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Abstract

Topographic mapping in planetary environments relies on accurate 3D scan registration

methods. However, most global registration algorithms relying on features such as FPFH

and Harris-3D show poor alignment accuracy in these settings due to the poor structure

of the Mars-like terrain and variable resolution, occluded, sparse range data that is hard

to register without some a-priori knowledge of the environment. In this paper, we propose

an alternative approach to 3D scan registration using the curvelet transform that performs

multi-resolution geometric analysis to obtain a set of coefficients indexed by scale (coarsest

to finest), angle and spatial position. Features are detected in the curvelet domain to take

advantage of the directional selectivity of the transform. A descriptor is computed for each

feature by calculating the 3D spatial histogram of the image gradients, and nearest neighbor

based matching is used to calculate the feature correspondences. Correspondence rejection

using Random Sample Consensus identifies inliers, and a locally optimal Singular Value

Decomposition-based estimation of the rigid-body transformation aligns the laser scans given
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the re-projected correspondences in the metric space. Experimental results on a publicly

available data-set of planetary analogue indoor facility, as well as simulated and real-world

scans from Neptec Design Group’s IVIGMS 3D laser rangefinder at the outdoor CSA Mars

yard demonstrates improved performance over existing methods in the challenging sparse

Mars-like terrain.

1 Introduction

3D mapping of unstructured environments relies on accurate alignment of partially overlapping scans into

a globally consistent model, called scan registration. Sensors such as RGB-D cameras, LIDAR, Time of

Flight (ToF), and stereo cameras provide information as point-sampled 3D surfaces, termed point-clouds.

Overlapping scans share a common set of points that can be used for matching in order to estimate the

relative rigid body transformation between scans (6-DOF rotation and translation). Separate views of the

same environment can be accumulated into a global coordinate system which helps an intelligent mobile

robot perform tasks in an unstructured environment. However, points within each scan represent samples of

different surfaces within the environment, subject to the type of sensor used for capturing the scene, sampling

density (number of points per volumetric unit), sensor viewpoint (relative geometric position), sensitivity to

measurement noise, quantization errors, occlusions, depth-discontinuities due to sharp edges, and the surface

characteristics of the objects within the scene such as color, shape, textures, etc. (see Figure 1). Finding

accurate transformation parameters, given the intra-scan problems and a relatively large initial inter-scan

transformation error, makes the registration problem especially hard.

Topographic mapping is one such instance where these issues are prevalent. Desire for the establishment of

a permanent presence on extraterrestrial surfaces, detailed and accurate mapping of the terrain and rover

localization with respect to the environment is essential to conduct operations such as exploration, site

selection, base construction etc. Without an absolute positioning system such as GPS available in space,

on-board sensing must be used for localization and mapping. The use of 3D laser scan data for planetary

exploration has been proposed by numerous researchers (Tong et al., 2013; Carle et al., 2010; Hamel et al.,

2012), as a means to improve on existing stereo methods in generating detailed 3D map data, localizing over

long distances and operating in low ambient light conditions. These advantages have led agencies to pursue

numerous next generation rover technologies with LIDAR sensing at the core of the autonomy packages.

One of the challenges with most LIDAR sensor configurations is that the needs for rover autonomy are
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Figure 1: 3D-LIDAR intensity scan captured by Velodyne HDL-64E sensor from KITTI data-set (Geiger
et al., 2012) highlighting regions with varying sampling density, occlusions, depth-discontinuities and outliers
(best viewed in colour).

somewhat contradictory: exploration requires rapid update over long ranges, while detailed mapping requires

high densities of local points with minimal uncertainty. The poor structure of the Mars like terrain coupled

with the shallow grazing angle results in a variable resolution, occluded, sparse range data that is hard to

register without some a-priori knowledge of the environment. Due to the lack of natural and man-made

features such as trees and buildings, most registration algorithms show poor convergence properties.

The same issues arise in other applications that require dense scan registrations, such as indoor mapping,

mining and highway surveys. In order to maintain a safe work environment and increase productivity, auto-

mated LIDAR based surface profiling systems are preferred over traditional acquisition methods. Existing

registration methods show poor convergence properties in areas such as indoor spaces, underground and

open-pit mines, where the lack or insufficient quality of absolute localization based on GPS, and the drift of

relative inertial localization cause a significant problem in mapping. Automated mapping in rural or off-road

environments is another example where the sparse scene structure, poor localization and dynamic objects

may result in inaccurate laser scan alignments.



In this paper, a novel approach to scan registration using the curvelet transform is presented. Suitable fea-

tures are extracted from the curvelet domain via difference of curvelets operator at multiple scales followed

by extrema detection and filtering. Feature descriptors around the candidate key-points are computed from

spatial histograms of image gradients and the correspondences are found using nearest neighbor matching.

