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Abstract

Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that
requires significant skill to master and is unarguably one of the most complicated tasks a truck
driver has to perform. This paper presents a path planning and path-following control solution
that can be used to automatically plan and execute difficult parking and obstacle avoidance
maneuvers by combining backward and forward motion. A lattice-based path planning frame-
work is developed in order to generate kinematically feasible and collision-free paths and a
path-following controller is designed to stabilize the lateral and angular path-following error
states during path execution. To estimate the vehicle state needed for control, a nonlinear
observer is developed which only utilizes information from sensors that are mounted on the
car-like tractor, making the system independent of additional trailer sensors. The proposed
path planning and path-following control framework is implemented on a full-scale test vehi-
cle and results from simulations and real-world experiments are presented.

1 Introduction

A massive interest for intelligent and fully autonomous transport solutions has been seen from
industry over the past years as technology in this area has advanced. The predicted productivity
gains and the relatively simple implementation have made controlled environments such as mines,
harbors, airports, etc., interesting areas for commercial launch of such systems. In many of these
applications, tractor-trailer systems are used for transportation and therefore require fully auto-
mated control. Reversing a semitrailer with a car-like tractor is known to be a task that require lots
of training to perfect and an inexperienced driver usually encounter problems already when per-
forming simple tasks, such as reversing straight backwards. To help the driver in such situations,
trailer assist systems have been developed and released to the passenger car market [30,69]. These
systems enable the driver to easily control the semitrailer’s curvature though a control knob. An
even greater challenge arise when reversing a general 2-trailer (G2T) with a car-like tractor. As

1

ar
X

iv
:1

90
4.

01
65

1v
2 

 [
cs

.R
O

] 
 2

5 
Ju

n 
20

19



Figure 1: The full-scale test vehicle that is used as a research platform. The car-like tractor is a
modified version of a Scania R580 6x4 tractor.

seen in Figure 1, this system is composed of three interconnected vehicle segments; a front-wheel
steered tractor, an off-axle hitched dolly and an on-axle hitched semitrailer. The word general
refers to that the connection between the vehicle segments are of mixed hitching types [1].

Compared to a single semitrailer, the dolly introduces an additional degree of freedom into
the system, making it very difficult to stabilize the semitrailer and the joint angles in backward
motion. A daily challenge that many truck drivers encounter is to perform a reverse maneuver in,
e.g., a parking lot or a loading/off-loading site. In such scenarios, the vehicle is said to operate in
an unstructured environment because no clear driving path is available. To perform a parking ma-
neuver, the driver typically needs to plan the maneuver multiple steps ahead, which often involves
a combination of driving forwards and backwards. For an inexperienced driver, these maneuvers
can be both time-consuming and mentally exhausting. To aid the driver in such situations, this
work presents a motion planning and path-following control framework for a G2T with a car-like
tractor that is targeting unstructured environments. It is shown through several experiments that the
framework can be used to automatically perform advanced maneuvers in different environments.

The framework can be used as a driver assist system to relieve the driver from performing
complex tasks or as part of a motion planning and feedback control layer within an autonomous
system architecture. The motion planner is based on the state-lattice motion planning frame-
work [18,19,54] which has been tailored for this specific application in our previous work in [40].
The lattice planner efficiently computes kinematically feasible and collision-free motion plans by
combining a finite number of precomputed motion segments. During online planning, challenging
parking and obstacle avoidance maneuvers can be constructed by deploying efficient graph search
algorithms [36]. To execute the motion plan, a path-following controller based on our previous
work in [38] is used to stabilize the lateral and angular path-following error states during the exe-
cution of the planned maneuver. Finally, a nonlinear observer based on an extended Kalman filter
(EKF) is proposed to obtain full state information of the system. Based upon request from our
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commercial partner and since multiple trailers are usually switched between during daily opera-
tion, the observer is developed so that it only uses information from sensors that are mounted on
the tractor.

The proposed path planning and path-following control framework summarizes and extends
our previous work in [38–40]. Here, the complete system is implemented on a full-scale test
vehicle and results from both simulations and real-world experiments are presented to demonstrate
its performance. To the best of the author’s knowledge, this paper presents the first path planning
and path-following control framework for a G2T with a car-like tractor that is implemented on a
full-scale test vehicle.

The remainder of the paper is structured as follows. In Section 2, the responsibility of each
module in the path planning and path-following control framework is briefly explained and an
overview of related work is provided. In Section 3, the kinematic vehicle model of the G2T
with a car-like tractor and the problem formulations are presented. The lattice-based path planner
is presented in Section 4 and the hybrid path-following controller in Section 5. In Section 6, the
nonlinear observer that is used for state estimation is presented. Implementation details are covered
in Section 7 and simulation results as well as results from real-world experiments are presented in
Section 8. The paper is concluded in Section 9 by summarizing the contributions and discusses
directions for future work.

2 Background and related work

The full system is built from several modules and a simplified system architecture is illustrated in
Figure 2, where the integration and design of state estimation, path planning and path-following
control are considered as the main contributions of this work. Below, the task of each module is
briefly explained and for clarity, related work for each module is given individually.

2.1 Perception and localization

The objective of the perception and localization layer is to provide the planning and control layer
with a consistent representation of the surrounding environment and an accurate estimation of
where the tractor is located in the world. A detailed description of the perception layer is outside
the scope of this paper, but a brief introduction is given for clarity.

Precomputed maps and onboard sensors on the car-like tractor (RADARs, LIDARs, a global
positioning system (GPS), inertial measurement units (IMUs) and cameras) are used to construct
an occupancy grid map [24] that gives a probabilistic representation of drivable and non-drivable
areas. Dynamic objects are also detected and tracked but they are not considered in this work.
Standard localization techniques are then used to obtain an accurate position and orientation es-
timate of the car-like tractor within the map [35, 47, 63]. Together, the occupancy grid map and
the tractor’s position and orientation provide the environmental representation in which motion
planning and control is performed.
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Figure 2: A schematic illustration of the proposed system architecture where the blue subsystems;
path planning, path-following control and state estimation, are considered in this work.

2.2 State estimation

To control the G2T with car-like tractor, accurate and reliable state estimation of the semitrailer’s
position and orientation as well as the two joint angles of the system need to be obtained. An ideal
approach would be to place sensors at each hitch connection to directly measure each joint an-
gle [26,30,44] and equip the semitrailer with a similar localization system as the tractor (e.g., IMU
and a high precision GPS). However, commercial trailers are often exchanged between tractors
and a high-performance navigation system is very expensive, making it an undesirable solution
for general applications. Furthermore, no standardized communication protocol between different
trailer and tractor manufacturers exists.

Different techniques for estimating the joint angle for a tractor with a semi-trailer and for a
car with a trailer using wide-angle cameras are reported in [61] and [16], respectively. In [61], an
image bank with images taken at different joint angles is first generated and during execution used
to compare and match against the current camera image. Once a match is found, the corresponding
joint angle is given from the matched image in the image bank. The work in [16] exploits symmetry
of the trailer’s drawbar in images to estimate the joint angle between a car and the trailer. In [28],
markers with known locations are placed on the trailer’s body and then tracked with a camera
to estimate the joint angles of a G2T with car-like tractor. The proposed solution is tested on a
small-scale vehicle in a lab environment.

Even though camera-based joint angle estimation would be possible to utilize in practice, it is
unclear how it would perform in different lighting conditions, e.g., during nighttime. The concept
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for angle estimation used in this work was first implemented on a full-scale test vehicle as part
of the master’s thesis [50] supervised by the authors of this work. Instead of using a rear-view
camera, a LIDAR sensor is mounted in the rear of the tractor. The LIDAR sensor is mounted such
that the body of the semitrailer is visible in the generated point cloud for a wide range of joint
angles. The semitrailer’s body is assumed to be rectangular and by iteratively running the random
sample consensus (RANSAC) algorithm [27], the visible edges of the semitrailer’s body can be
extracted from the point cloud. Virtual measurements of the orientation of the semitrailer and the
lateral position of the midpoint of its front with respect to the tractor are then constructed utilizing
known geometric properties of the vehicle. These virtual measurements together with information
of the position and orientation of the tractor are used as observations to an EKF for state estimation.

In [9], the proposed iterative RANSAC algorithm is benchmarked against deep-learning tech-
niques to compute the estimated joint angles directly from the LIDAR’s point cloud or from cam-
era images. That work concludes that for trailers with rectangular bodies, the LIDAR and iterative
RANSAC solution outperforms the other tested methods in terms of accuracy and robustness which
makes it a natural choice for state estimation in this work.

2.3 Path planning

Motion planning for car-like vehicles is a difficult problem due to the vehicle’s nonholonomic
constraints and the non-convex environment the vehicle is operating in [34]. Motion planning for
tractor-trailer systems is even more challenging due to the vehicle’s complex kinematics, its rela-
tively large dimensional state-space and its structurally unstable joint angle kinematics in backward
motion. The standard N-trailer (SNT) which only allows on-axle hitching, is differentially flat and
can be converted into chained form when the position of the axle of the last trailer is used as the
flat output [64]. This property of the SNT is explored in [49, 65] to develop efficient techniques
for local trajectory generation. In [65], simulation results for the one and two trailer cases are
presented but obstacles as well as state and input constraints are omitted. A well-known issue
with flatness-based trajectory generation is that it is hard to incorporate constraints, as well as
minimizing a general performance measure while computing the motion plan. Some of these is-
sues are handled in [62] where a motion planner for unstructured environments with obstacles for
the S2T is proposed. In that work, the motion planning problem is split into two phases where
a holonomic path that violates the vehicle’s nonholonomic constraints is first generated and then
iteratively replaced with a kinematically feasible trajectory by converting the system into chained
form. A similar hierarchical motion planning scheme is proposed in [33] for a G1T robot which is
also experimentally validated on a small scale platform.

An important contribution in this work is that most of the approaches presented above only
consider the SNT-case with on-axle hitching, despite that most practical applications have both
on-axle and off-axle hitching. The off-axle hitching makes the kinematics for the general N-trailer
(GNT) more complicated [1]. To include the G2T with car-like tractor, we presented a probabilistic
motion planner in [25]. Even though the proposed motion planner is capable of solving several hard
problems, the framework lacks all completeness and optimality guarantees that are given by the
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approach developed in this work.
The family of motion planning algorithms that belong to the lattice-based motion planning

family, can guarantee resolution optimality and completeness [54]. In contrast to probabilistic
methods, a lattice-based motion planner requires a regular discretization of the vehicle’s state-
space and is constrained to a precomputed set of feasible motions which, combined, can connect
two discrete vehicle states. The precomputed motions are called motion primitives and can be gen-
erated offline by solving several optimal control problems (OCPs). This implies that the vehicle’s
nonholonomic constraints already have been considered offline and what remains during online
planning is a search over the set of precomputed motions. Due to its deterministic nature and
real-time capabilities, lattice-based motion planning has been used with great success on various
robotic platforms [7, 19, 51, 54, 67] and is therefore the chosen motion planning strategy for this
work.

Other deterministic motion planning algorithms rely on input-space discretization [12, 23] in
contrast to state-space discretization. A model of the vehicle is used during online planning to
simulate the system for certain time durations, using constant or parametrized control signals. In
general, the constructed motions do not end up at specified final states. This implies that the
search graph becomes irregular and results in an exponentially exploding frontier during online
planning [54]. To resolve this, the state-space is often divided into cells where a cell is only al-
lowed to be explored once. A motion planning algorithm that uses input-space discretization is the
hybrid A∗ [23]. In [12], a similar motion planner is proposed to generate feasible paths for a G1T
with a car-like tractor with active trailer steering. A drawback with motion planning algorithms
that rely on input-space discretization, is that they lack completeness and optimality guarantees.
Moreover, input-space discretization is in general not applicable for unstable systems, unless the
online simulations are performed in closed-loop with a stabilizing feedback controller [25].

A problem with lattice-based approaches is the curse of dimensionality, i.e., exponential com-
plexity in the dimension of the state-space and in the number of precomputed motions. In [40], we
circumvented this problem and developed a real-time capable lattice-based motion planner for a
G2T with a car-like tractor. By discretizing the state-space of the vehicle such that the precomputed
motions always move the vehicle from and to a circular equilibrium configuration, the dimension
of the state lattice remained sufficiently low and made real-time use of classical graph search al-
gorithms tractable. Even though the dimension of the discretized state-space is limited, the motion
planner was shown to efficiently solve difficult and practically relevant motion planning problems.

In this work, the work in [40] is extended by better connecting the cost functional in the motion
primitive generation and the cost function in the online motion planning problem. Additionally, the
objective functional in backward motion is adjusted such that it reflects the difficulty of executing
a maneuver. To avoid maneuvers in backward motion that in practice have a large risk of leading
to a jack-knife state, a quadratic penalty on the two joint angles is included in the cost functional.
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2.4 Path-following control

During the past decades, an extensive amount of feedback control techniques for different tractor-
trailer systems for both forward and backward motion have been proposed. The different control
tasks include path-following control (see e.g., [4, 10, 13, 42, 59]), trajectory-tracking and set-point
control (see e.g., [22, 45, 46, 60]). Here, the focus will be on related path-following control solu-
tions.

For the SNT, its flatness property can be used to design path-following controllers based on
feedback linearization [59] or by converting the system into chained form [60]. The G1T with a
car-like tractor is still differentially flat using a certain choice of flat outputs [56]. However, the flat-
ness property does not hold when two consecutive trailers are off-axle hitched [43,56]. In [13], this
issue is circumvented by introducing a simplified reference vehicle which has equivalent station-
ary behavior but different transient behavior. Similar concepts have also been proposed in [48,72].
Input-output linearization techniques are used in [2] to stabilize the GNT around paths with con-
stant curvature, where the path-following controller minimizes the sum of the lateral offsets to
the path. The proposed approach is however limited to forward motion since the introduced zero-
dynamics become unstable in backward motion. A closely related approach is presented in [37],
where the objective of the path-following controller is to minimize the swept path of a G1T with a
car-like tractor along paths in backward and forward motion.

Tractor-trailer vehicles that have pure off-axle hitched trailers, are referred to as non-standard
N-trailers (nSNT) [17, 43]. For these systems, scalable cascade-like path-following control tech-
niques are presented in [42, 44]. Compared to many other path-following control approaches,
these controllers do not need to find the closest distance to the nominal path and the complexity
of the feedback controllers scales well with increasing number of trailers. By introducing artificial
off-axle hitches, the proposed controller can also be used for the GNT-case [42]. However, as ex-
perimental results illustrate, the path-following controller becomes sensitive to measurement noise
when an off-axle distance approaches zero.

A hybrid linear quadratic (LQ) controller is proposed in [4] to stabilize the G2T with car-like
tractor around different equilibrium configurations corresponding to straight lines and circles, and
a survey in the area of control techniques for tractor-trailer systems can be found in [20]. Inspired
by [4], a cascade control approach for stabilizing the G2T with car-like tractor in backward motion
around piecewise linear reference paths is proposed in [26]. An advantage of this approach is that
the controller can track reference paths that are not necessarily kinematically feasible. However, if
a more detailed reference path with full state information is available, this method is only using a
subset of the available information and the control accuracy might be reduced. A similar approach
for path tracking is also proposed in [55] for reversing a G2T with a car-like tractor which has been
successfully demonstrated in practice.

