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Abstract

Off-road ground mobile robots are widely used in diverse applications, both in terrestrial

and planetary environments. They provide an efficient alternative, with lower risk and cost,

to explore or transport materials through hazardous or challenging terrain. However, non-

geometric hazards that cannot be detected remotely pose a serious threat to the mobility of

such robots. A prominent example of the negative effects these hazards can have is found

on planetary rover exploration missions. They can cause a serious degradation of mission

performance at best, and complete immobilisation and mission failure at worst. To tackle

this issue, the work presented in this paper investigates the novel application of an exist-

ing enhanced-mobility locomotion concept, a hybrid wheel-leg equipped by a lightweight

micro-rover, for in-situ characterization of deformable terrain and on-line detection of non-

geometric hazards. This is achieved by combining an improved vision-based approach and a

new ranging-based approach to wheel-leg sinkage detection. In addition, the paper proposes

an empirical model, and a parametric generalization, to predict terrain trafficability based



on wheel-leg sinkage and a well-established semi-empirical terramechanics model. The ro-

bustness and accuracy of the sinkage detection methods implemented are tested in a variety

of conditions, both in the laboratory and in the field, using a single wheel-leg test bed. The

sinkage-trafficability model is developed based on experimental data using this test bed and

then validated on-board a fully mobile robot through experimentation on a range of dry

frictional soils that covers a wide spectrum of macroscopic physical characteristics.

1 Introduction

Reconnaissance and transport tasks on challenging, off-road terrains can be performed with lower risks

and higher efficiency by using autonomous mobile robots. These benefits, which are valuable in terrestrial

applications, are further amplified in planetary exploration missions. Wheeled locomotion provides a better

trade-off between power efficiency, mobility and robustness than alternatives like tracked or legged rovers.

However, non-geometric hazards that cannot be reliably detected remotely, e.g. sand traps or subsurface

voids hidden by thin duricrusts or surface dust, threaten to temporarily or permanently immobilise these

robots. Two possible approaches can mitigate this circumstance: improving the mobility of wheeled robots

or detecting these non-geometric hazards in-situ.

Direct soil sensing devices, e.g. cone penetrometers (Zacny et al., 2010) or Bevameters (J. Wong, 1980), can

reliably characterize the physical properties of the terrain, at the cost of high mechanical complexity, high

power consumption and the need to stop the rover to take a measurement. These downsides can be avoided

using indirect soil sensing techniques that aid detecting non-geometric hazards by analysing vehicle-terrain

interaction on-the-fly while driving (Iagnemma, Kang, Shibly, & Dubowsky, 2004), e.g. through vibration-

based classification (C. Brooks & Iagnemma, 2005; Weiss, Fechner, Stark, & Zell, 2007), slip detection

(Ojeda, Cruz, Reina, & Borenstein, 2006; C. A. Brooks, Iagnemma, & Dubowsky, 2006; Iagnemma & Ward,

2009) or sinkage estimation (Reina, Ishigami, Nagatani, & Yoshida, 2008). On the other hand, the mobility

of wheeled robots can be enhanced via passive or partially actuated suspensions, sometimes referred to as leg-

wheeled, wheel-walking, rolling-walking or articulated-wheeled robots (Fu & Krovi, 2008). This improvement

in mobility has been successfully demonstrated by the recent NASA rovers sent to Mars (Maimone, Cheng,

& Matthies, 2007; Grotzinger et al., 2012).

While these developments can be effective when combined, they still require using overly cautious traversal

speeds to detect the hazards and stop the rover before it is too late. This is especially aggravating in planetary



rover missions to Mars, due to the scarce and delayed communication links with Earth. Not only do the

slow speeds significantly hinder mission performance and scientific return, but they also do not guarantee

avoiding these hazards. All three Martian rovers that have exceeded 100 metres of driving have faced related

issues, involving time-costly manoeuvres and detours in the best-case scenarios of Opportunity and Curiosity

(David, 2005; Wall, 2014) and permanent immobilisation and mission termination for the worst-case scenario

experienced by Spirit (Matson, 2010), as illustrated in Fig. 1 (left).

This paper presents a new approach to tackle this issue by further developing and combining enhanced

wheeled mobility and indirect, on-line soil sensing through robot-terrain interaction analysis. It is proposed to

use a hybrid locomotor concept that combines the control and mechanical simplicity of wheels with the higher

mobility of legs. It consists of a single Degree of Freedom (DoF) rimless wheel, with its spokes acting as rotary

legs, and its strengths and advantages have been thoroughly demonstrated in a variety of implementations

(Saranli, Buehler, & Koditschek, 2001; Schroer, Boggess, Bachmann, Quinn, & Ritzmann, 2004). For the

sake of conciseness and taking inspiration from Whegs (Quinn, Offi, Kingsley, & Ritzmann, 2002), the first

robot family to use this concept with multiple spokes, this type of locomotor will be referred to in the rest of

this paper as a wheel-leg. Although much research has been done previously on high-fidelity models (Ding et

al., 2015), off-line stochastic characterisation (Gallina, Krenn, Scharringhausen, Uhl, & Schäfer, 2014), visual

analysis (Skonieczny et al., 2014) or learned mobility prediction (Krebs, Pradalier, & Siegwart, 2010; Peynot,

Lui, McAllister, Fitch, & Sukkarieh, 2014) for rimmed wheels interacting with deformable terrain, there is

a lack of similar studies for the aforementioned multi-legged wheel-legs. Furthermore, the comparability of

wheel and wheel-leg terrain interaction remains unaddressed.

The contributions of this paper include the combination and upgrade of existing wheel (Milella, Reina, &

Siegwart, 2006) and wheel-leg (Al-Milli, Spiteri, Comin, & Gao, 2013) vision-based sinkage detection methods

and the development of a novel ranging-based sinkage detection method using ground clearance estimation,

for improved wheel-leg-soil interaction sensing. Both methods’ accuracies and robustness are evaluated and

compared in laboratory and field conditions. Moreover, an empirical model is developed and generalized

using the same experimental set-up, in order to relate the sensed wheel-leg sinkage with terrain trafficability

for wheels based on the tractive efficiency obtained from terramechanics models (Bekker, 1960). The new

model is then independently validated on a fully mobile robot with two front wheel-legs on a range of dry

frictional soil types with diverse physical strength characteristics.

These contributions enable the on-line and in-situ detection of non-geometric hazards, while the enhanced

mobility of the wheel-leg reduces to a minimum the chances of the robot becoming permanently trapped.



Figure 1: Image of MER Spirit stuck on soft soil (left), courtesy of NASA (NASA, 2010), and conceptual
illustration of the FASTER mission scenario (right), courtesy of the FASTER consortium (FASTER, 2013)

Such advances would be beneficial for both terrestrial and planetary applications. They can be applied

on lone wheel-legged rovers, homogeneous wheel-legged multi-rover teams or heterogeneous teams, e.g. a

wheel-legged Scout Rover (SR) assessing the terrain ahead of a heavier wheeled Primary Rover (PR), as

proposed by the FP7 FASTER mission concept (Allouis et al., 2015; Nevatia et al., 2013; Lewinger et al.,

2013) illustrated in Fig. 1 (right). The FASTER SR mobile robot itself, Coyote II (Sonsalla, Fritsche, Vögele,

& Kirchner, 2013; Sonsalla, Ahmed, et al., 2014; Sonsalla, Nevatia, et al., 2014), was designed, built and

provided by the German Research Centre for Artificial Intelligence (DFKI). It is not a contribution of this

paper, and was only used as a platform for sensor system testing and algorithm validation.

The structure of the rest of the paper is the following: Section 2 introduces the operating principle, hardware

and software design of the wheel-leg sinkage sensing system and the terramechanics model used for traffi-

cability assessment; Section 3 describes the experimental set-ups, materials and testing methodology used;

Section 4 discusses and compares the performance of the sinkage detection methods during testing; Section

5 goes through the development and validation of the empirical and generalized trafficability models based

on wheel-leg sinkage; and Section 6 summarizes the conclusions of the work presented and indicates future

work guidelines.

2 Wheel-Leg Sinkage Detection and Wheel Trafficability

Simulation

Multiple approaches have been explored to measure the level of sinkage in soil of a conventional rimmed

wheel, using computer vision to analyse images of the wheel and to detect the wheel occlusion caused by that



sinkage (C. A. Brooks et al., 2006; Milella et al., 2006). Only one similar approach has been proposed for

the hybrid wheel-leg concept (Al-Milli et al., 2013). However, this method is based on colour segmentation,

which can be seriously affected by changes in environment lighting when High-Dynamic-Range imaging or an

ad-hoc focused source of lighting are not available. In addition, it does not account for important operational

factors, i.e. the tilting of the robot’s reference frame associated with the irregular rolling motion of wheel-legs

and the presence of slopes or irregular dunes in the terrain. These issues are addressed in this paper through

the improvement of the vision-based approach and the implementation of a new sinkage estimation method

based on ground-clearance measurement.