Feature correspondences are filtered using Random Sample Consensus (RANSAC) to reject outliers and the

laser scans are aligned using Singular Value Decomposition (SVD) based estimation of rigid body transforma-

tion. This approach is adapted to work with both a vertically scanning SICK LMS291 laser rangefinder and

hybrid IVIGMS scanner provided by Neptec Design Group Ltd. Experimental results from three different

data-sets representing indoor and outdoor environments, comparing the average root-mean-squared errors

in translation and rotation for existing methods as well as proposed approach demonstrate the performance

of our algorithm in the challenging sparse Mars-like terrain.

The rest of the paper is organized as follows: Section 2 provides the related work in the area of scan

registration and a problem formulation is presented in Section 3. Details of the proposed method are given

in Section 4. Quantitative and qualitative results for indoor and outdoor 3D laser scan data-sets are provided

in Section 5 with a discussion on suitability of the algorithm for mapping. Section 6 concludes the paper

with directions for future work.

2 Related Work

One of the most popular scan registration methods, the iterative closest point (ICP) (Besl and McKay, 1992;

Chen and Medioni, 1991; Zhang, 1994), relies on point-to-point correspondences to estimate the relative

transformation of scans by minimizing the Euclidean distance error metric. The original ICP algorithm

assumes that there exists a correspondence between each point of the source and model data-sets. This

assumption is often violated with partially overlapping scans. Some modifications to the ICP algorithm

have included the maximum error cutoff metric (Masuda et al., 1996) to account for false correspondences,

and did not require every point to be matched. One of the key problems with scan registration is that the

sparsely sampled corresponding points in two different scans often do not correspond to the same point in

the 3D environment, but ICP assumes that they do. In addition, the quality of the ICP solution depends

heavily on the availability of good initial estimates of the transformation (Besl and McKay, 1992).

Many extensions to the original ICP have been proposed that transform the point clouds from metric space to

feature space for fast correspondence based matching. They rely on finding unique features in the two scans,



in order to improve the registration accuracy. Features based on color and intensity values (Godin et al.,

1994), normals (Ioanou et al., 2012; Alexa and Adamson, 2004), curvatures (Chua and Jarvis, 1996), integral

volume descriptors (Gelfand et al., 2005), moment invariants (Sadjadi and Hall, 1980), spherical harmonics

(Burel and Henocq, 1995), spin images (Johnson and Hebert, 1997), corners, lines and planes (Censi et al.,

2005), the scale-invariant feature transform (SIFT) (Henry et al., 2012), and combinations of the above

(Sharp et al., 2002) have all been suggested. However, all of these features are prone to measurement noise

and cannot deal with varying sampling density within the point cloud. Locally planar surface structure was

exploited by Segal et al. (Segal et al., 2009) for plane-to-plane correspondence search in the generalized

iterative closest point algorithm (GICP). In order to incorporate local surface characteristics, Bosse et al.

modified the correspondence step in ICP to include a nine-dimensional vector consisting of local centroids

and two eigen-vectors representing planar and cylindrical regions in a voxelized point cloud (Bosse and

Zlot, 2009; Bosse et al., 2012). This approach has been shown to work well in scenarios where the vehicle

is continuously acquiring 3D scans while in motion. However, due to the vehicle motion and trajectory

smoothness constraints, it is unable to handle a large inter-scan transformation error. Point features on

sharp edges and planar surface patches have previously been proposed for scan registration (Zhang and

Singh, 2014) where the ICP score has been modified to include point-to-line/plane correspondence search

with local smoothness constraints. The assumption of a constant velocity motion model limits its applicability

to continuous scan matching. In addition, the requirement for planar structures in the scene restricts the

applicability of the algorithm to sparse outdoor environments.

Rusu et al. introduced the Sample Consensus-Initial Alignment (SAC-IA) algorithm (Rusu et al., 2008;

Rusu et al., 2009) using 16-dimensional fast point feature histograms (FPFH) that describe the local surface

structure. Experimental results showing the robustness of these features to outliers and invariance to pose,

sampling density, and measurement noise are lacking in the literature. Various heuristics based on false

correspondence rejection and re-weighting have tried to improve the robustness but the convergence is not

guaranteed. In addition, these features require extensive computational steps and the resulting transfor-

mation is only an approximation due to the compact representation of a 3D surface (in metric space) as a

feature point in feature space.

The Harris corner point detector initially proposed for 2D images (Harris and Stephens, 1988) has previously

been extended for key-point detection on 3D surfaces (Steder et al., 2009; Sipiran and Bustos, 2010) where

it makes use of surface normals instead of using image gradients. 3D normals calculated in noisy regions or

around points at depth-discontinuities are frequently incorrect.