Most of the path-following approaches presented above consider the problem of following a
path defined in the position and orientation of the last trailer’s axle. In this work, the nominal path
obtained from the path planner is composed of full state information as well as nominal control
signals. Furthermore, in a motion planning and path-following control architecture, it is crucial that
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all nominal vehicle states are followed to avoid collision with surrounding obstacles. To utilize all
information in the nominal path, we presented a state-feedback controller with feedforward action
in [38]. The proposed path-following controller is proven to stabilize the path-following error
kinematics for the G2T with a car-like tractor in backward motion around a set of admissible paths.
The advantage of this approach is that the nominal path satisfies the vehicle kinematics making
it, in theory, possible to follow exactly. However, the developed stability result in [38] fails to
guarantee stability in continuous-time for motion plans that are combining forward and backward
motion segments [39]. In [39], we proposed a solution to this problem and presented a framework
that is exploiting the fact that a lattice planner is combining a finite number of precomputed motion
segments. Based on this, a framework is proposed for analyzing the behavior of the path-following
error, how to design the path-following controller and how to potentially impose restrictions on
the lattice planner to guarantee that the path-following error is bounded and decays towards zero.
Based on this, the same framework is used in this work, where results from real-world experiments
on a full-scale test vehicle are also presented.

3 Kinematic vehicle model and problem formulations

The G2T with a car-like tractor considered in this work is schematically illustrated in Figure 3. This
system has a positive off-axle connection between the car-like tractor and the dolly and an on-axle
connection between the dolly and the semitrailer. The state vector x=

[
x3 y3 θ3 β3 β2

]T ∈R5

is used to represent a configuration of the vehicle, where (x3,y3) is the position of the center of
the semitrailer’s axle, θ3 is the orientation of the semitrailer, β3 is the joint angle between the
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Figure 3: Definition of the geometric lengths, states and control signals that are of relevance for
modeling the general 2-trailer with a car-like tractor.

8



semitrailer and the dolly and β2 is the joint angle between the dolly and the car-like tractor1.
The length L3 represent the distance between the axle of the semitrailer and the axle of the dolly,
L2 is the distance between the axle of the dolly and the off-axle hitching connection at the car-
like tractor, M1 > 0 is the length of the positive off-axle hitching, and L1 denotes the wheelbase
of the car-like tractor. The car-like tractor is front-wheeled steered and assumed to have perfect
Ackerman geometry. The control signals to the system are the steering angle α and the longitudinal
velocity v of the rear axle of the car-like tractor. A recursive formula derived from nonholonomic
and holonomic constraints for the GNT vehicle is presented in [1]. Applying the formula for this
specific G2T with a car-like tractor results in the following vehicle model [3]:

ẋ3 = vcosβ3C1(β2, tanα/L1)cosθ3, (1a)

ẏ3 = vcosβ3C1(β2, tanα/L1)sinθ3, (1b)

θ̇3 = v
sinβ3

L3
C1(β2, tanα/L1), (1c)

β̇3 = v
(

1
L2

(
sinβ2−

M1

L1
cosβ2 tanα

)
− sinβ3

L3
C1(β2, tanα/L1)

)
, (1d)

β̇2 = v
(

tanα

L1
− sinβ2

L2
+

M1

L1L2
cosβ2 tanα

)
, (1e)

where C1(β2,κ) is defined as

C1(β2,κ) = cosβ2 +M1 sinβ2κ. (2)

By performing the input substitution κ = tanα

L1
, the model in (1) can be written on the form ẋ =

v f (x,κ). Define

gv(β2,β3,κ) = cosβ3C1(β2,κ), (3)

which describes the relationship, v3 = vgv(β2,β3,κ), between the longitudinal velocity of the axle
of the semitrailer, v3 and the longitudinal velocity of the rear axle of the car-like tractor, v. When
gv(β2,β3,κ) = 0, the system in (1) is uncontrollable which practically implies that the position
of the axle of the dolly or the semitrailer remain in stationarity even though the tractor moves.
To avoid these vehicle configurations, it is assumed that gv(β2,β3,κ) > 0, which implies that the
joint angles has to satisfy |β3| < π/2 and |β2| < π/2, respectively, and that C1(β2,κ) > 0. These
imposed restrictions are closely related to the segment-platooning assumption defined in [44] and
does not limit the practical usage of the model since structural damage could occur on the semi-
trailer or the tractor, if these limits are exceeded.

The model in (1) is derived based on no-slip assumptions and the vehicle is assumed to operate
on a flat surface. Since the intended operational speed is quite low for our use case, these assump-
tions are expected to hold. The direction of motion is essential for the stability of the system (1),
where the joint angle kinematics are structurally unstable in backward motion (v < 0), where it

1All angles are defined positive counter clockwise.
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risks to fold and enter what is called a jack-knife state [3]. In forward motion (v > 0), these modes
are stable.

Since the longitudinal velocity v enters linearly into the model in (1), time-scaling [58] can
be applied to eliminate the dependence on the longitudinal speed |v|. Define s(t) as the distance
traveled by the rear axle of the tractor, i.e., s(t) =

∫ t
0 |v(τ)|dτ . By substituting time with s(t), the

differential equation in (1) can be written as

dx
ds

= sign(v(s)) f (x(s),κ(s)). (4)

Since only the sign of v enters into the state equation, it implies that the traveled path is independent
of the tractor’s speed |v| and the motion planning problem can be formulated as a path planning
problem [34], where the speed is omitted. Therefore, the longitudinal velocity v is, without loss
of generality, assumed to take on the values v = 1 for forward motion and v = −1 for backward
motion, when path planning is considered.

In practice, the vehicle has limitations on the maximum steering angle |α| ≤ αmax < π/2, the
maximum steering angle rate |ω| ≤ ωmax and the maximum steering angle acceleration |uω | ≤
uω,max. These constraints have to be considered in the path planning layer in order to generate
feasible paths that the physical vehicle can execute.

3.1 Problem formulations

In this section, the path planning and the path-following control problems are defined. To make
sure the planned path avoid uncontrollable regions and the nominal steering angle does not violate
any of its physical constraints, an augmented state-vector z =

[
xT α ω

]T ∈ R7 is used during
path planning. The augmented model of the G2T with a car-like tractor (1) can be expressed in the
following form

dz
ds

= fz(z(s),up(s)) =

v(s) f (x(s), tanα(s)/L1)
ω(s)
uω(s)

 , (5)

where its state-space Z⊂ R7 is defined as follows

Z=
{

z ∈ R7 | |β3|< π/2, |β2|< π/2, |α| ≤ αmax, |ω| ≤ ωmax, C1(β2, tanα/L1)> 0
}
, (6)

where C1(β2, tanα/L1) is defined in (2). During path planning, the control signals are up =[
v uω

]T ∈ Up, where Up = {−1,1}× [−uω,max,uω,max]. Here, uω denotes the steering angle
acceleration and the longitudinal velocity v is constrained to ±1 and determines the direction of
motion. It is assumed that the perception layer provides the path planner with a representation of
the surrounding obstacles Zobs. In the formulation of the path planning problem, it is assumed
that Zobs can be described analytically (e.g., circles, ellipsoids, polytopes or other bounding re-
gions [34]). Therefore, the free-space where the vehicle is not in collision with any obstacles can
be defined as Zfree = Z\Zobs.
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Given an initial state zI =
[
xT

I αI 0
]T ∈ Zfree and a desired goal state zG =

[
xT

G αG 0
]T ∈

Zfree, a feasible solution to the path planning problem is an arc-length parametrized control signal
up(s) ∈ Up, s ∈ [0,sG] which results in a nominal path in z(s), s ∈ [0,sG] that is feasible, collision-
free and moves the vehicle from its initial state zI to the desired goal state zG. Among all feasible
solutions to this problem, the optimal solution is the one that minimizes a specified cost functional
J. The optimal path planning problem is defined as follows.

Definition 1 (The optimal path planning problem). Given the 5-tuple (zI,zG,Zfree,Up,J), find the
path length sG ∈ R+ and an arc-length parametrized control signal up(s) =

[
v(s) uω(s)

]T , s ∈
[0,sG] that minimizes the following OCP:

minimize
up(·), sG

J =
∫ sG

0
L(x(s),α(s),ω(s),uω(s))ds (7a)

subject to
dz
ds

= fz(z(s),up(s)), (7b)

z(0) = zI, z(sG) = zG, (7c)

z(s) ∈ Zfree, up(s) ∈ Up, (7d)

where L : R5×R×R×R→ R+ is the cost function.

The optimal path planning problem in (7) is a nonlinear OCP which is often, depending on the
shape of Zfree, highly non-convex. Thus, the OCP in (7) is in general hard to solve by directly
invoking a numerical optimal control solver [11,73] and sampling-based path planning algorithms
are commonly employed to obtain an approximate solution [34, 52]. In this work, a lattice-based
path planner [19, 54] is used and the framework is presented in Section 4.

For the path-following control design, a nominal path that the vehicle is expected to fol-
low is defined as (xr(s),ur(s)),s ∈ [0,sG], where xr(s) is the nominal vehicle state and ur(s) =[
vr(s) κr(s)

]T is the nominal velocity and curvature control signals. The objective of the path-
following controller is to locally stabilize the vehicle around this path in the presence of distur-
bances and model errors. When path-following control is considered, it is not crucial that the
vehicle is located at a specific nominal state in time, rather that the nominal path is executed with a
small and bounded path-following error x̃(t) = x(t)− xr(s(t)). The path-following control problem
is formally defined as follows.

Definition 2 (The path-following control problem). Given a controlled G2T with a car-like trac-
tor (1) and a feasible nominal path (xr(s),ur(s)), s∈ [0,sG]. Find a control-law κ(t) = g(s(t),x(t))
with v(t)= vr(s(t)), such that the solution to the closed-loop system ẋ(t)= vr(s(t)) f (x(t),g(s(t),x(t)))
satisfies the following locally around the nominal path: For all t ∈ {t ∈ R+ | 0≤ s(t)≤ sG}, there
exist positive constants r, ρ and ε such that

1. ||x̃(t)|| ≤ ρ||x̃(t0)||e−ε(t−t0), ∀||x̃(t0)||< r,

2. ṡ(t)> 0.
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Figure 4: Illustration of a circular equilibrium configuration for the G2T with a car-like tractor.
Given a constant steering angle αe, there exists a unique pair of joint angles, β2,e and β3,e, where
β̇2 = β̇3 = 0.

If the nominal path would be infinitely long (sG→∞), Definition 2 coincides with the definition
of local exponential stability of the path-following error model around the origin [31]. In this
work, the path-following controller is designed by first deriving a path-following error model.
This derivation as well as the design of the path-following controller are presented in Section 5.

3.2 System properties

Some relevant and important properties of the model in (1) that will be exploited for path planning
are presented below.

3.2.1 Circular equilibrium configurations

Given a constant steering angle αe there exists a circular equilibrium configuration where β̇2 and
β̇3 are equal to zero, as illustrated in Figure 4. In stationarity, the vehicle will travel along circles
with radii determined by αe [4]. The equilibrium joint angles, β2e and β3e, are related to αe through
the following equations

β3e = arctan
(

L3

R3

)
, (8a)

β2e =

(
arctan

(
M1

R1

)
+ arctan

(
L2

R2

))
, (8b)

where the absolute values of the signed radii are |R1|= L1/| tanαe|, |R2|= (R2
1 +M2

1 −L2
2)

1/2 and
|R3|= (R2

2−L2
3)

1/2.
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3.2.2 Symmetry

A feasible path (z(s),up(s)), s ∈ [0,sG] to (5) that moves the system from an initial state z(0) to
a final state z(sG), is possible to reverse in distance and revisit the exact same points in x and α

by a simple transformation of the control signals. The result is formalized in Lemma 1 which
is provided in Appendix A. Note that the actual state x(·) and steering angle α(·) paths of the
system (5) are fully distance-reversed and it is only the path of the steering angle rate ω(·) that
changes sign. Moreover, if ω(0) and ω(sG) are equal to zero, the initial and final state constraints
coincide. The practical interpretation of the result in Lemma 1 is that any path taken by the G2T
with a car-like tractor (4) with |α(·)| ≤ αmax is feasible to follow in the reversed direction. Now,
define the reverse optimal path planning problem to (7) as

minimize
ūp(·), s̄G

J̄ =
∫ s̄G

0
L(x̄(s̄), ᾱ(s̄), ω̄(s̄), ūω(s̄))ds̄ (9a)

subject to
dz̄
ds̄

= fz(z̄(s̄), ūp(s̄)), (9b)

z̄(0) = zG, z̄(s̄G) = zI, (9c)

z̄(s̄) ∈ Zfree, ūp(s̄) ∈ Up. (9d)

Note that the only difference between the OCPs defined in (7) and (9), respectively, is that the
initial and goal state constraints are switched. In other words, (7) defines a path planning problem
from zI to zG and (9) defines a path planning problem from zG to zI . It is possible to show that also
the optimal solutions to these OCPs are related through the result established in Lemma 1.

Assumption 1. For all z ∈ Zfree and up ∈ Up, the cost function L in (7) satisfies L(x,α,ω,uω) =

L(x,α,−ω,uω).

Assumption 2. z =
[
xT α ω

]T ∈ Zfree⇔ z̄ =
[
xT α −ω

]T ∈ Zfree.

Theorem 1. Under Assumption 1–2, if (z∗(s),u∗p(s)), s ∈ [0,s∗G] is an optimal solution to the op-
timal path planning problem (7) with optimal objective functional value J∗, then the distance-
reversed path (z̄∗(s̄), ū∗p(s̄)), s̄ ∈ [0, s̄∗G] given by (57)–(58) with s̄∗G = s∗G, is an optimal solution to
the reverse optimal path planning problem (9) with optimal objective functional value J̄∗ = J∗.

Proof. See Appendix A.

Theorem 1 shows that if an optimal solution to the optimal path planning problem in (7) or the
reversed optimal path planning problem in (9) is known, an optimal solution to the other one can
immediately be derived using the invertible transformation defined in (57)–(58) and s̄G = sG.

4 Lattice-based path planner

As previously mentioned, the path planning problem defined in (1) is hard to solve by directly in-
voking a numerical optimal control solver. Instead, it can be combined with classical search algo-
rithms and a discretization of the state-space to build efficient algorithms to solve the path planning
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problem. By discretizing the state-space Zd of the vehicle in a regular fashion and constraining
the motion of the vehicle to a lattice graph G = 〈V ,E〉, which is a directed graph embedded in
an Euclidean space that forms a regular and repeated pattern, classical graph-search techniques
can be used to traverse the graph and compute a path to the goal [19, 54]. Each vertex ν [k] ∈ V
represents a discrete augmented vehicle state z[k] ∈ Zd and each edge ei ∈ E represents a motion
primitive mi, which encodes a feasible path (zi(s),ui

p(s)), s ∈ [0,si
f ] that moves the vehicle from

one discrete state z[k] ∈ Zd to a neighboring state z[k+1] ∈ Zd , while respecting the vehicle model
and its physically imposed constraints. For the remainder of this text, state and vertex will be used
interchangeably.

Each motion primitive mi is computed offline and stored in a library containing a set P of
precomputed feasible motion segments that can be used to connect two vertices in the graph. In
this work, an OCP solver is used to generate the motion primitives and the vehicle’s nonholonomic
constraints are in this way handled offline, and what remains during online planning is a search
over the set of precomputed motions. Performing a search over a set of precomputed motion
primitives is a well known technique and is known as lattice-based path planning [19, 54].

