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Abstract

This paper focuses on the formation control of several mobile robots in off-road conditions. A
control strategy based on bidirectional referencing is proposed, where each robot combines
a velocity control w.r.t. to the immediate preceding neighbor with a control w.r.t. to
the immediate following neighbor. Two virtual leaders, respectively at the head and at
the tail of the fleet, are propelling the fleet at the desired velocity. The fleet stability is
investigated using Lyapunov techniques, pending on combination coefficients. The stability
is theoretically proven for constant coefficients as weights of the respective velocity controls
and tested through simulations and full-scale experiments. It is shown that this control
strategy permits to reduce the error propagation problem often encountered in formation
control, while limiting the communication problems of the global strategies. As a result, a
stable formation control architecture is defined, which requires each vehicle to be refereed
only to two other robots. This limited communication need is particularly interesting for
agricultural operations. The proposed approach is implemented in this paper on agricultural
tractors.

1 Introduction

Cooperation of several vehicles presents a lot of applications whether for exploration, mapping, or also for area
coverage in surveillance. It is particularly used in agriculture in order to achieve several operations during
the same passage or extend the work of a single machine. These operations performed by a cooperation of
several autonomous mobile robots may be considered in order to limit the workforce needed as well as the
arduousness. As pointed out for instance in (Blackmore, 2014), such an approach may permit to open the
way to new production tools, composed of a collection of small autonomous mobile robots, acting together
in order to achieve significant agriculture work. In order to be applicable, the coordinated motion of the
robots has to be stable and precise during the travel along a common path. In a decentralized framework,
this is ensured by the way each robot computes its control laws. The main control strategies for multi-robot
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path tracking in formation can be classified in three main types: behavior-based, virtual structure control
and leader-follower. The behavior-based control defines different objectives for the robots (typically goal
attraction, formation keeping and neighbors avoidance), which are weighted to obtain the local command
for each robot (see for instance (Balch and Arkin, 1998), (Baras et al., 2003)). However, at the global
level, the behavior of the whole fleet is difficult to predict. Therefore, the coordinated motion required for
given applications, such as in agriculture, cannot be achieved. In the virtual control structure strategy,
the set of robots defines a structure which state is controlled (usually through its center of mass defining
a virtual leader) and then transformed as a local control for each robot (see (Antonelli et al., 2013), (Ren
and Beard, 2004)). This strategy is of interest in centralized control when a controller knows the position
of all robots. However, decentralized control using this strategy requires important communication network
as each robot has to know the state of all other robots of the fleet. This may be penalizing for agricultural
applications, since distance between robots may be important and communication delays are consequently
not negligible. The strategy limiting the number of communications is the leader-follower approach (see for
instance (Kowdiki et al., 2012), or (Qian et al., 2015)). In this point of view, each robot regulates its position
and orientation with respect to another robot named leader. The choice of the reference robot for each robot
influences the global behavior of the overall formation. A classical control strategy consists in referencing
all the robots to a common one, called the global leader of the fleet, which then carries the desired velocity
for the tracking. This strategy generates a very stable behavior with limited communication links (n − 1
links for n robots in the formation), but it is also very dependent on a unique robot, the leader, and it
cannot guarantee the safety of the follower robots, as they have no information about the position of their
surrounding fellows.

To overcome these safety issues, another strategy considered is for each robot to use a different local leader,
typically to take as reference its direct preceding fellow, as achieved for highway platooning in (Khatir
and Davison, 2004) or in (Klančar et al., 2011). Given that each robot is regulated to the closest and most
dangerous one in case of failure, the robots safety is ensured at each step. However, the global behavior of the
whole fleet exhibits oscillations between head and tail due to error accumulation in the successive positioning
regulations. The addition of a predictive overlay as proposed in (Farrokhsiar and Najjaran, 2012) or (Guillet
et al., 2014) permits to anticipate for some of those errors and reduce the servoing overshoots. Even so,
for fleet larger than 3 robots, the oscillation effect is still observable and prevent the direct application of
this method. Therefore, to further improve the stability of the servoing, we propose here to use a double
referencing to both the previous and the following robot, with two leaders at the head and tail of the fleet.
This reduces the dependency to a unique vulnerable leader and permits to have a symmetrical behavior of
the formation, from the head to the tail but also from the tail to the head, while keeping limited and local
communication links. In (Lafferriere et al., 2005), (Yamaguchi et al., 2001), or in (Zhang et al., 1999), this
bi-directional control strategy is considered in the particular case of reciprocal interactions between agents.
In this paper, we expand it to more general asymmetrical relations cases, studying the global stability and
observing the effects on the whole behavior of the fleet.

The formation is defined and the control laws are presented in the second part of this paper. The third
part focuses on proving the stability of the formation using Lyapunov method, firstly for any configuration
of a 3-vehicle formation, then in a general n-vehicle formation for two particular cases of relative weights.
Simulations for a fleet of 5 vehicles are presented in part four. Differents full-scale experiments were also
conducted using 3 wheeled mobile robots and results are presented in the fifth part.

2 Modeling and control of the robot formation

In this paper, we consider a fleet of mobile robots composed of n mobile robots, tracking a known path
named Γ. It is wished that the fleet maintains a potentially varying formation defined as a set of desired
distances between robots. In the local frame of the path, the desired formation shape is expressed as a
desired lateral distance to the path ydesi for each robot i and a desired longitudinal curvilinear distance (i.e.
along the reference trajectory) ddesi/j between robots i and j, as illustrated in Figure 1.
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Figure 1: Formation shape definition

Without loss of generality, car-like mobile robots are considered here (known as 1,1 in classification proposed
in (Campion et al., 1996)). For the modeling, each vehicle-like robot is simplified as a bicycle controlled
by its front steering angle δ and its velocity v (each robot is supposed to be symmetrical). It is fitted with
sensors providing an absolute positioning, which is then transformed into a local positioning with respect to
the reference trajectory Γ. In the local frame, the robot’s state is characterized by:

• its lateral deviation y, distance to the closest point M of the path,

• its curvilinear coordinate s of M , defined as the distance traveled along the path,

• its angular error θ̃, difference between the tangent to the trajectory at the point M and the robot
heading.