Normal aligned radial features (NARF) proposed by Steder et al. operates on range images rather than

laser scans, similar to the proposed method (Steder et al., 2010; Steder et al., 2011). Object boundaries are

computed in depth-discontinuous regions by traversing from foreground to background in the range image,

followed by key-point localization in stable surface areas around these edges. This type of feature works

well for object recognition where there are large objects away from significant depth-discontinuous regions.

Planetary environments often contain smoothly varying surfaces with small rocks and debris and thus, NARF

features are typically found near the ground level, making it harder to detect sufficient number of key-points

which can better represent the surface variations.

The spin-image algorithm for object recognition and pose estimation first proposed by Johnson et al. for 2D

images (Johnson and Hebert, 1997) was later extended to work with 3D laser scans (Johnson and Hebert,

1999). Surface around the key-point is represented as a gray-scale image where darker areas correspond to

regions of high point density. Spin-image based descriptors do not explicitly make use of the information

outside of the object boundaries, making them less reliable for pose estimation (Steder et al., 2009). In

addition, spin image descriptors produce ambiguous correspondence matches in cluttered scenes and noisy

environments.

Frequency-domain based approaches decouple the problem of finding rotation and translation transformation

parameters and attempt to find a suitable registration in the transformed domain (Bulow and Birk, 2013;

Lucchese et al., 2002; Keller et al., 2006). Phase correlation is typically employed for matching which is

robust to the effects of noise and occlusions, while fast Fourier transforms (FFT) used to compute cross-

correlations makes this approach computationally efficient. However, the Fourier transform can only retrieve

the global frequency content of the signal and provides a dense representation of the underlying signal.

Another transformation found in the literature relies on finding a translation invariant Fourier transform on

two Extended Gaussian Images (EGI) (Makadia et al., 2006) of laser scans, where the surface normals of

an object are mapped onto the unit sphere. However, this approach can only be applied to smooth surfaces

and fails to match surfaces with constant EGI (such as a sphere). Censi et al. (Censi and Carpin, 2009)

proposed another approach to scan matching that projects the two scans into the Hough/Radon domain

(Censi and Carpin, 2009) defined on the unit sphere. Similar to the work of Makaida et al., a translation

invariant spectrum is computed to find the rotation and cross-correlations are used to find the translation.

Both EGI approaches and the ones based on transformation to Hough/Radon domain are sensitive to the

measurement noise and sampling density during the calculation of normals.



Unlike the shape-fixed rectangles in the frequency domain of conventional FFT, multi-scale transforms such

as the discrete wavelet transform (DWT) use dilated shape varying rectangles to find directional elements

such as edges and ridge features in the laser scans. However, many wavelet coefficients are needed to account

for singularities along lines or curves. To overcome this problem, other directional wavelets such as wedgelets

(Donoho, 1999), beamlets (Donoho and Huo, 2002), contourlets (Do and Vetterli, 2005), surfacelets (Lu and

Do, 2007), etc. have been proposed, however the detected features are less prominent especially at the

edges. In order to account for curve-singularities, the curvelet transform has previously been proposed which

generates a sparse representation of the points within the scan and employs angled polar wedges in the

frequency domain to find directional features. Previously, Alam et al. applied the curvelet transform for

the problem of image fusion (Alam et al., 2014) where only an approximate sub-band of the coefficients was

used for registration. The algorithm relied on the assumption that the curvelet coefficients were normally

distributed.

Depth-discontinuities of the surfaces seen from different perspectives are often distinct, and can be detected

using various edge-extraction algorithms. Key-points and descriptors can be calculated around these regions

for correspondence estimation between laser scan pairs. However, in planetary environments, typical edge

detection methods fail due to the smoothly varying surfaces. Instead, curvelets can be applied directly to

the range image to capture the smoothly varying surface and define reliable features that work well for scan

registration. This work has been inspired by the techniques used in the computer vision field for image

fusion, and to the best knowledge of the authors, there has not been a detailed study of the application of

the curvelet transform to the scan registration problem.

3 Problem Formulation

Two 3D point-sets are defined: the model set M = {m1, · · · ,mNM} and the data set D = {d1, · · · , dND
}

where mi, dj ∈ R3 for i ∈ {1, · · · , NM}, j ∈ {1, · · · , ND}. A scan-to-scan registration algorithm seeks

to identify a 6-DOF transformation of the data scan to match a model scan coordinate frame to form a

single, globally consistent model of the environment. This is done by maximizing the similarity between

scans after transformation. An estimate, T , of the transformation T ∗ = {R, t} ∈ SE(3), with rotation

R = {Rx, Ry, Rz} ∈ SO(3) and translation t = {tx, ty, tz} ∈ R3 can be obtained from:

T ∗ = argmax
T∈SE(3)

C(M,T (D)) (1)



where C(M,T (D)) is the similarity metric between the model set M and the transformed data set T (D).