2.1 Foot Designs and Wheel-Leg Configuration

The central component of the system is the wheel-leg itself, shown in Fig. 2 (a). It is closely based on

previously used wheel-legs and further details of its design and fabrication processes can be found in (Hidalgo,

2013; Schwendner et al., 2009). It counts with five uniformly distributed spokes, with 180 mm length and

16 mm width. Each spoke consists of two full-length solid edges, bridged with the neighbouring legs for

rigidity, and hollow space in the middle. While slightly compliant, the high stiffness provided by the design

makes leg deflection negligible under the loads estimated for the FASTER SR used in this research (3.75

kg per wheel-leg). Interchangeable feet can be attached at the end of each leg. Three different designs are

considered in this work, pictured in Fig. 2 (b). The rubber feet, similar to those used by the Asguard robots

(Hidalgo, 2013), provide good load distribution, terrain adaptability and traction. The carbon fiber feet,

Figure 2: Wheel-leg and feet: (a) wheel-leg courtesy of DFKI (Sonsalla, Nevatia, et al., 2014) equipped
with one rubber foot, two carbon fiber foot and two LTF wheel-leg, (b) individual pictures of a rubber foot
(bottom), an LTF (centre) and a carbon fiber foot (top) and (c) two isometric CAD views of the LTF design



similar to those used by CESAR (Schwendner et al., 2009), have a much bigger contact area, considerably

lowering the contact pressure in deformable terrain.

Finally, the Load Testing Feet (LTF) were specifically designed for the FP7 FASTER project. Their main

design driver is to replicate the static contact pressure below one of the 10 cm-wide and 15 cm-radius wheels

of the 350 kg FASTER PR with the reduced 15 kg mass of the SR. Figure 3 (left) plots as a blue line the

average contact pressure below a PR wheel in Earth’s gravity, geometrically calculated for different sinkage

levels of 0− 120 mm. The initial width of the LTF is calculated to mimic the contact pressure with a 50%

safety margin, shown as a dashed blue line, to ensure that the LTF would penetrate through any duricrust

that is weak enough to break below the pressure of a PR wheel.

Due to the low mass of the SR, the resulting blade width is overly narrow. As a cautionary measure, to

prevent excessive sinkage, the depth of this narrow blade is limited to 7 mm. This is enough to penetrate any

sub-centimetre weak surface duricrusts as those reported by earlier Mars missions (Mutch, Arvidson, Binder,

Guinness, & Morris, 1977; Arvidson et al., 2004), and acts as a maximum sinkage threshold for certainly safe

terrain (‘GO’). Thereafter, the LTF is provided with a wider plateau, whose thickness is calculated to mimic

the static pressure of a PR wheel at a sinkage of 75 mm. This is the specified maximum allowable sinkage

for the FASTER PR, equal to half the wheel’s radius, and acts as the minimum sinkage for certainly unsafe

Figure 3: Pressure-sinkage curves geometrically calculated for PR wheel and a SR LTF and experimentally
obtained for firm ground, quartz sand and nepheline powder (left) and static wheel-leg pressure-sinkage test
set-up (right)



terrain (‘NO-GO’). Any sinkage level in between those thresholds is treated as uncertain (‘MAYBE’), as the

contact pressure beneath a SR wheel-leg is significantly smaller than below a PR wheel in that region.

As a result of the final design, shown in two CAD isometric views in Fig. 2 (c), the geometrically calculated

contact pressure below an LTF loaded with the SR nominal mass is shown as a black line in Fig. 3 (left).

The red, yellow and green lines in the same plot correspond to experimental measurements of quasi-static

pressure-sinkage tests on different types of materials using the LTF and the set-up shown in Fig. 3 (right).

The manually actuated hydraulic press slowly increases the force applied on the wheel-leg through a proving

rim that measures this force. Two digital displacement gauges are recorded simultaneously to measure the

sinkage and proving ring deflection.

The initial peaks in the experimental curves correspond to the high pressure due to the small contact area of

the LTF blade. This is followed by a drop due to the higher contact area of the LTF plateau and a constant

increase thereafter, as expected from the pressure-sinkage behaviour of soils. The intersections between

these lines and the geometrically calculated ones (triangle and star markers) correspond to the expected

static sinkage of a SR wheel-leg and a PR wheel respectively. The intersection sinkages for each medium

exemplify how the LTF static sinkage thresholds would classify the negligible-sinkage rigid surface as a ‘GO’,

the mid-sinkage quartz sand as a ‘MAYBE’ and the high-sinkage fine nepheline powder as a ‘NO-GO’.

It should be remarked that the sinkage of an LTF can only mimic that of a PR wheel accurately on static

loading conditions, with a leg normal to the terrain. During dynamic rolling motion, the varying attack

angle of the leg generates a pushing-rolling regime that affects the penetration stresses (C. Li, Zhang, &

Goldman, 2013). This consideration, which would still be true if the wheel-leg had the same radius as

the PR wheel, increases the certainty of the LTF breaking through thin duricrusts. However, it raises the

question of whether this is a reliable criterion to evaluate terrain trafficability, which will be addressed in

Section 5.

2.2 Proprioceptive sensing of wheel-leg attitude and stance-cycle phase

The main difference between visually detecting sinkage on conventional rigid wheels and wheel-legs is that

the latter have an irregular, dynamic shape in the Field of View (FoV) of the camera and it causes rapid

changes in the attitude of the rover’s body. Therefore, the absolute angular position of each leg of the sensed

wheel-leg (θL,i) needs to be reported to put the measurements from the other sensors in context. This angle

is measured clockwise around the positive Y-axis of the robot body reference frame (YR) with its zero value



on the negative Z-axis of said frame (ZR). Additionally, an estimate of the attitude of the robot’s body

is required, which can be obtained from a 6-DoF Inertial Measurement Unit (IMU). The algorithm used

for attitude estimation is based on the explicit complementary filter presented in (Mahony, Cha, & Hamel,

2006), yielding the roll (φR) and pitch (ψR) angles of the robot body reference frame.

To analyse the wheel-leg-soil interaction, a key variable is the minimum angle formed by any of the legs and

the direction of the gravity vector (θW ), defined in Eq. (1). The continuous motion of the wheel-leg can

be then sub-divided into quantized, periodic leg stance cycles with θW ∈ [−α/2, α/2), where α is the angle

between two consecutive legs, i.e. 2π/nL radians for a wheel-leg with nL legs.

θW = min
i∈[1,nL]

(θL,i − ψR) (1)

For a multi-spoked wheel-leg rolling on deformable terrain, unlike previous models considering perfectly

rigid terrain (Coleman, 2010) or single-legged wheel-legs (C. Li et al., 2013), more than one leg can be

simultaneously in contact with the ground. One leg stance cycle is then divided into three distinct phases:

an initial Double Leg Stance (DLS) that ends with the lifting from the ground of the trailing foot, an

intermediate Single Leg Stance (SLS) during which only the middle leg is on the ground and a final Double

Leg Stance that starts with the impact of the leading foot onto the ground. The Single Leg Stance phase

can be also sub-divided into the contact phase (pre-midstance) and propulsive phase (post-midstance). The

Triple Leg Stance (TLS) phase, during which three legs are simultaneously in contact with the ground is

considered out of scope for this study. These phases, sketched in Fig. 4 (left), can be represented through a

stance phase plot, in the space defined by θW and the maximum sinkage experienced by any leg in contact

with the terrain (ζz), as in Fig. 4 (right).

The boundaries between the Single Leg Stance and Double Leg Stance correspond to the loci of possible

foot lifting and impact events for a given leg length (lL) and longitudinal terrain inclination (ψT ), where the



impact (θIW ) and lifting (θLW ) wheel-leg angles follow the expressions in Eq. (2).

θLW = −α/2 + arcsin
(
ζz cosψT

2lL sinα/2

)
− ψT

θIW = α/2− arcsin
(
ζz cosψT

2lL sinα/2

)
− ψT


→



Foot Lifting if θW = θLW

SLS Contact Phase if θW ∈
(
θLW , 0

)
SLS Midstance if θW = 0

SLS Propulsive Phase if θW ∈
(
0, θIW

)
Foot Impact if θW = θIW

DLS otherwise

(2)

Dynamic assessment of the sinkage throughout each of these phases is feasible and potentially useful. How-

ever, maximum contact forces are generated during the contact phase of the Single Leg Stance (C. Li et al.,

2013), indicating that dynamic sinkage events are likely to occur between foot impact and midstance. In

consequence, the sinkage level detected at midstance is taken as the indicator for each stance cycle, in the

interest of computational and analysis simplicity.

Figure 4: Main stages and events of a typical wheel-leg stance cycle (left) and stance phase plot for the
wheel-leg on flat terrain, i.e. ψT = 0 (right)



2.3 Exterioceptive sensing of wheel-leg sinkage

The level of sinkage of the wheel-leg is inferred from exterioceptive sensor data regarding the location of the

terrain relative to the SR body frame. Two complementary exterioceptive sensing modalities are explored:

an Infrared Ranger (IR) mounted on the underside of the SR chassis pointing downward to measure the

ground clearance, and a camera focused on the wheel-leg to detect the level of occlusion of its legs as they

sink into the ground. Combining these data with the sensed absolute position and attitude of the wheel-leg

and the fact that the reference frames of the IR and the camera are rigidly attached to the robot’s body

reference frame permits the estimation of wheel-leg sinkage.

Ranging-based ground clearance estimation

Infrared range finders are extensively used in diverse mobile robotic applications. Most of them involve

obstacle avoidance (Benet, Blanes, Simó, & Pérez, 2002) and target tracking (T. Li, Chang, & Tong, 2004).

