend to exhibit drift in absolute pose over ex-
tended durations. The majority of the robot’s subsystems favor high-accuracy, high-rate estimates
of the robot’s local pose over short time scales and easily tolerate inaccurate absolute position es-
timates. For that reason, we use the local frame to fuse sensor data for obstacle detection, pallet
estimation and manipulation, and to plan the robot’s immediate motion (i.e., upwards of a minute
into the future). Some tasks (e.g., summoning to “receiving”), however, require coarse knowledge
of the robot’s absolute position in its environment. For that purpose, we maintain an estimate of
the coordinate transformation between the local and global frames that allows the system to project
geo-referenced data into the local frame (e.g., waypoints as Section 5.5 describes).

We model the robot’s environment as a topology (Leonard et al., 2008) with nodes corresponding
to key locations in the warehouse (e.g., the location of “receiving”) and edges that offer the ability
to place preferences on the robot’s mobility (Fig. 4(b)). For example, we employ edges to model
lanes in the warehouse (Fig. 4(a)) within which we can control the robot’s direction of travel.
With the exception of these lanes, however, the robot is free to move within the boundary of the
facility. In order to make it easier for soldiers to introduce the robot to new facilities, we allow the
forklift to learn the topological map during a guided tour. The operator drives the forklift through
the warehouse while speaking the military designation (e.g., “receiving,” “storage,” and “issuing”)
of each region, and the system binds these labels with the recording of their GPS positions and
boundaries. We then associate locations relevant to pallet engagement with a pair of “summoning
points” that specify a rough location and orientation from which the robot may engage pallets (e.g.,
those in storage bays). The topological map of these GPS locations along with the GPS waypoints
that compose the simple road network are maintained in the global frame and projected into the
local frame as needed. Note that the specified GPS locations need not be precise; their purpose is
only to provide rough goal locations for the robot to adopt in response to summoning commands, as
a consequence of our navigation methodology. Subsequent manipulation commands are executed
using only local sensing, and thus have no reliance on GPS.

5.4 Obstacle and Hazard Detection

Critical to ensuring that the robot operates safely is that it is able to detect and avoid people,
other moving vehicles, and any stationary objects in its surround. For that purpose, the system
includes modules for detecting and tracking obstacles and hazards (e.g., non-traversable terrain)
in the environment, which are based upon our efforts developing similar capabilities for MIT’s
entry in the DARPA Urban Challenge (Leonard et al., 2008). The obstacle and hazard detection
processes (within the “Object detection” block of Fig. 3) take as input range and bearing returns
from the five planar skirt LIDARs positioned around the vehicle. The processes output the position
and spatial extent of static obstacles detected within the environment, the location and extent of
ground hazards, and the position, size, and estimated linear velocity of moving objects (e.g., people
and other vehicles). We refer to the latter as tracks.

(a) Raw LIDAR Scans (b) Clustering into Chunks (c) Clustering into Groups

Figure 5: Obstacle detection operates by taking (a) the current set of LIDAR returns and first
spatially clustering them into (b) chunks. These chunks are then grouped over space and time to
form (c) groups to which we associate a location, size, and velocity estimate.

In order to improve the reliability of the detector, we intentionally tilted each LIDAR down by
5 degrees, so that they will generate range returns from the ground when no object is present.
The existence of “infinite” range data enables the detector to infer environmental properties from
failed returns (e.g., from absorptive material). The downward pitch reduces the maximum range to
approximately 15 m, but still provides almost 8 seconds of sensing horizon for collision avoidance,
since the vehicle’s speed does not exceed 2 m/s.

The range and bearing returns from each LIDAR are first transformed into the smoothly-varying
local coordinate frame based upon the learned calibration of each sensor relative to a fixed body
frame. The system then proceeds to classify the returns as being either ground, obstacles, or
outliers. The ground classification stems, in part, from the fact that it is difficult to differentiate be-
tween laser returns that emanate from actual obstacles and those that result from upward-sloping,
yet traversable terrain. It is possible to distinguish between the two by using multiple LIDARs
with scanning planes that are (approximately) parallel and vertically offset (Leonard et al., 2008).
However, the five skirt LIDARs on the forklift are configured in a manner that does not provide
complete overlap in their fields-of-view. Instead, we assume an upper bound on the ground slope
and classify as obstacles any returns whose height is inconsistent with this bound. The one excep-
tion is for regions of sensor overlap when a second LIDAR with a higher scan plane does not get
returns from the same (x, y) position.

Given a set of local frame returns from each of the five skirt LIDARs (Fig. 5(a)), we first perform
preliminary spatiotemporal clustering on all returns classified as being non-ground, as a prepro-
cessing step that helps to eliminate false positives. To do so, we maintain a 100 m × 100 m grid
with 0.25 m cells that is centered at the vehicle. We add each return along with its associated times-
tamp and LIDAR identifier to a linked list that we maintain for each cell. Each time we update a
cell we remove existing returns that are older than a maximum age (we use 33 ms, which corre-
sponds to 2.5 scans from a Sick LMS-291). We classify cells with returns from different LIDARs
or different scan times as candidate obstacles and pass the returns on to the obstacle clustering step.

Next, obstacle clustering groups these candidate returns into chunks, collections of spatially-close
range and bearing returns (Fig. 5(b)). Each chunk is characterized by its center position in the local
frame along with its (x, y) extent, which is restricted to be no larger than 0.25 m in any direction

Restricted

Restricted (dilation)

Infeasible (obstacle track)

Infeasible (stationary obstacle)

Figure 6: Drivability maps that model the costs associated with driving (left) near stationary and
dynamic obstacles, and outside the robot’s current operating region, as well as (right) in the vicinity
of pedestrians.

to keep chunks small. This bound is intentionally smaller than the size of most obstacles in the
environment. Given a return filtered using the preprocessing step, we find the closest existing
chunk. If there is a match whose new size won’t exceed the 0.25 m bound, we add the return to
the chunk and update its position and size accordingly. Otherwise, we instantiate a new chunk
centered at the return. After incorporating each of the new returns, we remove chunks for which
a sufficiently long period of time has passed since they were last observed. We have empirically
found 400 ms to be suitable given the speed at which the forklift travels. The next task is then to
cluster together chunks corresponding to the same physical object into groups. We do so through
a simple process of associating chunks whose center positions are within 0.3 m apart. Figure 5(c)
demonstrates the resulting groups.

Next, we cluster groups over time in order to estimate the velocity of moving objects. At each time
step, we attempt to associate the current set of groups with those from the previous time step. To do
so, we utilize the persistence of chunks over time (subject to the 400 ms update requirement). As
chunks may be assigned to different groups with each clustering step, we employ voting whereby
each chunk in the current group nominates its association with the group from the previous time
step. We then compare the spatial extents of the winning group pair between subsequent time steps
to get a (noisy) estimate of the object’s velocity. We use these velocity estimates as observations
in a Kalman filter to estimate the velocity of each of the group’s member chunks. These estimates
yield a velocity track for moving obstacles. For a more detailed description of the spatiotemporal
clustering process, we refer the reader to our earlier work (Leonard et al., 2008).

We integrate obstacle detections and estimated vehicle tracks into a drivability map that indicates
the feasibility of positioning the robot at different points in its surround. The drivability map takes
the form of a 100 m × 100 m, 0.20 m resolution grid map centered at a position 30 m in front of
the vehicle that we maintain in the local frame. Each cell in the map expresses a 0–255 cost of
the vehicle being at that location. The map encodes three different types of regions, those that are
deemed infeasible, those that are restricted, and those that are high-cost. Infeasible regions denote
areas in which the vehicle can not drive, most often resulting from the detection of obstacles. Areas
classified as restricted are those for which there is a strong preference for the robot to avoid, but that

the robot can drive in if necessary. For example, open areas that lie outside the virtual boundary of
the warehouse environment are deemed restricted, since the robot can physically drive there though
we prefer that it doesn’t. High-cost regions, meanwhile denote areas where there is an increased
risk of collision and follow from a spatial dilation of obstacle detections. We use these regions
to account for uncertainties that exists in the LIDAR data, our obstacle detection capability, and
the robot’s trajectory controller. Individually, these uncertainties are typically small, but they can
compound and lead to a greater risk of collision. The high-risk regions allow for us to add a level
of risk aversion to the robot’s motion.

We populate the drivability map as follows. We start with a map in which each cell is labeled as re-
stricted. We then “carve out” the map by assigning zero cost to any cell that lies within the robot’s
footprint or within the zone in the topological map (e.g., “Receiving,” Fig. 4(b)) in which it is lo-
cated. Next, we update the map to reflect the location of each stationary and moving obstacle group
by assigning maximum cost to any cell that even partially overlaps with an obstacle’s footprint. In
the case of moving obstacles, we additionally use its velocity track to label as restricted each cell
that the obstacle’s footprint is predicted to overlap over the next 2.0 s. We chose 2.0 s due to the rel-
atively slow speed at which our forklift operates and because other vehicles change their speed and
direction of travel fairly frequently, which would otherwise invalidate our constant-velocity model.
Next, we dilate cells that are nearby obstacles by assigning them a cost that scales inversely with
their distance from the obstacle, resulting in the high-cost labeling. Figure 6 presents an example
of a drivability map and a sampled motion plan. The drivability map is rendered in this manner at
a frequency of 10 Hz or immediately upon request by another process (e.g, the motion planner),
based upon the most recently published obstacle information.

Pedestrian safety is central to our design. Though LIDAR-based people detectors exist (Hähnel
et al., 2003; Cui et al., 2007; Arras et al., 2007), we opt to avoid the risk of misclassification
by treating all objects of suitable size as potential humans. The system applies a larger dilation to
obstacles that are classified as being pedestrians. For pedestrians that are stationary, this results in a
greater reduction of the vehicle’s speed when in their vicinity. For pedestrians that are moving, we
employ a greater look-ahead time when assigning cost to areas that they are predicted to occupy.
When pedestrians cross narrow areas such as the lanes between regions, they become restricted
and the robot will stop and wait for the person to pass before proceeding (Fig. 6). Pedestrians who
approach too closely cause the robot to pause.

5.5 Planning and Control

The most basic mobility requirement for the robot is to move safely from a starting pose to its
destination pose. The path planning subsystem (Fig. 3) consists of two distinct components: a
navigator that identifies high-level routes through the map topology and a lower-level kinodynamic
motion planner. Adapted from MIT’s DARPA Urban Challenge system (Leonard et al., 2008), the
navigator is responsible for identifying the shortest sequence of waypoints through the warehouse
route network (maintained in the global frame) and for tracking and planning around blockages
in this network. It is the job of the navigator to respect mobility constraints encoded in the map
topology, such as those that model the preference for using travel lanes to move between warehouse

regions. Given a desired goal location in the topology, the navigator performs A∗ search (Hart et al.,
1968) to identify the lowest cost (shortest time) route to the goal while respecting known blockages
in the topology. The navigator maintains the sequence of (global frame) waypoints and publishes
the local frame position of the next waypoint in the list for the local kinodynamic planner.

Given the next waypoint in the local frame, the goal of the motion planner is to quickly find a cost-
efficient path that respects the dynamics of the vehicle and avoids obstacles as indicated by the
drivability map. The challenge is that any motion planning method meant for practical deployment
on a robot must be capable of operating within limited real-time computational resources. It also
must tolerate imperfect or incomplete knowledge of the robot’s operating environment. In the
context of the forklift, the robot spends no more than a few seconds to plan a path (e.g., while
changing gears) before driving towards the goal, which may take several minutes. In this setting,
it would be useful if the robot were able to utilize available computation time as it moves along its
trajectory to improve the quality of the remaining portion of the planned path. Furthermore, as the
robot executes the plan, its model of the environment will change as vehicles and people move and
new parts of the surround come into view. The estimate of the robot’s state will also change, e.g.,
due to the unobservable variability of the terrain (e.g., wheel slip).

To address these challenges, we developed a motion planner that exhibits two key characteristics.
First, the algorithm operates in an anytime manner: it quickly identifies feasible, though not neces-
sarily optimal, motion plans and then takes advantage of available execution time to incrementally
improve the plan over time towards optimality. Secondly, the algorithm repeatedly replans whereby
it incorporates new knowledge of the robot state and the environment (i.e., the drivability map) and
re-evaluates its existing set of plans for feasibility.

Our anytime motion planner (Fig. 3) was originally presented in our earlier paper (Karaman et al.,
2011) and is based upon the RRT∗ (Karaman and Frazzoli, 2010a), a sample-based algorithm
that exhibits the anytime optimality property, i.e., almost-sure convergence to an optimal solution
with guarantees on probabilistic completeness. The RRT∗ is well-suited to anytime robot motion
planning. Like the RRT, it quickly identifies an initial feasible solution. Unlike the RRT, however,
the RRT∗ utilizes any additional computation time to improve the plan toward the optimal solution.
We leverage this quality by proposing modifications to the RRT∗ that improve its effectiveness for
real-time motion planning.