Additionally, the path Γ being known, the curvature c(s) of the path at the point M can also be deduced.
In order to model the actual motion of the robot, two additional angles βF and βR are introduced as the
difference between the velocity direction and the tire direction of each wheel. These angles, named sideslip
angles, reflect the skidding of the wheel on the ground, which is a significant phenomenon when the robot runs
on an uneven terrain in off-road conditions (Wang and Low, 2007). As these angles are hardly measurable,
their value is estimated on-line by means of an observer which design is detailed in (Lenain et al., 2014).

With these notations, illustrated in Figure 2, the kinematic evolution of the robot is expressed as:
ṡ = v cos(θ̃+βR)

1−c(s)y

ẏ = v sin(θ̃ + βR)

˙̃
θ = v

(
cos(βR) tan(δ+βF )−tan(βR)

L − c(s) cos(θ̃+βR)
1−c(s)y

) (1)

It should be noted that this model is defined as long as 1− c(s).y 6= 0, which means that the lateral position
of the robot should not be superimposed with the instantaneous center of rotation A of the path. This
assumption is experimentally guaranteed given the small curvatures of the path compared with the desired
lateral deviations.

The model (1), in which all variables are known either by measure or by estimation, can then be used to
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Figure 2: Model of a robot in the local frame

design the control laws for the regulation of the lateral and longitudinal position of the robot with respect
to the reference path and the other robots of the formation.

2.1 Lateral servoing

The lateral servoing aims to regulate the lateral distance yi of the ith robot to the reference path to the
desired distance ydesi (possibly variable) through the control of the front steering angle δi. From the extended
kinematic model (1) of the robot, an invertible change of variables permits to transform it into a chained
system (as detailed in (Samson, 1995)). In particular the state and control variables transformation:

[si, yi, θ̃i] → [xi1, x
i
2, x

i
3] =

[
si, yi, (1− c(si) yi) tan(θ̃i + βRi )

]
[vi, δi] → [mi

1,m
i
2] =

[
vi cos(θ̃i+β

R
i )

1−c(si) yi ,
dxi

3

dt

] (2)

leads the extended kinematic model (1) of robot i to become model (3):


ẋi1 = mi

1

ẋi2 = xi3

ẋi3 =
dxi

3

dt = mi
2

(3)

This model is almost linear and rely on the time derivative of the state of the robot. In order to achieve
the control of a formation for agricultural operations, it is interesting to derive independently lateral and
longitudinal dynamics of each robot. This indeed allows to consider a decoupled relative servoing of each
robot with respect to other robots along the path to be followed (i.e. using curvilinear distances and desired
lateral deviations). In order to do so, let us consider the state derivative with respect to curvilinear abscissa
instead of time derivative. This turns system (3) into the linear system (4).


x′i1 = 1
x′i2 = xi3

x′i3 = mi
3 =

mi
2

mi
1

(4)

As detailed in (Lenain et al., 2006), the objective of the lateral control is to derive a virtual control mi
3 for
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the ith robot in order to regulate its lateral deviation yi = xi2 to the desired distance ydesi . This can be
obtained by imposing

mi
3 = −Kdε

′y
i −Kpε

y
i + y′′i

des (Kd,Kp > 0) (5)

with εyi = yi − ydesi . Such a virtual control indeed leads to the following differential equation of the lateral
error with respect to xi1 = si:

ε′′yi +Kdε
′ y
i +Kpε

y
i = 0 (6)

From the expression of virtual control (5), and using the inverse of the transformation (2), the control law
for the steering angle δi of the robot i can be computed, leading to (7).

δi = arctan
[

tanβRi +
Li

cosβRi

(
c(si) cos γi
1− c(si) yi

+
Ai cos3 γi

(1− c(si) yi)2

)]
− βFi (7)

where:

� γi = θ̃i + βRi

� Ai = Kpεi + (1− c(si)yi)
[
Kd

(
tan γi − ẏdesi

vi cos γi

)
+ c(si) tan2 γi

]
� (Kp , Kd ) are negative scalars designing the expected lateral dynamics

This control law, acting on the front steering angle allows to regulate the lateral deviation of the robot i to
the desired distance ydesi , whatever the grip conditions (accounted for with the observation of the sideslip
angles βFi and βRi ), and whatever the variations of ydesi . This latter point is particularly interesting for
agricultural operations, since the robot may be deployed in “wing” configuration (for extending agricultural
work) and be in a singe file when achieving a half turn at the end of a row. Moreover, the desired lateral
deviation may be adapted on-line according to other robots lateral error in order to maintain a desired shape
for the fleet.
As achieved in (Lenain et al., 2006) for a single robot, the control law (7) may be enhanced with a predictive
layer on the curvature c(si) in order to tackle the actuator settling time and possible inertial effects. Such
anticipation is not detailed in this paper. Finally it is important to note that the lateral control law is
based on a robot evolution defined using derivative with respect to curvilinear abscissa (si) instead of time
derivative. Consequently, the tuning gains (Kp , Kd ) define a settling distance instead of a settling time.
As a result, the lateral behavior of the robot is independent from its velocity. The longitudinal control of
each robot may thus be computed separately.