The applications to terrain characterization (Ojeda, Borenstein, Witus, & Karlsen, 2006) are rarer, and are

mostly limited to conventional wheeled mobile robots focusing on indirect terrain classification rather than

on explicit sinkage detection. Infrared range finders are selected over ultrasonic range finders due to the poor

performance of the latter on porous materials, e.g. granular soils. One of the main downsides of infrared

rangers is their sensitivity to changes in environmental lighting and to reflectance properties of the sensed

media. However, the IR is mounted on the underside of the rover chassis, thus being protected by its shade

from most variations in ambient lighting and direct exposition to the sun. Any outstanding, low frequency

light disturbances can be filtered further by using high-frequency modulated infrared signals. Moreover,

the IR sensors used show negligible sensitivity to variations in material reflectance in the 18-100% range

for 0.8− 1.0 µm wavelength radiation, which covers the vast majority of naturally occurring terrestrial and

planetary terrains (Manduchi, Castano, Talukder, & Matthies, 2005; Pommerol, Schmitt, Beck, & Brissaud,

2009).

Assuming that the terrain is flat (φT = ψT = 0) and the IR is placed below the rotational symmetry axis of

the wheel-leg (xw = 0), the IR-based sinkage estimate (ζz,IR) can be expressed as a function of the length

of a leg, the roll and pitch angles of the robot relative to the world reference frame, the absolute angular

position of the wheel-leg, the position of the IR relative to the rotation centre of the wheel-leg ([xw, yw, zw])

and the clearance measured by the IR (zIR) as shown in Eq. (3) and illustrated in Fig. 5 (top).

ζz,IR = (lL cos (θL − ψR) + yw tanφR − (zIR + zw) cosψR) cosφR (3)



It is worth considering that, if the assumption of flat terrain is violated, the formula in Eq. (3) will be subject

to errors. The magnitude of these errors will depend on the transversal (φT ) and longitudinal (ψT ) inclination

angles of the terrain, as expressed in Eq. (4) and depicted in Fig. 5 (bottom). For the experimental set-up

used in this work (zw = 60 mm, yw = 100 mm, lL = 180 mm and ζz ∈ [0, 75] mm), the relative estimation

errors at ±5 deg transversal and longitudinal slopes are eφ ≈ 3% and eψ ≈ 5% respectively. The errors are

minimized when the IR is placed as close as possible to the wheel-leg (yw → 0) and when the leg is aligned

with the IR beam (θL → 0). Whether these errors produce an underestimation or overestimation of the

sinkage level depends on the orientation of the incline, the attitude of the rover’s reference frame and the

angular position of the wheel-leg.

e = eφ cosψR+eψ cosφR


eφ =

(
(zIR + zw) sinφR + yw cosφR −

(
lL − ζz

cosψR cosφR

)
sinφR

)
tanφT

eψ =
(

(zIR + zw) sinψR −
(
lL − ζz

cosφRcosθW

)
sin θW

)
tanψT

(4)

Significant errors due to uneven terrain can be potentially alleviated if a sufficiently accurate elevation map

of the terrain is available, by using terrain inclinations as an input to the estimation algorithm. Excessively

rough surfaces, e.g. boulder fields or high-frequency acute dunes, might render this method overly inaccurate.

However, such circumstances fall into the category of geometric hazards, and can be detected in advance

Figure 5: Dimensions and variables involved in sinkage estimation based on ground clearance (top) and
errors induced by terrain inclination (bottom) in the transversal (left) and longitudinal (right) directions



through remote sensing (Helmick, Angelova, & Matthies, 2009; Howard & Seraji, 2001) in order to ignore

potentially spurious in-situ sinkage estimates or directly avoid traversing them.

Vision-based leg occlusion detection

The approach used for vision-based sinkage detection aims at segmenting the irregular, rotating legs of the

wheel-leg from the image background, similarly to the method presented in (Al-Milli et al., 2013). But rather

than using a colour-based algorithm, which can be extremely sensitive to lighting and background conditions,

an edge detection algorithm is applied. Inspiration is taken from the method published in (Milella et al.,

2006) for conventional wheels, adapting it to wheel-legs by substituting the radial black and white pattern

with 1 mm thick black and white stripes attached to both edges of each leg, perpendicular to the radial

centreline of the corresponding leg as shown in Fig. 6 (d). The edge detection algorithm proposed by Canny

(Canny, 1986) is used to detect the pattern attached to the leg. This method is chosen over other edge

detection algorithms, e.g. Prewitt’s operator or Zero-Crossing, due to its higher robustness to noise in spite

of its higher computational cost.

Firstly, a Gaussian filter is applied to smooth the image and reduce the noise. Choosing a small size of

the Gaussian kernel favours the detection of fine features like the black and white pattern. Next, the

Sobel operators in the X and Y directions are applied to obtain the intensity gradient’s magnitude and

quantized direction, which enables a process of non-maxima suppression that yields a single pixel line along

detected edges. Two hysteresis thresholds are applied, rejecting any edges with a gradient value below

the lower threshold and accepting all edges with a gradient value above the higher threshold. Edges in-

between both thresholds are only accepted when they neighbour a valid edge. The upper:lower threshold

ratio recommended by Canny is between 2:1 and 3:1. However, slightly increasing the lower threshold aids

in filtering background edges that do not belong to the leg pattern as exemplified in Fig. 6 (a).

The next step is to smooth down the edges through successive morphological operations on the processed

image, so as to merge contiguous edges leading to the formation of a single contour of the leg’s black

and white pattern as depicted in Fig. 6 (b). The choice of kernel size and number of iterations of these

morphological operations is critical to successfully filter unrelated edges detected in the previous step and

merging only the edges of interest. However, once the appropriate parameters have been selected for the

given configuration, the algorithm is robust to changes in background and lighting condition. The empirically

determined parameters used in this particular implementation are shown in Table 1.



Figure 6: Steps of vision-based leg occlusion detection: (a) edge detection, (b) edge merging, (c) interface
detection and (d) sinkage calculation

Table 1: Parameters of edge detection and merging algorithm

Image Capture Canny Edge Detection Morphological Edge Merging

Resolution rpx2mm Upper Th. Lower Th. Kernel Size Kernel Shape Kernel Size Iterations

800x600 0.5 450 300 3x3 Ellipse 3x3 6

Another crucial improvement relative to the approach presented in (Al-Milli et al., 2013) is that each side of

the leg is considered separately and no masking is applied on the image. Any remaining background noise

after the edge merging phase is filtered out by detecting the closed contours in the image and selecting only

those two with largest area, corresponding to both sides of the leg, as marked in grey in Fig. 6 (c). Finally,

the lower pixels of the boundaries of the selected contours are considered as the leg-soil interfaces. Their

average Y-coordinates in the image frame are calculated (ypx,L and ypx,R for left and right sides of the leg

respectively), shown in white in Fig. 6 (c) and as horizontal lines in Fig. 6 (d). The previously calibrated

Y-coordinate values of zero occlusion for the corresponding wheel-leg angular position (ypx,0(θL)), marked

by the lowest horizontal line in the same image, are used to estimate the sinkage (ζz,V BS) together with

the known pixel-to-mm ratio of the wheel-leg plane in the image frame (rpx2mm) and the pitch of the robot

reference frame, as in Eq. (5).

ζz,V BS =
ypx,0(θL)− (ypx,L + ypx,R)/2

cosψR
rpx2mm (5)

Faulty leg detection cases, e.g. due to a single contour detected for a leg with low sinkage levels or due

to background contours bigger than the leg sides for high sinkage levels, are corrected during the contour

selection stage by selecting a single contour when a minimum area requirement is not fulfilled by the second

largest contour. Both the Vision-Based Single-Sided (VBSS), using only the biggest closed contour, and

the Double-Sided (VBDS) leg sinkage detection approaches are implemented with the edge detection and



Figure 7: Flow chart of sinkage estimation algorithm based on edge detection and merging

merging method to compare their computational performance and accuracy. The algorithm flow for both

cases is represented in Fig. 7, with differences only in the Largest Contour(s) Selection stage, where either

one (VBSS) or two (VBDS) contours are selected for use in subsequent stages.

While the robustness of the algorithm might be enough by itself in normal lighting conditions, it can still

fail when approaching the exposure limits of the camera sensor, i.e. very high or very low luminosity. An

example of such a failure can be seen in Fig. 8 (a), where the colour-based algorithm from (Al-Milli et al.,

2013) fails to detect the blue colour of the leg due to the strong background light source. Such flaws could be

avoided using camera sensors with High-Dynamic-Range imaging capabilities, but this is not the case of the

chosen camera for this implementation. Instead, a workaround was used where ad-hoc high-intensity white

LEDs were installed focusing on the leg to create a dominant source of lighting on the object of interest.

This addition not only corrects the problems with high background luminosity as shown in Fig. 8 (b) but

also allows vision-based sinkage detection algorithms to operate in dark environments as in Fig. 8 (c). The

set-up was tested in a variety of indoor and outdoor environments, as shown in Fig. 8 (d) and Fig. 8 (e),

proving correct operation in the vast majority of cases, even with intense sun back light.

2.4 Hardware and Software Implementation

Both the hardware and the software implementation of the wheel-leg sinkage detection sensor system were

designed to maximize modularity and re-reconfigurability, so as to enable the system to be tested as a

standalone unit in simplified test beds and to facilitate its integration with different fully mobile robotic

platforms. Commercial off-the-shelf and open source components were used, illustrated in Fig. 9 together

with the data interfaces and the main functionalities of each level.