4 Proposed Method

In order to incorporate curvelet transform into the scan registration process, we define a similarity metric

that is computed via a five-part algorithm as follows.

1. Range images RM and RD ∈ I = RX×Y+ of dimension X × Y are constructed from the spherical

projections of the 3-D laser scans, M and D. Background regions surrounded by a connected border

of foreground pixels are assigned an intensity value by employing a hole filling algorithm (Soille,

2003). A Gaussian filter of size 3× 3 with a standard deviation of 0.5 is used to smooth the range

images and is followed by normalization of the range intensity values. Figure 2 shows the range

image generated from the first 3D laser scan in the a100 Mars Dome data-set (Tong and Barfoot,

2011), with an angular resolution of 0.5 degrees in both x and y directions.
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Figure 2: Range image generated from the spherical projection of the first 3D laser scan in the a100 Mars
Dome data-set (Tong and Barfoot, 2011), with an angular resolution of 0.5 degrees in both x and y directions.

2. The discrete curvelet transform is then applied to each range image to obtain two sets of curvelet

coefficients. The discrete curvelet transform is a linear digital transformation consisting of complex

valued basis functions Ψj,l,k : R2 → C parametrized in three spaces: scale 2−j ∈ R, orientation

θl[0, 2π) = 2π · 2−bj/2c · l, where l = 0, 1, . . . 2bj/2c − 1 ∈ Z, and scale dependent relative position



x
(j,l)
k = R−1θl (k12−j , k22bj/2c) ∈ I, where k = (k1, k2) indexes a standard translational grid that is

adjusted to each scale value. The notation bxc denotes the floor of x, which truncates a positive

real number to its integer component. The discrete curvelet transform of an n×m Cartesian array

formed from the range image of size X×Y pixels is defined as the inner product between an element

of the array f(t1, t2)0 ≤ t1 < n, 0 ≤ t2 < m, and the curvelet basis function Ψj,l,k, given as (Cands

et al., 2006):

c(j, l, k) = 〈f,Ψj,l,k〉

=
∑

0≤t1<n,0≤t2<m

f [t1, t2]Ψj,l,k[t1, t2]

where Ψj,l,k is the basis function for the discrete version of the forward transform and c(j, l, k) is

the indexed curvelet coefficient. The curvelet transform is implemented using second generation

fast discrete curvelet transform (FDCT) via wrapping is available at http://www.curveleab.org.

Figure 3 presents the log of the curvelet coefficients for the range image in Figure 2 for scales from

the coarsest to level 4, and for angles from the 2nd coarsest to level 16. The center of the display

shows the low frequency coefficients at the coarsest scale, with the Cartesian concentric coronae

at the outer edges at various scale levels, showing coefficients at higher frequencies. Each corona

contains four strips which are subdivided into angular panels (Cands et al., 2006).

Figure 3: Log of the curvelet coefficients for the range image in Figure 2 for λ = 1 . . . 4 and φ = 2 . . . 16.

3. The Cartesian array formed from the range image can be reconstructed from the curvelet coefficients

c(j, l, k) by taking the inverse curvelet transform as (Cands et al., 2006):



Ic =
∑
j,l,k

c(j, l, k)ψ̃j,l,k (2)

where Ψ̃j,l,k is the basis function for inverse transform. Additionally, it is possible to invert each

scale level individually, leading to scale dependent reconstructed images.

Ic(j) =
∑
l,k

c(j, l, k)ψ̃j,l,k (3)

A novel differences of curvelets (DoC) image feature is introduced to identify stable locations that are

invariant to scale. Contributions from individual sub-bands from two nearby scales are subtracted

to produce a set of difference-of-curvelet images as follows:

IDoC(j) = Ic(j)− Ic(j − 1) (4)

Similar to the Scale Invariant Feature Transform (SIFT) (Lowe, 2004), local maxima and minima

over scale and space are used to find potential key-points by comparing the pixel value at the

current scale with its 8 connected neighbors, and 9 other pixels in both the previous and next scales.

The result is then thresholded to eliminate low-contrast key-points, and key-points lying close to

the minimum cut-off range of the sensor, to obtain robust interest points (depicted as red stars in

Figure 4). Some of the key-points are found at the interface of data and missing data, whereas

others are found at locations where there is a sudden change in range intensity data values within a

local neighborhood. The aim of the descriptor is to capture the local surface variations around the

key-point such that valid correspondences can be computed at later stages. A 16x16 neighborhood

around the key-point is used to obtain a 128 bin feature descriptor from the 3D spatial histogram

of image gradients (Lowe, 2004; Mikolajczyk and Schmid, 2005).