5.5.1 The RRT∗ Algorithm

We first describe a modified implementation of the RRT∗ and then present extensions for on-
line robot motion planning. Let us denote the dynamics of the forklift in the general form
ẋ(t) = f(x(t), u(t)), where the state x(t) ∈ X is the position (x, y) and orientation θ, and
u(t) ∈ U is the forward velocity and steering input. Let Xobs denote the obstacle region, and
Xfree = X \ Xobs define the obstacle-free space. Finally, let Xgoal ⊂ X be the goal region that
contains the local frame position and heading that constitute the desired waypoint.

The RRT∗ algorithm solves the optimal motion planning problem by building and maintaining a
tree T = (V,E) comprised of a vertex set V of states from Xfree connected by directed edges

E ⊆ V × V . The manner in which the RRT∗ generates this tree closely resembles that of the
standard RRT, with the addition of a few key steps that achieve optimality. The RRT∗ algorithm
uses a set of basic procedures, which we describe in the context of kinodynamic motion planning.

Sampling: The Sample function uniformly samples a state xrand ∈ Xfree from the obstacle-free
region of the state space. We verify that the sample is obstacle-free by querying the drivability map
and using a threshold to determine whether the sample is collision-free.

Nearest Neighbor: Given a state x ∈ X and the tree T = (V,E), the v = Nearest(T, x) function
returns the nearest node in the tree in terms of Euclidean distance.

Near Vertices: The Near(V, x) procedure returns the set of all poses in V that lie within a ball of
volume O((log n)/n) centered at x, where n := |V |.

Steering: Given two poses x, x′ ∈ X , the Steer(x, x′) procedure returns a path σ : [0, 1] → X
that connects x and x′, i.e., σ(0) = x and σ(1) = x′. Assuming a Dubins model (Dubins, 1957) for
the vehicle kinematics, we use a steering function that generates curvature-constrained trajectories.
The dynamics take the form

ẋD = vD cos(θD)

ẏD = vD sin(θD)

θ̇D = uD, |uD| ≤
vD
ρ
,

where (xD, yD) and θD specify the position and orientation, uD is the steering input, vD is the
velocity, and ρ is the minimum turning radius. Six types of paths characterize the optimal trajectory
between two states for a Dubins vehicle, each specified by a sequence of left, straight, or right
steering inputs (Dubins, 1957). We use four path classes for the forklift and choose the steering
between two states that minimizes cost.

Collision Check: The CollisionFree(σ) procedure verifies that a specific path σ does not come
in collision with obstacles in the environment, i.e., σ(τ) ∈ Xfree for all τ ∈ [0, 1]. We evaluate col-
lisions through computationally efficient queries of the drivability map that determine the collision
cost of traversing a particular path with the forklift footprint. Because the drivability map values
are not binary, we impose a threshold to determine the presence of a collision.

Lists and Sorting: We employ a list L of triplets (ci, xi, σi), sorted in ascending order according
to cost.

Cost Functional: Given a vertex x of the tree, we let Cost(x) be the cost of the unique path that
starts from the root vertex xinit and reaches x along the tree. With a slight abuse of notation, we
denote the cost of a path σ : [0, 1]→ X as Cost(σ) for notational simplicity.

The RRT∗ follows the general structure shown in Algorithm 1 using the above functions. The
algorithm iteratively maintains a search tree through four key steps. In the first phase, the RRT∗

algorithm samples a new robot pose xnew from Xfree (Line 3), and computes the set Xnear of all
vertices that are close to xnew (Line 4). If Xnear is an empty set, then Xnear is updated to include

Algorithm 1: The RRT∗ Algorithm
1 V ← {xinit}; E ← ∅; T ← (V,E);
2 for i = 1 to N do
3 xnew ← Sample(i);
4 Xnear ← Near(V, xnew);
5 if Xnear = ∅ then
6 Xnear ← Nearest(V, xnew);

7 Lnear ← PopulateSortedList(Xnear, xnew);
8 xparent ← FindBestParent(Lnear, xnew);
9 if xparent 6= NULL then

10 V.add(xnew);
11 E.add((xparent, xnew));
12 E ← RewireVertices(E,Lnear, xnew);

13 return T = (V,E).

Algorithm 2: PopulateSortedList(Xnear, xnew)

1 Lnear ← ∅;
2 for xnear ∈ Xnear do
3 σnear ← Steer(xnear, xnew);
4 cnear ← Cost(xnear) + Cost(σnear);
5 Lnear.add((cnear, xnear, σnear));

6 Lnear.sort();
7 return Lnear;

Algorithm 3: FindBestParent(Lnear, xnew)

1 for (cnear, xnear, σnear) ∈ L do
2 if CollisionFree(σnear) then
3 return xnear;

4 return NULL

Algorithm 4: RewireVertices(E,Lnear, xnew)

1 for (cnear, xnear, σnear) ∈ L do
2 if Cost(xnew) + c(σnear) < Cost(xnear) then
3 if CollisionFree(σnear) then
4 xoldparent ← Parent(E, xnear);
5 E.remove((xoldparent, xnear));
6 E.add((xnew, xnear));

7 return E

the vertex in the tree that is closest to xnew (Lines 5-6).

In the second phase, the algorithm calls the PopulateSortedList(Xnear, xnew) procedure
(Line 7). This procedure, given in Algorithm 2, returns a list of sorted triplets of the form
(cnear, xnear, σnear), for all xnear ∈ Xnear, where (i) σnear is the lowest cost path that connects xnear
and xnew and (ii) cnear is the cost of reaching xnew by following the unique path in the tree that
reaches xnear and then following σnear (see Line 4 of Algorithm 2). The triplets of the returned list
are sorted according to ascending cost. Note that at this stage, the paths σnear are not guaranteed to
be collision-free.

In the third phase, the RRT∗ algorithm calls the FindBestParent procedure, given in Algorithm 3,
to determine the minimum-cost collision-free path that reaches xnew through one of the vertices
in Xnear. With the vertices presented in the order of increasing cost (to reach xnear), Algorithm 3
iterates over this list and returns the first vertex xnear that can be connected to xnew with a collision-
free path. If no such vertex is found, the algorithm returns NULL.

If the FindBestParent procedure returns a non-NULL vertex xparent, the final phase of the algo-
rithm inserts xnew into the tree as a child of xparent, and calls the RewireVertices procedure to
perform the “rewiring” step of the RRT∗. In this step, the RewireVertices procedure, given in
Algorithm 4, iterates over the list Lnear of triplets of the form (cnear, xnear, σnear). If the cost of the
unique path that reaches xnear along the vertices of the tree is higher than reaching it through the
new node xnew, then xnew is assigned as the new parent of xnear.

5.5.2 Extensions to Achieve Anytime Motion Planning

The RRT∗ is an anytime algorithm in the sense that it returns a feasible solution to the motion plan-
ning problem quickly, and given more time it provably improves this solution toward the optimal
one. Next, we describe extensions that significantly improves the path quality during execution.

The first extension is to have the planner commit to an initial portion of the trajectory while allow-
ing the planner to improve the remaining portion of the tree. Upon receiving the goal region, the
algorithm starts an initial planning phase in which the RRT∗ runs until the robot must start moving
toward its goal. This time is on the order of a few seconds, which corresponds to the time required
to put the forklift in gear. Once the initial planning phase is completed, the online algorithm goes
into an iterative planning phase, in which the robot starts to execute the initial portion of the best
trajectory in the RRT∗ tree. In the process, the algorithm focuses on improving the remaining part
of the trajectory. Once the robot reaches the end of the portion that it is executing, the iterative
phase is restarted by picking the current best path in the tree and executing its initial portion.

More precisely, the iterative planning phase occurs as follows. Given a motion plan
σ : [0, T]→ Xfree generated by the RRT∗ algorithm, the robot starts to execute an initial portion
σ : [0, tcom] until a given commit time tcom. We refer to this initial path as the committed trajectory.
Once the robot starts executing the committed trajectory, the algorithm deletes each of its branches
from the committed trajectory and makes the end x(tcom) the new tree root. This effectively shields
the committed trajectory from any further modification. As the robot follows the committed trajec-

tory, the algorithm continues to improve the motion plan within the new (i.e., uncommitted) tree of
trajectories. Once the robot reaches the end of the committed trajectory, the procedure restarts, us-
ing the initial portion of what is currently the best path in the RRT∗ tree to define a new committed
trajectory. The iterative phase repeats until the robot reaches the desired waypoint region.

5.5.3 Branch-and-Bound and the Cost-to-Go Measure

We additionally include a branch-and-bound mechanism to more efficiently build the tree. The
basic idea behind the branch-and-bound heuristic is that the cost of any feasible solution to the
minimum-cost trajectory problem provides an upper bound on the optimal cost, and the lowest of
these upper bounds can be used to prune certain parts of the search tree.

For an arbitrary state x ∈ Xfree, let c∗x be the cost of the optimal path that starts at x and reaches
the goal region. A cost-to-go function CostToGo(x) associates a real number between 0 and c∗x
with each x ∈ Xfree that provides a lower bound on the optimal cost to reach the goal. We use
the minimum execution time as the cost-to-go function, i.e., the Euclidean distance between x and
Xgoal (neglecting obstacles) divided by the robot’s maximum speed.

The branch-and-bound algorithm works as follows. Let Cost(x) denote the cost of the unique path
that starts from the root node and reaches x through the edges of T . Let xmin ∈ Xgoal be the node
currently in the tree with the lowest-cost trajectory to the goal. The cost of its unique trajectory
from the root gives an upper bound on cost. Let V ′ denote the set of nodes for which the cost to
get to x plus the lower bound on the optimal cost-to-go is more than the upper bound Cost(xmin),
i.e., V ′ = {x ∈ V | Cost(x) + CostToGo(x) ≥ Cost(xmin)}. The branch-and-bound algorithm
keeps track of all such nodes and periodically deletes them from the tree.

In addition to the anytime characteristic, an important property of the algorithm is its use of replan-
ning to accommodate uncertain, dynamic environments. With each iteration, the current committed
trajectory is checked for collisions by evaluating the most recent drivability map, which is updated
as new sensor information becomes available. If the committed plan is found to be in collision, the
robot will come to a stop. The algorithm then reinitializes the tree from the robot’s current loca-
tion. Additionally, since it is computationally infeasible to check the entire tree, we perform lazy
checks of what is currently the best path to the goal, and prune it (beyond the end of the committed
trajectory) when it is found to be in collision.

5.6 Closed-loop Pallet Manipulation

A fundamental capability of our system is the ability to engage pallets, both from truck beds and
from the ground. Pallet manipulation is initiated with a local frame volume of interest containing
the pallet or truck. As we discuss shortly, this volume of interest can come from an image-space
segmentation provided by the user or derived from an autonomous vision-based detection. In either
case, image segmentation together with known camera calibration, results in a prior over the pallet
or truck’s location.

Figure 7: The robot detects the presence of the truck bed and pallet and maintains estimates of
their geometry throughout engagement using LIDARs mounted to the tines and carriage.

The challenge to picking up palletized cargo is to accurately control the dynamics of the non-
holonomic forklift moving on uneven terrain while inserting the tines into the slots of the pallet.
Further, the pallet and truck geometry (e.g., height, width) vary, as do their cargo. In order to op-
erate safely, the forklift must maintain accurate estimates of their geometry using limited onboard
sensing. However, the physical structure of the pallet is sparse, which results in few LIDAR re-
turns from the pallet itself and most from the (unknown) load and the pallet’s supporting surface.
The surfaces of the truck bed similarly provide few returns. Further complicating the estimation
problem is the fact that, while the carriage and tines to which the LIDARs are mounted are rigid,
they are not rigidly attached to the forklift, making extrinsic calibration difficult.

Unlike many approaches to small-object manipulation, it isn’t possible to exploit the compliance
of the manipulator or to use feedback control strategies to ease insertion. At 2700 kg, the forklift
can easily exert significant force. Attempting to insert the tines incorrectly can damage the cargo
before there is an opportunity to detect and correct for the error. Further, the tines are rigid and
cannot be instrumented with tactile sensors necessary to enable feedback control.

Walter et al. originally presented our pallet estimation and manipulation capabilities, which address
these challenges through a coupled perception and control strategy (Walter et al., 2010). At the core
of our perception capability is a general technique for pattern recognition that quickly identifies
linear structure within noisy 2D LIDAR scans. We use this algorithm to build a classifier that
identifies pallets and trucks among clutter. The system feeds positive detections to a set of filters
that maintain estimates for the pallet and truck poses throughout the process of engagement. We
use these estimates in a steering controller that servos the pose of the vehicle and tines.