Figure 8: Raw image (top) and binary segmented image using the colour-based sinkage detection algorithm
(bottom) with (a) intense background glare and no LEDs, (b) intense background glare and LEDs, (c)
complete darkness and LEDs, (d) indoor lighting and (e) outdoors with sun back light



Figure 9: Main hardware components, data interfaces and functionalities

Four basic sensing units are combined. An analogue IR (Sharp GP2Y0A41SK0F), with 4 − 30 cm sens-

ing range and 40 kHz signal modulation. A magnetoresistance-based absolute angular position encoder

(LK40GB) mounted directly on the output shaft of the DC motor gearbox, with three digital channels and

0.1 deg resolution. An open-source 6-axis IMU (ArduImu+ v3), with an on-board 20 MHz Atmega328 mi-

croprocessor to distribute part of the computational load by sampling the gyroscopes and accelerometers,

performing the attitude estimation and broadcasting the results through an UART connection. A CMOS

QSXGA camera sensor (OV5647), with 54x41 deg FoV and 30 fps frame rate. The camera is directly

connected for fast image acquisition through a Camera Serial Interface (CSI) to a Single-Board Computer

(SBC) with a 700 MHz ARM11 CPU and a 250 MHz GPU. The rest of the sensors are interfaced with

a 96 MHz Cortex-M3 Micro-Controller Unit (MCU) for data acquisition, calibration, synchronisation and

clearance-based sinkage estimation according to Eq. (3).

The Robotic Operating System (ROS) framework is used to implement the software architecture, taking

benefit of its ability to distribute the computational load between networked machines. The MCU works

with a C/C++ compiler and is able to communicate directly with ROS nodes running on a Linux machine



via-USB thanks to the rosserial package. In this case, it is connected to the SBC, which runs a ROS Master,

manages the nodes and message topics and controls the tests. The SBC is connected through Ethernet to

another Linux machine, initially a laptop, for remote access and data logging. The nodes log timestamped

raw and processed data in CSV files for off-line importation, post-processing and analysis using MATLAB.

The laptop is also connected to an additional SBC-camera system for on-line absolute position sensing, using

the ARUCO marker library (Garrido-Jurado, Muñoz-Salinas, Madrid-Cuevas, & Maŕın-Jiménez, 2014). The

MCU can be also used to send commands to DC motor controllers used to drive the actuators during test

execution. All dashed lines indicate non-fundamental connections, meaning that the system can be easily

and even dynamically re-configured to remove these connections and gather the required information from

alternative sources, e.g. from sensors readily available on-board the SR via-software from the SR On-Board

Computer (OBC).

2.5 Terramechanics-based Wheel-Soil Interaction Model

In order to predict the trafficability of the terrain for a wheeled vehicle, e.g. the FASTER PR, the thor-

oughly researched semi-empirical terramechanics model for rigid wheels interacting with deformable terrain

is applied. This model is based on the assumptions of a quasi-static, steady interaction, where the total re-

action forces of the soil can be computed through the integration of the stresses generated on the wheel-soil

interface. Alternative dynamic models have been proposed (Irani, Bauer, & Warkentin, 2011), but the mean

values show good agreement with the quasi-static approach.

Normal stresses (σ) can be modelled as a non-linear function of sinkage (z) applying Bekker’s equation

(Bekker, 1960), based on the earlier Bernstein-Goriatchkin model. Shear stresses (τ) can be calculated

using Mohr-Coulomb’s failure criterion and Janosi’s shear-displacement model (Janosi & Hamamoto, 1961),

resulting in a function of the normal stress and the slip ratio (i). Finally, if the wheel is provided with

grousers for better traction, as is the case for the FASTER PR, the shear stresses produced by them can be

modelled as passive lateral earth pressure following Rankine’s failure theory.


σ(z) = (kc/b+ kφ) zn = keqz

n

τ(σ, i) = (c+ σ(z) tanφ)
(

1− e− R
K [θ1−θ−(1−i)(sin θ1−sin θ)]

)
pg(z) = γz tan2 (π/4 + φ/2) + 2c tan (π/4 + φ/2)

(6)

The resulting expressions for each of these stresses, summarized in Eq. (6), depend solely on soil parameters



and the level of slip and sinkage of the wheel. The sinkage of the wheel can be defined in polar coordinates

as a function of the entry and exit contact angles (θ1,θ2) and the angle of maximum normal stress (θm). The

latter is dependent on wheel slippage, and a common assumption is to neglect rut recovery (θ2 = 0), thus

leading to the following expression for sinkage:

z(θ, θ1, θm) =


R (cos θ − cos θ1) , θ > θm

R
[
cos
(
θ1 − θ (θ1−θm)

θm

)
− cos θ1

]
, θ < θm

 θm(θ1, i) = (c1 + c2i) θ1 (7)

The net vertical (FV ) and horizontal (FH) reaction forces result from the integration of the interface stresses,

as per Eq. (8) and Eq. (9) respectively for a wheel with radius R. Based on the assumption of a sufficiently

wide wheel, uniform transversal stress distributions across the wheel’s width (b) are considered, hence re-

ducing the problem to two dimensions. The interaction stresses and forces are depicted together with the

main dimensions involved in the model in Fig. 10 (left).

FV = b
[∫ θ1
θm
σ(θ) cos θRdθ +

∫ θm
0

σ(θ) cos θRdθ

+
∫ θ1
θm
τ(θ) sin θRdθ +

∫ θm
0

τ(θ) sin θRdθ
] (8)

FH = FT − FR = b
[
Ngθ1
2π

∫ hg

0
pg(z)dz +

∫ θ1
θm
τ(θ) cos θRdθ +

∫ θm
0

τ(θ) cos θRdθ
]

−b
[∫ θ1
θm
σ(θ) sin θRdθ +

∫ θm
0

σ(θ) sin θRdθ
] (9)

These are complex integrals without a closed-form solution. Some approximations, e.g. the linearisation of

normal stress distributions (Iagnemma et al., 2004), can simplify their calculation. However, these are not

applied here. Instead, numerical integration using Simpson’s rule is used. An iterative process is applied,

gradually increasing the entry contact angle until the weight applied on the wheel (W = Mg) is compensated

and vertical force equilibrium is achieved, as illustrated in the flow diagram of Fig. 10 (right).

The steady-state contact stresses are then used to compute the net horizontal traction force, commonly

referred to as draw-bar pull. A good metric to quantify the trafficability of the terrain is the tractive efficiency

of the wheel (ηd). This magnitude comprises the mobility efficiency (ηm) and slip efficiency (ηs). The former



Figure 10: Dimensions, stresses and forces involved in the terramechanics model for driven rigid wheels on
deformable terrain (left) and execution flow of the parametric numerical simulation (right)

evaluates the ratio between the net thrust force and the total thrust generated, i.e. the complement of

the total negative resistive forces (FR) over the positive thrust force (FT ). The latter reflects how much

of the wheel’s rotation results in effective traversing motion, i.e. the complement of the slip. The terrain-

independent electrical-to-mechanical efficiency curve (Broderick, Tilbury, & Atkins, 2014) is not considered

here, in order to focus on the terrain-dependent aspects of wheel tractive efficiency.

ηd = ηmηs =
FH
FT

v

ωR
=

(
1− FT − FH

FT

)(
1− ωR− v

ωR

)
=

(
1− FR

FT

)
(1− i) (10)

The global efficiency, expressed in Eq. (10), yields a value between 0 and 1, penalized by both high slip and

soil resistance forces. While negative values are technically possible, i.e. when the resistive forces overcome

the thrust forces, this circumstance involves that the wheel is being towed rather than self-driven and hence

the soil is non-trafficable for that wheel. Therefore, negative tractive efficiencies are saturated to zero.

3 Experimental Set-ups, Methodology and Results

Sensing and analysing the interaction of vehicles with different types of terrain, whether using analytical

(J.-Y. Wong & Reece, 1967), empirical (Kim & Lee, 2013) or numerical (Perumpral, Lilzedahl, & Perloff,

1971) methods, require experimental validation of the accuracy of the analysis and the functionality of the

sensors. This can be done either using a simplified physical model with a single locomotor, for better control



Figure 11: Microscope images of Martian soil simulants (from left to right) ES-1, ES-3, SSC-2 and SSC-3

Table 2: Principal physical characteristics of soil types used

Soil Type Particle Shape Particle Size [µm] c [kPa] φ [deg] keq [kPa/mn−1] n

ES-1 Angular 0.92± 0.61 1.42 29.67 64.64 0.69

ES-3 Sub-rounded 456± 180 0.82 35.09 971.03 0.76

SSC-2 Angular 53± 16 1.72 42.42 370.53 0.58

SSC-3 Sub-angular 247± 62 0.79 30.13 995.74 1.01

and repeatability of testing conditions, or using a fully mobile platform, for more representative operation

scenarios. This research combines both, using a Single Wheel-Leg Test Bed (SWLTB) for initial testing and

the FASTER SR prototype for final validation.

3.1 Soil Types and Physical Characteristics

Different types of characterised soil are used during experimentation to evaluate the sensitivity of the sinkage

detection approaches to changes in the characteristics of the terrain under the same operational conditions

and to relate the detected wheel-leg sinkage to terramechanics-based trafficability.