2.2 Longitudinal target tracking

Given the above results, the longitudinal control law can be considered independently, assuming the lateral
regulation is guaranteed by the lateral control law. An elementary control law is first designed. It derives a
control velocity vit for the robot i regulating its curvilinear distance to a target robot t to the desired distance
ddesi/t . It is assumed that the position and state of the target is known by the controlled robot, communicated
by the former. From their respective position, the interdistance error is defined

εit = st − si − ddesi/t . (8)

Through the differentiation of the error equation (8), an exponential convergence of the longitudinal posi-
tioning error

ε̇it = −kv.εit, with kv ∈ R+∗ (9)

can be obtained by the definition of the velocity control law

vit =
1− c(si)yi

cos(θ̃i + βRi )

(
vt

cos(θ̃t + βRt )

1− c(st)yt
+ kv.ε

i
t

)
(10)
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This velocity control can also be expressed as a velocity along the path ṡit, called curvilinear velocity control

ṡit = ṡt + kv.ε
i
t. (11)

In order to compensate for the response behavior of the real robots low-level, which creates a disparity
between the velocity command and the actual response, a predictive algorithm is added. In a first step,
given the settling time of the actuators, the future positions of the robot and the target are estimated (from
their current state). Next, the velocity control law (10) applied to the future positions provides a velocity
objective after the prediction horizon. Eventually, the behavior of the actuators is accounted for through a
minimization algorithm which derives the optimal control velocity so that the response of the system reaches
the desired velocity objective. This control law has been experimentally tested using wheeled mobile robots
in off-road conditions in (Guillet et al., 2013) and results exhibit that the dynamics are well accounted for
as they do not alter the servoing and the exponential convergence is practically shown.

2.3 Bi-directional formation control strategy

The formation control strategy for the fleet consists then in defining the links between the robots of the
formation, and thus the target(s) of each robot for the computation of its velocity command. In the formation
framework proposed, each robot interacts with its two closest neighbors, the immediate preceding robot and
the immediate following one. The formation graph, illustrated in Figure 3, presents the bi-directional links
between neighbors robots. However, they are not assimilated to unidirectional links as the influences of the
neighboring robots i and j on each other are independent and asymmetrical, characterized by the coefficients
µij and µji (with µij independent of µji ). The first and last robots of the formation do not have an immediate

Figure 3: Formation graph with virtual leaders (*) and control coefficients

preceding fellow (respectively an immediate following one). Hence, we define two virtual leaders (illustrated
with a * in Figure 3) with which the extreme robots interact, and which carry the desired global velocity for
the whole fleet.

A robot i uses the control law presented in Subsection 2.2 to compute a command ṡii−1 ensuring the servoing
with respect to the preceding robot i−1, and another command ṡii+1 ensuring the servoing with respect to
the following robot i+1. These two velocities are linearly combined to get the final velocity command ṡi for
the ith robot:

ṡi = µii−1.ṡ
i
i−1 + µii+1.ṡ

i
i+1 (12)

The control coefficients in the final control law (12) represent the relative weight of each elementary control
and must therefore verify (µii−1, µ

i
i+1) ∈ [0, 1]2 with µii−1 + µii+1 = 1.

As for the first robot (respectively the last one), it combines a classical velocity control law compensating
the interdistance error w.r.t. to its following (respectively preceding) neighbor with the desired traveling
velocity ṡC , i.e. ṡ10 = ṡnn+1 = ṡC .

3 Stability of a n-vehicle formation

Let us consider a fleet of n vehicles controlled by the bidirectional control strategy previously defined. The
formation is asymptotically stable iff the positioning errors of each vehicle εij converge to zero. To characterize
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the evolution of the formation, let us express the evolution of each robot. From (11) and (12), one can write

ṡi = µii−1.
(
ṡi−1 + k.εii−1

)
+ µii+1.

(
ṡi+1 + k.εii+1

)
(13)

or
ṡi − µii−1.ṡi−1 − µii+1.ṡ

i+1 = k.
(
µii−1.ε

i
i−1 − µii+1.ε

i+1
i

)
(14)

By definition of the formation control strategy for the first (respectively the last) robot of the fleet, the
partial curvilinear velocity control wrt. the previous robot (respectively velocity to the following robot) is
defined as the desired travel velocity along the path ṡC . The evolution of the whole fleet can be expressed
from (14), with the vectors

ṡ =
[
ṡ1, . . . , ṡn

]T
ε =

[
ε21, . . . , ε

n
n−1
]T


1 −µ1
2 0

−µ2
1 1

. . .
. . .

. . .
. . .

. . .
. . . −µn−1n

0 −µnn−1 1


︸ ︷︷ ︸

A[n×n]

.ṡ = k.


−µ1

2 0
µ2
1 −µ2

3
. . .

. . .. . .−µn−1n

0 µnn−1


︸ ︷︷ ︸

B [n×n−1]

.ε+


µ1
0

0
...
0

µnn+1


︸ ︷︷ ︸
C [n×1]

.ṡC (15)

A is a non-symmetrical tridiagonal matrix with diagonal elements equal to 1. From the properties of
such tridiagonal matrices (see (El-Mikkawy and Karawia, 2006)), the determinant satisfies the recurrence
relationship

det(A) = det(An−1)− µnn−1.µn−1n .det(An−2) (16)

= det(An−1)− (1− µnn+1).µn−1n .det(An−2) (17)

with An−i the sub-matrix of the n− i first columns and rows of A.
It is later verified that the choice of the coefficients µij leads the matrix A to be non-singular, and therefore
invertible.

In general case for coefficients µij , the coefficients a−1ij of the matrix A−1, inverse of A, are:

a−111 =
(

1− µ2
1µ

1
2
β3

β2

)−1
=
(
β1

β2

)−1
= β2

β1

a−1nn =
(

1− µnn−1µn−1n
αn−2

αn−1

)−1
=
(

αn

αn−1

)−1
= αn−1

αn

a−1ii =
(

1−µii−1µi−1i
αi−2

αi−1
−µi+1i µii+1

βi+2

βi+1

)−1
for i = {2, 3, ..., n−1}

a−1ij
i<j

=

(
j−1∏
k=i

µkk+1

)
αi−1

αj−1
a−1jj

a−1ij
i>j

=

 i∏
k=j+1

µkk−1

 βi+1

βj+1
a−1jj

(18)

with the two vectors α = (α0, α1, . . . , αn) and β = (β1, β2, . . . , βn+2) defined by recurrence relationships
as:

αi =

{
1 if i = 0, 1

αi−1 − µii−1µ
i−1
i αi−2 if i ≥ 2

(19)

βi =

{
1 if i = n+ 1, n

βi+1 − µii+1µ
i+1
i βi+2 if i ≤ n− 1

(20)
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Given the expression of the matrices, the evolution of the position of the robots of the formation can be
derived from (15)

ṡ = k.A−1.B.ε+A−1.C.ṡC (21)

In order to study the formation stability, let us consider the positive-definite Lyapunov candidate:

V (ε) =
1

2
εT .ε (22)

The differentiation gives
V̇ (ε) = εT .ε̇ (23)

From (8), one can derive the evolution of the longitudinal errors

ε̇ =


1 −1 0

1 −1
. . .