4. A quick and efficient feature matching is performed using approximate nearest neighbor search in

the feature space and feature correspondences are established between curvelet feature pairs. The

nearest neighbor is defined as the feature with minimum Euclidean distance to another feature in

the feature space (Muja and Lowe, 2009). Feature correspondences are filtered using RANSAC to

reject outliers (Fischler and Bolles, 1981).

5. Filtered corresponding curvelet feature pairs in the metric space are used to estimate the rigid body

transformation by employing SVD (Arun et al., 1987). SVD algorithm provides a closed form least-



Figure 4: Curvelet features (as red stars ) from the range image in Figure 2.

squares solution for the rotation matrix and translation vector given the correspondence pairs. Other

methods such as Levenberg-Marquardt least-squares algorithm (Marquardt, 1963; Levenberg, 1944)

provide an iterative solution to the rigid body transformation estimation problem, however the SVD

algorithm provides the best possible solution in one step without the need for an initial guess.

5 Experimental Results

The proposed approach is evaluated using three planetary analogue 3D LIDAR scan data-sets (The University

of Toronto Institute for Aerospace Studies Mars-dome analogue indoor data-set, IVIGMS simulated and

real-world CSA Mars-Yard outdoor data-sets) in both indoor and outdoor settings. Registering scans from

emulated Mars terrain is quite challenging due to a large inter-scan transformation error and a lack of

sufficient features to match the scans with each other, even with full 360◦ x 180◦ scans of the terrain. The

poor structure of the Mars like terrain coupled with the shallow grazing angle results in a variable resolution,

occluded, sparse range data that is hard to register without some a-priori knowledge of the environment.

The University of Toronto Institute for Aerospace Studies (UTIAS) Mars-dome analogue indoor data-set (the

a100 dome) (Tong and Barfoot, 2011) consists of 95 scans obtained by vertically scanning SICK LMS291-

S05 laser rangefinder with a vertical resolution of 0.5 degrees, at the rover test facility at Toronto, Ontario.

The environment within the dome emulates unstructured Mars-like terrain with sand, gravel, and hills (see

Figure 5). Ground truth data is provided from four retro-reflective markers. Every 5th pair of scan was used

for registration with an average distance traveled between consecutive scans of 2.38 meters, and an average

rotation of 0.45 radians.
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Figure 5: (a) UTIAS Mars-dome indoor planetary analogue environment (Photograph courtesy of Dr. Tim
Barfoot, Autonomous Space Robotics Lab, University of Toronto), and (b) Overhead view of the UTIAS
Mars-dome terrain and the rover scan locations.

Neptec Design Group has recently developed the IVIGMS 3D LIDAR sensor for the Canadian Space Agency,

which can be reconfigured on the fly to produce both long range sparse point clouds and short range high

density clouds with the same sensor. This unique flexibility makes the IVIGMS LIDAR an interesting

option for planetary navigation. The IVIGMS 3D laser scanner is tuned with a set of pre-programmed beam

trajectories. At the start of the mission, a sparse local map is generated, and low rate sparse scan data,

captured while traveling through the terrain, is used to match to the original map and track the progress.

The planetary analogue outdoor simulated data-set consists of 40 scans obtained by simulating the IVIGMS

laser rangefinder, as depicted in Figure 6. The scans were taken from the simulated CSA Mars emulation

terrain, for which a digital elevation map (DEM) of dimensions 60m x 120m at 25cm resolution was made

available. The emulation terrain includes unstructured Mars-like surface elements constructed of sand and

gravel, and containing ridges, hills and a crater. Ground truth data consists of absolute sensor pose data

provided by the IVIGMS simulator. Consecutive scan pairs were used for registration with an average linear

distance traveled between consecutive scans of 5.4 meters and an average rotation of 0.09 radians.

The real-world outdoor planetary analogue data-set consists of 17 scans obtained from IVIGMS laser

rangefinder mounted on the Artemis Junior robot provided by CSA, as depicted in Figure 7. The scans

were taken at the CSA Mars emulation terrain of dimensions 60m x 120m (See Figure 8). Laser scan data

was aggregated for 40 seconds at the rate of 25KHz with a field of view 360◦ x 45◦, for approximately 15

meter rover displacement in the yard. Laser scan data was later trimmed to a quarter of the number of
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Figure 6: (a) Simulated CSA Mars Yard environment, and (b) Overhead view of the CSA Mars emulation
terrain and the rover scan locations.

points to get sparse scans.