During the laboratory testing campaign, four different types of soils were used (Gouache et al., 2011; Scott

& Saaj, 2012). Due to the special interest on the application to planetary exploration the soils used are dry,

frictional sands with low cohesion. They include: a very fine nepheline powder (ES-1), a coarse quartz-based

sand (ES-3), a fine garnet-based silt (SSC-2) and a medium sized quartz sand (SSC-3). Microscopic images of

all four types of soil are shown in Fig. 11. As seen from these images, the four types of soil cover a variety of

particle shapes and sizes, which reflect in different macroscopic physical properties. The shear-displacement

(c, φ,K) and pressure-sinkage (keq, n) parameters were measured using Bevameter plate and direct shear

tests.

The microscopic and macroscopic characteristics summarized in Table 2, including particle shape and mean

particle size with one standard deviation, demonstrate the wide range of physical properties covered by these

soils. ES-3 and SSC-3 have similarly high pressure-sinkage stiffness, but the latter has a significantly lower



internal friction angle. SSC-2 demonstrates the highest shear strength in spite of its lower pressure-sinkage

stiffness. Finally, ES-1 has the lowest values for both pressure-sinkage and shear-displacement parameters,

therefore being expected to have the lowest trafficability of all four soils.

3.2 Single Wheel-leg Test Bed

The SWLTB used for testing is pictured in Fig. 12. An extruded aluminium frame is mounted on a moving

carriage, driven by a wheeled mechanism over two guiding rails that extend over a 5 m long and 18 cm deep

box full of regolith. A rigid assembly contains the driven wheel-leg, and the sensors and electronics to detect

wheel-leg sinkage and to control the speed of both motors driving the wheel-leg and the moving carriage.

This wheel-leg assembly is attached to the moving carriage through a single passive rotary DoF, with its

rotation axis horizontally orthogonal to the direction of driving to simulate the characteristic tilting motion

caused by the irregular shape of the wheel-leg as it rolls.

The DC motor used to drive the carriage is rated at 250 W and 2750 rpm, with a 174.9:1 gearbox. The

carriage-driving wheel is always loaded against the guiding rail, which is covered with textured tape to

ensure good traction and prevent slip. Eight angled idler wheels are used to share the load of the carriage

and maintain it aligned with the rails at all times, acting as a passive linear bearing. The absolute linear

speed of the carriage is measured externally by locating visual markers using the ARUCO library (Garrido-

Jurado et al., 2014). This allows controlling the traversal speed of the wheel-leg and regulating its angular

speed to simulate any desired slip condition and detect any slip event on the carriage-driving wheel.

Figure 12: Degrees of freedom diagram (left) and labelled image (right) of the Single Wheel-Leg Test Bed



Before each test is performed using the SWLTB set-up in the laboratory, the soil was prepared using a

consistent raking method to re-homogenize the structure of the soil disturbed by the previous test and

minimise the variability of soil properties between tests due to different compaction states. The strength

consistency of the prepared soil was evaluated before every test by performing Dynamic Cone Penetrometer

tests (Lewinger et al., 2013) every 0.5 meters along the testbed. The total depth and depth per impact

values were compared with values obtained during small-scale calibration tests on samples with known bulk

densities. Whenever the differences were beyond the variability observed during those calibration tests, the

soil was re-prepared before carrying out the SWLTB experiment. In addition, a vibration device was dragged

along the soil surface for some experiments with SSC-3 soil, to achieve higher compaction levels and test the

influence of bulk density of the same soil on wheel-leg sinkage. All tests performed with this set-up presented

in this paper were carried out with all five spokes of the wheel-leg equipped with LTFs.

3.3 Field Testing Set-Up

Testing in more realistic conditions is important for an appropriate evaluation of the performance of the

sensor system and to identify sources of errors that do not occur in the controlled laboratory environment.

Field tests provide natural lighting conditions and terrain profiles, with heterogeneous soil compositions,

slopes and irregular surfaces. The SWLTB set-up is designed to be easily adapted for attachment with

any mobile platform. Using the in-house wheeled micro-rover SMART (Gao, Samperio, Shala, & Ye, 2012)

experiments were carried out in the West Wittering beach in the southern English coast. The experiments

consisted of forward driving runs over different types of terrain found on-site, including firm bedrock (path

#1), compact flat SSC-3 sand (path #2) and loose duned SSC-3 sand (path #3) as shown in Fig. 13.

The passive rotary DoF of the SWLTB was linked with the chassis of the SMART rover, which replaces

the moving carriage as seen in Fig. 14. Two different wheel-leg set-ups were used, combining LTFs in two

non-consecutive legs with three carbon fibre feet or rubber feet as shown in Fig. 14 (left and right for carbon

fibre feet and rubber feet respectively). This is done to prevent the intentionally high sinkage experienced

by the LTF from excessively hindering the motion of the wheel-leg and to study the potential influence of

the previous leg on the sinkage of the current leg. The wheel-leg speed command and data logging interfaces

were set with the OBC of the SMART rover, which uses the same software framework as the SWLTB.

During all experiments, both under laboratory and field conditions, the mass of the wheel-leg assembly

remained constant at 3.75 kg, in order to simulate the load of the 15 kg FASTER SR assuming even load

distribution. Three independent repetitions were carried out on re-prepared soil (laboratory) for each test



Figure 13: Diagram of the distribution of different types of terrain in the field testing site and the paths of
the tests carried out (left) and images of the different types of terrain (right)

configuration, with an extra repetition for a total of four in tests on unprepared terrain (field). Each of these

runs covered a distance of 4 m, yielding a minimum of approximately 60 independent leg stance cycles for

each testing condition. These leg stance cycles are the samples used to calculate the statistical characteristics

of the sensed data and the statistical performance of sinkage estimation and trafficability prediction.

The rotational speed of the wheel-leg was regulated to match the traversal speed of the SWLTB moving

carriage and the SMART rover, so as to minimize wheel-leg slippage during the tests, with a desired traversal

speed of 10 cm/s, and to focus on the independent analysis of wheel-leg sinkage. Actual slip levels were

maintained below ±5% in normal testing conditions. Very rarely (less than 2% of all gathered leg cycles),

the moving carriage or SMART rover underwent observable sudden slippage that caused actual wheel-leg

Figure 14: SWLTB attachment mounted on the SMART rover (Gao et al., 2012) for field testing, with
both wheel-leg configurations used: LTF with carbon fibre feet (left) and with rubber feet (right - image
horizontally mirrored for labelling purposes)



Figure 15: Wheel-leg sinkage detection hardware integrated on full FASTER SR (left), courtesy of FASTER
(FASTER, 2013) with detailed front view of camera and IR ranger placement and their FoVs (right)

slip to raise beyond those thresholds. In these isolated cases, the leg cycles were excluded from the analysis

due to potential slip-sinkage effects (Lyasko, 2010) that are beyond the scope of this paper.

3.4 Integration of Sinkage Detection Sensor System

For final validation under more representative operating conditions, tests were also carried out on a fully

mobile robot. Two identical wheel-leg sinkage sensing systems, i.e. one for each of the two front wheel-

legs, are integrated on-board the FASTER SR, whose design details can be found in (Sonsalla et al., 2013).

The same hardware components and software framework used for the SWLTB are used, with a couple of

differences. The SBCs are connected via-Ethernet to the SR’s OBC, which also takes care of motor control

and sensing the angular position of the wheel-legs and the attitude of the robot’s body, hence replacing the

dashed connections in Fig. 9. The sensor data from the substituted hardware components are retrieved

in real time for on-line wheel-leg sinkage detection and trafficability prediction, queried via-software from

the ROCK framework (Joyeux, Schwendner, Roehr, & Center, 2014) controlling the SR on the OBC. For

this purpose, interfacing ROS nodes and a ROCK task are implemented and connected using a ROCK-ROS

bridge that converts ROCK ports into ROS message topics. A laptop is still used to wirelessly access the

OBC and SBCs, control the tests and log data.

The SBC, MCU and related electronics are placed in ad-hoc enclosures mounted on the sides of the SR

chassis, as shown in Fig. 15 (left). The cameras and IR range finders are mounted on mirrored positions



of the chassis’ underside, as in Fig. 15 (right), keeping the same distances to the wheel-leg’s centre point

as in the SWLTB set-up. This configuration leads to crossed camera FoVs, as the camera is placed on the

opposite side to the sensed wheel-leg. Although this causes a slight image occlusion by the opposite camera

module, a leg length above 100 mm is visible at all times, fitting the requirements of the system. The same

feet configuration used for the laboratory SWLTB was used in all SR tests analysed in this paper.

4 Performance of Sinkage Detection Approaches

The performance of the sinkage detection was evaluated looking at different aspects: robustness of vision-

based detection to environmental factors, precision of vision-based detection against manual image assess-

ment, consistency of vision-based and clearance-based detection, sensitivity to foot and soil type and com-

putational efficiency of the algorithm. All results presented in this section correspond to tests carried out

with the SWLTB in the laboratory and in the field.

4.1 Robustness of vision-based algorithm

The robustness of the proposed vision algorithm to changing environments was tested, simulating in the

laboratory even more challenging conditions than those found in the field. Rocks of various sizes and colours

were placed in the background while running tests. Most of them were successfully filtered already in the

edge detection step. Even granular gravel of similar contrast and size as the black and white pattern on the

wheel-leg, which produced significant background noise after the edge detection step, was greatly reduced

during the edge merging phase and led to correct detection of both sides of the leg as seen in Fig. 16

(left). Moreover, experiments were carried out in the laboratory both in complete darkness and with a single

focused source of skewed incandescent back-light. In both cases the algorithm managed to correctly detect

the leg.