5.6.1 Fast Closest Edge Fitting for Pallet and Truck Detection

Most pallets and trucks have distinctive features, namely linear segments forming the sides and
two slots of the pallet and the flat horizontal and vertical faces of the truck bed. Our strategy is
to identify these features in individual scans from the tine- and carriage-mounted LIDARs and
classify them as corresponding to a pallet, truck, or as outliers. The challenge is to detect these
edges despite the noise present in the laser range finder data. Inspired by kernel-based solutions

based gestures into the world frame, yielding a corresponding
volume of interest.

In the subsequent sections, we explain how the robot
autonomously manipulate pallets given directives of this
form.

IV. FAST CLOSEST EDGE DETECTION
FROM LASER RANGE FINDER DATA

In this section, a novel efficient algorithm that identifies
the closest edge in LIDAR data is proposed. Two closest
edge detection problems are studied. The first assumes that
the orientation of the edge is known and estimates the
distance of the edge from the sensor. The second relaxes this
assumption and estimates both the distance and orientation
of the edge. Inspired by similar problems in learning with
kernel methods [21], we formulate the first variant of the
problem as a linear program, the dual of which is shown
to be solvable in O(n min{ν, logn}) time, where n is the
number of points and ν is a problem-specific parameter. Note
that solving the original linear program with, for instance, the
interior point algorithm requires O(n3.5) time in the worst
case [22]; hence, exploiting the structure of the dual program
results in significant computational savings, facilitating real-
time implementation. In the second variant of the problem,
we propose a heuristic algorithm that employs the algorithm
for the first variant a constant number of times. Sections V
and VI describe the use of both algorithms as a basis to
detect pallets and trucks, respectively.

A. Closest Edge Detection with Known Orientation

Consider the first variant of the closest edge detec-
tion problem. To define the problem more formally, let
X = {xi}i∈I , where I = {1, 2, . . . , n}, be the set of points
in the two dimensional Euclidean space R2, representing
the data sampled from a planar laser range finder. Fig-
ure 4 presents a simple example with laser returns that are
representative of those from a pallet face. Without loss of
generality, let the sensor lie in the origin of this Euclidean
space and be oriented such that its normal vector is [1, 0]".
Let a ∈ R2 denote a normalized vector, i.e., ‖ a ‖ = 1.
Informally, the problem is to find the distance ρ from the
origin to the line that separates all data points in X , except
a few outliers, from the origin. More precisely, for all points
xi ∈ X , except a few outliers, 〈a, xi〉 ≥ ρ holds, where
〈·, ·〉 denotes the dot product, i.e., the distance of xi to the
origin when projected along the vector a. Let ξi represent
the distance of point xi to the separating line if the distance
from the origin to xi (projected along a) is less than ρ;
otherwise, let ξi be zero. That is ξi = max (ρ − 〈a, xi〉, 0)
(see Figure 4).

Given a line described by a normal a and distance ρ, a
point xi with ξi > 0 is called an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem
as maximization of the following function: ρ − C

∑
i∈I ξi,

where C is a constant problem-dependent parameter. The
maximization represents the trade-off between two objec-
tives: maximizing the distance ρ of the separating line to

ρ
xi

a

ξi

X

Y

Fig. 4. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

the origin and minimizing the total distance
∑

i∈I ξi of the
outliers to line (a, ρ). Notice that C = 0 renders ρ = ∞, in
which case all data points will be outliers. C → ∞, on the
other hand, allows no outliers in a feasible solution.

We first consider the case in which no outliers are per-
mitted (C → ∞) and the relatively easy problem of finding
the distance ρ of the line with normal a to the origin such
that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes
the distance of xi from the origin for all i ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in time O(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in time Ω(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners of the scanned object, this solution
may provide noisy information. Precisely for this reason,
the aforementioned formulation of the closest edge detection
problem includes an extra term in the objective function so
as to filter out such noise. The rest of this section details
an algorithm that solves the closest edge detection problem
while incurring small extra computational cost.

The closest edge detection problem can be formulated as
a linear program as follows:

maximize ρ − 1

ν

∑

i∈I
ξi, (1a)

subject to di ≥ ρ − ξi, ∀i ∈ I, (1b)
ξi ≥ 0, ∀i ∈ I, (1c)

where ρ ∈ R and ξi ∈ R are the decision variables, and
ν ∈ R is a parameter such that ν = 1/C. The term di =
〈a, xi〉 is the distance of point xi to the origin when projected
along a.

For computational purposes, it is useful to consider the
dual of the linear program (1):

minimize
∑

i∈I
diλi, (2a)

subject to
∑

i∈I
λi = 1, ∀i ∈ I, (2b)

0 ≤ λi ≤ 1

ν
, ∀i ∈ I, (2c)

Figure 8: A graphical representation of the closest edge detection problem for 2D laser returns
from a pallet face (e.g., Fig. 9). The three grey points are outliers with respect to the line (a, ρ).

to similar problems in machine learning (Schölkopf and Smola, 2002), we formulate the problem
as a linear program for which the dual form can be solved in O(nmin{log n, ν}) time, where n
is the number of points and ν is a problem-specific parameter. This is particularly advantageous
for real-time applications when compared with the O(n3.5) worst-case cost of the standard interior
point solution (Boyd and Vandenberghe, 2004).

Let X = {xi}i∈I , where I = {1, 2, . . . , n}, be the set of 2D points from the current scan (Fig. 8).
Without loss of generality, assume that the sensor lies at the origin and denote the orientation by the
normal vector a ∈ R2. Assuming that the orientation is known, the problem is to find the distance
ρ from the origin to the line that separates all data points, except a few outliers, from the origin.
More precisely, for all points xi ∈ X , except a few outliers, 〈a, xi〉 ≥ ρ holds, where 〈·, ·〉 denotes
the dot product. Let ξi = max (ρ− 〈a, xi〉, 0) be the distance from a point xi to the separating line
(projected along a) for outliers, and zero for inliers.

Given a line described by a normal a and distance ρ, a point xi with ξi > 0 is an outlier with
respect to the line (a, ρ). We formulate the closest edge detection problem as the maximization of
ρ − C∑i∈I ξi, where C is a constant problem-dependent parameter. This seeks to maximize the
distance ρ of the separating line to the origin while minimizing the total distance

∑
i∈I ξi of the

outliers to the line. Notice that C = 0 results in each data point being an outlier, while C → ∞
allows no outliers in a feasible solution. We allow for the presence of outliers by formulating the
problem as follows:

maximize ρ− 1

ν

∑

i∈I

ξi, (2a)

subject to di ≥ ρ− ξi, ∀i ∈ I, (2b)
ξi ≥ 0, ∀i ∈ I, (2c)

where ρ ∈ R and ξi ∈ R are the decision variables, ν ∈ R is a parameter that serves as an upper
bound on the number of outliers, and di = 〈a, xi〉 is the distance of point xi to the origin when
projected along a.

For computational purposes, we consider the dual of the linear program (2):

minimize
∑

i∈I

diλi, (3a)

subject to
∑

i∈I

λi = 1, ∀i ∈ I, (3b)

0 ≤ λi ≤
1

ν
, ∀i ∈ I, (3c)

where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ
∗
n) be the optimal solution to the linear

program (2) and (λ∗1, . . . , λ
∗
n) be the optimal solution of the dual linear program (3). The optimal

primal solution is recovered from the dual solution as ρ∗ =
∑

i∈I λ
∗
i di.

Algorithm 5, DUALSOLVE solves the dual linear program in time O(nmin{log n, ν}). The algo-
rithm employs two primitive functions: SORT considers a set {yi}i∈I and returns a sorted sequence
of indices J such that yJ (j) ≤ yJ (j+1), and MIN returns the index j of the minimum element in a
given set. The elementary operations in DUALSOLVE require only additions and multiplications,
without the need to compute any trigonometric functions, which makes it computationally efficient
in practice. We use this algorithm in the DISTFIND(ν, a,X) procedure (Algorithm 6) to solve the
original linear program (2). Clearly, DISTFIND also runs in time O(nmin{log n, ν}).

Algorithm 5: DUALSOLVE (ν, a,X)

1 for all i ∈ I do
2 λi := 0;

3 for all i ∈ I do
4 di :=< a, xi >;

5 D := {di}i∈I ;
6 if log |D| < ν then
7 J := SORT(D);
8 for j := 1 to bνc do
9 λJ (j) := 1/ν;

10 λJ (bνc+1) := 1− bνc/ν;
11 else
12 for i := 1 to bνc do
13 j := MIN(D);
14 λj := 1/ν;
15 D := D \ {dj};
16 j := MIN(D);
17 λj := 1− bνc/ν;

18 return {λi}i∈I

Now, we relax the assumption that the orientation is known. We employ DUALSOLVE a constant
number of times for a set {ai}i∈{1,2,...,N} of normal vectors that uniformly span an interval of

Algorithm 6: DISTFIND(ν, a,X)

1 for all i ∈ I do
2 di :=< a, xi >;

3 {λi}i∈I := DUALSOLVE(ν, a,X);
4 ρ :=

∑
i∈I λidi

possible orientations (Algorithm 7). After each invocation of DUALSOLVE, the method computes
a weighted average zi of the data points using the dual variables returned from DUALSOLVE as
weights. Using a least squares method, a line segment is fitted to the resulting points {zi}i∈{1,2,...,N}
and returned as the closest edge as the tuple (z′, a′, w′), where z′ is the position of the mid-point,
a′ is the orientation, and w′ is the width of the line segment.

Algorithm 7: EDGEFIND(ν,X , θmin, θmax, N)

1 for j := 1 to N do
2 θ := θmin + (θmax − θmin)j/N ;
3 a := (cos(θ), sin(θ));
4 {λi}i∈I := DUALSOLVE(ν, a,X);
5 zj :=

∑
i∈I λixi;

6 (z′, a′, w′) := LINEFIT({zj}j∈{1,2,...,N});
7 return (z′, a′, w′)

5.6.2 Pallet and Truck Classification and Estimation

Pallet and truck perception algorithms run DISTFIND or EDGEFIND over sets {Xk}k∈K of data
points, one for each tine- and carriage-mounted LIDAR, to identify linear segments within the
volume of interest. We then use these segments to compute several features that we use as input to
a classifier to identify positive detections of pallets and truck beds. These features include relative
distances and orientations between linear segments that encode different geometric properties of
pallets and truck beds (e.g., width, slot width, depth, height, etc.). These features are calculated
based upon single scans for pallets and pairs of scans from the left- and right-mounted vertical
LIDARS for trucks. For a more detailed description of these features and the way in which they
are computed, we refer the reader to our earlier work (Walter et al., 2010).

Features are fed into a classifier that, upon detecting a pallet within a scan (Fig. 9) or a truck
in a scan pair (Fig. 10), yields an estimate of the object’s pose and geometry. This includes the
position, orientation and the location and the slot width of pallets, and the 2D position, orientation,
and height off the ground of the truck bed. The method then uses these estimates to initialize a
Kalman filter with a conservative prior. The filter employs subsequent detections as observations
to track the pose and geometry of the truck and pallets online.

(a) Negative (Truck) (b) Negative (Truck) (c) Positive (Pallet)

(d) Positive (Pallet) (e) Positive (Pallet) (f) Negative (Load)

Figure 9: Output of the pallet detection algorithm as a pallet on a truck bed is being actively
scanned, sorted by increasing height. (a-b) LIDAR returns from the undercarriage and the truck
bed are rejected as pallet candidates. (c-e) LIDAR returns from the pallet face are identified as the
pallet. (f) The load on the pallet is correctly ruled out as a candidate pallet face.

Figure 10: The system classifies pairs of vertical scans as being negative (left, in green) or positive
(right, in pink) detections of a truck bed, and uses the latter to estimate the truck’s pose.

5.6.3 Manipulation Controller

Given the filter estimates for the truck and pallet pose, the manipulation controller steers the robot
from an initial position and heading to a final position and heading. The algorithm is tailored and
tuned for precise pallet engagement operations.

Let zinitial and ainitial be the robot’s initial position and orientation, where zinitial is a coordinate
Euclidean plane and ainitial is a normalized two-dimensional vector. Similarly, let zfinal and afinal be
the desired final position and orientation of the robot. (In our application, zfinal and afinal represent
the pallet position and orientation.) Without loss of generality, let zfinal = (0, 0) and afinal = (1, 0)
be oriented toward the X-axis (Fig. 11). Similarly, let ey be the distance between zinitial and zfinal

ey

eθ

ainitial

afinal

X

Y

Figure 11: Illustration of the controller algorithm.

along the direction orthogonal to afinal, and let eθ be the angle between the vectors ainitial and afinal,
eθ = cos-1(ainitial · afinal). Finally, let δ be the steering control input to the robot. In this work, we
use the following steering control strategy for pallet engagement operations:

δ = Ky tan-1(ey) +Kθeθ, (4)

where Ky and Kθ are controller parameters. Assuming a Dubins vehicle model (Dubins, 1957) of
the robot

ż = (cos θ, sin θ) (5a)

θ̇ = tan-1(δ), (5b)

the nonlinear control law (4) can be shown to converge such that ey → 0 and eθ → 0 holds, if
−π/2 ≤ eθ ≤ π/2 is initially satisfied (Hoffmann et al., 2007).