Let z[k+ 1] = fp(z[k],mi) represent the state transition when mi is applied from z[k], and let
Jp(mi) denote the stage-cost associated with this transition. The complete set of motion primitives
P is computed offline by solving a finite set of OCPs to connect a set of initial states with a set
of neighboring states in an obstacle-free environment. The set P is constructed from the position
of the semitrailer at the origin and since the G2T with a car-like tractor (1) is position-invariant,
a motion primitive mi ∈ P can be translated and reused from all other positions on the grid. The
cardinality of the complete set of motion primitives is |P | = M, where M is a positive integer-
valued scalar. In general, all motion primitives in P cannot be used from each state z[k] and the
set of motion primitives that can be used from z[k] is denoted P(z[k]) ⊆ P . The cardinality of
P(z[k]) defines the number of motion primitives that can be used from a given state z[k] and the
average |P(z[k])| defines the branching factor of the search problem. Therefore, a trade off be-
tween planning time and maneuver resolution has to be made when designing the motion primitive
set. Having a large library of diverse motions gives the lattice planner more flexibility, however,
the planning time will increase exponentially with the size of |P(z[k])|. As the branching factor in-
creases, a well-informed heuristic function becomes more and more important in order to maintain
real-time performance during online planning [19, 32]. The heuristic function estimates the true
cost-to-go from a state z[k] ∈ Zd to the goal state zG, and is used as guidance for the online graph
search to expand the most promising vertices [19, 32, 34]. It is desired that the heuristic function
is admissible to maintain optimality guarantees, and close to the true cost-to-go for efficient on-
line planning. For nonholonomic systems, the Euclidean distance to the goal is known to severely
underestimate the true cost-to-go in many situations and precomputed free-space heuristic look-up
tables (HLUTs) are often used to improve the online planning time [19, 32].

The nominal path taken by the vehicle when motion primitive mi ∈ P is applied from z[k], is
declared collision-free if it does not collide with any obstacles c(mi,z[k]) ∈ Zfree, otherwise it is
declared as in collision c(mi,z[k]) /∈ Zfree. Define uq : Z+→{1, . . . ,M} as a discrete and integer-
valued signal that is selected by the lattice planner, where uq[k] specifies which motion primitive
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that is applied a stage k. By specifying the set of allowed states Zd and precomputing the set of
motion primitives P , the continuous-time optimal path planning problem (7) is approximated by
the following discrete-time OCP:

minimize
{uq[k]}N−1

k=0 , N
JD =

N−1

∑
k=0

Jp(muq[k]) (10)

subject to z[0] = zI, z[N] = zG,

z[k+1] = fp(z[k],muq[k]),

muq[k] ∈ P(z[k]),
c(muq[k],z[k]) ∈ Zfree.

The decision variables to this problem are the integer-valued sequence {uq[k]}N−1
k=0 and its length

N. A feasible solution is an ordered sequence of collision-free motion primitives {muq[k]}
N−1
k=0 , i.e.,

a nominal path (z(s),up(s)), s ∈ [0,sG], that connect the initial state z(0) = zI and the goal state
z(sG) = zG. Given the set of all feasible solutions to (10), the optimal solution is the one that
minimizes the cost function JD.

During online planning, the discrete-time OCP in (10) is solved using the anytime repairing
A∗ (ARA∗) search algorithm [36]. ARA∗ is based on standard A∗ but initially performs a greedy
search with the heuristic function inflated by a factor γ ≥ 1. This provides a guarantee that the
found solution has a cost JD that satisfies JD ≤ γJ∗D, where J∗D denotes the optimal cost to (10).
When a solution with a guaranteed bound of γ-suboptimality has been found, γ is gradually de-
creased until an optimal solution with γ = 1 is found or if a maximum allowed planning time is
reached. With this search algorithm, both real-time performance and suboptimality bounds for the
produced solution can be guaranteed.

In (10), it is assumed that zI ∈ Zd and zG ∈ Zd to make the problem well defined. If zI /∈ Zd

or zG /∈ Zd , they have to be projected to their closest neighboring state in Zd using some distance
metric. Thus, the discretization of the vehicle’s state-space restricts the set of possible initial states
the lattice planner can plan from and desired goal states that can be reached. Even though not
considered in this work, these restrictions could be alleviated by the use of numerical optimal
control [68] as a post-processing step [8, 34, 51].

The main steps of the path planning framework used in this work are summarized in Work-
flow 1 and each step is now explained more thoroughly.

4.1 State lattice construction

The offline construction of the state lattice can be divided into three steps, as illustrated in Fig-
ure 5a. First, the state-space of the vehicle is discretized with a certain resolution. Second, the
connectivity in the state lattice is decided by specifying a finite amount of pairs of discrete vehicle
states {zi

s,z
i
f }, i = 1, . . . ,M, to connect. Third, the motion primitives connecting each of these pairs

of vehicle states are generated by the use of numerical optimal control [68]. Together, these three
steps define the resolution and the size of the lattice graph G and needs to be chosen carefully
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Workflow 1 The lattice-based path planning framework for the G2T with a car-like tractor

Step 1 – State lattice construction:

a) State-space discretization: Specify the resolution of the discretized state-space Zd .

b) Motion primitive selection: Specify the connectivity in the state lattice by selecting
pairs of discrete states {zi

s,z
i
f }, i = 1, . . . ,M, to connect.

c) Motion primitive generation: Design the cost functional Jp and compute the set of
motion primitives P that moves the vehicle between {zi

s,z
i
f }, i = 1, . . . ,M.

Step 2 – Efficiency improvements:

a) Motion primitive reduction: Systematically remove redundant motion primitives from
P to reduce the branching factor of the search problem and therefore enhance the online
planning time.

b) Heuristic function: Precompute a HLUT by calculating the optimal cost-to-go in an
obstacle-free environment.

Step 3 – Online path planning:

a) Initialization: Project the vehicle’s initial state zI and desired goal state zG to Zd .

b) Graph search: Solve the discrete-time OCP in (10) using ARA∗.

c) Return: Send the computed solution to the path-following controller or report failure.

to maintain a reasonable search time during online planning, while at the same time allowing the
vehicle to be flexible enough to maneuver in confined spaces.

To obtain a tractable search space, the augmented state-vector z[k] =
[
x[k]T α[k] ω[k]

]T is
discretized into circular equilibrium configurations (8) at each state in the state lattice. This implies
that the joint angles, β2[k] and β3[k], are implicitly discretized since they are uniquely determined
by the equilibrium steering angle α[k] through the relationships in (8). However, in between two
discrete states in the state lattice, the system is not restricted to circular equilibrium configura-
tions. The steering angle rate ω[k] is constrained to zero at each vertex in the state lattice to make
sure that the steering angle is continuously differentiable, even when multiple motion primitives
are combined during online planning. The position of the axle of the semitrailer (x3[k],y3[k]) is
discretized to a uniform grid with resolution r = 1 m and the orientation of the semitrailer θ3[k]
is discretized irregularly2 into |Θ|= 16 different orientations [54]. This discretization of θ3[k] is
used to make it possible to construct short straight paths, compatible with the chosen discretization
of the position from every orientation θ3[k] ∈ Θ. Finally, the equilibrium steering angle αe[k] is
discretized into |Φ|= 3 different angles, where Φ = {−0.1,0,0.1}. With the proposed state-space
discretization, the actual dimension of the discretized state-space Zd is four. Of course, the pro-

2Θ is the the set of unique angles −π < θ3 ≤ π that can be generated by θ3 = arctan2(i, j) for two integers
i, j ∈ {−2,−1,0,1,2}.
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Figure 5: In (a), an illustration of the three steps that are performed to generate the state lattice.
(1) Discretize the state-space, (2) select which pair of states to connect, (3) compute optimal paths
(motion primitives) between each pair of states. In (b), the resulting state lattice together with a
solution (blue path) to a graph-search problem.

posed discretization imposes restriction to the path planner, but is motivated to enable fast and
deterministic online planning.

4.2 Motion primitive generation

The motion primitive set P is precomputed offline by solving a finite set of OCPs that connect a
set of initial states zi

s ∈ Zd to a set of neighboring states zi
f ∈ Zd in a bounded neighborhood in an

obstacle-free environment.
Unlike our previous work in [40], the objective functional used during motion primitive gener-

ation coincides with the online planning stage-cost Jp(mi). This enables the resulting motion plan
to be as close as possible to the optimal one and desirable behaviors can be favored in a systematic
way. To promote and generate less complex paths that are easier for a path-following controller to
execute, the cost function L in (7) is chosen as

L(z,uω) = 1+
∥∥∥[β3 β2

]T∥∥∥2

Q1
+
∥∥∥[α ω uω

]T∥∥∥2

Q2
, (11)

where the matrices Q1 � 0 and Q2 � 0 are design parameters that are used to trade off between
simplicity of executing the maneuver and the path distance s f . By tuning the weight matrix Q1,
maneuvers in backward motion with large joint angles, β2 and β3, that have a higher risk to enter
a jack knife state, can be penalized and therefore avoided during online planning if less complex
motion primitives exist. In forward motion, the modes corresponding to the two joint angles β2

and β3 are stable and therefore not penalized.
To guarantee that the motion primitives in P move the vehicle between two discrete states in

the state lattice, they are constructed by selecting initial states zi
s ∈ Zd and final states zi

f ∈ Zd that

lie on the grid. A motion primitive in forward motion from zi
s =
[
xi

s α i
s 0

]T to zi
f =
[
xi

f α i
f 0

]T
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(a) The set of motion primitives from (θ3,s,αs)= (0,0.1)
(green) and (θ3,s,αs) = (0,−0.1) (blue) to different final
states z f ∈ Zd .

-40 -20 0 20 40
-40

-30

-20

-10

0

10

20

30

40

Semitrailer

Tractor

(b) The set of motion primitives from (θ3,s,αs) = (0,0)
to different final states z f ∈ Zd .

Figure 6: The set of motion primitives from initial position of the semitrailer at the origin with
orientation θ3,s = 0 for different initial equilibrium configurations to different final states z f ∈ Zd .
The colored paths are the paths taken by the center of the axle of the semitrailer (x3,y3) during the
different motions.

is computed by solving the following OCP:

minimize
ui

ω (·), si
f

Jp(mi) =
∫ si

f

0
L(zi(s),ui

ω(s))ds (12)

subject to
dzi

ds
=

 f (xi(s), tanα i(s)/L1)
ω i(s)
ui

ω(s)

 ,
zi(0) = zi

s, zi(s f ) = zi
f ,

zi(s) ∈ Z, |ui
ω(s)| ≤ uω,max.

Note the similarity of OCP in (12) with the optimal path planning problem (7). Here, the obstacle
imposed constraints are neglected and the vehicle is constrained to only move forwards. The
established results in Lemma 1 and Theorem 1 are exploited to generate the motion primitives for
backward motion. Here, each OCP is solved from the final state zi

f to the initial state zi
s in forward

motion and the symmetry result in Lemma 1 is applied to recover the backward motion segment.
Theorem 1 guarantees that the optimal solution (zi(s),ui

p(s)), s ∈ [0,si
f ] and the optimal objective

functional value Jp(mi) remain unaffected. This technique is used to avoid the structurally unstable
joint-angle kinematics in backward motion that can cause numerical problems for the OCP solver.

In this work, the OCP in (12) is solved by deploying the state-of-the-art numerical optimal
control solver CasADi [6], combined with the primal-dual interior-point solver IPOPT [68]. Each
generated motion primitive is represented as a distance sampled path in all vehicle states and
control signals. Finally, since the system is orientation-invariant, rotational symmetries of the

18



system are exploited3 to reduce the number of OCPs that need to be solved during the motion
primitive generation [19, 54].

Even though the motion primitive generation is performed offline, it is not feasible to make
an exhaustive generation of motion primitives to all grid points due to computation time and the
high risk of creating redundant and undesirable segments. Instead, for each initial state xi

s ∈ Zd

with position of the semitrailer at the origin, a careful selection of final states xi
f ∈ Zd is performed

based on system knowledge and by visual inspection. The OCP solver is then only generating
motion primitives from this specified set of OCPs. For our full-scale test vehicle, the set of motion
primitives from all initial states with θ3,s = 0, is illustrated in Figure 6. The following can be noted
regarding the manual specification of the motion primitive set:

a) A motion primitive mi ∈ P is either a straight motion, a heading change maneuver or a
parallel maneuver.

b) The motion primitives in forward motion are more aggressive compared to the ones in back-
ward motion, i.e., a maneuver in forward motion has a shorter path distance compared to a
similar maneuver in backward motion.

c) The final position (xi
3, f ,y

i
3, f ) of motion primitive mi is selected such that the ratio between the

stage-cost Jp(mi) and the path distance si
f is sufficiently small, i.e., such that the nominal path

in all vehicle states and controls are sufficiently smooth to be executed by a path-following
controller.

d) While starting in a nonzero equilibrium configuration, the final position of the semitrailer
(xi

3, f ,y
i
3, f ) is mainly restricted to the first and second quadrants for α i

s = 0.1 and to the third
and fourth quadrants for α i

s =−0.1.

4.3 Efficiency improvements and online path planning

To improve the online planning time, the set of motion primitives P is reduced using the reduction
technique presented in [19]. A motion primitive mi ∈ P with stage-cost Jp(mi) is removed if its
state transition z[k+1] = fp(z[k],mi) in free-space can be obtained by a combination of the other
motion primitives inP with a combined total stage-cost Jcomb that satisfies Jcomb≤ηJp(mi), where
η ≥ 1 is a design parameter. This procedure can be used to reduce the size of the motion primitive
set by choosing η > 1, or by selecting η = 1 to verify that redundant motion primitives do not
exist in P .

As previously mentioned, a heuristic function is used to guide the online search in the state lat-
tice. The goal of the heuristic function is to perfectly estimate the cost-to-go at each vertex in the
graph. In this work, we rely on a combination of two admissible heuristic functions: Euclidean dis-
tance and a free-space HLUT [32]. The HLUT is generated offline using the techniques presented
in [32]. It is computed by solving several obstacle free path planning problems from all initial

3Essentially, it is only necessary to solve the OCPs from the initial orientations θ3,s = 0, arctan(1/2) and π/4. The
motion primitives from the remaining initial orientations θ3,s ∈Θ can be generated by mirroring the solutions.
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states zI ∈ Zd with position of the semitrailer at the origin, to all final states zG ∈ Zd with a speci-
fied maximum cut-off cost Jcut. As explained in [32], this computation step can be done efficiently
by running a Dijkstra’s algorithm from each initial state. During each Dijkstra’s search, the opti-
mal cost-to-come from explored vertices are simply recorded and stored in the HLUT. Moreover,
in analogy to the motion primitive generation, the size of the HLUT is kept small by exploiting
the position and orientation invariance properties of P [19, 32]. The final heuristic function value
used during the online graph search is the maximum of these two heuristics. As shown in [32],
a HLUT significantly reduces the online planning time, since it takes the vehicle’s nonholonomic
constraints into account and enables perfect estimation of cost-to-go in free-space scenarios with
no obstacles.