Figure 16 (right) illustrates a particularly challenging image with gravel in the background, very bright sand

lit by the LEDs due to the poor environmental lighting and the highly contrasting projected shadow of the

leg. Even in these adverse conditions, the algorithm manages to filter all the noise and detect both sides of

the leg. There is certain performance degradation, as the lower central section of the pattern is not properly

merged and incorrectly filtered out, as marked by the grey ellipses. Nevertheless, errors due to such faults

are limited to a few millimetres, as in this example.



Figure 16: Details of raw, pre-processed and processed images using the edge-based sinkage detection algo-
rithm on gravel (left) and with poor lighting (right)

One of the main lessons learned during the field trials is the significant effect of irregular terrain profiles over

the sinkage estimated through computer vision methods. This implies that, when significant sinkage occurs,

the leading and trailing sides of the leg are split in the image. Using the approach proposed in (Al-Milli

et al., 2013) only the largest blob is chosen, therefore neglecting one of the sides of the leg. This is not

problematic as long as the terrain remains parallel to the horizontal direction of the camera image frame,

but it produces inaccuracies when the image frame tilts and/or the terrain is sloped, as in Fig. 17 (left).

Considering only the front or rear side of the leg results in a significant error as compared to the level of

occlusion of the leg’s centreline. However, this is tackled in the new VBDS approach by detecting both sides

and averaging their sinkage estimates. To evaluate the performance of this functionality improvement with

the edge-based algorithm, experiments were carried out using the SWLTB with artificial SSC-3 slopes of ±7

degrees, each of them extending over three intervals: uphill, flat, and downhill.

Figure 17: Examples of error induced by terrain slope on the detected sinkage for each of the sides of the
leg on soft terrain (left) and difference between the sinkage of both leg sides (right) for uphill (top), flat
(middle) and downhill (bottom) terrain



Table 3: Precision errors of the edge-based sinkage detection algorithm against manual image ground-truth
on SSC-3 soil type

Soil Compaction Dense Loose Dense Loose

Background Conditions Normal Normal With Rocks Poor Lighting

Sinkage Avg. [mm] 30.5 46.6 33.2 52.0

Error Avg. [mm] 0.26 0.33 0.28 0.59

Error Std. Dev. [mm] 1.44 1.72 1.69 1.58

Relative Error Avg. [%] 1.60 1.06 1.14 2.56

Sample raw and processed images are displayed in Fig. 17 (right) for each of these conditions, with the

detected sinkage difference between both leg sides indicated by the white lines and arrows. The difference

between both sides qualitatively indicates the ability of the new approach to account for the trailing and

leading slope errors observed. The quantitative improvement in performance will be assessed below in the

analysis of sinkage detection accuracy.

4.2 Precision against manually assessed images

The precision of the sinkage estimates obtained by the vision-based algorithm can be evaluated by manually

assessing the level of occlusion of the leg in each image captured by the camera. In order to take into account

the slope effects mentioned above when setting the manual ground truth, the lowest un-occluded pixels of

both edges of a leg were selected. The ground truth value was then obtained by inputting said values as

ypx,L and ypx,R in Eq. (5).

Table 3 summarizes the precision errors computed for the different conditions tested on SSC-3 using the

SWLTB in the laboratory. Tests on both loose and dense SSC-3 have average errors below a third of a

millimetre and relative errors below 2%. The average error is slightly higher on loose soil due to the bigger

soil depression around the legs, but the relative error is lower than for dense soil because of the higher

sinkage. Tests carried out with rocks and gravel do not show a noticeable overall decrease in precision,

with intermediate absolute and relative errors to those obtained on loose and dense SSC-3, quantitatively

confirming the robustness of the algorithm to such conditions.

A significantly higher average for absolute and relative errors is experienced during tests in dark conditions,

rising to nearly 0.6 mm and 2.6%, due to detection faults such as the one presented above in Fig. 16

(right). While these deviations can be mitigated using lower intensity LEDs or with a finer tuning of the

edge detection and merging parameters the average error is still fairly low, in the same order of magnitude



as the pixel-to-mm ratio. The standard deviations on all testing conditions, including poor lighting, remain

around 1.5 mm, showing the high precision of the algorithm.

These low error average values and variabilities are not necessarily indicative of the accuracy of the algo-

rithm. Both the algorithm output and manual ground truth originate from the same input: the camera

images. In consequence, the precision error does not account for potential systematic errors such as sinkage

overestimation due to obstacles blocking the FoV of the camera or sinkage underestimation due to soil de-

pression around the leg. However, since the laboratory soil preparations are flat and without FoV occluding

obstacles these error values can be taken as good accuracy indicators in smooth terrain conditions.

4.3 Consistency of vision-based and clearance-based approaches

The clearance-based sinkage estimation using the IR was originally added to the sensor system to cor-

rect the potential systematic errors of vision-based sinkage detection mentioned above. Therefore, it can

provide a good ground truth to evaluate the accuracy of the vision-based algorithm and quantify the im-

provement in using the VBDS approach over the original VBSS approach. Given the different frequency of

the clearance-based and vision-based methods (50 Hz and 5 Hz respectively) all clearance-based estimates

between consecutive vision-based estimates were averaged to calculate the error between both outputs.

The chart in Fig. 18 (left) shows the best Gaussian distribution fits of the obtained errors for the tests

carried out with the SWLTB in the laboratory on SSC-3 in three different preparations: flat loose, flat dense

and sloped. In all three cases the maximum probability of the error distribution using VBDS, represented

with continuous lines, is higher than those using VBSS, marked with dashed lines, meaning that the results

become more consistent. This consistency is significantly higher in the tests performed on dense SSC-3 than

in those performed on loose SSC-3, probably due to a combined effect of the lower preparation homogeneity

and the higher sinkages experienced in loose SSC-3.

The difference between VBDS and VBSS is much smaller for the sloped SSC-3 tests. Nevertheless, looking

separately at the data corresponding to uphill and downhill sections as shown in Fig. 18 (right) reveals

not only a similarly significant improvement in error consistency when using VBDS but also an even bigger

reduction of the error bias. In spite of this improvement, the average error for both downhill and uphill

tests is in the order of several millimetres, negative for the former and positive for the latter. However, these

errors can be mostly accounted for with the slope-induced error modelled in Eq. (4). The average values

for slope-induced errors calculated using the VBDS detected sinkage, the IMU estimated attitude and the



Table 4: Mean and standard deviation of vision-ranging sinkage differences and slope-induced error of
ranging-based sinkage estimate on SSC-3

Soil Configuration Flat Dense Flat Loose Sloped Uphill Downhill

VBSS-IR Difference Mean [mm] 0.13 1.31 0.66 3.89 -3.63

VBDS-IR Difference Mean [mm] 0.03 0.73 0.35 2.74 -1.71

VBSS-IR Difference Std. Dev. [mm] 2.28 4.07 6.71 2.81 8.44

VBDS-IR Difference Std. Dev. [mm] 1.77 3.41 6.51 2.32 7.73

IR Slope-Induced Mean Error [mm] - - 0.56 2.46 -1.74

manually measured terrain slope, are marked by the vertical dotted lines in Fig. 18 (right) and lie within a

millimetre of the uphill and downhill error distribution mean values.

Table 4 summarizes the mean and standard deviations of the difference between vision-based and ranging-

based sinkage estimates, as well as IR slope-induced errors, for the different testing conditions. The overall

decrements of both the means and the standard deviations capture the improvement of using VBDS over

VBSS. The close proximity between the IR slope-induced errors and the VBDS-IR difference mean confirms

the good accuracy of the VBDS approach and the consistency of the vision-based and clearance-based

methods even in sloped terrain.

Figure 18: Fitted Gaussian distributions of the difference between clearance-based and vision-based sinkage
estimates using single and dual contours with dense, loose, and sloped SSC-3 (left), and with uphill and
downhill SSC-3 (right)



Figure 19: Average midstance sinkage detected for the LTF on different types of soil with one standard
deviation error bars (left) and average midstance sinkage along the three paths tested on the field for the
different type of feet configurations (left)

4.4 Influence of foot and soil types during field testing

Experiments performed during the field trials were not only useful for the qualitative observations previously

discussed, e.g. slope-induced errors or robustness to environmental lighting. In addition, the differences

between sensed sinkage in uneven, unprepared, natural terrain and flat, prepared, laboratory samples can

be quantitatively analysed. In Fig. 19 (left) the average midstance sinkage detected with a single standard

deviation for laboratory SSC-3 tests and the three types of field terrain are compared. The intermediate

and soft terrains of paths #2 and #3 are expected to have similar sinkage values as dense and loose SSC-3,

since this type of soil was directly sourced from the field testing site. However, mean sinkage values in the

field are significantly higher than SWLTB values. This could be partially attributed to the lower compaction

of sand when naturally deposited by aeolian processes rather than raked. On the other hand, the notably

wider variability of field results than that of laboratory results suggests that the higher average values might

be also due to larger soil compaction heterogeneity and/or sinkage overestimation. Even though the latter

case would imply faulty trafficability assessments due to FoV occlusion by the frequent dunes, these are in

the order of 1 cm and are conservative from a mobility safety standpoint. Meanwhile, the former case would

result from correctly detected softer terrain, and is favoured by the fact that a similar variability is also

observed in the low-sinkage firm ground of path #1.