5.7 Object Reacquisition

Critical to the effectiveness of the forklift is its ability to understand and execute long task se-
quences that the user commands using natural language speech (e.g., “Pick up the pallet of tires
and put them on the truck”). This requires that the robot be able to robustly detect the presence of
objects in the environment (e.g., “the pallet of tires” and “the truck”) over long excursions in both
space and time. Achieving the level of recall necessary to persistently reacquire objects is chal-
lenging for the forklift and other robots that operate with imprecise knowledge of their absolute
location within dynamic, uncertain environments.

We developed a one-shot appearance learning algorithm (Walter et al., 2012) that automatically
builds and maintains a model of the visual appearance of each user-indicated object in the envi-
ronment. This enables robust object recognition under a variety of different lighting, viewpoint,
and object location conditions. The user provides a single manual segmentation by circling it in
an image from one of the forklift’s cameras shown on the tablet interface. The system bootstraps
on this single example to automatically generate a multiple-view, feature-based object model that

captures variations in appearance due to changes in viewpoint, scale, and illumination. This auto-
matic and opportunistic model learning enables the robot to recognize the presence of objects to
which the user referred, even for viewpoints that are temporally and spatially far from those of the
first training example.

Given a segmentation cue, the algorithm constructs a modelMi that represents the visual appear-
ance of an object i as a collection of views,Mi = {vij}. We define a view vij as the appearance of
the given object at a single viewpoint and time instant j (i.e., as observed by a camera with a partic-
ular pose at a particular moment). A view consists of a 2D constellation of SIFT keypoints (Lowe,
2004) comprised of an image pixel position and a local descriptor. The system initializes a new
modelMi for each indicated object, using the set of SIFT features that fall within the gesture in
that particular frame to form the new model’s first view vi1. The method then searches new cam-
era images for each model and produces a list of visibility hypotheses based on visual similarity
and geometric consistency of keypoint constellations. New views are automatically added over
time as the robot moves; thus the collection of views opportunistically captures variations in object
appearance due to changes in viewpoint and illumination.

5.7.1 Single-View Matching

As the robot acquires new images of the environment, the system (Algorithm 8) continuously
searches for instances of each modelMi within the scene, producing a visibility hypothesis and
associated likelihood for the presence and location of each view. For each view vij , our algorithm
matches the view’s set of descriptors Fij with those in the image at time t Ft to produce a set
of point-pair correspondence candidates Cijt (Line 2). We evaluate the similarity spq between a
pair of features p and q as the normalized dot product between their descriptor vectors fp and fq,
spq =

∑
k(fpkfqk)/‖dp‖‖dq‖. We exhaustively compute all similarity scores and collect in Cijt at

most one pair per feature inFij , subject to a minimum threshold. Table 1 enumerates the parameter
settings that the forklift uses for reacquisition.

Since many similar-looking objects may exist in a single image, Cijt may contain a significant
number of outliers and ambiguous matches. We therefore enforce geometric consistency on the
constellation by means of random sample consensus (RANSAC) (Fischler and Bolles, 1981) with a
plane projective homographyH as the underlying geometric model (Hartley and Zisserman, 2004).
Our particular robot employs wide-angle camera lenses that exhibit noticeable radial distortion.
Before applying RANSAC, we correct the distortion of the interest points (Line 3) to account for
deviations from standard pinhole camera geometry, which enables the application of a direct linear
transform to estimate the homography.

With each RANSAC iteration, we select four distinct (un-distorted) correspondences Ĉuijt ∈ Cuijt
with which we compute the induced homography Ĥ between the current image and the view vij
(Line 7). We then apply the homography to all matched points within the current image, re-distort
the result, and classify each point as an inlier or outlier according to its distance from its image
counterpart using a pre-specified threshold t in pixel units (Lines 12 and 12). As the objects are
non-planar, we use a loose value for this threshold in practice to accommodate deviations from
planarity due to motion parallax.

Algorithm 8: Single-View Matching
Input : A model view vij and camera frame It
Output: Dijt =

(
H?
ij, c

?
ij

)

1 Ft := {(xp, fp)} ← SIFT(It);
2 Cijt := {(sp, sq)} ← FeatureMatch(Ft,Fij) sp ∈ Ft, sq ∈ Fij;
3 ∀xp ∈ Cijt, xup ← UnDistort(xp);
4 H?

ijt := {H?
ijt, d

?
ijt, C̃?ijt} ← {};

5 for n = 1 to N do
6 Randomly select Ĉuijt ∈ Cuijt, |Ĉuijt| = 4;
7 Compute homography Ĥ from (xup , x

u
q) in Ĉuijt;

8 P ← {}, d̂← 0;
9 for

(
xup , x

u
q

)
∈ Cuijt do

10 x̂up ← Ĥxup ;
11 x̂p ← Distort(x̂up);
12 if dpq = |xq − x̂p| ≤ td then
13 P ← P + (xp, xq);
14 d̂← d̂+ min(dpq, td);

15 if d̂ < d?ij then
16 H?

ijt ← {Ĥ, d̂,P};

17 c?ijt = |C̃?ijt|/(|vij|min(α|C̃?ijt|, 1);
18 if c?ijt ≥ tc then
19 Dijt ←

(
H?
ijt, c

?
ijt

)
;

20 else
21 Dijt ← ();

RANSAC establishes a single best hypothesis for each view vij that consists of a homography
H?
ijt and a set of inlier correspondences C̃?ijt ∈ Cijt. We assign a confidence value to the hypoth-

esis cijt = |inliers|/(|vij|min(α|inliers|, 1) (Line 17) that compares the number of inliers to total
points in vij . If the confidence is sufficiently high per a user-defined threshold tc, we output the
hypothesis.

5.7.2 Multiple-View Reasoning

The single-view matching procedure may produce a number of match hypotheses per image and
does not prohibit detecting different instances of the same object. Each object model possesses
one or more distinct views, and it is possible for each view to match at most one location in the
image. To address this, the algorithm reasons over these matches and their associated confidence
scores to resolve potential ambiguities, thereby producing at most one match for each model and
reporting its associated image location and confidence.

Table 1: Reacquisition Parameter Settings.
Parameter Description Setting

smin
pq

Minimum dot product (i.e., maximum allowable distance)
between SIFT feature matches (Alg. 8, line 2).

0.9

N
Number of RANSAC iterations for single-view matching
(Alg. 8, line 5).

600

td
Maximum distance in pixels of projected interest points
for RANSAC inliers (Alg. 8, line 12).

10.0 px

tc
Minimum confidence threshold for homography valida-
tion (Alg. 8, line 18).

0.10

tmatch
c Minimum confidence threshold for a visible model match. 0.10

hmin
Minimum scale variation between an existing model view
and a new view for model augmentation.

1.20

dmin
Minimum displacement of the robot between new and ex-
isting views for model augmentation.

0.50 m

First, all hypotheses are collected and grouped by object model. To each active model (i.e., a model
for which a match hypothesis has been generated), we assign a confidence score equal to that of
the most confident view candidate. If this confidence is sufficiently high as specified by a threshold
tmatch
c , we consider the model to be visible and report its current location, which is defined as the

original 2D gesture region transformed into the current image by the match homography associated
with the hypothesis.

While this check ensures that each model matches no more than one location in the image, we
do not impose the restriction that a particular image location match at most one model. Indeed, it
is possible that running the multiple-view process on different models results in the same image
location matching different objects. However, we have not found this to happen in practice, which
we believe to be a result of surrounding contextual information captured within the user gestures.

5.7.3 Model Augmentation

As the robot navigates within the environment, an object’s appearance changes due to variations
in viewpoint and illumination. Furthermore, the robot makes frequent excursions—for example,
moving cargo to another location in the warehouse—that result in extended frame cuts. When the
robot returns to the scene, it typically observes objects from a different vantage point. Although
SIFT features tolerate moderate appearance variability due to some robustness to scale, rotation,
and intensity changes, the feature and constellation matches degenerate with more severe scaling
and 3D perspective effects.

In order to retain consistent object identity over longer time intervals and larger displacements,
the algorithm periodically augments each object model by adding new views whenever an object’s

(a) 141 seconds (b) 148 seconds (c) 151 seconds

(d) 288 seconds (e) 292 seconds (f) 507 seconds

Figure 12: New views of an object annotated with the corresponding reprojected gesture. New
views are added to the model when the object’s appearance changes, typically as a result of scale
and viewpoint changes. Times shown indicate the duration since the user provided the initial
gesture. Note that the object is out of view during the periods between (c) and (d), and (e) and (f),
but is reacquired when the robot returns to the scene.

appearance changes significantly. In this manner, the method opportunistically captures the ap-
pearance of each object from multiple viewing angles and distances. This increases the likelihood
that new observations will match one or more views with high confidence and, in turn, greatly
improves the overall robustness of reacquisition. Figure 12 depicts views of an object that are
automatically added to the model based upon appearance variability.

The multiple-view reasoning signals a positive detection when it determines that a particular model
Mi is visible in a given image. We then examine each of the matching views vij for that model and
consider both the robot’s motion and the geometric image-to-image change between the view vij
and the associated observation hypothesis. In particular, we evaluate the minimum position change
dmin = minj‖pj − pcur‖ between the robot’s current position pcur and the position pj associated
with the j th view. We also consider the minimum 2D geometric change hmin = minj scale(Hij)
corresponding to the overall 2D scaling implied by match homography Hij . If both dmin and hmin

exceed pre-specified thresholds, signifying that no current view adequately captures the object’s
current image scale and pose, then we create a new view for the modelMi using the hypothesis
with the highest confidence score.

In practice, the system instantiates a new view by generating a virtual gesture that segments the
object in the image. SIFT features from the current frame are used to create a new view, and
this view is then considered during single-view matching (Section 5.7.1) and during multiple-view
reasoning (Section 5.7.2).

Figure 13: The handheld tablet provides one means for the user to interact with the robot. The
tablet enables the user to visualize the robot’s situational awareness and to convey task-level direc-
tives through a combination of pen-based gestures and natural language utterances.

5.8 User Interface

One of the most fundamental design requirements for our system is that it must afford an intuitive
interface that allows existing personnel to quickly and efficiently command the robot with minimal
training. To that end, we worked extensively with soldiers and civilians within military logistics
throughout the iterative design process. Taking into account their feedback and the results of their
tests, we developed a multimodal command interface that enables humans to issue high-level tasks
to the robot using a combination of simple pen-based gestures made on a handheld tablet, and
utterances spoken using natural language.

5.8.1 Graphical User Interface

Our interface (Correa et al., 2010) operates on a Nokia N810 Internet Tablet (Fig. 13) that provides
a built-in microphone for speech input, alongside a touchscreen and stylus. The graphical user
interface presents images from one of the forklift’s four cameras that are annotated with the robot’s
object-level knowledge about its surround (e.g., obstacles, pedestrians, and pallets), thus providing
the user a 360◦ view of the area around the robot. Additionally, the interface offers a rendered
overhead view of the robot’s local environment that depicts its location in the topological map
along with an indication of the robot’s awareness of nearby objects. For both the overhead and
camera views, we deliberately choose to provide a high-level abstraction of the robot’s world
model over rendering raw sensor data (as others have done) to minimize the cognitive burden on
the user that results from having to interpret the data.

In addition to providing an indication of the robot’s situational awareness, the tablet lists the queue
of tasks that the forklift is to perform. The user can click on and cancel any of these tasks if
needed. Additionally, the interface indicates the current status of the robot. Text boxes at the
top of the screen display a variety of information, including the system’s recognition of the latest

(a) Forward-Facing Camera Image (b) Rendered Overhead View

Figure 14: The interface presents images from (a) each of the robot’s four cameras as well as (b)
an overhead view, each augmented with the robot’s knowledge of objects in its surround.

utterance, the robot’s operating mode (i.e., “Active,” “Manual,” or “Paused”), and a description of
the robot’s current action. For example, when the robot is approaching a pallet on the back of a
truck as part of a pick-up task, the interface lists “Approaching truck” and “Active: Pickup.”

5.8.2 Drawing on the World

By drawing on the canvas, the user can command the robot to move, pick up, and place pallets
throughout the environment. Gestures have different meanings depending on their context. For
example, circling a pallet is an instruction to pick it up, while circling a location on the ground or
on the back of a truck is an instruction to put the pallet at the circled location. Drawing an “X” or
a dot on the ground is an instruction to go there, while drawing a line is an instruction to follow
the path denoted by the line.

The interface first classifies the shape of the user’s sketch into one of six types: a dot, an open curve,
circle, an “X”, a pair of circles, or a circled “X”. It then infers the context-dependent meaning of the
shape, upon which we then refer to it as a gesture. The system recognizes shapes as in traditional
sketch recognition systems: it records the timestamped point data that makes up each stroke and
uses heuristics to compute a score for each possible shape classification based on stroke geometry.
It then classifies the stroke as the highest-scoring shape. In order to classify shapes as gestures, the
system must consider both what was drawn and what it was drawn on. We define the scene (i.e.,
the “context”) as the collection of labeled 2D boxes that bound the obstacles, people, and pallets
visible in the camera view. Reasoning over the scene is what differentiates this approach from
ordinary sketch recognition.