5 Path-following controller

The motion plan received from the lattice planner is a feasible nominal path (xr(s),ur(s)), s ∈ [0,sG]

satisfying the time-scaled model of the G2T with a car-like tractor (4):

dxr

ds
= vr(s) f (xr(s),κr(s)), s ∈ [0,sG], (13)

where xr(s) is the nominal vehicle states for a specific s and ur(s) =
[
vr(s) κr(s)

]T is the nom-
inal velocity and curvature control signals. The nominal path satisfies the system kinematics,
its physically imposed constraints and moves the vehicle in free-space from the vehicle’s initial
state xr(0) = xI to a desired goal state xr(sG) = xG. Here, the nominal path is parametrized in
s, which is the distance traveled by the rear axle of the car-like tractor. When backward mo-
tion tasks are considered and the axle of the semitrailer is to be controlled, it is more conve-
nient to parameterize the nominal path in terms of distance traveled by the axle of the semitrailer
s̃. Using the ratio gv > 0 defined in (3), these different path parameterizations are related as
s̃(s) =

∫ s
0 gv(β2,r(τ),β3,r(τ),κr(τ))dτ and the nominal path (13) can equivalently be represented

as

dxr

ds̃
=

vr(s̃)
gv(β2,r(s̃),β3,r(s̃),κr(s̃))

f (xr(s̃),κr(s̃)), s̃ ∈ [0, s̃G], (14)

where s̃G denotes the total distance of the nominal path taken by the axle of the semitrailer. Ac-
cording to the problem definition in Definition 2, the objective of the path-following controller is
to stabilize the G2T with a car-like tractor (1) around this nominal path. It is done by first describ-
ing the controlled vehicle (1) in terms of deviation from the nominal path generated by the system
in (14), as depicted in Figure 7. During path execution, s̃(t) is defined as the orthogonal projec-
tion of center of the axle of the semitrailer (x3(t),y3(t)) onto its nominal path (x3,r(s̃),y3,r(s̃)),
s̃ ∈ [0, s̃G] at time t:

s̃(t) = argmin
s̃∈[0,s̃G]

∣∣∣∣∣∣∣∣[x3(t)− x3,r(s̃)
y3(t)− y3,r(s̃)

]∣∣∣∣∣∣∣∣
2
. (15)
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Figure 7: An illustrative description of the Frenet frame with its moving coordinate system located
at the orthogonal projection of the center of the axle of the semitrailer onto the reference path
(dashed red curve) in the nominal position of the axle of the semitrailer (x3,0(s̃),y3,0(s̃)), s̃∈ [0, s̃G].
The black tractor-trailer system is the controlled vehicle and the gray tractor-trailer system is the
nominal vehicle, or the desired vehicle configuration at this specific value of s̃(t).

Using standard geometry, the curvature κ3,r(s̃) of the nominal path taken by the axle of the semi-
trailer is given by

κ3,r(s̃) =
dθ3,r

ds̃
=

tanβ3,r(s̃)
L3

, s̃ ∈ [0, s̃G]. (16)

Define z̃3(t) as the signed lateral distance between the center of the axle of the semitrailer (x3(t),y3(t))
and its projection to the nominal path in (x3,r(s̃),y3,r(s̃)), s̃ ∈ [0, s̃G] at time t. Introduce the
controlled curvature deviation as κ̃(t) = κ(t)−κr(s̃(t)), define the orientation error of the semi-
trailer as θ̃3(t) = θ3(t)−θ3,r(s̃(t)) and define the joint angular errors as β̃3(t) = β3(t)−β3,r(s̃(t))
and β̃2(t) = β2(t)−β2,r(s̃(t)), respectively. Define Π(a,b) = {t ∈ R+ | a≤ s̃(t)≤ b} as the time-
interval when the distance traveled along the nominal path is between a ∈ R+ and b ∈ R+, where
0≤ a≤ b≤ s̃G. Then, using the Frenet-Serret formula, the distance traveled s̃(t) along the nominal
path and the signed lateral distance z̃3(t) to the nominal path can be modeled as:

˙̃s = v3
vr cos θ̃3

1−κ3,r z̃3
, t ∈Π(0, s̃G), (17a)

˙̃z3 = v3 sin θ̃3, t ∈Π(0, s̃G), (17b)

where v3 = vgv(β̃2+β2,r, β̃3+β3,r, κ̃ +κr) and the dependencies of s̃ and t are omitted for brevity.
This transformation is valid in a tube around the nominal path in (x3,r(s̃),y3,r(s̃)), s̃ ∈ [0, s̃G] for
which κ3,r z̃3 < 1. The width of this tube depends on the semitrailer’s nominal curvature κ3,r. When
the nominal curvature tends to zero (a straight nominal path), z̃3 can vary arbitrarily. Essentially, to
avoid the singularities in the transformation, we must have that |z̃3|< |κ−1

3,r |, when z̃3 and κ3,r have
the same sign. Note that vr ∈ {−1,1} is included in (17a) to make s̃(t) a monotonically increasing
function in time during tracking of nominal paths in both forward and backward motion. Here,
it is assumed that the longitudinal velocity of the tractor v(t) is chosen such that sign(v(t)) =
vr(s̃(t)) and it is assumed that the orientation error of the semitrailer satisfies |θ̃3|< π/2. With the
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above assumptions, ˙̃s(t)> 0 during path following of nominal paths in both forward and backward
motion.

The models for the remaining path-following error states θ̃3(t), β̃3(t) and β̃2(t) are derived by
applying the chain rule, together with equations (1)–(3), (14) and (17a):

˙̃
θ3 =v3

(
tan(β̃3 +β3,r)

L3
−

κ3,r cos θ̃3

1−κ3,r z̃3

)
, t ∈Π(0, s̃G), (18a)

˙̃
β3 =v3

(
sin(β̃2 +β2,r)−M1 cos(β̃2 +β2,r)(κ̃ +κr)

L2 cos(β̃3 +β3,r)C1(β̃2 +β2,r, κ̃ +κr)
−

tan(β̃3 +β3,r)

L3

− cos θ̃3

1−κ3,r z̃3

(
sinβ2,r−M1 cosβ2,rκr

L2 cosβ3,rC1(β2,r,κr)
−κ3,r

))
, t ∈Π(0, s̃G), (18b)

˙̃
β2 =v3

 κ̃ +κr−
sin(β̃2+β2,r)

L2
+ M1

L2
cos(β̃2 +β2,r)(κ̃ +κr)

cos(β̃3 +β3,r)C1(β̃2 +β2,r, κ̃ +κr)


− cos θ̃3

1−κ3,r z̃3

κr−
sinβ2,r

L2
+ M1

L2
cosβ2,rκr

cosβ3,rC1(β2,r,κr)

 , t ∈Π(0, s̃G). (18c)

A more detailed derivation of (18) is provided in Appendix A. Together, the differential equations
in (17) and (18) describe the model of the G2T with a car-like tractor (1) in terms of deviation from
the nominal path generated by the system in (14).

When path-following control is considered, the speed at which the nominal path (13) is ex-
ecuted is not considered, but only that it is followed with a small path-following error. This
means that the distance traveled s̃(t) along the nominal path is not explicitly controlled by the
path-following controller. However, the dependency of s̃ in (17b) and (18) makes the nonlinear
system distance-varying. Define the path-following error states as x̃e =

[
z̃3 θ̃3 β̃3 β̃2

]T
, where

its model is given by (17b)–(18). By replacing v3 with v using the relationship defined in (3),
the path-following error model (17b)–(18) and the progression along the nominal path (17a), can
compactly be expressed as (see Appendix A)

˙̃s = v fs̃(s̃, x̃e), t ∈Π(0, s̃G), (19a)
˙̃xe = v f̃ (s̃, x̃e, κ̃), t ∈Π(0, s̃G), (19b)

where f̃ (s̃,0,0) = 0, ∀t ∈ Π(0, s̃G), i.e., the origin (x̃e, κ̃) = (0,0) is an equilibrium point. Since
v enters linearly in (19), in analogy to (4), time-scaling [58] can be applied to eliminate the speed
dependence |v| from the model. Therefore, without loss of generality, it is hereafter assumed that
the longitudinal velocity of the rear axle of the tractor is chosen as v(t) = vr(s̃(t)) ∈ {−1,1} which
implies that ˙̃s(t) > 0. Moreover, from the construction of the set of motion primitives P , each
motion primitive mi ∈ P encodes a forward or backward motion segment (see Section 4.2).
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5.1 Local behavior around a nominal path

The path-following error model in (17b) and (18) can be linearized around the nominal path
(xr(s̃),ur(s̃)), s̃ ∈ [0, s̃G] by equivalently linearizing (19b) around the origin (x̃e, κ̃) = (0,0). The
origin is by construction an equilibrium point to (19b) and hence a first-order Taylor series expan-
sion yields

˙̃xe = vA(s̃(t))x̃e + vB(s̃(t))κ̃, t ∈Π(0, s̃G). (20)

For the special case when the nominal path moves the system either straight forwards or backwards,
the matrices A and B simplify to

A =


0 1 0 0
0 0 1

L3
0

0 0 − 1
L3

1
L2

0 0 0 − 1
L2

 , B =


0
0
−M1

L2
L2+M1

L2

 , (21)

and the characteristic polynomial is

det(λ I− vA) = v2
λ

2
(

λ +
v

L3

)(
λ +

v
L2

)
. (22)

Thus, around a straight nominal path, the linearized system in (20) is marginally stable in forward
motion (v > 0) because of the double integrator and unstable in backward motion (v < 0), since
the system has two poles in the right half plane. Due to the positive off-axle hitching M1 > 0, the
linearized system has a zero in some of the output channels [4, 43]. In forward motion, the system
has non-minimum phase properties since the zero is located in the right half-plane (see [43] for an
extensive analysis). In backward motion, this zero is located in the left half-plane and the system
is instead minimum phase.

In the sequel, we focus on stabilizing the path-following error model (19b) in some neigh-
borhood around the origin (x̃e, κ̃) = (0,0). This is done by utilizing the framework presented
in [39], where the closed-loop system consisting of the controlled vehicle and the path-following
controller, executing a nominal path computed by a lattice planner, is first modeled as a hybrid
system. The framework is tailored for the lattice-based path planner considered in this work and
is motivated because it is well-known from the theory of hybrid systems that switching between
stable systems in an inappropriate way can lead to instability of the switched system [21, 53].

5.2 Connection to hybrid systems

The nominal path (14) is computed online by the lattice planner and is thus a priori unknown.
However, it is composed of a finite sequence of precomputed motion primitives {muq[k]}

N−1
k=0 of

length N. Each motion primitive mi is chosen from the set of M possible motion primitives, i.e.,
mi ∈P . Along motion primitive mi ∈P , the nominal path is represented as (xi

r(s̃),u
i
r(s̃)), s̃∈ [0, s̃i

f ]

and the path-following error model (19b) becomes

˙̃xe = vr(s̃) f̃i(s̃, x̃e, κ̃), t ∈Π(0, s̃i
f ). (23)
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From the fact that the sequence of motion primitives is selected by the lattice planner, it follows
that the system can be descried as a hybrid system. Define q : [0, s̃G]→ {1, . . . ,M} as a piecewise
integer-valued signal that is selected by the lattice planner. Then, the path-following error model
can be written as a distance-switched continuous-time hybrid system

˙̃xe = vr(s̃) f̃q(s̃)(s̃, x̃e, κ̃), t ∈Π(0, s̃G). (24)

This hybrid system is composed of M different subsystems, where only one subsystem is active
for each s̃ ∈ [0, s̃G]. Here, q(s̃) is assumed to be right-continuous and from the construction of the
motion primitives, it holds that there are finitely many switches in finite distance [21,53]. We now
turn to the problem of designing the hybrid path-following controller κ̃ = gq(s̃)(x̃e), such that the
path-following error is upper bounded by an exponentially decaying function during the execution
of each motion primitive mi ∈ P , individually.

5.3 Design of the hybrid path-following controller

The synthesis of the path-following controller is performed separately for each motion primitive
mi ∈P . The class of hybrid path-following controllers is limited to piecewise linear state-feedback
controllers with feedforward action. Denote the path-following controller dedicated for motion
primitive mi ∈P as κ(t)= κr(s̃(t))+Kix̃e(t). When applying this control law to the path-following
error model in (23), the nonlinear closed-loop system can, in a compact form, be written as

˙̃xe = vr(s̃) f̃i(s̃, x̃e,Kix̃e) = vr(s̃) f̃cl,i(s̃, x̃e), t ∈Π(0, s̃i
f ), (25)

where x̃e = 0 is an equilibrium point, since fcl,i(s̃,0) = f̃i(s̃,0,0) = 0, ∀s̃ ∈ [0, s̃i
f ]. The state-

feedback controller κ̃ = Kix̃e is intended to be designed such that the path-following error is lo-
cally bounded and decays towards zero during the execution of mi ∈ P . This is guaranteed by
Theorem 2.

Assumption 3. Assume f̃cl,i : [0, s̃i
f ]× X̃e→ R4 is continuously differentiable with respect to x̃e ∈

X̃e = {x̃e ∈ R4 | ‖x̃e‖2 < r} and the Jacobian matrix [∂ fcl,i/∂ x̃e] is bounded and Lipschitz on X̃e,
uniformly in s̃ ∈ [0, s̃i

f ].

Theorem 2 ( [39]). Consider the closed-loop system in (25). Under Assumption 3, let

Acl,i(s̃) = vr(s̃)
∂ f̃cl,i

∂ x̃e
(s̃,0). (26)

If there exist a common matrix Pi � 0 and a positive constant ε that satisfy

Acl,i(s̃)T Pi +PiAcl,i(s̃)�−2εPi ∀s̃ ∈ [0, s̃i
f ]. (27)

Then, the following inequality holds

||x̃e(t)|| ≤ ρi||x̃e(0)||e−εt , ∀t ∈Π(0, s̃i
f ), (28)

where ρi = Cond(Pi) is the condition number of Pi.
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Proof. See, e.g., [31].