(a) (b)

Figure 7: (a) Artemis Junior robot at the CSA mars yard with Neptec IVIGMS laser range finder mounted
top-left, and (b) Closeup of the IVIGMS sensor.

In addition to the rough terrain, sparse features, large inter-scan transformation error, and occlusions, it was

found that the laser scans exhibited a high degree of noise. The majority of the noise consists of outliers, bad

reflections and inaccurate integration of points. The exact source of the noise is currently being investigated

and a thorough analysis of measurement noise level is needed to generate a reliable noise model to aid in

automated de-noising using algorithms such as RANSAC (Fischler and Bolles, 1981). In this paper, data
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Figure 8: (a) Real world CSA Mars Yard environment (Photograph courtesy of CSA), and (b) Overhead
view of the CSA Mars emulation terrain and the rover scan locations.

points corresponding to measurement errors and points lying outside the physical boundary of the Mars

yard were manually removed. Ground truth data consists of absolute sensor pose data provided by manual

registration of each scan.

The first algorithm used for comparison is based on the work of Rusu et al. (Rusu et al., 2008). FPFH

features are computed over the scan-pair with a search radius set to 1m, and an initial alignment is determined

from the SAC-IA method. Points are sampled from each cloud with the pairwise distance greater than 2.5m.

Next, ICP is used to refine the transformation based on the initial guess from SAC-IA results to obtain the

final transformation estimation with the maximum correspondence distance set to 5m.

Corner-based Harris-3D (Harris and Stephens, 1988) features are combined with FPFH descriptors to form

the second algorithm used for comparison. The search radius used to determine the corner points in the

scan-pair is set to 1m, and the k-value for the nearest neighbor search around these key-points is set to

20. Correspondences between the scans are found using nearest neighbor search. Next, correspondences are

filtered using RANSAC with the maximum distance between the corresponding points (inlier threshold) set

to 15m. The initial transformation is determined from these correspondences using SVD followed by the

ICP refinement with maximum correspondence distance set to 5m as in the first comparative algorithm.

The selection of the parameters for both the aforementioned algorithms is a valid concern. In order to

provide a fair comparison for the competing algorithms, we performed a test using all the scans of these



data-sets and determined the parameter values based on the best scan registration accuracy results. For all

algorithms reference implementations are provided in the Point Cloud Library (PCL) (Rusu and Cousins,

2011). The maximum number of iterations was set to 100 and the optimization was terminated when the

norm of the gradient or the norm of the step size falls below 10−6. The absolute error in rotation and

translation is compared with the ground truth measurements. Despite some occlusions, there is a significant

overlap (greater than 50%) between the scans as the sensing range exceeds the bounds of the physical

environment in these data-sets.

The experimental results are presented in two parts. First, we evaluate the scan registration accuracy and

quality of the generated maps. Second, a run-time comparison for all algorithms is presented followed by a

discussion based on the results.

5.1 Evaluation of Scan Registration Accuracy

In order to evaluate the accuracy of the scan registration, root mean squared error (RMSE) is computed

for both translation and rotation with respect to the ground truth. Assuming that the error samples are

independent and identically-distributed random variables, the asymptotic behavior of the empirical measure

of the error samples can be determined using the empirical cumulative distribution function (Tucker, 1959).

It is defined as the proportion of error samples less than or equal to a given error metric, converging

to a cumulative probability of 1 as the error magnitude increases. Intuitively it can be viewed as the

proportion of successful scan registrations below the error threshold. Figures 9, 10, and 11 show the empirical

cumulative distribution function of error samples (y-axis) for the given registration error threshold (along

x-axis). The error distributions demonstrate that curvelet transform based scan registration converges faster

to a maximum probability of one, and produces the most consistently accurate results when compared to

FPFH+SAC-IA and Harris-3D+FPFH methods. In fact, from a registration perspective, errors in rotation

in excess of 0.1 radians (5.73 degrees) can be considered registration failures. Although some failures can

be detected and/or rejected by robust back-end loop closure techniques such as (Grisetti et al., 2012), it

is preferable to avoid such failures in scan-to-scan registration in the first place. The root mean squared

errors (RMSE) in translation and rotation for the three data-sets are given in Tables 1, 2 and 3. The

large translational and rotational error in FPFH+SAC-IA can be attributed to the fact that FPFH is

not view-point invariant. The quality of alignment is directly dependent on the point selection strategy

and accurate normals computation. Both FPFH+SAC-IA and Harris-3D+FPFH algorithms show high
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Figure 9: Error distributions for UTIAS Mars-Dome indoor data-set - a100 dome. (a) Translation error (m).
(b) Rotational error (rad).
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Figure 10: Error distributions for IVIGMS simulated CSA Mars-Yard outdoor data-set. (a) Translation
error (m). (b) Rotational error (rad).

translational and rotational errors due to the lack of feature-rich regions in the scans and absence of planar

structures. Compared with other algorithms, curvelet transform based scan registration has a lower RMSE

in both translation and rotation.