. . .

1 −1

0 1 −1


︸ ︷︷ ︸

D[n−1×n]

.ṡ (24)

Hence, from (21), (24) can be rewritten as

ε̇ = k.D.A−1.B.ε+D.A−1.C.ṡC (25)

and the Lyapunov derivative function (23) is therefore:

V̇ (ε) = k.εT. D.A−1.B︸ ︷︷ ︸
M

.ε+ εT. D.A−1.C︸ ︷︷ ︸
N

.ṡC (26)

The stability property of the formation is driven by the properties of the matrices M and N , which depend
on the combination coefficients µij of the bidirectional control law. Let us examine the properties of the
Lyapunov derivative function in particular cases.

3.1 Variable coefficients in a 3-vehicle formation

In a first case, let us consider a reduced formation of 3 vehicles. The first and third vehicles are linked to
the virtual leaders, while the second vehicle is referencing to the two extremes ones. The set of combination
coefficients (µii−1 and µii+1) are independent between the 3 robots i and they are not assumed to take any
predefined or particular values.

With this formation definition, Equation (15) becomes


1 −µ1

2 0

−µ2
1 1 −µ2

3

0 −µ3
2 1

︸ ︷︷ ︸
A

.ṡ = k.


−µ1

2 0

µ2
1 −µ2

3

0 µ3
2

︸ ︷︷ ︸
B

.ε+


µ1
0

0

µ3
4

︸ ︷︷ ︸
C

.ṡC (27)

with the determinant of matrix A

det(A) = 1− µ2
1.µ

1
2 − µ3

2.µ
2
3 (28)

= µ1
0.µ

2
1 + µ2

3.µ
3
4 ≥ 0 (29)
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Therefore, the matrix A is non-singular as long as the coefficients, constants or variables, are non-null.

A being invertible, the Lyapunov derivative function (26) can be expressed, with its matrices M and N

V̇ (ε) = k.εT .M.ε+ εT .N.ṡC (30)

where
N = D.A−1.C and M = D.A−1.B (31)

The calculation of these matrices gives

N =

[
1 −1 0

0 1 −1

]
.

 1 −µ1
2 0

−µ2
1 1 −µ2

3

0 −µ3
2 1


−1

.

µ
1
0

0

µ3
4


= 02×1

(32)

and

M =

[
1 −1 0

0 1 −1

]
.

 1 −µ1
2 0

−µ2
1 1 −µ2

3

0 −µ3
2 1


−1

.


−µ1

2 0

µ2
1 −µ2

3

0 µ3
2


=

1

det(A)

[
−µ1

0µ
2
1 − µ1

2µ
2
3µ

3
4 µ1

0µ
2
3µ

3
4

µ1
0µ

2
1µ

3
4 −µ2

3µ
3
4 − µ1

0µ
2
1µ

3
2

] (33)

The eigenvalues of M are

{λ1, λ2} =

{
−1,−µ

1
0µ

2
1µ

3
2 + µ1

2µ
2
3µ

3
4

det(A)

}
(34)

The final expression of (30) is simplified as

V̇ (ε) = k.εT .M.ε (35)

with M a negative semi-definite matrix.
If the combination coefficients are chosen so that

∀ (i ∈ 1, 2, 3, j∈{i−1, i+1}) , µij 6= 0 =⇒

 det(A) 6= 0
µ1
2µ

2
3µ

3
4 6= 0

µ1
0µ

2
1µ

3
2 6= 0

=⇒ λ2 < 0

(36)

Both eigenvalues of M are strictly negative, i.e. M is Hurwitz. Hence, the system, here the formation of
3 vehicles, is asymptotically stable regardless of the precise values of the coefficients.

3.2 Symmetrical and reciprocal relations

For a more general n-vehicle formation, the stability proof is detailed for two cases of constraint coefficients,
firstly for symmetrical relations and then for constant asymmetrical relations.

In case of constant symmetrical relations, i.e.

∀i ∈ {1, 2, ..., n}, µi{i−1,i+1} =
1

2
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the determinant of A satisfies the relationship

det(A) =
n+ 1

2n
(37)

Proof. • for n = 1, det(A1) = 1 = n+1
2n

• for n = 2, det(A2) = 1− 1
2
1
2 = 3

4 = n+1
2n

• for n > 2, if det(An−2) and det(An−1) verify the equation (37), then from (16) there is

det(An) = det(An−1)− µin−1.µn−1n .det(An−2) =
n

2n−1
− 1

2
.
1

2
.
n− 1

2n−2
=

n

2n−1
− n− 1

2n

det(An) =
n+ 1

2n

As a result, det(An) also verifies the relationship (37).

The matrix A is really always non-singular; it can be inversed and the elements of A−1 are
a−1ij
i6j

=
2i(n− j + 1)

n+ 1

a−1ij
i>j

=
2j(n− i+ 1)

n+ 1

(38)

The matrices M and N in the derivative of the Lyapunov function (26) can be derived, with

N = D.A−1.C

A−1.C is a vector of dimension n and the ith element is

(A−1.C)i = µ1
0.a
−1
i1 + µnn+1.a

−1
in

=
1

2

(
2(n− i+ 1)

n+ 1
+

2i

n+ 1

)
= 1

(39)

A−1.C is the unity vector and therefore, given the structure of the matrix D, it can be easily deduced that

N = D.A−1.C = 0(n−1)×1 (40)

The Lyapunov derivative function is thus reduced to

V̇ (ε) = k.εT .M.ε (41)

As for the matrix M , its dimension is (n− 1, n− 1), and it is expressed as

M = D.A−1.B

=


1 −1

. . .
. . .