Theorem 2 guarantees that if the feedback gain Ki is designed such that there exists a quadratic
Lyapunov function Vi(x̃e) = x̃T

e Pix̃e for (25) around the origin satisfying V̇i ≤ −2εVi, then a small
disturbance in the initial path-following error x̃e(0) results in a path-following error state trajectory
x̃e(t) whose norm is upper bounded by an exponentially decaying function. In analogy to [39],
the condition in (27) can be reformulated as a controller synthesis problem using linear matrix
inequality (LMI) techniques. By using the chain rule, the matrix Acl,i(s̃) in (26) can be written as

Acl,i(s̃) = vr(s̃)
∂ f̃i

∂ x̃
(s̃,0,0)+ vr(s̃)

∂ f̃i

∂ κ̃
(s̃,0,0)Ki , Ai(s̃)+Bi(s̃)Ki. (29)

Furthermore, assume the pairs [Ai(s̃),Bi(s̃)] lie in the convex polytope Si, ∀s̃ ∈ [0, s̃i
f ], where Si is

represented by its Li vertices

[Ai(s̃),Bi(s̃)] ∈ Si = Co
{
[Ai,1,Bi,1], . . . , [Ai,Li,Bi,Li]

}
, (30)

where Co denotes the convex hull. Now, condition (27) in Theorem 2 can be reformulated as [15]:

(Ai, j +Bi, jKi)
T Pi +Pi(Ai, j +Bi, jKi)�−2εPi, j = 1, . . . ,Li. (31)

This matrix inequality is not jointly convex in Pi and Ki. However, if ε > 0 is fixed, using the
bijective transformation Qi = P−1

i � 0 and Yi = KiP−1
i ∈R1×4, the matrix inequality in (31) can be

rewritten as an LMI in Qi and Yi [71]:

QiAT
i, j +Y T

i BT
i, j +Ai, jQi +Bi, jYi +2εQi � 0, j = 1, . . . ,Li. (32)

Hence, it is an LMI feasibility problem to find a linear state-feedback controller that satisfies
condition (27) in Theorem 2. If Qi and Yi are feasible solutions to (32), the quadratic Lyapunov
function is Vi(x̃) = x̃T Q−1

i x̃ and the linear state-feedback controller is κ̃ =YiQ−1
i x̃e. As in [39], the

LMI feasibility problem in (32) is reformulated as a semidefinite programming (SDP) problem

minimize
Yi,Qi

‖Yi−Ki
nomQi‖ (33)

subject to (32) and Qi � I,

where Ki
nom is a nominal feedback gain that depends on mi ∈ P . Here, two nominal feedback

gains are used; Ki
nom = Kfwd for all forward motion primitives mi ∈ Pfwd and Ki

nom = Krev for all
backward motion primitives mi ∈Prev. The motivation for this choice of objective function in (33)
is that it is desired that the path-following controller inherits the nominal controller’s properties.
It is also used to reduce the number of different feedback gains, while not sacrificing desired con-
vergence properties of the path-following error along the execution of each motion primitive. The
nominal feedback gains Kfwd and Krev are designed using infinite-horizon LQ-control [5] where
the path-following error model has been linearized around a straight nominal path in backward and
forward motion, respectively. In these cases, the Jacobian linearization is given by the matrices A
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and B defined in (21). After these nominal feedback gains have been designed, the optimization
problem in (33) can be solved separately for each motion primitive, e.g., using YALMIP [41]. In
this specific application, for all mi ∈ P , the optimal value of the objective function in (33) is zero,
which implies that Ki = Ki

nom since Qi � 0. Thus, for this specific set of motion primitives P (see
Figure 6), the hybrid path-following controller κ̃ = Kq(s̃)x̃e simplifies to

κ(t) = κr(s̃)+

{
Kfwdx̃e(t), mi ∈ Pfwd,

Krevx̃e(t), mi ∈ Prev,
(34)

where κr(s̃) is the feedforward computed by the lattice planner. Note that if a common quadratic
Lyapunov function exists that satisfies (32) ∀mi ∈ P (i.e., Qi = Q, but Yi can vary), then the path-
following error is guaranteed to exponentially decay towards zero under an arbitrary sequence of
motion primitives [15, 21]. This is however not possible since the path-following error model (24)
is underactuated4 and the Jacobian linearization takes on the form in (20).

Theorem 3 ( [39]). Consider the switched linear system

ẋ = vAx+ vBu, v ∈ {−1,1}, (35)

where A ∈ Rn×n and B ∈ Rn×m. When rank(B) < n, there exists no hybrid linear state-feedback
control law in the form

u =

{
K1x, v = 1
K2x, v =−1

, (36)

where K1 ∈ Rm×n and K2 ∈ Rm×n, such that the closed-loop system is quadratically stable with a
quadratic Lyapunov function V (x) = xT Px, V̇ (x)< 0 and P� 0.

Proof. See [39].

From Theorem 3, it is clear that it is not possible to design a hybrid path-following controller
κ̃ = Kq(s̃)x̃e such that the closed-loop path-following error system is locally quadratically sta-
ble along nominal paths that are composed of forward and backward motion primitives. In the
next section, a systematic method is presented for analyzing the behavior of the distance-switched
continuous-time hybrid system (24), when the hybrid path-following controller already has been
designed.

5.4 Convergence along a combination of motion primitives

Consider the path-following error model in (24) with the hybrid path-following controller κ̃ =

Kq(s̃)x̃e that has been designed following the steps presented in Section 5.3. Assume motion prim-
itive mi ∈ P is switched in at distance s̃k, i.e., q(s̃(t)) = i, for all t ∈ Π(s̃k, s̃k + s̃i

f ). We are now

4Here, a system is defined underactuated if the number of control signals is strictly less than the dimension of its
configuration space [43].
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interested in analyzing the evolution of the path-following error x̃e(t) during the execution of this
motion primitive. Since the longitudinal velocity of the tractor is selected as v(t) = vr(s̃(t)), then
˙̃s(t)> 0 and it is possible to eliminate the time-dependency in the path-following error model (19b).
By applying the chain rule, we get dx̃e

ds̃ = dx̃e
dt

dt
ds̃ =

dx̃e
dt

1
˙̃s . Hence, using (19a), the distance-based ver-

sion of the path-following error model (19b) can be represented as

dx̃e

ds̃
=

fcl,i(s̃, x̃e(s̃))
fs(s̃, x̃e(s̃))

, s̃ ∈ [s̃k, s̃k + s̃i
f ], (37)

where x̃e(s̃k) is given. The evolution of the path-following error x̃e(s̃) becomes

x̃e(s̃k + s̃i
f ) = x̃e(s̃k)+

∫ s̃k+s̃i
f

s̃k

fcl,i(s̃, x̃e(s̃))
fs(s̃, x̃e(s̃))

ds̃ , Ti(x̃e(s̃k)), (38)

where x̃e(sk) denotes the path-following error when motion primitive mi ∈P is started and x̃e(s̃k +

s̃i
f ) denotes the path-following error when the execution of mi is finished. The solution to the inte-

gral in (38) has no analytical expression. However, numerical integration can be used to compute
a local approximation of the evolution of x̃e(s̃) between the two switching points s̃k and s̃k + s̃i

f . A
first-order Taylor series expansion of (38) around the origin x̃e(s̃k) = 0 yields

x̃e(s̃k + s̃i
f ) = Ti(0)+

dTi(x̃e(s̃k))

dx̃e(s̃k)

∣∣∣∣
(0)︸ ︷︷ ︸

=Fi

x̃e(s̃k). (39)

The term Ti(0) = 0, since f̃cl,i(s̃,0) = 0, ∀s̃ ∈ [s̃k, s̃k + s̃i
f ]. Denote x̃e[k] = x̃e(s̃k), x̃e[k + 1] =

x̃e(s̃k + s̃i
f ) and uq[k] = q(s̃k) = i. By, e.g., the use of finite differences, the evolution of the path-

following error (38) after motion primitive mi ∈P has be executed can be approximated as a linear
discrete-time system

x̃e[k+1] = Fix̃e[k]. (40)

Repeating this procedure for all M motion primitives, a set of M transition matrices F= {F1, . . . ,FM}
can be computed. Then, the local evolution of the path-following error (38) between each switch-
ing point can be described as a linear discrete-time switched system

x̃e[k+1] = Fuq[k]x̃e[k], uq[k] ∈ {1, . . . ,M}, (41)

where the motion primitive sequence {uq[k]}N−1
k=0 and its length N are unknown at the time of the

analysis. Exponential decay of the solution x̃[k] to (41) is guaranteed by Theorem 4.

Theorem 4 ( [39]). Consider the linear discrete-time switched system in (41). If there exist a
matrix S� 0 and a η ≥ 1 that satisfy

I � S� ηI, (42a)

FT
j SFj−S�−µS, ∀ j ∈ {1, . . . ,M}, (42b)
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where 0 < µ < 1 is a constant. Then, under arbitrary switching for k ≥ 0 the following inequality
holds

‖x̃e[k]‖ ≤ ‖x̃e[0]‖η1/2
λ

k, (43)

where λ =
√

1−µ and η = Cond(S) denotes the condition number of S.

Proof. See [39].

Note that for a fixed µ , (42) is a set of LMIs in the variables S and η . The result in Theorem 4
establishes that the upper bound on the path-following error at the switching points exponentially
decays towards zero. Thus, the norm of the initial path-following error ‖x̃e(s̃k)‖, when starting the
execution of a new motion primitive, will decrease as k grows. Moreover, combining Theorem 2
and Theorem 4, this implies that the upper bound on the continuous-time path-following error
‖x̃e(t)‖ will exponentially decay towards zero. This result is formalized in Corollary 1.

Corollary 1 ( [39]). Consider the hybrid system in (24) with the path-following controller κ̃ =

Kq(s̃)x̃e. Assume the conditions in Theorem 2 are satisfied for each mode i ∈ {1, . . . ,M} of (24)
and assume the conditions in Theorem 4 are satisfied for the resulting discrete-time switched sys-
tem (41). Then, ∀k ∈Z+ and t ∈Π(s̃k, s̃k+ s̃i

f ) with q(s̃(t)) = i, the continuous-time path-following
error x̃e(t) satisfies

‖x̃e(t)‖ ≤ ‖x̃e(t0)‖η1/2
ρ

1/2
i λ

k, (44)

where 0 < λ < 1, η = Cond(S) and ρi = Cond(Pi).

Proof. See [39].

The practical interpretation of Corollary 1 is that the upper bound on the continuous-time path-
following error is guaranteed to exponentially decay towards zero as a function of the number of
executed motion primitives. The analysis method presented in this section will be later used for
this specific application in Section 8.1.

In this application, none of the vehicle states are directly observed from the vehicle’s onboard
sensors and we instead need to rely on dynamic output feedback [57], i.e., the hybrid state-feedback
controller κ̃ = Kq(s̃)x̃e is operating in series with a nonlinear observer. Naturally, the observer is
operating in a discrete-time fashion and we make the assumption that the observer is operating
sufficiently fast and estimates the state x̂(tk) with good accuracy. This means that it is further
assumed that the separation principle of estimation and control holds. That is, the current state
estimate from the observer x̂(tk) is interpreted as the true vehicle state x(tk), which is then used to
construct the path-following error x̃e(tk) used by the hybrid path-following controller.
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6 State observer

The state-vector x =
[
x3 y3 θ3 β3 β2

]T for the G2T with a car-like tractor is not directly
observed from the sensors on the car-like tractor and therefore needs to be inferred using the
available measurements, the vehicle model (1) and the geometry of the vehicle.

High accuracy measurements of the position of the rear axle of the car-like tractor (x1,y1)

and its orientation θ1 are obtained from the localization system that was briefly described in Sec-
tion 2.1. To obtain information about the joint angles β2 and β3, a LIDAR sensor is mounted in
the rear of the tractor as illustrated in Figure 8. This sensor provides a point-cloud from which the
y-coordinate Ly, given in the tractor’s local coordinate system, of the midpoint of the semitrailer’s
front and the relative orientation φ between the tractor and semitrailer can be extracted5. To esti-
mate Ly and φ , an iterative RANSAC algorithm [27] is first used to find the visible edges of the
semitrailer’s body. Logical reasoning and the known width b of the semitrailer’s front are used to
classify an edge to the front, the left or the right side of the semitrailer’s body. Once the front edge
and its corresponding corners are found, Ly and φ can easily be calculated [9, 50].

The measurements yloc
k =

[
x1,k y1,k θ1,k

]T from the localization system and the constructed
measurements yran

k =
[
Ly,k φk

]T from the iterative RANSAC algorithm are treated as synchronous
observations with different sampling rates. These observations are fed to an EKF to estimate the
full state vector x̂ of the G2T with car-like tractor (1).

6.1 Extended Kalman filter

The EKF algorithm performs two steps, a time update where the next state x̂k|k−1 is predicted using
a prediction model of the vehicle and a measurement update that corrects x̂k|k−1 to give a filtered
estimate x̂k|k using the available measurements [29].

To construct the prediction model, the continuous-time model of the G2T with a car-like trac-
tor (1) is discretized using Euler forward with a sampling time of Ts seconds. The control signals
to the prediction model are the longitudinal velocity v of the car-like tractor and its curvature κ .
Given the control signals uk =

[
vk κk

]T , the vehicle state xk and a process noise model wk with
covariance Σw, the prediction model for the G2T with a car-like tractor can be written as

xk+1 = f̂ (xk,uk,wk), wk ∼N (0,Σw). (45)

Since the observations yloc
k and yran

k are updated at different sampling rates, independent mea-
surement equations for each observation are derived. Assuming measurements with normally
distributed zero mean noise, the measurement equation for the observation from the iterative
RANSAC algorithm yran

k =
[
Ly,k φk

]T can be written as

yran
k = hran(xk)+ eran

k , eran
k ∼N (0,Σe

ran), (46)

5Other features could be extracted from the point cloud, but using Ly and φ have shown to yield good performance
in practice.
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Figure 8: A bird’s-eye view of the connection between the car-like tractor and the semitrailer,
as well as the geometric properties of the semitrailer that are used by the nonlinear observer. The
green dot represents the midpoint of the front of the semitrailer’s body, where Ly is the y-coordinate
in the tractor’s local coordinate system. The LIDAR sensor is mounted at the blue dot and the
dashed blue lines illustrate the LIDAR’s field of view.

where eran
k is the measurement noise with covariance matrix Σe

ran and hran(xk) defines the relation-
ship between the states and the measurements. From Figure 8, the two components of hran(xk) can
be derived as

Ly,k = hran
1 (xk) = L2 sinβ2,k−La sin(β2,k +β3,k), (47a)

φk = hran
2 (xk) = β2,k +β3,k. (47b)

The second measurement equation, corresponding to the observation yloc
k =

[
x1,k y1,k θ1,k

]T
from the localization system is given by

yloc
k = hloc(xk)+ eloc

k , eloc
k ∼N (0,Σe

loc), (48)

where the components of hloc(xk) can be derived from Figure 3 as

x1,k = hloc
1 (xk) = x3,k +L3 cosθ3,k +L2 cos(θ3,k +β3,k)+M1 cos(θ3,k +β3,k +β2,k), (49a)

y1,k = hloc
2 (xk) = y3,k +L3 sinθ3,k +L2 sin(θ3,k +β3,k)+M1 sin(θ3,k +β3,k +β2,k), (49b)

θ1,k = hloc
3 (xk) = θ3,k +β3,k +β2,k, (49c)

and eloc
k is the the measurement noise with covariance matrix Σe

loc. The standard EKF framework
is now applied using the prediction model in (45) and the measurement equations in (46) and
(48) [29].

The process noise wk is assumed to enter additively with uk into the prediction model (45) and
the time update of the EKF is performed as follows

x̂k+1|k = f̂ (x̂k|k,uk,0), (50a)

Σ
x
k+1|k = FkΣ

x
k|kFT

k +Gw,kΣ
wGT

w,k, (50b)
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where Fk = f̂ ′x(x̂k|k,uk,0) and Gw,k = f̂ ′u(x̂k|k,uk,0) are the linearization of the prediction model
around the current state estimate x̂k|k with respect to x and u, respectively.

Since the observations yloc
k and yran

k are updated at different sampling rates, the measurement
update of the state estimate x̂k|k and the covariance matrix Pk|k is performed sequentially for yloc

k
and yran

k . Let Hk be defined as the block matrix

Hk =

[
H1,k

H2,k

]
=

[(
∂hran(xk|k−1)

∂x

)T
(

∂hloc(xk|k−1)

∂x

)T]T

. (51)

Each time an observation from the localization system yloc
k is available, the following measurement

update is performed

Kk = Σ
x
k|k−1HT

2,k

(
Σ

e
loc +H2,kΣ

x
k|k−1HT

2,k

)−1
, (52a)

x̂k|k = x̂k|k−1 +Kk

(
yloc

k −hloc(x̂k|k−1)
)
, (52b)

Σ
x
k|k = Σ

x
k|k−1−KkH2,kΣ

x
k|k−1, (52c)

where Kk is the Kalman gain [29]. Similarly, when the observation yran
k is updated, the same

measurement update (52) is performed with Σe
loc, H2,k, yloc

k and hloc replaced with Σe
ran, H1,k, yran

k
and hran, respectively.