Finally, the effect of mixed feet configurations on sensed sinkage is plotted in Fig. 19 (right). As expected,

the rubber foot and carbon fibre foot experience significantly lower sinkage due to their lower and better

distributed contact pressure, especially in the case of the carbon fibre foot. However, an important obser-

vation arises from the fact that LTF sinkage when the previous leg had a rubber foot is significantly higher



Table 5: Computational performance of vision-based sinkage detection algorithm using edge detection

VBSS w/ Laptop VBDS w/ Laptop VBSS w/ SBC VBDS w/ SBC

Frame rate [fps] 125.59 115.15 1.39 1.31

Segmentation [msec] 6.63 (83%) 6.65 (76%) 435.3 (61%) 436.5 (57%)

Detection [msec] 0.81 (10%) 1.55 (18%) 274.9 (38%) 316.9 (42%)

than when the previous leg had a carbon fibre foot. This indicates that, should a mixed foot configuration

be used, the sinkage of the previous foot needs to be taken into account when assessing trafficability based

on wheel-leg sinkage.

4.5 Vision-based detection computational efficiency

The computational performance of the vision-based sinkage estimation approaches using edge detection was

measured. The algorithm was run both on a laptop, with a 2.8 GHz quad-core processor and 6 GB of

RAM, and on the SBC used for the embedded implementation of the wheel-leg sinkage sensor system, with

a 700 MHz processor and 512 MB of RAM. The processing times of the different stages of the algorithm

were recorded on both platforms to compute the average frame processing rate achievable. With the higher

processing resources of the laptop, frame rates are over 110 fps and up to 130 fps, thus the speed of the

algorithm in real-time is only limited by the capture frame rate of the camera. With the lower computational

resources of the embedded SBC, frame rates drop drastically to barely 1.3-1.4 fps, as shown in Table 5. In

spite of the drop, these frame rates would still enable processing 3-4 images per leg stance cycle at the

considered traversal speed of 10 cm/s, which is enough for the trafficability assessment method proposed in

this paper.

The VBDS approach involves a higher processing overhead than the VBSS approach. However, given that

the image capture and most of the image processing remains the same, the decrease in frame rate is marginal,

with values only 5 − 10% lower than those achieved with VBSS. As expected, processing times during the

segmentation phase are nearly identical for the VBDS and VBSS approaches, since the additional processing

takes place only in the contour selection and sinkage estimation stages. The detection phase takes nearly

twice as much time for the VBDS when running in the laptop, taking only 18% of the total processing time

per frame. However, the detection phase has much closer values for both VBSS and VBDS when running

on the SBC, taking 38-42% of the total time per frame. This suggests the existence of a bottleneck in the

detection phase when running on the SBC that might give room to a partial frame rate improvement through

code optimization.



Although the SBC used has the same amount of RAM as Curiosity’s computer system, the CPU clock speed

is significantly higher (700 MHz vs. 132 MHz). Taking into consideration the effect of differences in their

architecture (800 MIPS vs. 266-500 MIPS) and level of code optimization the gap can be narrowed down.

Nevertheless, this highlights the tightness of the computational requirements of the vision-based approach

with the resources of current planetary rovers. The clearance-based method, which has been proven to yield

low relative errors with respect to the vision-based approach, does not present such a limitation, and would

provide a simpler and more efficient solution to the problem.

5 Trafficability Prediction Modelling and Validation

Once the accuracy and robustness of the wheel-leg sinkage sensing methods proposed has been demon-

strated, the next step is to establish a quantitative model that relates this magnitude to the trafficability

characteristics of the terrain, determined through the terramechanics model described earlier.

5.1 Model of the Relationship Between Soil Trafficability and Wheel-Leg Sinkage

Simulations were carried out for each the four soil types using the terramechanics model previously presented

in Section 2.5. The resulting values were then compared off-line to the detected wheel-leg sinkage obtained

using the SWLTB set-up and experimental methodology described above. The comparison of the simulated

wheel sinkage with the experimental midstance wheel-leg sinkage reveals a non-injective relationship, as seen

in Fig. 20 (left) for a wheel of the PR. The lowest wheel-leg sinkage was experienced on SSC-2, while the

simulated wheel sinkage was actually lower for ES-3, as could be expected from its higher normal load bearing

stiffness. In addition, the sinkage of the wheel is higher than that of the wheel-leg (markers are above the

dashed line) with the only exception of ES-3.

These observations indicate that sensed wheel-leg sinkage is neither a conclusive nor a conservative indicator

of wheel sinkage on the same soil. However, the purpose of this research is not to predict wheel sinakge, but

soil trafficability. When comparing sensed wheel-leg sinkage and tractive efficiency, as shown in the plots

of Fig. 20 (middle and right), the relationship becomes both injective and approximately linear. These

graphs also show that this linearity is maintained when varying the wheel parameters used in the simulation.

Increasing the radius of the wheel for a constant mass leads to a higher tractive efficiency, while increasing

the mass reduces the efficiency.



Based on these empirical observations, a linear model is proposed to obtain the tractive efficiency of the soil

from wheel-leg midstance sinakge, as shown in Eq. (11). The model’s efficiency-intercept (ca) and sinkage-

gradient (cb) are specific to a given wheel, defined by the M-R parameter pair, and are calculated through

least-squares linear regression. These parameters are derived solely based on the SWLTB experimental data

for soils SSC-2 and SSC-3, in order to evaluate the robustness of the model for interpolated (ES-3) and

extrapolated (ES-1) data points.

ζz,WL = ζz(θW = 0) → ηd,e(ζz,WL) = ca + cbζz,WL (11)

The parameters and coefficient of determination (R2) of the least-square linear fits plotted as dashed lines

in Fig. 20 (middle and right) are summarized in Table 6. The high R2 values support the strong linear

correlation between both magnitudes, in spite of the lower values observed when approaching the lower

and higher extremes of the considered mass and radius ranges respectively. This suggests significant non-

linearities occurring towards these extremes, which can be studied through a detailed parametric analysis.

5.2 Parametric Generalization of the Model

With the aim of developing a generalized model for parametrized wheels, simulations were performed for a

range of wheel radii and masses in the 5−25 cm and 10−90 kg ranges respectively. The intercept parameter

Figure 20: Correlation of wheel-leg detected sinkage with terramechanics-based PR wheel sinkage (left) and
with tractive efficiency of wheels with varying masses (middle) and varying radii (right)



Table 6: Parameters and R2 coefficients of least square linear fits of experimental wheel-leg sinkage vs.
simulated wheel trafifcability data

Wheel Mass [kg] Wheel Radius [cm] Intercept ca Slope cb [mm−1] R2 Coefficient

50 8 1.184 -0.030 0.77

50 15 1.025 -0.017 0.95

50 22 0.972 -0.012 0.97

22 15 0.966 -0.011 0.97

78 15 1.074 -0.021 0.70

(ca) represents the traction efficiency when the wheel-leg experiences no sinkage. Its empirical values tend

to one, implying perfectly efficient traction, which is consistent with the lack of rolling or soil compaction

resistance forces on rigid ground. However, a continuous ridge rises for low radii across all simulated masses,

going up to ≈ 1.2 before dropping towards 0.5 for even lower radii, as shown in Fig. 21 (far-left). An

opposite trend is observed on the gradient (cb), as it presents a valley in the same low-radius region, as seen

in Fig. 21 (mid-left). The effect of these anomalous parameter variations on the wheel-leg midstance sinkage

to wheel tractive efficiency relationship is plotted in Fig. 21 for the minimum wheel radius (mid-right) and

maximum wheel mass (far-right) simulated. Empirical values of the gradient parameter are negative, as

expected from the increasing resistive forces for higher sinkages. Its sensitivity to different wheel radii is

inversely proportional, while it maintains a direct linear relationship with wheel mass. As a result of this

analysis, the generalized model in Eq. (12) is proposed.

ηd,g = 1 + kηζz,WL = 1 +
kη,1 + kη,2M

R
ζz,WL , R ∈ (0.055 + 0.0014M, 0.075 + 0.0049M) (12)

The efficiency-intercept is fixed to 1, representing perfect tractive efficiency for zero wheel-leg sinkage, and

the sinkage-gradient linearly varies with M and is inversely proportional to R, physically representing the

inverse of the minimum wheel-leg sinkage for zero tractive efficiency. The only two parameters of this model

(kη,1−2) are specific to the wheel-leg used during the experiments. These generalizations yield errors below

5% relative to the empirical model parameters (ca−b) for wheel radii within the interval specified on the

right hand side of Eq. (12) and bounded by the two straight black lines in Fig. 21 (left). This modified

model combines the strengths of computational simplicity, thanks to its linear nature, and of generality over

different types of soils and wheel operating conditions.



Figure 21: Sensitivity of the empirical linear fit coefficients to wheel parameters (far-left and mid-left) and
sensitivity of wheel tractive efficiency as a function of wheel-leg sinkage for R = 5 cm (mid-right) and for
M = 90 kg (far-right)

5.3 Validation on Full Wheel-Legged Rover

In order to validate the empirical and generalized models for tractive efficiency prediction using sensed

wheel-leg sinkage and compare their accuracy, an independent test campaign was carried out using the full

FASTER SR and the same soil preparation methodology used for the SWLTB experiments.