. . .
. . .

1 −1



a−111 . . . . . . a−11n

...
. . .

...
...

. . .
...

a−1n1 . . . . . . a−1nn



− 1

2

1
2

. . .

. . . − 1
2

1
2


= − 1

2 D.A
−1.DT

(42)
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The detail of this expression gives, for (i, j) ∈ {1, 2, ..., n− 1}2

mij = −1

2

[(
a−1ij − a

−1
i(j+1)

)
−
(
a−1(i+1)j − a

−1
(i+1)(j+1)

)]
=


1

n+1 if i < j

− n
n+1 if i = j

1
n+1 if i > j

(43)

M =
1

n+ 1


−n 1 . . . . . . 1

1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 1

1 . . . . . . 1 −n

 =
1

n+ 1
Jn−1 − In−1 (44)

where I is the identity matrix and J is the matrix full of ones.
As a result, the eigenvalues of M are:

• −1, with a multiplicity of n− 2,

•
(
n−1
n+1 − 1

)
= −2

n+1 with a multiplicity of 1.

All the eigenvalues of M are strictly negative so M is negative definite. Thus, ∀x ∈ R∗, xTMx < 0 and so
V̇ (ε) < 0 for ε 6= 0. Consequently, the longitudinal errors between the robots in the formation converge to
zero and the formation is asymptotically stable. �

3.3 Asymmetrical constant coefficients

Let us consider another particular case where the weights are equal and constant for all robots and define

asymmetrical interactions, namely

{
µii−1 = 2/3

µii+1 = 1/3
(or vice versa). With this definition, the weight of the

preceding elementary control is twice the weight of the following elementary control in the final velocity
control law. Another way of seeing this asymmetry is, focusing on a pair (i − 1, i) of vehicles, to say that
the influence of i on i− 1 will be half the influence of i− 1 on i.

A stability proving method similar to the one in the previous case is carried out.
Firstly, the determinant of A can be proven to be

det(A) =
2n+1 − 1

3n
(45)

A can be thus inversed and the elements of A−1 are
a−1ij
i6j

=
3.(2i − 1)(2n−j+1 − 1)

2n+1 − 1

a−1ij
i>j

=
3.2i−j .(2j − 1)(2n−i+1 − 1)

2n+1 − 1

(46)

The matrices M and N in the derivative of the Lyapunov function (26) can be explicited

N = D.A−1.C
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A−1.C is a vector of dimension n and the ith element is

(A−1.C)i = µ1
0.a
−1
i1 + µnn+1.a

−1
in

=
2

3

3.2i−1.(21 − 1)(2n−i+1 − 1)

2n+1 − 1
+

1

3

3.(2i − 1)(2n−n+1 − 1)

2n+1 − 1

= 1

(47)

A−1.C is the unity vector and therefore, given the structure of the matrix D, it can be easily deduced that

N = D.A−1.C = 0(n−1)×1 (48)

As for the matrix M = D.A−1.B, its dimension is (n−1, n−1), and, for (i, j)∈{1, 2, .., n−1}2, it is expressed
as

mij = −1

3
a−1ij +

2

3
a−1i(j+1) +

1

3
a−1(i+1)j −

2

3
a−1(i+1)(j+1) =


2i

2n+1 − 1
− 1 if i = j

2i

2n+1 − 1
otherwise

(49)

M =
1

2n+1 − 1


21 . . . . . . 21

22 . . . . . . 22

... . . . . . .
...

2n−1 . . . . . . 2n−1

− In−1 (50)

As a result, the eigenvalues of M are

• −1, with a multiplicity of n− 2,

•

n−1∑
i=1

2i

2n+1 − 1
− 1 = − 2n + 1

2n+1 − 1
with a multiplicity of 1.

All the eigenvalues of M are strictly negative so M is Hurwitz. Thus, ∀x ∈ R∗, xTMx < 0 and V̇ (ε) < 0
for ε 6= 0. Consequently, the longitudinal errors between the robots in the formation converge to zero and
the formation is asymptotically stable. �

This demonstration of stability is here detailed for two specific expressions of relative weights between the
two reference robots. However, the same demonstration holds for any expression of constant coefficients. It
can be verified by a numerical analysis1 that for a given value of the coefficients µ, the matrix N is still null
and the matrix M is Hurwitz, thus proving the asymptotic stability of the formation.

4 Simulation results

Simulations were conducted to exhibit the applicability of the control laws for a formation of 5 vehicles. In
the simulations, each robot is fitted with odometry sensors, an IMU, a RTK-GPS providing a 2-cm accuracy
and a WiFi module to communicate with its neighbors, similarly to the sensors equipping the real robotic
platforms of the laboratory. The simulator, named Cobaye, emulates data provided to the sensors of the
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(a) Simulation environment
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Figure 4: Illustration of the simulation environment

robots with their accuracy and noises. As for the behavior of the robots, the simulator uses a complete
dynamical model and a wheel-ground interaction model to generate the evolution of the robots.

A set of GPS positions has been recorded and represents a path on a flat ground in shape of S with a first
bend to the left and a second bend to the right, as illustrated in Figure 4(b). The five robots are initially
positioned at the beginning of the reference path, as illustrated in Figure 4(a). The desired formation is
wing-shaped with constant lateral and longitudinal distances between robots, as detailed in Table 1. The
global desired velocity, known by the first and the last robot, is constant at 3 m/s.

Robot 1 Robot 2 Robot 3 Robot 4 Robot 5

ydesi (m) 0 1 2 3 4

ddesi/i−1 (m) 6 6 6 6

Table 1: Desired distances in the formation

The lateral servoing of the robots to a desired offset to the trajectory has been previously studied by the
authors (see (Lenain et al., 2014)) and is shown to be decoupled from the longitudinal performances. The
lateral deviations obtained during the formation control algorithm are compared in Figure 4 and show
performances of a few centimeters accuracy. After the initial convergence in 20 m (defined by the choice of
the gains in the control law (7)), these maximal lateral errors occur when the reference trajectory presents
sharp curvature variations (at the begining or ending of the curves, curvilinear abscissæ 50 m, 75 m, 125 m
and 175 m). These limited deviations are due to the fact that the desired trajectory has been theoretically
generated, and presents discontinuities in the curvature (required to compute control law on steering angle).
Such discontinuities lead to the fact that the desired path is not admissible (robots are not able to apply
instantaneously a steering angle), and a lateral overshoots appears. Nevertheless, the fleet control stays
stable, the lateral control law permits to recover from the discontinuities and the configuration quickly
converges back to the desired shape.