To decrease the convergence time of the estimation error, the EKF is initialized as follows.
Define the combined measurement equation of yran

k and yloc
k as yk = h(xk). Assuming noise-free

observations and that |β2,k| ≤ π/2, this system of equations has a unique solution xk = h−1(yk)

given by

β2,k = arcsin
(

Ly,k +La sinφk

L2

)
= h−1

β2,k
(yk), (53a)

β3,k = φk−h−1
β2,k

(yk) = h−1
β3,k

(yk), (53b)

θ3,k = θ1,k−φk = h−1
θ3,k

(yk), (53c)

x3,k = x1,k−L3 cos(h−1
θ3,k

(yk))−L2 cos(h−1
θ3,k

(yk)+h−1
β3,k

(yk))

+M1 cos(h−1
θ3,k

(yk)+h−1
β3,k

(yk)+h−1
β2,k

(yk)), (53d)

y3,k = y1,k−L3 sin(h−1
θ3,k

(yk))−L2 sin(h−1
θ3,k

(yk)+h−1
β3,k

(yk))

+M1 sin(h−1
θ3,k

(yk)+h−1
β3,k

(yk)+h−1
β2,k

(yk)). (53e)

This relationship is used to initialize the EKF with the initial state estimate x̂1|0 = h−1(y0), the first
time both measurements are obtained. The state covariance matrix is at the same time initialized
to Σx

1|0 = Σx
0, where Σx

0 � 0 is a design parameter. Since no ground truth is available for all vehicle
states, the filter cannot be individually evaluated but will be seen as part of the full system and thus
be evaluated through the overall system performance.
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7 Implementation details: Application to full-scale tractor-trailer
system

The path planning and path-following control framework has been deployed on a modified version
of a Scania G580 6x4 tractor that is shown in Figure 1. The car-like tractor is equipped with
a sensor platform as described in Section 2, including a real time kinematic GPS (RTK-GPS),
IMUs and a rear view LIDAR sensor with 120 degrees field of view in the horizontal scan field.
The tractor is also equipped with a servo motor for automated control of the steering column and
additional computation power compared to the commercially available version. The triple axle
semitrailer and the double axle dolly are both commercially available and are not equipped with
any sensors that are used by the system. The vehicle lengths and the physical parameters for
the car-like tractor are summarized in Table 1, where it is assumed that the rotational centers are
located at the longitudinal center for each axle pair and triple, respectively. The total distance from
the front axle of the car-like tractor to the center of the axle of the semitrailer is approximately
18.4 m. In the remainder of this section, implementation details for each module within the path
planning and path-following control framework are presented.

7.1 Lattice planner

The lattice planner is implemented in C++ and the motion primitive set is calculated offline us-
ing the numerical optimal control solver CasADi [6], together with the primal-dual interior-point
solver IPOPT [68]. The resulting paths are represented as discretely sampled points containing
full state information including the control signals. For generation of the set of backward motion
primitives Prev, the weight matrices Q1 � 0 and Q2 � 0 in the cost function (11) are chosen as

Q1 =

[
11 −10
−10 11

]
, Q2 = diag

([
1 10 1

])
,

giving the integrand ||
[
β3 β2

]T ||2Q1
= β 2

3 +β 2
2 +10(β3−β2)

2. This means that large joint angles
with opposite signs are highly penalized during backward motion, which is directly related to

Table 1: Vehicle parameters for the research platform used for the real-world experiments.

Vehicle Parameters Value
The tractor’s wheelbase L1 4.62 m
Maximum steering angle αmax 42π/180 rad
Maximum steering angle rate ωmax 0.6 rad/s
Maximum steering angle acceleration uω,max 40 rad/s2

Length of the off-hitch M1 1.66 m
Length of the dolly L2 3.87 m
Length of the semitrailer L3 8.00 m
Length of the semitrailer’s overhang La 1.73 m
Width of the semitrailer’s front b 2.45 m

32



motion plans that have an increased risk of leading to a jack-knife state during path execution.
For the set of forward motion primitives Pfwd, the weight Q1 is chosen as Q1 = 02×2. During
motion primitive generation, the physical limitation on steering angle αmax is additionally 20 %
tightened to enable the path-following controller to reject disturbances during plan execution. The
complete set of motion primitives from the initial orientation θ3,i = 0 is presented in Figure 6.
The generated motion primitive set P was then reduced using the reduction technique described
in Section 4.3, with η = 1.2, yielding a reduction factor of about 7 %. The size of the reduced
motion primitive set was |P ′| = 3888, with between 66–111 different state transitions from each
discrete state z[k] ∈ Zd . For the reduced motion primitive set P ′, a free-space HLUT [19, 32] was
precomputed using a Dijkstra’s search with cut-off cost Jcut = 170. The surrounding environment
is represented by an occupancy gridmap [24] and efficient collision checking is performed using
grid inflation and circle approximations for the semitrailer’s and tractor’s bounding boxes [34].

In the experiments, the lattice planner is given a desired goal state zG that can be specified by
an operator or selected by an algorithm. At the goal state, the system is constrained to end up in a
straight vehicle configuration where all vehicle segments are lined up, i.e., the steering angle and
the joint angles are constrained to zero at the goal state. When a desired goal state zG has been
specified, the vehicle’s initial state z(0) is first projected down to its closest neighboring state in Zd .
The ARA∗ search algorithm is initialized with heuristic inflation factor γ = 2 and then iteratively
decreased by 0.1 in every subsequent iteration. If γ reaches 1 or if a specified maximum allowed
planning time is reached and a motion plan with a proven γ-suboptimality cost has been found,
portions of the resulting motion plan are iteratively sent to the path-following controller for path
execution.

7.2 Path-following controller

The framework presented in Section 5.3 is deployed to synthesize the hybrid path-following con-
troller for this specific application. First, a feedback gain Ki and a corresponding Lyapunov func-
tion Vi(x̃e) = x̃T

e Pix̃e is computed for each motion primitive mi ∈ P , separately. The convex poly-
tope Si in (30) is estimated by evaluating the Jacobian linearization (29) of the path-following
error model (25) at each sampled point of the nominal path. Each resulting pair [Ai, j,Bi, j] of the
linearization is assumed to be a vertex of the convex polytope Si in (30). The nominal feedback
gains are designed using infinite-horizon LQ-control [5] where the path-following error model has
been linearized around a straight nominal path in backward and forward motion, respectively. In
these cases, the Jacobian linearization is given by the matrices A and B defined in (21). The weight
matrices Q̃fwd and Q̃rev that are used in the LQ-design are listed in Table 2. By choosing the penalty
on the curvature deviation as R̃rev = R̃fwd = 1, the nominal feedback gains are

Krev =
[
−0.12 1.67 −1.58 0.64

]
, (54a)

Kfwd =−
[
0.20 2.95 1.65 1.22

]
, (54b)

where positive feedback is assumed. Here, Kfwd and Krev are dedicated for the set of forward Pfwd

and backward Prev motion primitives, respectively. Using these nominal feedback gains, the SDP
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Table 2: Design parameters for the EKF and the path-following controller during the real-world
experiments.

EKF parameters Value

Process noise Σw 10−3×diag
([

1 1
])

Measurement noise Σe
loc 10−3×diag

([
1 1 0.5

])
Measurement noise Σe

ran 10−3×diag
([

0.5 0.1
])

Initial state covariance Σx
0 0.5×diag

([
1 1 0.1 0.1 0.1

])
EKF frequency 100 Hz

Controller parameters Value
Nominal LQ weight Q̃fwd 0.05×diag

([
0.8 6 8 8

])
Nominal LQ weight Q̃rev 0.05×diag

([
0.3 6 7 5

])
Controller frequency 50 Hz

problem in (33) with decay rate ε = 0.01 is solved separately for each motion primitive mi ∈ P
using YALMIP [41]. In this specific application, ∀mi ∈ P , the optimal value of the objective func-
tion in (33) is zero, which implies that Ki = Ki

nom. Thus, for this specific set of motion primitives
mi ∈ P (see Figure 6), the hybrid path-following controller can be written as in (34). However, the
continuous-time quadratic Lyapunov functions are not equal ∀mi ∈ P .

In this setup, it is possible to find a common quadratic Lyapunov function Vfwd(x̃e) with decay-
rate ε = 0.01 and path-following controller κ̃ = Kfwdx̃e, for all forward motion primitives Pfwd. It
is also possible to find a common quadratic Lyapunov function Vrev(x̃e) with decay-rate ε = 0.01
and path-following controller κ̃ = Krevx̃e, for all backward motion primitives Prev. It is however
not possible to find a common quadratic Lyapunov function V (x̃e) with a decay-rate ε > 0 and
hybrid path-following controller κ̃ = Kix̃e, i ∈ {1, . . . ,M}, for the complete set of forward and
backward motion primitives P . This follows directly from Theorem 3. Thus, if the lattice planner
is constrained to only compute nominal paths using either Pfwd or Prev, it is possible to guarantee
that the continuous-time path-following error exponentially decays towards zero. To guarantee
similar properties for the path-following error when the motion plan is composed by a combination
of forward and backward motion primitives, the analysis method presented in Section 5.4 needs to
be applied. This analysis is presented in Section 8.1.

The hybrid path-following controller (34) was implemented in Matlab/Simulink and C-code
was then auto-generated where the path-following controller was specified to operate at 50 Hz.
During the real-world experiments, the tractor’s cruise controller was used for longitudinal con-
trol with v = 1 m/s along forward motion primitives and v =−0.8 m/s along backward motion
primitives.

7.3 State observer

The design parameters for the EKF are summarized in Table 2, which were tuned using collected
data from manual tests with the vehicle. This data was then used offline to tune the covariance
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matrices in the EKF and to calibrate the position and orientation of the rear view LIDAR sensor.
The pitch angle of the rear view LIDAR sensor was adjusted such that that body of the semitrailer
was visible in the LIDAR’s point-cloud for all vehicle configurations that are of relevance for this
application.

The EKF and the iterative RANSAC algorithm [9, 50] was implemented in Matlab/Simulink
and C-code was then auto-generated. The EKF was specified to operate at 100 Hz and the measure-
ments from the localization system is updated at the same sampling rate. The observation from the
iterative RANSAC algorithm is received at a sampling rate of 20 Hz. The iterative RANSAC algo-
rithm is specified to extract at most two edges of the semitrailer’s body and 500 random selections
of data pairs are performed for each edge extraction with an inlier threshold of 5 centimeters.

8 Results

In this section, we first analyze the behavior of the closed-loop system consisting of the controlled
G2T with a car-like tractor and the path-following controller when executing a nominal path com-
puted by the lattice planner. Then, the planning capabilities of the lattice planner and the ideal
tracking performance of the path-following controller are evaluated in simulations. Finally, the
complete framework is evaluated in three different real-world experiments on the full-scale test
vehicle that can be seen in Figure 1.

8.1 Analysis of the closed-loop hybrid system

To verify that the path-following error x̃e(t) is bounded and decays toward zero when the nominal
path is constructed by any sequence of motion primitives, backward as well as forward ones, the
method presented in Section 5.4 is applied. The closed-loop system in (37) is implemented in
MATLAB/Simulink. Central differences with step size δ = 0.01 is used to compute the state-
transition matrix Fi for the linear discrete-time system (40) that describes the evolution of the
path-following error (38) when motion primitive mi ∈ P is executed. Since there are four path-
following error states, eight simulations are performed in order to generate each transition matrix
Fi. This numerical differentiation is performed for all mi ∈ P and M state-transition matrices are
produced, i.e., F= {F1, . . . ,FM}.

The matrix inequalities in (42) are solved to show that the norm of the path-following error
for the discrete-time switched system in (41), exponentially decays towards zero at the switching
instants x̃e[k]. By selecting 0 < µ < 1, the following SDP problem can be solved

minimize
η ,S

η (55)

subject to FT
j SFj−S�−µS, j = 1, . . . ,M

I � S� ηI,

where the condition number of S is minimized to compute a guaranteed upper bound (43) of the
path-following error that is as tight as possible. It turns out that it is not possible to select 0< µ < 1
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Figure 9: Simulation results of the closed-loop path-following error system when switching thirty
times between a straight forward and backward motion primitive of different path lengths D m. The
path-following error at each switching instance x̃e[k] is evaluated using the discrete-time Lyapunov
function Vd(x̃e[k]) = x̃T

e [k]Sx̃e[k], where S is given in (56) for D = 1 m (red stars), D = 10 m (blue
diamonds) and D = 18 m (black triangles).

such that a feasible solution to (55) exists for the original motion primitive set P . This is because
there exist short motion primitives of about 1 m that moves the vehicle either straight forwards
or backwards. If these motion primitives are switched between, it is not possible to guarantee
that the norm of the path-following error at the switching points will exponentially decay towards
zero. In order to resolve this, the short motion primitives were extended to about 18 m (as the
length of the tractor-trailer system) and their corresponding state-transition matrices Fi were again
computed. With this adjusted motion primitive set Padj and µ = 0.3, the optimization problem
in (55) is feasible to solve using YALMIP [41] and the optimal solutions are η = 51.58 and

S =


1.04 1.29 0.29 0.34
1.29 50.54 −0.22 6.62
0.29 −0.23 51.09 2.58
0.34 6.62 2.58 5.16

 . (56)

Extending the short motion primitives manually is equivalent to adding constraints on the switch-
ing sequence {uq[k]}N−1

k=0 in the lattice planner. For this case, when a short motion primitive pi ∈P
is activated, uq[k] needs to remain constant for a certain amount of switching instances. This con-
straint can easily be added within the lattice planner. To illustrate the phenomenon, Figure 9 shows
the behavior of the closed-loop path-following error system when switching thirty times between
a straight forward and backward motion primitive of three different path lengths D = 1 m, 10 m
and 18 m, with the initial path-following error state x̃e[0] =

[
1 m 0.1 rad −0.1 rad 0.1 rad

]T .
In the figure, the path-following error at each switching instance is evaluated using Vd(x̃e[k]) =
x̃T

e [k]Sx̃e[k], where S is given in (56). As can be seen, Vd(x̃e[k]) is a valid discrete-time Lyapunov
function for D = 18 m, since Vd(x̃e[k]) (black triangles) is monotonically decreasing towards zero
as a function of the number of executed motion primitives. When D = 10 m, Vd(x̃e[k]) (blue dia-
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monds) decays towards zero, but not monotonously. When D = 1 m, Vd(x̃e[k]) (red star) does not
converge towards zero. From our practical experience, allowing the short motion primitives have
not caused any problems, since repeated switching between short straight forward and backward
motion primitives is of limited practical relevance for the planning problems typically considered
in this work.