Figure 12 shows the rover trajectory generated by integrating the estimated rover positions from scan regis-

tration over time for the outdoor data-sets. The proposed method slowly drift away from the ground truth

for the simulated outdoor data-set shown in Figure 12-(a), b. Comparing the trajectories between the two
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Figure 11: Error distributions for IVIGMS real-world CSA Mars-Yard outdoor data-set. (a) Translational
error (m). (b) Rotational error (rad).

outdoor data-sets, it can be seen that FPFH+SAC-IA and Harris-3D+FPFH have a much higher drift in

the real-world and simulated data-sets due to the inaccurate calculation of surface normals in the presence

of noise and outliers.

Table 1: Root mean squared error in translation and rotation for the UTIAS Mars-Dome indoor data-set -
a100 dome data-set.

RMSE Translation (m) RMSE Rotation (rad)

FPFH+SAC-IA 1.6763 0.0986

Harris-3D+FPFH 0.9202 1.7908

Proposed Method 0.3211 0.0877

Table 2: Root mean squared error in translation and rotation for the IVIGMS simulated CSA Mars-Yard
outdoor data-set.

RMSE Translation (m) RMSE Rotation (rad)

FPFH+SAC-IA 3.1916 2.4717

Harris-3D+FPFH 1.6178 2.1043

Proposed Method 0.0147 0.0090



Table 3: Root mean squared error in translation and rotation for the IVIGMS real-world CSA Mars-Yard
outdoor data-set.

RMSE Translation (m) RMSE Rotation (rad)

FPFH+SAC-IA 8.6808 2.3560

Harris-3D+FPFH 6.4692 2.5836

Proposed Method 0.1855 0.0293
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Figure 12: Visualization of the rover trajectory. (a) IVIGMS simulated CSA Mars-Yard outdoor data-set.
(b) IVIGMS real-world CSA Mars-Yard outdoor data-set.

Figures 13, 14, and 15 show the final dense map generated by integrating all registered scans for the ground

truth and the proposed method. It can be seen that the proposed method produces an accurate dense

map of the indoor Mars-dome and outdoor CSA Mars emulation terrain. In particular, the high rotational

alignment accuracy of the proposed method is visible at the center of the map in Figure 14-(b) and right

edge of the map in Figure 13-(b). Due to the high degree of error in rotation and translation, dense maps

generated by FPFH+SAC-IA and Harris-3D+FPFH are not shown. Some translational and rotational error

remains in the curvelet registered map, as visible at the center of the map in 15-(b), but this is small in

comparison to the errors transformation errors in other algorithms.

5.2 Run-time Evaluation

Scan registration run-times for FPFH features with SAC-IA alignment, Harris-3D features with FPFH

descriptors and the proposed method for each of three data-sets is visualized in Figure 16 as box-plots. The

”central box” in box-plots represents the central 50% of the data with a central line indicating the median,



(a) (b)

Figure 13: Final maps generated by integrating registered scans for the UTIAS Mars-Dome indoor data-set
- a100 dome. Points above -1 meter in z-height are displayed for better visualization (intensity scaled in
z-axis from low-red to high-blue). (a) Ground truth. (b) Proposed method.

(a) (b)

Figure 14: Final maps generated by integrating registered scans for the IVIGMS simulated CSA Mars-Yard
outdoor data-set (intensity scaled in z-axis from low-red to high-blue). (a) Ground truth. (b) Proposed
method.

and the lower and upper boundary lines are at the first and third quartile of the data. Two vertical lines

extending from the central box to 1.5 times the height of the central box indicate the remaining data not

considered as outliers, and the red points on top or bottom, represent any outliers if present. The run-time

evaluation clearly demonstrates that the proposed method is able to perform scan registration significantly

faster than other methods. The average run-time values for each of the three data-sets are presented in

Table 4. As can be seen, for all data-sets, the average run-time for the proposed method is atleast an order

of magnitude faster than other methods.



(a) (b)

Figure 15: Final maps generated by integrating registered scans for the ground truth (intensity scaled in
z-axis from low-red to high-blue) for the IVIGMS real-world CSA Mars-Yard outdoor data-set. (a) Ground
truth. (b) Proposed method.

Run-times for all methods can be significantly improved by down-sampling the point cloud and changing

the scale dependent parameters. However, down-sampling of the surface may result in inaccurate scan

registration, and is therefore not utilized in this study. A large amount of computational time is spent in

calculating normals and FPFH descriptors for FPFH+SAC-IA algorithm, and normals and key-points for the

Harris-3D+FPFH algorithm. The run-time performance for both these algorithms is directly dependent on

the size of the local neighborhood selected for calculation of normals, key-points and respective descriptors.