Since the lateral performances have already been studied in previous works, let us detail the longitudinal per-
formances, with respect to different selections of coefficients µii−1 and µii+1. As pointed out in equation (12),
these coefficients link each robot i to the previous one i− 1 and the following one i+ 1, in the longitudinal
control. In order to investigate the influence of these coefficients, the path has been tracked three times with

1A Matlab calculation function for any constant coefficient value may be downloaded on the ftp site: XXXX
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Figure 5: Lateral deviations of each robot

different combination coefficients in the control laws (µii−1 =1, µii−1 =2/3 and µii−1 =1/2), and the results are
presented in figures 6(a) to 6(c). In order to illustrate the stability of the whole fleet, the results present the
cumulated longitudinal error of each robot with respect to the first one in Figure 6. At the entry of the first
curve (to the left, at curvilinear abscissa 45 m), the robots 2 to 5 are on the outside of the curve and must
accelerate to keep the interdistance. Similarly, at the abscissa 120 m, the robots enter the second curve, to
the right, and must slow down.
With the referencing only to the preceding robot (with the coefficients µii−1 = 1, µii+1 = 0 the second refer-
encing is not considered, see Figure 6(a)), a transient error appears when the curvature changes, since the
velocity of the robots must change sharply. The errors are corrected when the trajectory curvature comes
back constant. The longitudinal regulation of a vehicle with respect to the previous one is precise within
±0.15 m but on the overall, as these errors accumulate, the total regulation error between the first and the
last robot of the fleet is of 0.5 m in the curves (and even 0.9 m at the entry of the first curve).
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Figure 6: Comparison of longitudinal errors for different choices of combination coefficients

In the second simulation, which results are presented in Figure 6(b), the following robot is now accounted
for, but with a relative weight in the control law still half as much as the preceding robot’s weight
(µii−1 =1/3, µii+1 = 2/3). The addition of the second referencing permits to decrease the amplitude of
the errors to less than 0.4 m for the whole fleet but it also slows down the variations, which increases the
standard deviation of the error (the formation stays less to its desired configuration).

In the last simulation, the relative weight of the following robot in the velocity control is increased to be
equal to the weight of the preceding robot so that each robot is equally “pulled” by the preceding robot as
much as “pushed” by the following one. In this case, the velocity changes (due to the curvature evolutions)
are passed on consistently by both elementary control laws, which permits to widely reduce the accumulation
of errors in one direction. As a result, the longitudinal errors for the whole fleet are reduced to ±0.25 m (see
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Figure 6(c)), a precision twice better than the one obtained with a referencing to the previous vehicle only.

5 Experimental results

The simulations conducted have permitted to show the contribution of the proposed approach to stabilize
a formation of numerous vehicles travelling along a path, accounting for the conditions of evolution. To
evaluate the performances of the algorithms for agricultural needs, differents full-scale experiments have also
been realized. Due to technical reasons, the experiments have been conducted with three vehicles of different
kinds and with different conditions of evolution to validate the generic nature of the approach.

5.1 Results with heterogeneous robots

In the first experiment presented, the fleet regulation approach is applied to a formation of three autonomous
vehicles, focusing on the robustness to the heterogeneity of the vehicles. The first autonomous vehicle is a
commercial 12-tons tractor (fully automated) and the two next robots are lighter experimental electrically-
driven platforms, as illustrated in Figure 7. Their characteristics are detailed in Table 2. All of them are
fitted with RTK-GPS receiver, providing a position accurate within 2 cm at a 10 Hz frequency, an IMU and a
wireless communication module (based on the standard IEEE 802.11p). Also, within the control algorithms,
data are extrapolated to account for the communication delays observed in real experiments. It is possible
since the dates of localization are transmitted along with the data with the communication module.

Figure 7: Illustration of the experimental vehicles

Tractor 1st follower 2nd follower

Weight 10 300 kg 600 kg 420 kg

Trackwidth 3, 1 m 1, 2 m 1, 2 m

Maximal steering angle 48 20 25

Steering angle settling time 1, 6 s 0, 4 s 0, 6 s

Maximal speed 14 m.s-1 (50 km.h-1) 8 m.s-1 4 m.s-1

Table 2: Main characteristics of the experimental vehicles

The path to track, shown in Figure 8(a), had been recorded beforehand and is loaded by the 3 robots at
the initialization of the algorithm. The robots travel on a tarred path and the desired velocity travel is of
3 m/s. The desired formation is line-shaped, except for the first robot, for which a lateral offset of 0.6 m is
set from the beginning of the trajectory up to an achieved distance of 155 m (at the end of last curve). For
the desired longitudinal behavior, a constant distance of 30 m is set all along the experiment2.

2A video of this experiment and similar tests may be downloaded on the ftp site: XXXX
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This experimental configuration with a line formation and a trajectory presenting curves and straight line
parts will be classicaly used in the agricultural applications promoted for transportation (commutation be-
tween farm and field) or for contouring in the field with different successive works realized by each autonomous
vehicle.

(a) Trajectories in absolute frame (b) Lateral deviation

Figure 8: Trajectory of the robots and lateral deviation

From a lateral servoing point of view, it can be noticed that after an initialization distance of 20 m, each
robot is able to reach its desired lateral deviation and to maintain it within an accuracy of ±15cm, which
is consistent with agricultural task requirements. The first robot (a commercial farm tractor) admits some
overshoots at the end of initial convergence (which corresponds to the first right turn), due to the settling
time of its steering actuator. Indeed, it is equipped with an hydraulic valve which settling time is bigger
than the electric actuators of the two other robots. For homogeneity reasons, the same tuning gains in
control law (7) have been chosen for all robots, which is optimal for electrical robots but for the automated
farm tractor, the real response dynamic leads to some small oscillations when having important error to
compensate in lateral deviation. This first robot is nevertheless able to follow the desired lateral distance,
as it converges to −0.6 m up to 155 m and reach 0, when the desired lateral distance to the trajectory is set
to zero, as depicted in Figure 8(b).