8.2 Simulation results

Results from a quantitative analysis of the lattice planner is first presented, where its performance
has been statistically evaluated in Monte Carlo simulations in two practically relevant scenarios.
Then, simulation results for the path-following controller during ideal conditions where perfect
state information is available is given to demonstrate its performance. The simulations have been
performed on a standard laptop computer with an Intel Core i7-6820HQ@2.7GHz CPU.

8.2.1 Simulation results for the lattice planner

Two different path planning scenarios are used to evaluate the performance of the lattice planner.
One thousand Monte Carlo simulations are performed for each scenario, where the goal state zG ∈
Zd and/or the initial state zI ∈ Zd are randomly selected from specified regions that are compliant
with the specified state-space discretization Zd . For simplicity, it is assumed that the vehicle
starts and ends in a straight vehicle configuration where all vehicle segments are lined up, i.e.,
the steering angle and the joint angles are constrained to zero. A goal state and an initial state,
respectively, is thus specified by a position (x3,y3) and an orientation θ3 of the semitrailer. As

Figure 10: An overview of the parking planning problem. The goal position of the axle of the
semitrailer (x3,G,y3,G) is marked by the white cross inside the blue rectangle, where the white
arrow specifies its goal orientation θ3,G. The initial position (x3,I,y3,I) is uniformly sampled within
the two white-dotted rectangles, and the initial orientation θ3,I ∈ Θ is sampled from six different
initial orientations. The white path illustrates the planned path for the axle of the semitrailer for
one out of 1000 Monte Carlo simulations. The area occupied by obstacles is colored in red and the
black area is free-space.
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Figure 11: A statistical evaluation of the parking problem scenario (see Figure 10) over 1000
Monte Carlo simulations. In (a), a box plot of the planning time as a function of the heuristic
inflation factor. In (b), a box plot of the level of suboptimality ∆JD as a function of the heuristic
inflation factor.

explained in Section 7.1, the ARA∗ search is initialized with heuristic inflation factor γ = 2. This
factor is then iteratively decreased by 0.1 every time a path to the goal for a specific γ has been
found. To evaluate the computation time and the quality of the produced solution, the lattice
planner was allowed to plan until an optimal solution with γ = 1 was found. In the Monte Carlo
simulations, each time a solution for a specific γ is found, the accumulated planning time and the
value of the cost function JD are stored. During the simulations, a planning problem is marked
unsolved if the planning time exceeds 60 s and a solution with γ = 1 has not yet been found.

The first planning scenario is illustrated in Figure 10, and the objective is to plan a parking
maneuver from a randomly selected initial state zI ∈ Zd to a fixed goal state zG ∈ Zd . In Figure 10,
the goal position of the axle of the semitrailer (x3,G,y3,G) is illustrated by the white cross inside the
blue rectangle, and the white arrow specifies its goal orientation θ3,G. The initial position of the
axle of the semitrailer (x3,I,y3,I) is uniformly sampled from two different 20 m × 15 m rectangles
on each side of the goal location and the initial orientation of the semitrailer θ3,I is randomly
selected from six different initial orientations, as depicted in Figure 10.

In all simulations, the lattice planner was able to find an optimal path (γ = 1) to the goal within
the allowed planning time of 60 s (max: 40 s). A statistical evaluation of the simulation results
from one thousand Monte Carlo simulations are provided in Figure 11, where the planning time
(Figure 11a), and the level of suboptimality ∆JD (Figure 12b) between the cost JD for a specific γ

and the optimal cost J∗D for each planning experiment are plotted. In the box plots, the red central
mark of each bar is the median, the bottom and top edges of the boxes indicate the 25th and 75th
percentiles, respectively, and the whiskers extends to the most extreme data points.

As can be seen in Figure 11a, the planning time is drastically increasing with decreasing γ . For
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Figure 12: A statistical evaluation of the loading/offloading scenario (see Figure 13) over 1000
Monte Carlo simulations. In (a), a box plot of the planning time as a function of the heuristic
inflation factor and. In (b), a box plot of the level of suboptimality ∆JD as a function of the
heuristic inflation factor.

most of the problems, a feasible solution to the goal with γ = 2 was found within 0.7 s, while a
median planning time of 13 s was needed to find an optimal solution with γ = 1. In Figure 11b,
the quality of the produced solution in terms of level of suboptimality ∆JD as a function of γ is
displayed. For γ ≥ 1, the provided theoretical guarantee is that the cost for a feasible solution JD

satisfies JD ≤ γJ∗D, where J∗D denotes the optimal cost. For all iterations of the ARA∗, the median
level of suboptimality is 0 % and the extreme values for large γ are about 5 %. For this scenario, it
is clear that the guaranteed upper bound of γ-suboptimality is a conservative bound.

A loading/offloading site is used as the second planning scenario and the setup is illustrated
in Figure 13. In this scenario, the lattice planner has to plan a path from a randomly selected
initial state zI ∈ Zd to one of the six loading bays, or plan how to exit the site. In the Monte
Carlo simulations, the initial position of the semitrailer (x3,I,y3,I) is uniformly sampled from a
25 m × 25 m square (see, Figure 13), and the initial orientation of the semitrailer θ3,I is randomly
selected from one of its sixteen discretized orientations, i.e., θ3,I ∈Θ.

Also in this scenario, the lattice planner was always able to find an optimal path to the goal
within the allowed planning time of 60 s (max: 27 s). A statistical evaluation of the simulation
results from one thousand Monte Carlo simulations are presented in Figure 12. From the box plots
in 12, it can be seen that the planning time is also in this scenario increasing with decreasing heuris-
tic inflation factor γ . However, the median planning time to find an optimal solution with γ = 1 was
only 0.84 s and most problems where solved within 3 s. The main reason for this improvement
in terms of planning time compared to the parking scenario is because the precomputed HLUT
yields a better estimation of the true cost-to-go in this less constrained environment. However, as
can be seen in Figure 12b, the extreme values for the level of suboptimality ∆JD is about 43 % for
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Figure 13: An overview of the loading/offloading site planning problem. The goal positions of the
axle of the semitrailer (x3,G,y3,G) are illustrated by the white crosses inside the blue rectangles,
where the white arrow specifies its goal orientation θ3,G. The initial position (x3,I,y3,I) is uniformly
sampled within the two white-dotted rectangles, and the initial orientation θ3,I are sampled from
sixteen different initial orientations. The white path illustrates the planned path for the axle of the
semitrailer for one case out of 1000 Monte Carlo simulations. The area occupied by obstacles is
colored in red and the black area is free-space.

large γ . Compared to the parking scenario, a heuristic inflation factor of γ = 1.2 is needed in this
scenario to obtain a median level of suboptimality of 0 %. One reason for this greedy behavior in
this scenario compared to parking scenario is that the there exist more alternative paths to the goal.
This implies that the probability of finding a suboptimal path to the goal increases [36].

8.2.2 Path following of a figure-eight nominal path

Nominal paths of the shape of a figure-eight are used to evaluate the performance of the proposed
path-following controller in backward and forward motion. These nominal paths are used as a
benchmark since they expose the closed-loop system for a wide range of practically relevant ma-
neuvers, e.g., enter, exit and keep a narrow turn. To generate the figure-eight nominal path in
forward motion, a list of waypoints of the same shape was first constructed manually. The nomi-
nal path was generated by simulating the model of the G2T with a car-like tractor (1) in forward
motion with v(t) = 1 m/s, together with the pure pursuit controller in [25]. The path taken by the
vehicle (xr(s̃),ur(s̃)), s̃ ∈ [0, s̃G] was then stored and used as the nominal path in forward motion.
The established symmetry result in Lemma 1 was then used to construct the figure-eight nominal
path in backward motion.
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In analogy to the design of the hybrid path-following controller (34), the OCP in (33) is solved
with decay-rate ε = 0.01. In both cases, the optimal objective function to (33) is zero, which
implies that the proposed hybrid path-following controller (33) is able the locally stabilize the
path-following error model (25) around the origin while tracking the figure-eight nominal path in
forward and backward motion, respectively. To confirm the theoretical analysis and to illustrate
how the proposed path-following controller handles disturbance rejection, the closed-loop system
is simulated with a perturbation in the initial path-following error states. For backward tracking,
the initial path-following error is chosen as x̃e(0) =

[
1 m 0 0.1 rad 0.1 rad

]T and for forward
tracking it is chosen as x̃e(0) =

[
−3 m 0 −π/6 rad π/6 rad

]T . To perform realistic simula-
tions, the steering angle of the car-like tractor is constrained according to the values in Table 1.
The velocity of the car-like tractor is set to v = vr(s), i.e., 1 m/s for forward tracking and v = −1
m/s for backward tracking.

The simulation results are provided in Figure 14–15. In Figure 14, the resulting paths taken by
the axle of the semitrailer (x3(·),y3(·)) is plotted together with its nominal path (x3,r(s̃),y3,r(s̃)),
s̃∈ [0, s̃G]. The resulting trajectories for the path-following error states are presented in Figure 15a–
15d. As theoretically verified, the path-following error states are converging towards the origin.
The controlled curvature of the car-like tractor is plotted in Figure 15e and Figure 15f for the
forward and backward tracking simulation, respectively. From these plots, it is clear that the
feedback part in the path-following controller κ̃(t) is responsible for disturbance rejection and the
feedforward part κr(s̃) takes care of path-following.
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Figure 14: Simulation results of backward and forward tracking of the figure-eight nominal path,
where the nominal path of the axle of the semitrailer (x3,r(·),y3,r(·)) is the black solid line. The
dashed-dotted blue (red) path is the path taken by the axle of the semitrailer (x3(·),y3(·)) during
the backward (forward) path execution.
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(a) Lateral error for the axle of the semitrailer.
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(b) Orientation error of the semitrailer.
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(c) The joint angle error between the semitrailer and the
dolly.
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(d) The joint angle error between the dolly and the trac-
tor.
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(e) Forward tracking: The controlled curvature κ(t)
(black line) and the nominal feedforward κr(s̃(t)) (red
dashed line).
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(f) Backward tracking: The controlled curvature κ(t)
(black line) and the nominal feedforward κr(s̃(t)) (red
dashed line).

Figure 15: Simulation results of backward and forward tracking of the figure-eight nominal path
in Figure 14. In (a)–(d), the forward (dashed-dotted red line) and backward (black line) path-
following error states are plotted, and in (e)–(f), the controlled curvature of the tractor are dis-
played.

8.3 Results from real-world experiments

The path planning and path-following control framework is finally evaluated in three different
real-world experiments. First, the performance of the path-following controller and the nonlinear
observer are evaluated by path-tracking of a precomputed figure-eight nominal path in backward
motion. Then, two real-world experiments with the complete path planning and path-following
control framework are presented. To validate the performance of the path-following controller
and the nonlinear observer, a high-precision RTK-GPS6 was mounted above the midpoint of the
axle of the semitrailer. The authors recommend the supplemental video material7 for real-world

6The RTK-GPS is a Trimble SPS356 with a horizontal accuracy of about 0.1 m.
7youtu.be/IBA-8wom5zQ
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Figure 16: Results from real-world experiments of backward tracking of the figure-eight nominal
path, where the nominal path of the axle of the semitrailer (x3,r(·),y3,r(·)) is the black solid line.
The dashed red line is the estimated path taken by the axle of the semitrailer (x̂3(·), ŷ3(·)) and
the dashed-dotted blue line is the ground truth path (x3,GT (·),y3,GT (·)) measured by the external
RTK-GPS.

demonstration of the proposed framework.

8.3.1 Path following of a figure-eight nominal path

The figure-eight nominal path in backward motion that was used in the simulations, is also used
here as the nominal path to evaluate the joint performance of the path-following controller and
the nonlinear observer. The real-world path-following experiment is performed on an open gravel
surface at Scania’s test facility in Södertälje, Sweden. During the experiment, the longitudinal
velocity of the rear axle of the car-like tractor was set to v =−0.8 m/s and results from one lap
around the figure-eight nominal path are provided in Figure 16–18.

Figure 16 shows the nominal path for the position of the axle of the semitrailer (x3,r(·),y3,r(·)),
compared to its ground truth path (x3,GT (·),y3,GT (·)) and its estimated path (x̂3(·), ŷ3(·)) around
one lap of the figure-eight nominal path. A more detailed plot is provided in Figure 17, where all
four estimated error states x̃e(t) are plotted. From these plots, we conclude that the path-following
controller is able to keep its estimated lateral path-following error z̃3(·) within ±0.5 m (avg. 0.21
m), while at the same time keep the orientation and joint angle errors within acceptable error
tolerances. As in the simulation trails, it can be seen from Figure 17b that the feedforward part
κr(s) of the path-following controller takes care of path-following and the feedback part κ̃ =Krevx̃e

is responsible for disturbance rejection.
The performance of the nonlinear observer are presented in Figure 17a and Figure 18. In

Figure 17a, the Euclidean norm of the difference between the estimated position of the axle of the
semitrailer (x̂3(·), ŷ3(·)) and its ground truth (x3,GT (·),y3,GT (·)) measured by the external RTK-
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(a) The norm of the position estimation error ‖e(t)‖ for
the axle of the semitrailer.
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(b) The controlled curvature κ(t) (black line) and the
nominal feed-forward κr(s̃(t)) (red dashed line).

0 50 100 150 200
−1

−0.5

0

0.5

1

Time [s]

z̃ 3
[m

]

(c) Estimated lateral error for the axle of the semitrailer.
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(d) Estimated orientation error of the semitrailer.
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(e) Estimated joint angle error between the semitrailer
and the dolly.
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(f) Estimated joint angle error between the dolly and the
tractor.

Figure 17: Results from real-world experiments of backward tracking of the figure-eight nominal
path in Figure 16. In (a), the norm of the position estimation error is plotted and in (b), the
controlled curvature of the tractor is plotted. In (c)–(f), the estimated path-following error states
are plotted.

GPS is presented. The maximum estimation error is 0.6 m and the average error is 0.23 m. It
can be seen from Figure 17c that the estimated lateral path-following error for the axle of the
semitrailer z̃3 is increasing at the end of the maneuver. The reason for this is because the nonlinear
observer is not able to track the absolute position of the axle of the semitrailer with high precision
in this part of the maneuver. Likely causes to this estimation error are probably because of known
asymmetries in the tractor’s steering column [66] and the unavoidable lateral slip-effects of the

44



0 50 100 150 200
−40

−20

0

20

40

Time [s]

β̂
3

[d
eg

]

(a) Estimated joint angle between the semitrailer and the
dolly.
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(b) Estimated joint angle between the dolly and the trac-
tor.

Figure 18: Results from real-world experiments of backward tracking of the figure-eight nominal
path in Figure 16. The red solid lines are the estimated joint angles, β̂2 and β̂3, and the dashed blue
lines are the computed joint angles, β2 and β3, from the RANSAC measurements.

wheels of the dolly and the semitrailer which are not captured by the kinematic model of the
vehicle [70]. Note that the absolute position of the axle of the semitrailer (x̂3(·), ŷ3(·)) is estimated
from GPS measurements of the car-like tractor’s position and its orientation, propagated about 14
m through two hitch connections whose angles are estimated using only a LIDAR sensor on the
car-like tractor.

In Figure 18b and 18a, the estimated trajectories of the joint-angles, β̂2 and β̂3, are compared
with their derived angles based on the outputs from the RANSAC algorithm, respectively. The
maximum (avg.) errors in the residuals β̂2−β2 and β̂3−β3, are 0.83◦ (avg. 0.27◦) and 2.18◦ (avg.
0.8◦), respectively.
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(a) The norm of the position estimation error of the axle
of the semitrailer.
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(b) Estimated lateral path-following error for the axle of
the semitrailer.