The Root-Mean-Square Error (RMSE) between the terramechanics-based simulation and wheel-leg sinkage

prediction of tractive efficiency was calculated for all SR tests and wheel M-R pairs. Soil-specific and global

results using the empirical model are plotted in Fig. 22. Values are well below 15%, with the only exception

of SSC-2 soil in the low-radii region. Within the boundaries of accurate generalization specified in Eq. (12),

marked by the straight black lines, values are generally below 10%, down to values around 5% for the global

error across all soil types. The two softer soils, i.e. SSC-3 and ES-1, have a distinct behaviour in that their

low-radii and high-masses region is dominated by very low and even zero (below the white line) errors. This

is due to very low or null efficiency values, correctly predicted by the empirical wheel-leg sinkage model.

This circumstance also occurs when applying the generalized model, as seen by the null Mean Errors (ME)

in those same regions for SSC-3 and ES-1, plotted in Fig. 23. The low-radii and high-mass region shows

a tendency of the model to underestimate tractive efficiency, as seen from the dark colours in the graphs,

leading to conservative trafficability predictions. On the other hand, the low-mass and high-radii region

yields over-predictions, as seen from the lighter colours.



Figure 22: Sensitivity to wheel parameters of the RMS Error of tractive efficiency calculated with the
empirical model for different types of soil

Figure 23: Sensitivity to wheel parameters of the Mean Error of tractive efficiency calculated with the
generalized model for different types of soil

Once again, the absolute values within the marked linear boundaries are almost ubiquitously below the 10%

threshold. The point corresponding to the configuration of the FASTER PR wheels, in the centre of the

black circles in both Fig. 22 and 23, lies close to the line of zero error separating the over-estimation region

from the underestimation region, slightly biased towards the latter. This makes it a good solution for safe

trafficability estimation in this specific case-scenario.



Table 7: Averages and standard deviations of RMS Errors of predicted tractive efficiency in full SR experi-
ments vs. terramechanics-based simulation results for the complete and restricted M-R ranges

Tested Soils SSC-2 SSC-3 ES-1 ES-3 Global

Empirical [%] 8.26 (±3.37) 4.55 (±3.06) 4.15 (±4.91) 6.40 (±2.51) 6.29 (±1.73)

Empirical (Restr.) [%] 6.74 (±1.24) 7.02 (±1.05) 5.26 (±3.97) 4.98 (±0.86) 5.46 (±0.60)

General [%] 11.66 (±6.13) 5.34 (±4.14) 4.14 (±5.25) 10.75 (±6.57) 10.62 (±4.76)

General (Restr.) [%] 7.79 (±1.72) 8.20 (±2.14) 5.77 (±4.91) 6.66 (±1.97) 7.59 (±1.50)

5.4 Comparison of the Empirical and Generalized Models for Trafficability Assessment

In order to compare the accuracy of the empirical and generalized models, the mean and standard deviations

of the RMSE across all simulated M-R pairs and only within the restricted linear boundaries were calculated,

as summarized in Table 7. Nearly all values are below 10%, even going below 5% in some cases. Considering

only the restricted M-R region consistently reduces the standard deviation of the RMSE values by 1-4%.

However, it has opposite effects on the mean RMSE values. For stiff soils, i.e. SSC-2 and ES-3, the mean

value decreases around 1.5% for the empirical model and as much as 4% for the generalized model. For the

softer soils, i.e. ES-1 and SSC-3, the mean value actually increases by 1-3%. This is partly expected from

the very low RMSE values observed above in the low-radius and high-mass region, and it brings the mean

values closer to those of the stiffer soils and to the global mean across all soil types.

The generalized model does experience a slight accuracy degradation relative to the empirical model, but

maintains acceptable overall values, with a 7.59% average RMSE error across all SR test data. It is remarkable

that the error values for the two soil types that were not used to fit the empirical model parameters, i.e.

ES-1 and ES-3, have even lower average RMSE values (both with the empirical and generalized models)

than the two soil types that were actually used for that purpose, i.e. SSC-2 and SSC-3. This demonstrates

the robustness of these models to different and unknown types of soil.

When looking at the specific configuration of the FASTER PR wheel in Table 8, the terramechanics-based

simulations estimate a good tractive efficiency of ≈ 60% for SSC-2, slightly better than that of ES-3 at

≈ 50%. Much poorer performance is expected on SSC-3, as the efficiency drops down to ≈ 15%, while it is

actually null for ES-1. The wheel-leg sinkage empirical model proposed predicts extremely close values, with

a global underestimation ME below 1%. The generalized model also underestimates the tractive efficiency

on average, with a slightly bigger global ME but still below 3%. Standard deviations of the predictions for

each of the soil types using the generalized model are even lower than those of the empirical model itself.



Table 8: Mean wheel tractive efficiency for FASTER PR wheel on each soil type and global Mean Errors

Tested Soils η̄d,SSC−2 η̄d,SSC−3 η̄d,ES−1 η̄d,ES−3 Global ME

Terramechanics [%] 58.94 (±5.70) 15.12 (±3.37) 0.00 (±0.00) 51.85 (±4.62) -

Empirical [%] 58.94 (±8.18) 15.15 (±8.86) 0.03 (±0.08) 51.05 (±5.58) −0.13 (±0.91)

General [%] 57.04 (±8.07) 13.95 (±8.58) 0.00 (±0.00) 49.26 (±5.51) −2.69 (±7.63)

6 Conclusions and Future Work

Two alternative methods for wheel-leg sinkage detection have been proposed. The first one improves existing

wheel and wheel-leg vision-based techniques. It increases robustness to lightning and background conditions

through edge detection and merging, and ad-hoc LED illumination. It also reduces errors induced by

irregular and sloped terrain by detecting both sides of the hollow legs (VBDS) rather than only one (VBSS).

Its computational efficiency is comparable to other vision-based approaches, and permits real-time execution

although the results suggest that the computational requirements might be too high for current planetary

applications, unless the rover briefly stops the wheel-leg at leg midstance.

The second method models ground-clearance to estimate wheel-leg sinkage based on range finder measure-

ments. The low estimate errors and its immunity to dust covering the wheel-leg prove this new approach

as a reliable and computationally efficient complement/substitute to the vision-based solution. The model

is sensitive to errors on significantly sloped terrains, although this can be corrected through the proposed

model if a local slope estimate is available.

Lessons learned from field testing include the fact that hybrid foot configurations should be considered

carefully, as they significantly influence the sinkage of a given type of foot on the same terrain. Naturally

shaped terrains with marked dunes are likely to produce higher sinkage variability due to more heterogeneous

soil compaction states or to sinkage overestimation due to FoV occlusion. Either way, sinkage detection is

sufficiently accurate or conservative, thus fitting the purpose of safely detecting non-geometric hazards.

Moreover, such wavy terrains could be considered as geometric rather than non-geometric hazards and

detected remotely.

An empirical linear model has been proposed to predict terrain trafficability based on terramechanics tractive

efficiency through wheel-leg sinkage detection. The model is also generalized for a wide range of wheel

parametric configurations in terms of mass and radius. The model parameters were derived empirically

from tests on only a sub-set of two soils using a simplified single wheel-leg test bed. The models were then



independently validated using the fully mobile SR on a wider set of four significantly different dry frictional

soils, with a range of predicted tractive efficiency in the 0− 60% interval for the PR wheel.

Both the empirical and generalized model show good accuracy and can reliably predict the tractive efficiency

based on wheel-leg sinkage, with a slight underestimation in the specific case of the PR wheel that favours

mission safety. However, they render the initial criterion of static load sinkage correlation for foot design

insufficient, as the relations between dynamic wheel sinkage and wheel-leg sinkage or tractive efficiency are

not injective. Wheel rolling sinkage is more heavily dominated by the load bearing stiffness of the soil, while

wheel-leg rolling sinkage and tractive efficiency show a similarly higher sensitivity to the shear strength

properties of the soil.

Although their usefulness has been proven, the developed wheel-leg sinkage-based trafficability models them-

selves cannot produce separate estimates of the load bearing and shear strength parameters of the soil.

Therefore, future work will deal with sensing wheel-leg slippage and analysing stick-slip and slip-sinkage

events to obtain a more thorough soil characterisation while still exploiting the advantages of on-line wheel-

leg-soil interaction sensing. Finally, an analytical model for parametric, multi-legged, light-weight wheel-legs

interacting with deformable soil is under investigation for further generalization and to fill the gap between

existing models for rimmed wheels and for ultra-light, single-legged wheel-legs.

Some other interesting guidelines for future work unaddressed by the scope of this paper include: exploring

the behaviour of the wheel-leg on highly cohesive soils, quantifying in more detail the effect of soil rela-

tive density on the proposed models, experimentally re-validating the terramechanics model used for wheel

tractive efficiency simulation, evaluating the feasibility of using structured light as a substitute for the vision-

based and/or clearance-based sinkage estimation methods proposed, improving the prediction variability of

the models by accounting for the uncertainty introduced by neglected factors, e.g. leg compliance, and

studying the implications of the Triple Leg Stance phase, regarding the possible influence of the inter-leg

structure.
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