Figure 15 shows an example of the use of context to disambiguate a stroke. In this example, the
stroke (Fig. 15(a)) could be either a circular path gesture that avoids objects (Fig. 15(b)), a pallet
pickup command (Fig. 15(c)), or a pallet placement command (not shown). The interpretation of
the stroke depends upon its geometry as well as the context in which it was drawn. For example,
when the projected size is too large to indicate a pallet drop-off location (or when the forklift isn’t
carrying a pallet), the system interprets the gesture as suggesting a circular path. We further incor-

porate scene context into the classification process so as to not rely solely upon stroke geometry
for interpretation, making the algorithm less sensitive to gesture errors.

(a) (b) (c)

Figure 15: (a) A circular stroke alone is ambiguous: it could be either (b) a circular path or (c) a
pallet manipulation command. Context determines the gesture’s meaning.

This ability to disambiguate shapes into different gestures allows us to use fewer distinct shapes.
As a result, the geometrical sketch recognition task is simplified, leading to higher gesture classi-
fication accuracy and robustness. The smaller lexicon of simple gestures also allows the user to
interact with the system more easily (Correa et al., 2010).

5.8.3 Natural Language Understanding

In addition to context-aware gesture recognition, we developed and implemented a framework
that enables people to issue commands using natural language speech (Tellex et al., 2011). For
example, as an alternative to summoning the robot to the storage bay, circling the pallet to be
picked up, summoning it to issuing, and then circling a placement location on the truck, the user can
simply say “Pick up the tire pallet and put it on the truck.” The tablet performs speech recognition
onboard using the PocketSUMMIT library (Hetherington, 2007). The robot then uses the language
understanding algorithm (running on the robot) to interpret the resulting text, and the vision-based
reacquisition and pallet manipulation capabilities to execute the command. This directive requires
a few seconds of the user’s time at the outset after which the robot carries out the task, which may
take tens of minutes. In contrast, the aforementioned gesture-based interaction requires that the
user be involved throughout, albeit for only a few seconds at a time.

A challenge to understanding commands spoken in natural language is to correctly ground (i.e.,
map) the linguistic elements to their referents in the robot’s model of its state and action space. We
address this problem by learning a probabilistic model over the space of groundings for the linguis-
tic constituents in the command. The task of interpreting the utterance is then one of performing
inference in this model to identify the most likely plan. Underlying the model is the General-
ized Grounding Graph (G3), a probabilistic graphical model that we instantiate for each command
based upon the hierarchical structure of natural language (Tellex et al., 2011). The model encodes
the relationship between linguistic elements that refer to places and objects in the environment
(e.g., “receiving” or “tire pallet”), spatial relations (e.g., “on the truck”), and actions that the robot

can perform (e.g., “pick up”), and the robot’s model of its environment and available actions. We
learn these relations by training the model on a corpus of natural language commands that are
paired with hand-labeled groundings in the robot’s state and action space. The task of interpreting
a new command is then one of building the G3 graph and performing inference on the unobserved
random variables (i.e., the set of objects, places, relations, and actions in the robot’s world model).
For more information about the specific operation of the G3 framework, we refer the reader to our
previous work (Tellex et al., 2011).

5.9 Operation in Close Proximity to People

The robot must be able to operate safely in close proximity to people, whether it is a supervisor or
bystanders who move unconstrained within the warehouse. To ensure that the robot operates safely
and that its presence is accepted by people, we endowed the robot with a number of failsafe behav-
iors. By design, all potential robot trajectories conclude with the robot coming to a complete stop
(even though this leg of the trajectory may not always be executed, particularly if another trajectory
is chosen). Consequently the robot moves more slowly when close to obstacles (conservatively as-
sumed to be people). The robot also signals its internal state and intentions, in an attempt to make
people more accepting of its presence and more easily able to predict its behavior (Correa et al.,
2010).

Humans can infer a great deal of information from the behavioral cues of others. If people are to
accept the presence of a 2700 kg robot, they must be able to infer its current state and intent with
similar ease. We allow the forklift to convey a subset of similar cues to people in its surround
by equipping it with LED signage, strings of LED lights circling the body and mast, as well as
speakers mounted to the roof.

5.9.1 Annunciation of Intent

The marquee lights that encircle the forklift encode the robot’s state as colors, and imminent motion
as moving patterns. For example, a chasing light pattern renders the intended direction of the robot,
strobing forward when it is about to move forward and backward just before it is going to move in
reverse. The LED signage displays short text messages describing the robot’s current state (e.g.,
“Active,” “Paused,” or “Manual”), the current task (e.g., “Summon: Storage”), and any imminent
actions (e.g., forward motion or mast lifting). When the forklift is transitioning to autonomous
mode, the speakers sound a warning while the LED signs spell out the time remaining till the robot
is autonomous (e.g., “Active in ... 3, 2 ,1”). Subsequently, the speakers announce tasks right before
the robot is about to perform them. In our experience, we found that it is useful to be more verbose
with signage and verbal annunciation at the outset and, once people become comfortable with the
robot’s presence, to reduce the rate at which the robot vocalizes its state and intent.

5.9.2 Awareness Display

The forklift also uses its annunciators to inform bystanders that it is aware of their presence. When-
ever a human is detected in the vicinity, the marquee lights, consisting of strings of individually

Figure 16: The robot utilizes a combination of LED signs and LED lights to indicate that it is
aware of people in its vicinity. The lights mimic the robot’s gaze towards approaching pedestrians.

addressable LEDs, display a bright region oriented in the direction of the detection (Fig. 16). If
the estimated motion track is converging with the forklift, the LED signage and speakers announce
“Human approaching.”

5.9.3 Shout Detection

The operator’s interface provides several mechanisms by which they can quickly place the robot in
a safe stopped state. Other people operating within the robot’s surround, however, must also have
a means of stopping the robot when necessary. For that reason, we equipped the robot with four
array microphones facing forward, right, left, and rearward. The forklift continuously listens on
each channel for shouted warnings. The input audio is transmitted to a streaming speech recog-
nizer (Hetherington, 2007) that is configured to detect a set of key utterances that include several
different stop commands. Further, the system continuously listens for a small set of utterances that
direct summoning and manipulation tasks, allowing users to command the robot without the tablet
interface (Chuangsuwanich et al., 2010; Chuangsuwanich and Glass, 2011). The challenge that we
address is to develop a recognizer that provides a low false negative rate (namely, for shouted stop
commands) without significantly hindering the true positive rate, despite the noisy environments
in which the robot operates.

5.9.4 Subservience and Autonomy Handoff

We place more trust on human judgment than we do on the forklift in all cases. Accordingly,
the robot relinquishes complete control to any person in the driver’s seat. When a human closely
approaches the robot, it pauses for safety. When a human enters the cabin and sits down, the
robot detects his/her presence in the cabin through the report of a seat-occupancy sensor, the user’s

Figure 17: The robot transporting cargo at the Fort Lee SSA.

contact with the mast or transmission levers, or the turning of the steering wheel. In this event,
the robot reverts to behaving exactly as a manned forklift, completely ceding control. The system
remains fully in manual mode until the user engages the parking brake, steps out of the cabin and
away from the vehicle, and places it in autonomous mode using the handheld tablet interface. At
this point, the system uses visual and audible cues to indicate to the user and any bystanders that
it is resuming autonomous operation. Additionally, when the robot can not perform a difficult task
and requests help, anyone can then climb in and operate it.

6 Deployment and Results

Over the course of three and a half years developing the system, we have performed numerous ex-
periments and field trials. We have operated the system successfully in a number of different model
and actual warehouse facilities. These include extensive testing at a model warehouse configured
as a military Supply Support Activity (SSA) situated on an outdoor, gravel shuttle parking lot on
the MIT campus. We also operated the system for several weeks at an in situ SSA located at Fort
Belvoir in the summer of 2009, where we performed extensive end-to-end testing. Additionally,
we deployed the robot for a two week period in an active SSA at Fort Lee (Fig. 17) where the robot
operated alongside U.S. Army soldiers. In the Fort Belvoir and Fort Lee field trials, as well as those
at the MIT test site, the robot was frequently commanded by military personnel, including soldiers
active and knowledgeable in military logistics. In each case, the soldier was given a brief training
session before using either the handheld interface or speaking directly to the robot to command
various tasks.

In the following sections, we present experimental results that evaluate each of the critical subsys-
tems described previously. We then discuss the end-to-end performance of our system during the
various deployments.

6.1 Obstacle Avoidance and Anytime Optimal Motion Planning

A key performance metric for the navigation subsystem is the ability to closely match the predicted
trajectory with the actual path, as significant deviations may cause the actual path to become infea-
sible. Feasibility not only includes safe operation in the vicinity of bystanders and obstacles (i.e.,
avoiding collisions), but also requires that the vehicle does not reach the limits of its dynamic ca-
pabilities, namely risk roll-over when carrying significant load. During normal operation in several
outdoor experiments, we recorded 97 different complex paths of varying lengths (6 m to 90 m) and
curvatures. For each, we measure the average and maximum lateral error between the predicted
and actual vehicle position over the length of the path. In all cases, the average prediction error
does not exceed 0.12 m, while the maximum prediction error does not exceed 0.35 m.

We also test the robot’s ability to achieve a variety of destination poses in the vicinity of obstacles
of varying sizes. When a valid path exists, the forklift identifies and executes a collision-free route
to the goal, navigating around pallets, vehicles, and pedestrians. In some case, the system rejects
paths as being infeasible even though they were collision-free. We attribute this to the conservative
0.25 m safety buffer that the system places around each obstacle. We also test the robot’s behavior
when obstructed by a pedestrian (a mannequin), in which case the robot stops and waits for the
pedestrian to move out of the way.

We evaluate the performance of our anytime optimal motion planning algorithm using both a high-
fidelity simulator as well as with the forklift operating in our MIT warehouse. In both cases,
we compare our algorithm with one based on an RRT. The simulation experiments consider the
environment shown in Figure 18, in which the robot must find a feasible path from an initial pose
in the lower left to the goal region indicated by the green box. We performed a total of 166 Monte
Carlo simulation runs with our motion planner and 191 independent runs with the standard RRT.
Both planners use branch-and-bound for tree expansion and maintain a committed trajectory. Both
the RRT and RRT∗ were allowed to explore the state space throughout the execution period.

Figure 18 compares the paths that result from the RRT-based motion planner with those that the
vehicle traversed using our anytime optimal motion planning algorithm. In some situations, the
algorithm initially identifies a high-cost path that routes the vehicle to the right of the obstacles.
In each case, however, the opportunistic rewiring reveals a shorter, lower-cost route between the
obstacles. Subsequently, the branch-and-bound and online refinement further improve the plan into
a more direct path as the vehicle navigates to the goal. While the RRT algorithm refines the initial
plan using branch-and-bound, these improvements tend to be local in nature and do not provide
significant improvements to the tree structure. Consequently, the RRT-based planner often gets
“stuck” with a tree that favors longer paths that steer the forklift to the right of the obstacles.

Our algorithm exploits the execution period to modify the tree structure as it converges to the opti-
mal path. This convergence is evident in the distribution over the length of the executed simulation
trajectories (Fig. 19(b)) that exhibits a mean length (cost) of 23.82 m with a standard deviation of
0.91 m for the set of 166 simulations. For comparison, Figure 19(a) presents the distribution for
the RRT planner. The mean path length for the 191 RRT simulations is 29.72 m with a standard
deviation of 7.48 m. The significantly larger variance results from the RRT getting “stuck” refining

(a) RRT (b) RRT∗

Figure 18: Vehicle paths traversed for (a) 65 simulations of the RRT and (a) 140 simulations with
our RRT∗ planner.

25 30 35 40 45 50 55 60 650

10

20

30

40

50

Path Length (m)

C
ou

nt
s

Mean = 29.72 m
Standard deviation = 7.48 m

(a) RRT

25 30 35 40 45 50 55 60 650

20

40

60

80

Path Length (m)

C
ou

nt
s

Mean = 23.82 m
Standard deviation = 0.91 m

(b) RRT∗

Figure 19: Histogram plots of the executed path length for (a) RRT and (b) RRT∗ simulations. The
vertical dashed lines in (a) depict the range of path lengths that result from the RRT∗ planner.

a tree with sub-optimal structure. The anytime RRT∗, on the other hand, opportunistically takes
advantage of the available execution time to converge to near-optimal paths.