Regarding the longitudinal behavior, each robot proportionally combines the velocity control referenced
to the previous vehicle and the control referenced to the following vehicle, i.e. µii−1 = µii+1 = 1

2 in the
combination law (12).
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Figure 9: Longitudinal results of the 3-vehicle path tracking

The results of the path tracking are presented in Figure 9. At the beginning, the vehicles are positioned
longitudinally spaced of around 10 m. They are too close to each other so the first vehicle is “pushed” by
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its following neighbor to a velocity higher than the desired travel velocity vC = 3 m/s in order to expand
the gap between the robots. Similarly, at the beginning the last vehicle is too close to the middle one and
combines the desired travel velocity to the null control velocity (waiting for the previous robot to move
forward and reach the desired interdistance); as a result, the last robot initial velocity is of 1.5 m/s. Finally,
the robots converge to the desired interdistance of 30 m in 20 s and their velocity converges to the desired
travelling speed. The convergence distance is set by the acceleration capabilities of the vehicles. Here the
tractor is the limiting vehicle as, with its inertia, it is the slowest to start and accelerate up to 3.5 m/s. The
following robots, the lighter electrically-driven platforms which are more reactive, limit their accelerations
to be consistent with the tractor dynamic. Then, during the path tracking the longitudinal regulation
permits to keep the interdistance with a maximal regulation error of 0.3 m, and a maximal interdistance
error between the head and the tail of the formation of 0.4 m. Moreover, the stability of the longitudinal
regulation permits to keep the constant desired velocity for all robots and avoid the stop-and-go effects due
to error accumulation.

5.2 Results in agricultural work configuration

The proposed control architecture for formation control of several mobile robots appears to be generic and
may be applied easily to different kind of vehicles, since the only parameter to be known is the vehicle
wheelbase L. The possible applications may then fit several agriculture tasks, in different configurations
of use. As an example, this section proposes experiments with three agricultural tractors. The first one is
manually controlled and generates on-line a reference trajectory as a set of GPS positions. The two following
tractors are autonomous; their commands are calculated using the proposed algorithms and sent to the
actuators on the CAN bus of the tractor. The same equipment as the one used for previous experimentation
is used. A RTK GPS supplies position and heading, while wireless communication modules allow the
exchange of data between tractors. As can be seen in Figure 10 extracted from the joint video3, the second
vehicle is equipped with an implement acting on the soil during straight line parts.

Figure 10: Experimentation in autonomous agricultural work configuration

The proposed control architecture is embedded on the two following tractors. The human driver of the first
vehicle is able to tune the desired lateral distance to the path of the two followers. In this experiment, the
leader is driven in a tubble ploughed field and realizes a trajectory representative of an agricultural work
(see black curve in Figure 11(a)). It is composed of straight lines with half turns at the end of the rows. The
length of the leader trajectory is equal to 800 m and has been achieved at an average velocity of 1.6 m/s
(almost 6 km/h), with a stop point at the end of the second half turn. This lead the two followers to stop
during curve, which is a challenging situation for the algorithms. The stop points of the vehicles are marked
in Subfigure 11(b). In order to limit the area of experiments, two rows are used several times. As a result
the complete trajectory of the three robots is split into two subfigures (see Figure 11), each defining half of
the complete trial (representing a traveled distance by the leader of 400 m).

During the straight line parts, the driver tunes a desired lateral distance for the followers, so that each tractor
is positionned at a distance of one width (of the tractor or the implement) from the previous tractor. This

3available on the ftp website: XXX
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(a) Whole trajectory of the leader (b) First part (Leader and followers) (c) Second part (Leader and followers)

Figure 11: Trajectory of the robots

corresponds to a classical “wing” configuration in agriculture where the tractors achieve parallel work and
cooperate to cover the whole field in a minimum of time. During half turn, the lateral distance is set to zero
in order to limit dead zone in field borders.In the last line, the manually driven leader diverts its trajectory
and achieves some sinusoidal deviation, similarly to the reaction of a driver realizing an obstacle avoidance.
During this last part, the desired lateral distances of the follower are set to zero. From a longitudinal point
of view, a constant interdistance of 30 m is set all along the test.

Beyond the results pointed out on the trajectory, let us consider the deviation obtained on lateral and
longitudinal servoing, depicted in Figure 12. Lateral distances are reported in Figure 12(a) together with
the desired set points which are changing during the experiment. It can be noticed that the actual lateral
deviation of the first (in green plain line) and the second follower (in blue dashed line) indeed reach their
respective set point after the theoretical distance of convergence of 25 m set by the tuning of the control
gains.

(a) Lateral deviation of followers (b) Longitudinal positioning error of the followers

Figure 12: Deviations obtained during second experiment

After the settling distance, the lateral error is well regulated, within an accuracy of few centimeters, and
the variation of the trajectory shape in the sinusoidal part (after curvilinear abscissa 550 m) do not affect
the accuracy of the regulation, which performances are described in Table 3. The most challenging situation
encountered for the lateral regulation is the stopping part. Indeed, as the halt of the leader occurs in the
second half turn, it coincides with the transition from the wing-shaped formation (non null lateral deviation)
to the line formation for the headland maneuver. As a result, the follower tractors steer while braking which
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Follower 1 Follower 2

Lateral Error Mean 0.02 m 0.14 m

Standard deviation −0.08 m 0.19 m

Longitudinal Error Mean 0.12 m −0.40 m

Standard deviation 0.57 m 0.75 m

Table 3: Statistic on longitudinal and lateral error during second experiment

creates transient dynamic effects unaccounted for in the control laws.