In addition parameters such as maximum correspondence distance for both SAC-IA and ICP-refinement

steps, termination condition, and number of iterations are all data-set dependent. The values for these

parameters mentioned above were selected based on the need to balance alignment accuracy and faster run-

times. Changing these parameters may result in lower run-times at the expense of registration accuracy. The

proposed method represents the 3D scan as a 2D range image, and the search for features and correspondence

analysis is restricted to the 2D space. This significantly reduces the computational time, however the

transformation to the curvelet domain to find suitable features, computation of feature descriptors and the

rejection of false correspondences add to the run-time.

Table 4: Average run-times (s) for pair-wise scan registration for each data-set used for comparisons.

FPFH +
SAC-IA

Harris-3D +
FPFH

Proposed
Method

Indoor Mars-dome data-set (s) 2745.59 4307.76 91.15

Outdoor simulated CSA
Mars-Yard (s)

1049.09 1076.62 101.1

Outdoor real-world CSA
Mars-Yard (s)

138.45 170.54 107.04
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Figure 16: Box-plots illustrating the scan registration run-times in log scale and the number of points in laser
scans for various data-sets. (a) UTIAS Mars-Dome indoor data-set - a100 dome. (b) IVIGMS simulated
CSA Mars-Yard outdoor data-set. (c) IVIGMS real-world CSA Mars-Yard outdoor data-set. (c) Point cloud
size for the three data-sets

6 Conclusions and Future Work

In this work, a curvelet transform based method for improving the alignment accuracy of standard registra-

tion algorithms is presented. Suitable features in the curvelet domain are found via difference of curvelets op-

erator at multiple scales. Curvelet features help in obtaining a higher level understanding of the environment

by extracting regions of interest, thereby reducing the amount of data to be processed. The neighborhood

around the feature is captured by a shape descriptor computed from spatial histograms of image gradients,



which is further used in establishing correspondences using nearest neighbor matching between scan points

from different viewpoints. RANSAC based filtering of feature correspondences is followed by SVD based

alignment of the laser scans. The proposed method is verified experimentally by first evaluating the scan

registration accuracy on a publicly available indoor UTIAS Mars-dome data-set, as well as simulated and

real-world CSA Mars-yard data-sets. The sparse-featured, unstructured Mars-like terrain poses a significant

challenge for global registration methods relying on features such as FPFH and Harris-3D. Curvelet feature

based scan registration is shown to produce lower translation and rotation errors as compared with other

methods. Second, the resulting rover trajectory is generated by integrating scans after incremental pair-wise

scan registration for outdoor data-sets and the proposed method is shown to produce lower drift. Third

the quality of the scan registration is verified by integrating scan points after registration into a final map.

Visually, it is shown that the map generated from the proposed method is sharper as compared with the

maps generated from FPFH and Harris-3D based methods.

Although curvelet features efficiently localize regions with sharp discontinuities along the curve, due to the

compact representation of the underlying surface structure as point features, a lot of geometric information,

particularly in the smoothly varying regions is lost during the extraction process, the inclusion of which could

potentially result in higher registration accuracy. In addition, a better understanding of the underlying

surface structure, as well as the overall information content within the scan is needed. In this paper,

we restrict our analysis to the effects of the selected global methods on the scan registration accuracy in

challenging outdoor data-sets. However, to the best knowledge of the authors, a detailed analysis of the

repeatability of various 3D features under view-point variations and robustness with respect to noise, scale

changes, rotations, and translations in planetary environments is lacking in the literature. It is definitely a

sizable undertaking, and we have therefore left this as an area for future work.

The range-imaging step of the curvelet algorithm is susceptible to the quantization errors during the pro-

jection of laser points onto the range image plane, caused by non-uniform sampling by various laser sensors

along the azimuth and elevation direction. Pixels in the range image could correspond to more than one

range measurement or none at all, resulting in information loss which may negatively affect the scan reg-

istration accuracy in cluttered indoor environments. Gaussian filtering with a small 3 × 3 kernel has been

employed to reduce the noise in the range-intensities during the range imaging step. The effects of surface

de-noising on the scan registration accuracy has been left as an area for future work.

Identification of dynamic objects in the scene would further aid the scan registration accuracy in real-world

settings. Inclusion of IMU data in the registration pipeline could provide an initial estimate for the optimizers



in the scan registration methods, which could result in faster convergence and more accurate registration.

Global optimization as a post-processing step will further increase the scan registration accuracy, and is

proposed as a future extension of the work.
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