These simulation experiments are useful in evaluating the convergence properties of the planner.
We also performed a series of experiments with the forklift at our MIT model warehouse to validate
the performance of the algorithm under real-world conditions. We operated the vehicle in the gravel
lot among stationary and moving vehicles. We ran a series of tests in which the robot was tasked to
navigate from a starting position in one corner to a 1.6 m goal region in the opposite corner while
avoiding the obstacles. In each experiment, the robot began to plan motions immediately prior to
tracking the committed trajectory with the controller.

Figure 20 presents the result of two different tests with the anytime motion planner as well as
with the RRT. The plots depict the best trajectory as maintained by the planner at different points
during the plan execution (false-colored by time). In the scenario represented in the upper left, our
algorithm initially identifies a sub-optimal path that goes around an obstacle but, as the vehicle

Start time

End time

Start time

End time

Start time

End time

Start time

End time

Figure 20: Two runs of our anytime optimal planner (top) compared with those of the RRT (bot-
tom). The forklift started in the upper left and was tasked with driving to the goal region while
avoiding obstacles. The trajectories indicate the planned paths at different points in time during
the execution and are false-colored by time. Circles denote the initial position for each path.

begins to execute the path, the planner correctly refines the solution to a shorter trajectory. As
the vehicle proceeds along the committed trajectory, the planner continues to rewire the tree, as
evident in the improvements near the end of the execution, when the paths more directly approach
the goal. Meanwhile, the RRT initially identifies paths that take unnecessarily high-cost routes
around obstacles. After moving a few meters, the planner discovers a shorter path but the structure
of the tree biases the RRT towards refinements that are only local in nature.

6.2 Pallet Engagement: Estimation and Manipulation

Next, we present an evaluation of the pallet estimation and manipulation algorithms. This is based
on extensive testing within two of the outdoor warehouse environments. We commanded the robot
to pick up pallets from different locations on the ground as well as from truck beds. We recorded
the lateral position and orientation of the robot with respect to the pallet in each test as reported
by the robot’s dead-reckoning module. Note that the experiments were conducted with different
types of pallets that, within each type, exhibited varying geometry (i.e., width, slot location, and
slot width). The pose of the pallet relative to the truck and the truck’s pose relative to the forklift
also varied.

Figure 21 shows a plot of the successful and failed pallet pickup tests, together with the final
relative angle and cross track error in each experiment (see Figure 22 for histograms). Note that
most of the failures are due to unsuccessful pallet detection, and they occur when the robot starts
longitudinally 7.5 m and/or laterally 3 m or more away from the pallet. In the majority of these
cases, the robot’s vantage point together with the sparseness of the pallet structure were such that
the laser range finder yielded few returns from the pallet face. In the cases in which the pallet was
visible during the initial scanning of the volume of interest, 35 of the 38 ground engagements were
successful. We define a successful engagement as one in which the forklift inserts the tines without
moving the pallet. In one of the three failures, the vehicle inserted the tines but moved the pallet
slightly in the process. In tests of truck-based engagements, the manipulation was successful in all
30 tests in which the pallet was visible during the initial scanning process.

6.3 Vision-based Object Reacquisition

We performed an extensive set of experiments over several days at the Fort Lee SSA to validate
the performance of our object reacquisition algorithm. The experiments are meant to assess the
method’s robustness to typical conditions that include variations in illumination, scene clutter, ob-
ject ambiguity, and changes in context. The environment consisted of more than one hundred
closely-spaced objects, including washing machines, generators, tires, engines, and trucks, among
others. In most cases, objects of the same type with nearly identical appearance were placed less
than a meter apart (i.e., well below the accuracy of the robot’s absolute position estimate). In ad-
dition to clutter, the data sets were chosen for the presence of lighting variation that include global
brightness changes, specular illumination, and shadow effects, along with viewpoint changes and
motion blur. The conditions are representative of many of the challenges typical to operations in
unprepared, outdoor settings.

We structured the experiments to emulate a typical operation in which the user first provides the
robot with a single example of each object as the robot drives alongside them. We follow this tour
(training) phase with a reacquisition (testing) phase in which the user directs the robot to retrieve
one or more of the objects by name. A number of conditions can change between the time that
the object is first indicated and the time it is reacquired, including the physical sensor (right-facing
vs. front-facing camera), illumination, object positions within the environment, aspect angle, and
scale.

4 2 0 2 40

1

2

3

4

5

6

7

8

9

10

x (meters)

y
(m

et
er

s)

0

0.92

1.84

2.76

3.68

4.6

5.53

6.45

7.37

8.29

9.21

Failed Detection

(a) Relative Angle (Truck)

4 2 0 2 40

1

2

3

4

5

6

7

8

9

10

x (meters)

y
(m

et
er

s)

0

1.4

2.8

4.2

5.6

7

8.4

9.8

11.2

12.6

14

Failed Detection

(b) Cross Track Error (Truck)

4 2 0 2 4
0

1

2

3

4

5

6

7

8

x (meters)

y
(m

et
er

s)

0

0.87

1.74

2.62

3.49

4.36

5.24

6.11

6.99

7.86

8.73

Failed Detection
Failed Engagement

(c) Relative Angle (Ground)

4 2 0 2 40

1

2

3

4

5

6

7

8

x (meters)

y
(m

et
er

s)

0

1.2

2.4

3.7

4.9

6.1

7.4

8.6

9.8

11.1

12.3

Failed Detection
Failed Engagement

(d) Cross Track Error (Ground)

Figure 21: Results of the pallet engagement tests from (a-b) a truck bed and (c-d) the ground.
Each path represents the robot’s trajectory during a successful pickup. Each ‘x’ denotes the robot’s
initial position for failed detections (red) and engagements (blue). Arrows indicate the robot’s
forward direction. All poses are shown relative to that of the pallet, centered at the origin with
the front face along the x-axis. The trajectories are colored according to (a), (c) the relative angle
between the pallet and the robot (in degrees) and (b), (d) the cross track error (in cm) immediately
prior to insertion.

Several video clips collected at 2 Hz were paired with one another in five combinations. Each
pair consists of a short tour clip acquired from the right-facing camera and a longer reacquisition
clip acquired from the front-facing camera. Ground truth annotations were manually generated for
each image in the reacquisition clips and were used to evaluate performance in terms of precision
and recall. We consider a detection to be valid if the area of the intersection of the detection and
ground truth regions exceed a fraction of the area of their union.

0 1 2 3 4 5 6 7 8 90

2

4

6

8

10

Final Relative Angle (degrees)

(a) Relative Angle (Truck)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

2

4

6

8

10

Final Cross Track Error (cm)

(b) Cross Track Error (Truck)

0 1 2 3 4 5 6 7 8 90

2

4

6

8

Final Relative Angle (degrees)

(c) Relative Angle (Ground)

0 2 4 6 8 10 120

2

4

6

8

Final Cross Track Error (cm)

(d) Cross Track Error (Ground)

Figure 22: Histograms of the error in relative angle (left) and lateral offset (right) for pallets en-
gaged from truck beds and the ground.

Table 2 lists the scenarios, their characteristics, and the performance achieved by our algorithm.
Possible condition changes between tour and reacquisition clips include sensor (right vs. front
camera), lighting (illumination and shadows), 3D pose (scale, standoff, and aspect angle), context
(unobserved object relocation with respect to the environment), confusers (objects of similar ap-
pearance nearby), and ∆t (intervening hours:minutes). True and false positives are denoted as TP
and FP, respectively; truth indicates the total number of ground truth instances; frames is the total
number of images; and objects refers to the number of unique object instances that were toured
in the scenario. Performance is reported in terms of aggregate precision TP/(TP+FP) and recall
TP/truth.

In all five experiments, the method produces few if any false positives as indicated by the high
precision rates. This demonstrates that our approach to modeling an object’s appearance variation
online does not result in drift, as often occurs with adaptive learners. We attribute this behavior to
the geometric constraints that help to prevent occlusions and clutter from corrupting the appearance
models.

While the algorithm performs well in this respect, it yields a reduced number of overall detections
in the first scenario. This experiment involves significant viewpoint changes between the initial
training phase and the subsequent test session. Training images were collected as the robot moved
in a direction parallel to the front face of each object, and the user provided the initial training
example for each object, when it was fronto-parallel to the image. As the robot proceeded forward,
only views of the object’s front face and one side were available for and added to its appearance
model. During the testing phase of the experiment, the robot approached the objects from a range of
different angles, many of which result in views of unmodeled sides of the object. In these cases, the
algorithm is unable to identify a match to the learned model. This, together with saturated images
of highly reflective objects results in an increased false negative rate. While utilizing homography

Table 2: Conditions and reacquisition statistics for the different experiment scenarios.
Scenario 1 2 3 4 5

Train Afternoon Evening Morning Morning Noon

Test Afternoon Evening Evening Evening Evening

Sensor X X X X X

Lighting X X X X

3D pose X X X X X

Context X

Confusers X X X

∆t 00:05 00:05 14:00 10:00 07:00

Frames 378 167 165 260 377

Objects 6 1 1 1 1

Truth 1781 167 165 256 257

TP 964 158 154 242 243

FP 59 0 0 0 0

Precision 94.23% 100% 100% 100% 100%

Recall 54.13% 94.61% 93.33% 94.53% 94.55%

validation as part of the multiple-view matching significantly reduces false matches, it also results
in false negatives due to unmodeled 3D effects such as parallax.

We evaluate the relationship between recall rate and the change in scale between an object’s initial
view (scale=1) and subsequent observations. Figure 23(a) plots aggregate performance of all ob-
jects for each of the five test scenarios, while Figure 23(b) shows individual performance of each
object in Scenario 1. Figure 24 plots the performance of a single object from Scenario 5 in which
the context has changed: the object was transported to a different location while nearby objects
were moved. Finally Figure 25 reports recall rates for this object, which is visible in each of the
scenarios.

For the above experiments, we manually injected a gesture for each object during each tour clip—
while the robot was stationary—to initiate model learning. We employ a single set of parameters
for all scenarios: for single-view matching, the SIFT feature match threshold (dot product) is 0.9
with a maximum of 600 RANSAC iterations and an outlier threshold of 10 pixels; single-view
matches with confidence values below 0.1 are discarded. The reasoning module adds new views
whenever a scale change of at least 1.2 is observed and the robot moves at least 0.5 m. We find that
the false positive rate is insensitive to these settings for the reasoning parameters, which we chose
to effectively trade off object view diversity and model complexity (data size).

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

Relative Scale

R
ec

al
l

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
All Runs

(a) By Scenario

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

Relative Scale

R
ec

al
l

Object 1
Object 2
Object 3
Object 4
Object 5
Object 6
Overall

(b) By Object

Figure 23: Recall rates as a function of scale change (a) for all objects by scenario and (b) for each
object in Scenario 1.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

Relative Scale

R
ec

al
l

Original
Relocated

Figure 24: Recall rates as a function of scale change for an object in different positions and at
different times. The pallet was on the ground during the tour and reacquired 7 hours later both on
the ground and on a truck bed.

6.4 Shouted Warning Detection

We assess the behavior of the shouted warning system through a study involving five male subjects
in the MIT model warehouse on a fairly windy day (6 m/s average wind speed), with wind gusts

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

Relative Scale

R
ec

al
l

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
All Runs

Figure 25: Recall rates as a function of scale change for a single object across all scenarios.

clearly audible in the array microphones. Subjects were instructed to shout either “Forklift stop
moving” or “Forklift stop” under six different operating conditions: idling (reverberant noise),
beeping, revving engine, moving forward, backing up (and beeping), and moving with another
truck nearby backing up (and beeping). Each subject shouted commands under each condition
(typically at increasing volume) until successful detection occurred. All subjects were ultimately
successful under each condition; the worst case required four attempts from one subject during the
initial idling condition. Including repetitions, a total of 36 shouted commands were made, of which
26 were detected successfully on the first try. The most difficult operating condition occurred when
the engine was being revved (low SNR), resulting in five missed detections and the only two false
positives. The other two missed detections occurred when the secondary truck was active. We refer
the reader to our earlier work (Chuangsuwanich et al., 2010; Chuangsuwanich and Glass, 2011),
which presents the results of additional shouted warning experiments.

6.5 End-to-End Operation

The robot has successfully performed a number of end-to-end deployments at numerous model
and actual military SSAs. These include extensive testing over the course of several years at the
MIT warehouse test site, in which the robot was commanded by both civilians as well as military
personnel. The experiments include scenarios in which the operator commanded the robot from
within its immediate vicinity, using both the tablet interface as well as direct speech. Additionally,
the robot has successfully performed end-to-end missions directed by operators who were more
than 1000 km away over a standard internet connection. This type of control is made possible by
the task-level nature of the command-and-control architecture together with our system design,
which favors greater autonomy and situational awareness on the part of the robot.