On the longitudinal side, after the first convergence phase, and excluding the transient phase of stopping
and restarting of the formation, the velocity control law permits to keep the autonomous following tractors
at their desired position (30 m to the previous tractor) during the nominal part of the evolution with an
accuracy of a few decimeters, as is depicted in Figure 12(b) and pointed out in Table 3. Despite the uneven
surface of evolution, the curves and the modifications of lateral positionning, the followers adapt their velocity
consistently to maintain their interdistance to their desired value.

About the transient phase of halt of the formation, it can be noticed that if the first follower handles it
prefectly (there is no deterioration of the longitudinal regulation accuracy in this zone), the second follower’s
performances are deteriorated (a drift after curvilinear abscissa 325 m is observed reaching −10 m at curvi-
linear abscissa 420 m). This difference comes mainly from material considerations, namely the acceleration
capabilities of the tractors. Indeed, if the first two tractors are similar, the second follower is an older tractor
on which the gearbox cannot be controlled. As a result, the second follower’s acceleration is slower than the
leader’s and the first follower’s and the former cannot follow the latters. Moreover after the tractors restart,
in the acceleration phase they exit the headland maneuver area and the formation shape is turned back to
a wing, the lateral setpoint of the second follower is increased to 8 m at the curvilinear abscissa 310 m as it
can be seen in Figure 12(a). As a result, to reach this new desired lateral position, the second follower has
to accelerate even more, which exceedes widely the aceleration capability of the real tractor.

The experiment presented is representative of the behaviors observed during several experimentation cam-
paigns in different evolution conditions as it permits to point out both the strength of the proposed approach
for a stable path tracking in formation with varying desired formation shape in agricultural context, for the
lateral as well as for the longitudinal regulation, and to exhibit the limitations of the current implementation.
On the bright side, the addition of an implement behind the second tractor is well accounted for as its effect
on the lateral evolution of the tractor is interpreted as skidding and compensated in the steering control
law. About the velocity regulation, the implement used, a harrow, produces a force light enough so that
the power of the tractor can maintain the desired velocity and keep an accurate interdistance. In case of
use of a deeper working implement, such as a plow, its effect on the longitudinal evolution may become non
negligible and an accurate regulation may benefit from the estimation of the longitudinal sliding.
On the other side, limitations between the theoretical regulation and the experimental evolution have been
exhibited. Firstly, sharp velocity variations during steering parts have led to transient lateral error because
of dynamical effects ignored in the control laws (based on a theoretical decoupling between lateral and longi-
tudinal regulation). But mainly, the principal limitation highlighted comes from the limited acceleration of
the real tractors Because of the settling time in the combustion engine of the tractors, the longitudinal reg-
ulation is less accurate than lateral regulation (hydraulic cylinder). The performances are thus depreciated
compared those one obtained with electrical robots. Moreover, this experiment is a challenging test case
since speed variation and on-line modification of the lateral set point have been achieved. A better low-level
control loop for throttle will help reducing the longitudinal error. Nevertheless, the lateral accuracy with
heavy automated farm tractor is of few centimetres, while longitudinal errors does not exceed few decimetres
(less than half of vehicle wheelbase). This level of error is satisfactory in order to control farm tractors in a
dedicated formation for cooperative field work.
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6 Conclusion

In this paper, we study the path tracking in formation of a fleet of mobile robots. The model of the vehicles
includes the effects of the evolution in a natural environnement by means of sideslip angles. Using this
extended model, the steering control law permits to regulate precisely the lateral deviation to the trajectory
of each robot to a desired offset, even if this one is changed during the experiment. The velocity control
strategy in the fleet defined consists, for each robot, in a linear combination of the two velocity commands
regulating the interdistance to the two closest neighbors. A Lyapunov approach applied to different cases,
a 3-vehicle formation and a n-vehicle formation with constant symmetrical and asymmetrical interaction
coefficients, has proven the stability of the formation. This control has been tested through simulation with
a 5-vehicle formation and through experiments using 3-vehicle formations. The application in off-road context
of the control strategy developped have confirmed the stability of the formation path tracking, highlighting
the reduction of the error accumulation by a factor of two compared to a classical leader-follower strategy on
a larger fleet. This strategy has been successfully applied to heterogeneous formations of electrical robots and
autonomous huge farm tractor propelled with combustion engine. In a constant or slow varying formation,
a high level of accuracy may be expected, whatever the (variable) kind of ground and the trajectory shape
are, demonstrating the stability and robustness of the approach.

Future work will focus, on the theoretical side, on the expansion of the stability proof of the bidirectional
control law with variable coefficients in order to characterize and on-line adapt the behavior of the formation.
From the applicative point of view, a more precise model of the low-level throttle behavior will be developped
and added in the control loop to account for the acceleration capabilities of the real tractors and so enhance
the accuracy of the longitudinal fleet servoing. The use of local perception (such as laser rangefinder) will
also be studied in order to reduce the required equipment related to sensors cost.

Acknowledgment

This work has received the support of French National Research Agency under the grant number ANR-14-
CE27-0004 attributed to Adap2E project (adap2e.irstea.fr). It has also been sponsored through the RobotEx
Equipment of Excellence (ANR-10-EQPX-44), by the European Union through the program Regional com-
petitiveness and employment 2007-2013 (ERDF Auvergne Region), and by the Auvergne Region

References

Antonelli, G., Arrichiello, F., Caccavale, F., and Marino, A. (2013). Decentralized centroid and formation
control for multi-robot systems. In IEEE International Conference on Robotics and Automation (ICRA),
pages 3511–3516.

Balch, T. and Arkin, R. C. (1998). Behavior-based formation control for multirobot teams. IEEE Transac-
tions on Robotics and Automation, 14(6):926–939.

Baras, J., Tan, X., and Hovareshti, P. (2003). Decentralized control of autonomous vehicles. 42nd IEEE
International Conference on Decision and Control, 2:1532–1537.

Blackmore, C. (2014). Learning to change farming and water management practices in response to the
challenges of climate change and sustainability. Outlook on AGRICULTURE, 43(3):173–178.
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