Among our many trials with the U.S. Army, the robot operated successfully over the course of
two weeks on a packed earth facility at Fort Belvoir (Virginia) in June 2009. Under voice and
gesture command of a U.S. Army Staff Sergeant, the forklift unloaded pallets from a flatbed truck
in the receiving area, drove to a bulk yard location specified verbally by the supervisor, and placed
the pallets on the ground. The robot, commanded by the supervisor’s stylus gesture and verbally-
specified destination, retrieved another indicated pallet from the ground and placed it on a flatbed

truck in the issuing area. During operation, the robot was interrupted by shouted “Stop” commands,
pedestrians (mannequins) were placed in its path, and observers stood and walked nearby.

We also directed the robot to perform impossible tasks, such as engaging a pallet whose slots were
physically and visually obscured by fallen cargo. In this case, the forklift paused and requested
supervisor assistance. In general, such assistance can come in three forms: the supervisor can
command the robot to abandon the task; a human can modify the world to make the robot’s task
feasible; or a human can climb into the forklift cabin and operate it through the challenging task.
In this case, we manually moved the obstruction and resumed autonomous operation.

In June 2010, the robot was deployed for two weeks at an active U.S. Army SSA at Fort Lee (Vir-
ginia). Over the course of the year since the June 2009 operation, we had developed the robot’s
ability to perform vision-based object reacquisition and to correctly interpret and execute more ex-
tensive spoken commands, including those that reference objects in the environment. Additionally,
we endowed the robot with additional annunciation mechanisms and safety behaviors, including
the ability to regulate its speed based upon its perception of local hazards in its surround. During
the experiments at Fort Lee, personnel commanded the vehicle to perform a number of pallet ma-
nipulation and transport tasks using a combination of the tablet interface and by directly speaking
to the forklift. The vehicle safely carried out these tasks in the presence of military personnel both
on foot and operating other forklifts and trucks.

7 Lessons Learned and Future Work

While military observers judged the demonstrations to be successful, the prototype capability re-
mains crude when compared to the capabilities of skilled operators. In operational settings, the
requirement that the supervisor break down complex task that require advanced levels of reasoning
(e.g., “Unload the truck”) into individual subtasks, and explicitly issue a command for each would
likely become burdensome. A direction for current work is to enable robots to reason over higher-
level actions to achieve greater autonomy. Moreover, our robot is not yet capable manipulating
objects with nearly the same level of dexterity as expert human operators (e.g., lifting the edge of a
pallet with one tine to rotate or reposition it, gently bouncing a load to settle it on the tines, shoving
one load with another, etc.). This aptitude requires advanced capabilities to estimate and reason
over load dynamics, and plan actions drawn from a set of behaviors far richer than the set that our
system considers.

We learned a number of valuable lessons from testing with real military users. First, pallet indi-
cation gestures vary widely in shape and size. The resulting conical region sometimes includes
extraneous objects, causing the pallet detector to fail to lock on to the correct pallet. Second,
people are willing to accommodate the robot’s limitations. For example, if a speech command or
gesture is misunderstood, the supervisor will often cancel execution and repeat the command; if a
shout is not heard, the shouter will repeat it more loudly. This behavior is consistent with the way
a human worker might interact with a relatively inexperienced newcomer.

We developed an interaction mechanism that uses the microphones affixed to the vehicle to allow

people to command the robot simply by talking to it, much as they would with a manned vehicle.
This capability, however, raises challenges that must be addressed if the system is to be deployed
in noisy, hostile environments. While human operators are able to identify which commands are
directed towards them, our system can not isolate relevant speech from audible clutter. Indeed, this
is an open research problem. Additionally, it is difficult to recognize who is issuing the command
with this form of interaction, thereby limiting the security of the command interface, which military
personnel have expressed as a priority of any deployed system.

More generally, recognition of shouted speech in noisy environments has received little attention
in the speech community, and presents a significant challenge to current speech recognition tech-
nology. From a usability perspective, it is likely that a user may not be able to remember specific
“stop” commands, and that the shouter will be stressed, especially if the forklift does not respond
to an initial shout. From a safety perspective, it may be appropriate for the forklift to pause if it
hears anyone shout in its general vicinity. Thus, we are collecting a much larger corpus of general
shouted speech, and aim to develop a capability to identify general shouted speech, as a precursor
to identifying any particular command. In addition, we are also exploring methods that allow the
detection module to adapt to new audio environments through feedback from users.

Support for additional interaction mechanisms would improve usability and acceptance by current
personnel. Speech is only one way in which supervisors command manned forklifts. During each
of our visits to active storage and distribution centers, we found that people make extensive use of
hand and body gestures to convey information to the driver. People often use gestures by them-
selves or accompany them with spoken commands, for example, saying “Put the pallet of tires over
there” and pointing at or gazing towards the referred location. In other instances, particularly when
conditions are noisy, people may use only gestures to communicate with the operator. For exam-
ple, ground guides frequently use hand signals to help the driver negotiate a difficult maneuver.
Our system does not provide a mechanism for people to communicate with the robot through hand
gestures or eye gaze. Several gesture-based input mechanisms exist (Perzanowski et al., 2001),
however, and it would be possible to take advantage of the structured nature of gestures used by
the military (Song et al., 2011) to incorporate this form of interaction. We are currently investigat-
ing algorithms that incorporate deictic gestures into our natural language grounding framework.

As the robot is directed to perform increasingly complex tasks, there is a greater likelihood that
it will encounter situations in which it can not make progress. Our system includes a centralized
process that monitors the robot’s status in conjunction with status monitoring capabilities at the
level of individual processes. This allows the robot to detect certain instances when it is not mak-
ing progress, but requires overly detailed input from the system designer. They can identify each
potential failure condition and the associated symptoms, but that does not scale with task complex-
ity. Alternatively, the designer may establish abstract symptoms that suggest failure (e.g., the time
duration of the current task), but that makes it difficult to identify the specific cause and, in turn,
to ask for help. We adopted both approaches. A fielded system requires a capacity to detect when
the robot is “stuck” that generalizes to the large space of possible failure conditions and that can
discern the different causes, with minimal domain knowledge required of the designer. Further, the
system should notify the user in a comprehensible manner and request assistance, by asking for
additional information to resolve ambiguity (Tellex et al., 2012) or for the user to take over manual

control. It would be desirable for the robot to use these instances as positive examples and learn
from the user-provided demonstrations (Argall et al., 2009) to improve its proficiency at the task.

Every one of our tests at MIT and military bases was performed with a dedicated safety operator
monitoring the robot. Without exception, the robot operated safely but in the event that anything
went wrong, we could immediately disable the robot using a remote kill switch. In order to deploy
the system commercially or with the military, which we can not require to have a safety officer,
other mechanisms are necessary to guarantee that the robot’s behavior is safe. Most critical, the
robot must be able to recognize each instance when a person, either on foot or driving another
vehicle, enters or is likely to enter its path, and behave accordingly. Similarly, the robot mustn’t
engage or place cargo in close proximity to people. The slow speeds at which the vehicle oper-
ates improves reaction time. The greatest challenge is to develop algorithms for person detection
suitable to unstructured environments that can guarantee near-zero false negative rates with false
positive rates sufficiently low to be usable in practice. To our knowledge, algorithms do not exist
that offer performance comparable to that of human operators.

Our system fuses data from several sensors mounted to the robot, which requires that each be accu-
rately calibrated. While there are well-defined procedures to determine the intrinsic and extrinsic
calibration parameters for LIDARs and cameras, they can be time consuming and require external
infrastructure. It is not uncommon for these parameters to change over the course of operations,
for example, as a result of sensors being replaced due to failure or being removed and remounted.
Each time this happens, the sensors must be recalibrated, which can be a challenge when the ve-
hicle is deployed. One way to simplify the extrinsic calibration would be to manufacture vehicles
with fixed sensor mount points with known pose relative to a body-fixed reference frame. Alter-
natively, the robotics community would benefit from calibration procedures that can be performed
opportunistically in situ, such as by exploiting the terrain. An on-the-fly capability would not only
simplify calibration, but it could also be used to automatically detect instances of inaccurate cali-
bration estimates. There has been some work in this direction, including the use of ego-motion for
calibration (Brookshire and Teller, 2012), but it remains an open problem.

Over the past several years, the automotive industry has been moving towards manufacturing cars
that ship with drive-by-wire actuation. To our knowledge, the same is not true of most commercial
ground vehicles, including lift trucks. We chose the Toyota platform since it offered the easiest path
to drive-by-wire actuation, but we still spent significant effort modifying our baseline lift truck to
control its degrees of freedom. Particularly difficult were the steering, brake, and parking brake
inputs, which required that we mount and control three motors and interface a clutch with the steer-
ing column. It would greatly simplify development and deployment if vehicles were manufactured
to be drive-by-wire with a common interface such as CAN bus for control. Manufacturers are not
incentivized by research customers to make these changes, but the transition can be accelerated by
customers with greater purchasing power like the U.S. military.

The storage and distribution centers operated by the military or disaster relief groups are typically
located in harsh environments. The sensors onboard the vehicle must be resistant to intrusions
from inclement weather, mud, sand storms, and dust. Most of the externally-mounted hardware
on our platform has an IP64 rating or better, however greater levels of protection are necessary

for the environments that we are targeting. Meanwhile, we encountered several instances when
one or more of our sensors (e.g., a laser range finder) became occluded by dust and mud. The
system needs a means of detecting these instances and, ideally, mechanisms to clear the sensor’s
field-of-view, much like windshield wipers. Perhaps most challenging is to develop sensors and
perception algorithms that can function during extreme events like sand storms, which would blind
the cameras and LIDARs onboard our robot.

Throughout the duration of the project, representatives from the military and industry stressed the
importance of having easy-to-use tools to diagnose hardware and software failures. Our group
has developed a few different introspective tools as part of LCM (Huang et al., 2010) and Lib-
bot (Huang et al., 2014), which we used extensively during development and testing. These tools,
however, are intended primarily as diagnostic tools for developers and are deliberately verbose in
the amount of information that they expose to the user. If the system were to be put in the hands of
users without the benefit of having developers nearby, we would need to provide simple diagnostic
tools, analogous to the scan tools used in the automotive industry.

8 Conclusion

This paper described the design and implementation of an autonomous forklift that manipulates
and transports cargo under the direction of and alongside people within minimally-prepared out-
door environments. Our approach involved early consultation with members of the U.S. military
to develop a solution that would be both usable and culturally acceptable by the intended users.
Our contributions include: novel approaches to shared situational awareness between humans and
robots; efficient command and control methods; and mechanisms for improved predictability and
safety of robot behavior. Our solution includes a one-shot visual memory algorithm that oppor-
tunistically learns the appearance of objects in the environment from single user-provided exam-
ples. This method allows the robot to reliably detect and locate objects by name. Our multimodal
interface enables people to efficiently issue task-level directives to the robot through a combination
of simple stylus gestures and spoken commands. The system includes an anytime motion planner,
annunciation and visualization mechanisms, and pedestrian and shout detectors.

We described the principal components of our system and their integration into a prototype mobile
manipulator. We evaluated the effectiveness of these modules and described tests of the over-
all system through experiments at model and operating military warehouses. We discussed the
lessons learned from these experiences and our interaction with the U.S. military, and offered our
conclusions on where future work is needed.

References
Alami, R., Clodic, A., Montreuil, V., Sisbot, E. A., and Chatila, R. (2006). Toward human-aware

robot task planning. In Proceedings of the AAAI Spring Symposium, pages 39–46, Stanford, CA.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot learning from

demonstration. Robotics and Autonomous Systems, 57(5):469–483.

Arras, K. O., Mozos, O. M., and Burgard, W. (2007). Using boosted features for the detection of
people in 2D range data. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3402–3407, Rome, Italy.

Babenko, B., Yang, M.-H., and Belongie, S. (2009). Visual tracking with online multiple instance
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 983–990, Miami, FL.

Bostelman, R., Hong, T., and Chang, T. (2006). Visualization of pallets. In Proceedings of
SPIE, Intelligent Robots and Computer Vision XXIV: Algorithns, Techniques, and Active Vision,
Boston, MA.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Brookshire, J. and Teller, S. (2012). Extrinsic calibration from per-sensor egomotion. In Proceed-
ings of Robotics: Science and Systems (RSS), Sydney, Australia.

Chuangsuwanich, E., Cyphers, S., Glass, J., and Teller, S. (2010). Spoken command of large mo-
bile robots in outdoor environments. In Proceedings of the IEEE Spoken Language Technologies
Workshop (STL), pages 306–311, Berkeley, CA.

Chuangsuwanich, E. and Glass, J. (2011). Robust voice activity detector for real world applications
using harmonicity and modulation. In Proceedings of Inerspeech, pages 2645–2648, Florence,
Italy.

Collet, A., Berenson, D., Srinivasa, S. S., and Ferguson, D. (2009). Object recognition and full
pose registration from a single image for robotic manipulation. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 48–55, Kobe, Japan.

Collins, R. T., Liu, Y., and Leordeanu, M. (2005). Online selection of discriminative tracking
features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1631–1643.

Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-based object tracking. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(5):564–577.

Correa, A., Walter, M. R., Fletcher, L., Glass, J., Teller, S., and Davis, R. (2010). Multimodal inter-
action with an autonomous forklift. In Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 243–250, Osaka, Japan.

Cucchiara, R., Piccardi, M., and Prati, A. (2000). Focus-based feature extraction for pallets recog-
nition. In Proceedings of the British Machine Vision Conference, Bristol, U.K.

Cui, J., Zha, H., Zhao, H., and Shibasaki, R. (2007). Laser-based detection and tracking of multiple
people in crowds. Computer Vision and Image Understanding, 106(2-3):300–312.

Davis, R. (2002). Sketch understanding in design: Overview of work at the MIT AI Lab. In
Proceedings of the AAAI Spring Symposium on Sketch Understanding, pages 24–31, Stanford,
CA.

Dragan, A. and Srinivasa, S. (2013). Generating legible motion. In Proceedings of Robotics:
Science and Systems (RSS), Berlin, Germany.

Dubins, L. E. (1957). On the curves of minimal length on average curvature, and with prescribed
initial and terminal positions and tangents. American Journal of Mathematics, 79(3):497–516.

Durrant-Whyte, H., Pagac, D., Rogers, B., Stevens, M., and Nelmes, G. (2007). An autonomus
straddle carrier for moving of shipping containers. IEEE Robotics & Automation Magazine,
14(3):14–23.

Dzifcak, J., Scheutz, M., Baral, C., and Schermerhorn, P. (2009). What to do and how to do it:
Translating natural language directives into temporal and dynamic logic representation for goal
management and action execution. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 4163–4168, Kobe, Japan.

Ferland, F., Pomerleau, F., Le Dinh, C., and Michaud, F. (2009). Egocentric and exocentric tele-
operation interface using real-time, 3D video projection. In Proceedings of the ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 37–44.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM,
24(6):381–395.

Fong, T., Thorpe, C., and Glass, B. (2003). PdaDriver: A handheld system for remote driving. In
Proceedings of the IEEE International Conference on Advanced Robotics, Coimbra, Portugal.

Glass, J. R. (2003). A probabilistic framework for segment-based speech recognition. Computer
Speech and Language, 17(2–3):137–152.

Gordon, I. and Lowe, D. G. (2006). What and where: 3D object recognition with accurate pose.
In Toward Category-Level Object Recognition, pages 67–82. Springer-Verlag.

Grabner, H., Leistner, C., and Bischof, H. (2008). Semi-supervised on-line boosting for robust
tracking. In Proceedings of the European Conference on Computer Vision (ECCV), pages 234–
247, Marseille, France.

Hähnel, D., Schulz, D., and Burgard, W. (2003). Mobile robot mapping in populated environments.
Advanced Robotics, 17(7):579–597.

Harnad, S. (1990). The symbol grounding problem. Physica D, 42:335–346.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107.

Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge
University Press, second edition.

Hetherington, I. L. (2007). PocketSUMMIT: Small-footprint continuous speech recognition. In
Proceedings of Interspeech, pages 1465–1468, Antwerp, Belgium.

Hilton, J. (2013). Robots improving materials handling efficiencies while reducing costs. Automo-
tive Industries, 192(2):48–49.

Hoffmann, G. M., Tomlin, C. J., Montemerlo, M., and Thrun, S. (2007). Autonomous automobile
trajectory tracking for off-road driving: Controller design, experimental validation and testing.
In Proceedings of the American Control Conference (ACC), pages 2296–2301, New York, NY.

Hoiem, D., Rother, C., and Winn, J. (2007). 3D LayoutCRF for multi-view object class recognition
and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Minneapolis, MN.

Holzapfel, H., Nickel, K., and Stiefelhagen, R. (2004). Implementation and evaluation of a
constraint-based multimodal fusion system for speech and 3D pointing gestures. In Proceed-
ings of the International Conference on Multimodal Interfaces (ICMI), pages 175–182, State
College, PA.

Huang, A. S., Bachrach, A., and Walter, M. R. (2014). Libbot robotics library.
Huang, A. S., Olson, E., and Moore, D. (2010). LCM: Lightweight communications and mar-

shalling. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4057–4062, Taipei, Taiwan.

Jeon, J. h., Karaman, S., and Frazzoli, E. (2011). Anytime computation of time-optimal off-road
vehicle maneuvers using the RRT∗. In Proceedings of the IEEE Conference on Decision and
Control (CDC), pages 3276–3282, Orlando, FL.

Kalal, Z., Matas, J., and Mikolajczyk, K. (2009). Online learning of robust object detectors during
unstable tracking. In On-line Learning for Computer Vision Workshop, pages 1417–1424, Kobe,
Japan.

Kalal, Z., Matas, J., and Mikolajczyk, K. (2010). P-N learning: Bootstrapping binary classifiers by
structural constraints. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 49–56, San Francisco, CA.

Karaman, S. and Frazzoli, E. (2010a). Incremental sampling-based algorithms for optimal motion
planning. In Proceedings of Robotics: Science and Systems (RSS), Zaragoza, Spain.

Karaman, S. and Frazzoli, E. (2010b). Optimal kinodynamic motion planning using incremental
sampling-based methods. In Proceedings of the IEEE Conference on Decision and Control
(CDC), pages 7681–7687, Atlanta, GA.

Karaman, S. and Frazzoli, E. (2011). Sample-based algorithms for optimal motion planning. In-
ternational Journal of Robotics Research, 30(7):846–894.

Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., and Teller, S. (2011). Anytime motion plan-
ning using the RRT∗. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 1478–1483, Shanghai, China.

Kelly, A., Nagy, B., Stager, D., and Unnikrishnan, R. (2007). An infrastructure-free automated
guided vehicle based on computer vision. IEEE Robotics & Automation Magazine, 14(3):24–
34.

Keskinpala, H. K. and Adams, J. A. (2004). Objective data analysis for PDA-based human-robot
interaction. In Proceedings of the IEEE International Conference on Systems, Man and Cyber-
netics (SMC), pages 2809–2814, The Hague, The Netherlands.

Keskinpala, H. K., Adams, J. A., and Kawamura, K. (2003). PDA-based human-robotic interface.
In Proceedings of the IEEE Conference on Systems, Man, and Cybernetics (SMC), pages 3931–
3936, Washington, DC.

Klein, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., and Feltovich, P. J. (2004). Ten chal-
lenges for making automation a “team player” in joint human-agent activity. IEEE Intelligent
Systems, 19(6):91–95.

Kollar, T., Tellex, S., Roy, D., and Roy, N. (2010). Toward understanding natural language direc-
tions. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 259–266, Osaka, Japan.

Lecking, D., Wulf, O., and Wagner, B. (2006). Variable pallet pick-up for automatic guided vehi-
cles in industrial environments. In Proceedings of the IEEE Conference on Emerging Technolo-
gies and Factory Automation (EFTA), pages 1169–1174, Toulouse, France.

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E.,
Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E., Peters, S., Teo, J., Truax,
R., Walter, M., Barrett, D., Epstein, A., Maheloni, K., Moyer, K., Jones, T., Buckley, R., Antone,
M., Galejs, R., Krishnamurthy, S., and Williams, J. (2008). A perception-driven autonomous
urban vehicle. Journal of Field Robotics, 25(10):727–774.

Liebelt, J., Schmid, C., and Schertler, K. (2008). Viewpoint-independent object class detection
using 3D feature maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Anchorage, AK.

Lim, J., Ross, D., Lin, R.-S., and Yang, M.-H. (2004). Incremental learning for visual tracking. In
Advances in Neural Information Processing Systems (NIPS), pages 793–800, Vancouver, B.C.,
Canada.

Lowe, D. G. (2001). Local feature view clustering for 3D object recognition. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
pages 682–688, Kauai, HI.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal on Computer Vision, 60(2):91–110.

MacMahon, M., Stankiewicz, B., and Kuipers, B. (2006). Walk the talk: Connecting language,
knowledge, and action in route instructions. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pages 1475–1482, Boston, MA.

Marble, J. D. and Bekris, K. E. (2011). Asymptotically near-optimal is good enough for mo-
tion planning. In Proceedings of the International Symposium on Robotics Research (ISRR),
Flagstaff, AZ.

Matsumaru, T., Iwase, K., Akiyama, K., Kusada, T., and Ito, T. (2005). Mobile robot with eye-
ball expression as the preliminary-announcement and display of the robot’s following motion.
Autonomous Robots, 18(2):231–246.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., and Fox, D. (2012). A joint model of
language and perception for grounded attribute learning. In Proceedings of the International
Conference on Machine Learning (ICML), Edinburgh, Scotland.

Matuszek, C., Fox, D., and Koscher, K. (2010). Following directions using statistical machine
translation. In Proceedings of the ACM/IEEE International Conference on Human-Robot Inter-
action (HRI), pages 251–258, Osaka, Japan.

Moore, D. A., Huang, A. S., Walter, M., Olson, E., Fletcher, L., Leonard, J., and Teller, S. (2009).
Simultaneous local and global state estimation for robotic navigation. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages 3794–3799, Kobe,
Japan.

Mutlu, B., Yamaoka, F., Kanda, T., Ishiguro, H., and Hagita, N. (2009). Nonverbal leakage in
robots: communication of intentions through seemingly unintentional behavior. In Proceedings
of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 69–76,
San Diego, CA.

Nebot, E. M. (2005). Surface mining: Main research issues for autonomous operations. In Pro-
ceedings of the International Symposium on Robotics Research (ISRR), pages 268–280, San
Francisco, CA.

Perzanowski, D., Schultz, A. C., Adams, W., Marsh, E., and Bugajska, M. (2001). Building a
multimodal human-robot interface. IEEE Intelligent Systems, 16(1):16–21.

Pradalier, C., Tews, A., and Roberts, J. (2010). Vision-based operations of a large industrial vehi-
cle: Autonomous hot metal carrier. Journal of Field Robotics, 25(4-5):243–267.

Savarese, S. and Fei-Fei, L. (2007). 3D generic object categorization, localization and pose es-
timation. In Proceedings of the International Conference on Computer Vision (ICCV), Rio de
Janeiro, Brazil.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press.

Seelinger, M. and Yoder, J. D. (2006). Automatic visual guidance of a forklift engaging a pallet.
Robotics and Autonomous Systems, 54(12):1026–1038.

Skubic, M., Anderson, D., Blisard, S., Perzanowski, D., and Schultz, A. (2007). Using a hand-
drawn sketch to control a team of robots. Autonomous Robots, 22(4):399–410.

Skubic, M., Perzanowski, D., Blisard, S., Schultz, A., Adams, W., Bugajska, M., and Brock, D.
(2004). Spatial language for human-robot dialogs. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 34(2):154–167.

Song, Y., Demirdjian, D., and Davis, R. (2011). Tracking body and hands for gesture recogni-
tion: NATOPS aircraft handling sygnals database. In Proceedings of the IEEE Conference on
Automatic Face and Gesture Recognition Workshops, pages 500–506, Santa Barbara, CA.

Takayama, L., Dooley, D., and Ju, W. (2011). Expressing thought: Improving robot readabil-
ity with animation principles. In Proceedings of the ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 69–76, Lausanne, Switzerland.

Teller, S., Walter, M. R., Antone, M., Correa, A., Davis, R., Fletcher, L., Frazzoli, E., Glass, J.,
How, J. P., Huang, A. S., Jeon, J. h., Karaman, S., Luders, B., Roy, N., and Sainath, T. (2010). A
voice-commandable robotic forklift working alongside humans in minimally-prepared outdoor
environments. In Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA), pages 526–533,
Anchorage, AK.

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S., and Roy, N. (2011).
Understanding natural language commands for robotic navigation and mobile manipulation. In
Proc. Nat’l Conf. on Artificial Intelligence (AAAI), pages 1507–1514, San Francisco, CA.

Tellex, S., Thaker, P., Deits, R., Kollar, T., and Roy, N. (2012). Toward information theoretic
human-robot dialog. In Proceedings of Robotics: Science and Systems (RSS), Sydney, Australia.

Tews, A., Pradalier, C., and Roberts, J. (2007). Autonomous hot metal carrier. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages 1176–1182,
Rome, Italy.

United States Department of Labor Occupational Safety & Health Administration (1969). Powered
industrial trucks – occupational safety and health standards – 1910.178.

Walter, M. R., Friedman, Y., Antone, M., and Teller, S. (2012). One-shot visual appearance learn-
ing for mobile manipulation. International Journal of Robotics Research, 31(4):554–567.

Walter, M. R., Karaman, S., Frazzoli, E., and Teller, S. (2010). Closed-loop pallet engagement
in unstructured environments. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5119–5126, Taipei, Taiwan.

Wurman, P. R., D’Andrea, R., and Mountz, M. (2008). Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine, 29(1):9–19.

Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys,
38(4).

Zhang, Q. and Pless, R. (2004). Extrinsic calibration of a camera and a laser range finder. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2301–2306, Sendai, Japan.