Figure 19: Results from real-world experiments of backward tracking of the figure-eight nominal
path in Figure 16 over four consecutive laps. In (a), the norm of the position estimation error and
in (b), the estimated lateral path-following error z3. This experiment was performed under rougher
ground surface conditions compared to the first experiment.
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Figure 20: Illustration of the planned two-point turn maneuver. The goal position of the semitrailer
is illustrated by the white cross inside the blue rectangle, where the white arrow specifies its goal
orientation. The white path is the planned path for axle of the semitrailer (x3,r(·),y3,r(·)).

To illustrate the repeatability of the system, the same figure-eight nominal path was executed
multiple times. This experiment was performed at another occasion on rougher ground surface
conditions compared to the first experiment. The resulting estimated lateral control error z̃3 and
the Euclidean norm of the position error ||e(t)||2 over four consecutive laps are presented in Fig-
ure 19. As can be seen, both errors are bounded and have a periodic behavior of approximately
250 seconds, i.e., one lap time around the figure-eight nominal path.

8.3.2 Two-point turn

In this section, the complete path planning and path-following control framework is evaluated in a
real-world experiment. The G2T with a car-like tractor is operating on dry asphalt on a relatively
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Figure 21: Results from real-world experiments while executing the planned two-point turn ma-
neuver. The black line is the planned path for the axle of the semitrailer (x3,r(·),y3,r(·)). The
dashed red line is the estimated path taken by the axle of the semitrailer (x̂3(·), ŷ3(·)) and the
dashed-dotted blue line is the ground truth path (x3,GT (·),y3,GT (·)) measured by the external RTK-
GPS.
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(a) The norm of the position estimation error of the axle of
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(b) The controlled curvature κ(t) (black line) and the nominal
feed-forward κr(s̃(t)) (red dashed line).
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(c) Estimated lateral error for the axle of the semitrailer.
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(d) Estimated orientation error of the semitrailer.
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(e) Estimated joint angle error between the semitrailer and the
dolly.
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(f) Estimated joint angle error between the dolly and the trac-
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Figure 22: The absolute position estimation error (a), the controlled curvature of the tractor (b)
and the estimated path-following error states (c)–(f) during the execution of the planned two-point
turn maneuver in Figure 21.

narrow road at Scania’s test facility. The scenario setup is shown in Figure 20 and the objective is to
change the orientation of the semitrailer with 180◦ while at the same time move the vehicle about
40 m longitudinally. Similarly to the parking planning problem in Figure 10, the precomputed
HLUT may underestimate the cost-to-go due to the confined environment. Despite this, the lattice
planner found an optimal solution (γ = 1) in 0.6 s and the ARA∗ search expanded 720 vertices. As
a comparison, a planning time of only 29 ms was needed for this example to find a motion plan
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with γ = 1.3, i.e., a solution that is guaranteed to be less than 30 % worse than the optimal one.
In Figure 20, the white path illustrates the planned path for the axle of the semitrailer. As can be

seen, the solution is mainly composed of a 90◦-turn in backward motion followed by a 90◦-turn in
forward motion. The execution of the planned two-point turn maneuver is visualized in Figure 21,
where the estimated path taken by the axle of the semitrailer (x̂3(·), ŷ3(·)) is plotted together with
its ground truth path (x3,GT (·), ŷ3,GT (·)) measured by the external RTK-GPS.

More detailed plots are provided in Figure 22, where the vehicle is changing from backward to
forward motion at t = 60 s. In Figure 22a, the norm of the position estimation error for the axle of
the semitrailer is plotted. In this scenario, the maximum position estimation error was 0.35 m and
the mean absolute error was 0.21 m. The path-following error states are plotted in Figure 22c–22f.
From these plots, it can be seen that the estimated lateral control error z̃3(t), which is plotted in
Figure 22c, has a maximum absolute error of 0.37 m and a mean absolute error of 0.12 m. Except
from initial transients, the joint angle errors, β̃3 and β̃2, attain their peak values when the vehicle is
changing from backward to forward motion at t = 60 s. There are multiple possible explanations
to this phenomenon.

Except from possible estimation errors in the joint angles, one possibility is that lateral dy-
namical effects arise when the vehicle is exiting the tight 90◦-turn in backward motion. However,
the path-following controller is still able to compensate for these disturbances, as can be seen for
t ∈ [50, 80] s in Figure 22b.

8.3.3 T-turn

The final real-world experiment is an open area planning problem on the same gravel surface as
the execution of the figure-eight nominal path was performed. The open area planning problem is
shown in Figure 23, where the G2T with a car-like tractor is intended to change the orientation of
the semitrailer with 180◦ together with a small lateral and longitudinal movement. In this scenario,
the planning time for finding an optimal solution (γ = 1) was only 38 ms and the ARA∗ search
expanded only 22 vertices. The reason why such a small amount of vertex expansions was needed
is because the precomputed HLUT perfectly estimates the cost-to-go in free-space scenarios.

Figure 23 shows the optimal nominal path for the axle of the semitrailer (x3,r(·),y3,r(·)), which
essentially is composed by two 90◦-turns in forward motion together with a parallel maneuver
in backward motion. In this example, the impact of penalizing complex backward motions is
clear, the advanced maneuvers are performed while driving forwards if allowed by the surrounding
environment. In the same plot, the estimated path taken by the axle of the semitrailer (x̂3(·), ŷ3(·))
and its ground truth path (x3,GT (·),y3,GT (·)) obtained from the external RTK-GPS are presented.

More detailed plots are provided in Figure 24, where the vehicle is changing from forward to
backward motion at t = 50 s and from backward to forward motion at t = 100 s. In Figure 24a, the
norm of the position estimation error for the axle of the semitrailer is plotted. In this experiment,
the maximum estimation error was 0.20 m and the mean absolute error was 0.12 m. The path-
following error states are presented in Figure 24c–24f. In Figure 24c, the estimated lateral control
error z̃3 is plotted, where the maximum absolute error was 0.31 m and the mean absolute error was
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Figure 23: Results from real-world experiments while executing the planned T-turn maneuver
(x3,r(·),y3,r(·)) (black line). The dashed red line is the estimated path taken by the axle of the
semitrailer (x̂3(·), ŷ3(·)) and the dashed-dotted blue line is the ground truth path (x3,GT (·),y3,GT (·))
measured by the external RTK-GPS.

0.11 m. In this experiment, both joint angle errors, β̃2 and β̃3, as well as the orientation error of
the semitrailer θ̃3, lie within ±5◦ for the majority of the path execution. The controlled curvature
κ of the car-like tractor is plotted in Figure 24b. Similar to the two-point turn experiment, it can be
seen that for large nominal curvature values κr, the feedback part in the path-following controller
is compensating for lateral dynamical effects that are not captured by the kinematic vehicle model.

8.4 Discussion of lessons learned

The proposed path planning and path-following control framework has been successfully deployed
on a full-scale test platform. Since the full system is built upon several modules, an important key
to fast deployment was to separately test and evaluate each module in simulations. By performing
extensive simulations during realistic conditions, the functionality of each module as well as the
communication between them could be verified before real-world experiments was performed.

As illustrated in the real-world experiments, the performance of the system in terms of path-
following capability is highly dependent on accurate estimates of the vehicles state. The tuning
and calibration of the nonlinear observer was also the most time-consuming part of the process
when the step from simulations to real-world experiments was taken. The main difficulty was to
verify that the nonlinear observer was capable of tracking the true trajectory of the position and
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(b) The controlled curvature κ(t) (black line) and the nom-
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(c) Estimated lateral error for the axle of the semitrailer.

0 50 100
−10

−5

0

5

10

Time [s]

θ̃
3

[D
eg

]

v = 1 v =−0.8 v = 1

(d) Estimated orientation error of the semitrailer.
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(e) Estimated joint angle error between the semitrailer and
the dolly.
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Figure 24: Absolute position error (a), controlled curvature (b) and estimated path-following error
(c)–(f), during the execution of the T-point turn maneuver in Figure 23.

orientation of the axle of the semitrailer as well as the two joint angles, despite that their true state
trajectories were partially or completely unknown. To resolve this, data was collected from manual
tests with the vehicle. This data was then used offline to tune the covariance matrices in the EKF
and to calibrate the position and orientation of the rear view LIDAR sensor. For the calibration of
the LIDAR sensor, an accurately calibrated yaw angle was found to be very important.

The deployment of the hybrid path-following controller and the lattice planner only required
minor tuning compared to simulations. For the design of the path-following controller, the penalty
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for the lateral path-following error z̃3 was found to be the most important tuning parameter which
had the largest effects on the region of attraction for the closed-loop system. However, since the
lattice planner is planning from the vehicle’s current state, the initial error in z̃3 will be small and a
rather aggressive tuning of the path-following controller was possible.

9 Conclusions and future work

A path planning and path-following control framework for a G2T with a car-like tractor is pre-
sented. The framework is targeting low-speed maneuvers in unstructured environments and has
been successfully deployed on a full-scale test vehicle. A lattice-based path planner is used to
generate kinematically feasible and optimal nominal paths in all vehicle states and controls, and
the ARA∗ graph-search algorithm is used during online planning. To follow the planned path,
a hybrid path-following controller is developed to stabilize the path-following error states of the
vehicle and a nonlinear observer is proposed that is only utilizing information from sensors that
are mounted on the car-like tractor, which makes the solution compatible with basically all of
today’s commercially available semitrailers that have a rectangular body. The framework is first
evaluated in simulations and then in three different real-world experiments and results in terms of
closed-loop performance and real-time planning capabilities are presented. In the experiments, the
system shows that it is able to consistently solve challenging planning problems and that it is able
to execute the resulting motion plans, despite no sensors on the dolly or semitrailer.

A drawback with the lattice-based path planning framework is the need of manually selecting
the connectivity in the state lattice. Even though this procedure is done offline, it is both nontrivial
and time-consuming. Future work includes automating this procedure to make the algorithm more
user-friendly and compatible with different vehicle parameters. Moreover, the discretization of the
vehicle’s state-space, restricts the set of possible initial states the lattice planner can plan from and
desired goal states that can be reached. As mentioned in the text, this is a general problem with
sampling-based motion planning algorithms, which could for example be alleviated by the use of
numerical optimal control as a post-processing step [8, 19, 34, 51]. Thus, future work includes
exploiting the structure of the path planning problem and develop an efficient and numerically
stable online smoothing framework by, e.g., the use of numerical optimal control as a backbone.

The main benefits of the proposed hybrid path-following controller include that it is computa-
tionally efficient and that it is tailored to follow nominal paths composed of full state and control
information. A limitation of the proposed controller is that it does not explicitly handle constraints
on states and controls, but since the lattice planner plans from the vehicle current location and
provides a nominal path in all states and controls which satisfies these constraints, they can be
neglected locally around the nominal path. Regarding scalability, as long as a nominal path is pro-
vided, it is possible to generalize the proposed path-following controller to handle more complex
paths and tractor-trailer system with additional trailers. The region of attraction for the closed-loop
system will however become smaller with increasing path complexity as well as increasing number
of trailers.
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At some parts of the figure-eight path-following experiments, the magnitude of the estimation
error for the position of the axle of the semitrailer had a size which potentially could cause prob-
lems in narrow environments. Hence, reasonable future work also includes exploring alternative
onboard sensors as well as using external sensors that can be placed at strategic locations where
high-accuracy path tracking is critical, e.g., when reversing to a loading bay.

Appendix A

Lemma 1. Denote z(s), s ∈ [0,sG], as the solution to (5) that satisfies |α(·)| ≤ αmax < π/2, when
the control signal up(s) ∈ Up, s ∈ [0,sG] is applied from the initial state z(0) which ends at the
final state z(sG). Moreover, denote z̄(s̄), s̄ ∈ [0,sG] as the distance-reversed solution to (5) when
the distance-reversed control signal

ūp(s̄) =
[
−v(sG− s̄) uω(sG− s̄)

]T
, s̄ ∈ [0,sG] (57)

is applied from the initial state z̄(0) =
[
x(sG)

T α(sG) −ω(sG)
]T . Then, z(s), s ∈ [0,sG] and

z̄(s̄), s̄ ∈ [0,sG] are unique and they are related according to

z̄(s̄) =
[
x(sG− s̄)T α(sG− s̄) −ω(sG− s̄)

]T
, s̄ ∈ [0,sG]. (58)

In particular, the final state is z̄(sG) =
[
x(0)T α(0) −ω(0)

]T .

Proof. Given a piecewise continuous up(s) =
[
v(s) uω(s)

]T ∈ Up, s ∈ [0,sG], define

f̃z(s,z), fz(z,up(s)) =

v(s) f (x, tanα/L1)
ω

uω(s)

 .
Direct calculations verify that f (x, tanα/L1) in (1) is continuous and continuously differentiable
with respect to z for all z ∈ Zo ∈ {z ∈ R7 | |α| < π/2}. This is true since f (x, tanα/L1) is com-
posed of sums and products of trigonometric functions which are continuous and continuously
differentiable with respect to z for all z ∈ Zo. Furthermore, f̃z(s,z) is piecewise continuous in s
since fz(z,up(s)) is continuous in up for all z∈Zo. Therefore, on any interval [a,b]⊂ [0,sG] where
up(·) is continuous, f̃z(s,z) and [∂ f̃z(s,z)/∂ z] are continuous on [a,b]×Zo. Then, from Lemma
3.2 in [31], the vector field f̃z(s,z) is piecewise continuous in s and locally Lipschitz in z, for all
s ∈ [0,sG] and all z ∈ Zo. Define Zc = {z ∈ R7 | |α| ≤ αmax} which is a compact subset of Zo.
Then, from Theorem 3.3 in [31], every solution z(s), s ∈ [0,sG] that lies entirely in Zc is unique for
all s ∈ [0,sG].

Now, let z(s), s ∈ [0,sG], be the unique solution to (5) assumed to lie entirely in Zc, when the
control signal up(s) ∈ Up, s ∈ [0,sG] is applied from the initial state z(0) which ends at the final
state z(sG). Introduce (z̄(s̄), ūp(s̄)), s̄ ∈ [0,sG] with

z̄(s̄) =
[
x(sG− s̄)T α(sG− s̄) −ω(sG− s̄)

]T
, s̄ ∈ [0,sG], (59a)

ūp(s̄) =
[
−v(sG− s̄) uω(sG− s̄)

]T
, s̄ ∈ [0,sG]. (59b)
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Since

d
ds̄

z̄(s̄) =
d
ds̄

 x(sG− s̄)
α(sG− s̄)
−ω(sG− s̄)

= {s = sG− s̄}= d
ds

 x(s)
α(s)
−ω(s)

∣∣∣∣∣∣
s=sG−s̄

ds
ds̄︸︷︷︸
=−1

=

=

−v(s) f (x(s), tanα(s)/L1)
−ω(s)
uω(s)

∣∣∣∣∣∣
s=sG−s̄

=

v̄(s̄) f (x̄(s̄), tan ᾱ(s̄)/L1)
ω̄(s̄)
ūω(s̄)

=

= fz(z̄(s̄), ūp(s̄)), s̄ ∈ [0,sG],

(59) is also a solution to (5) from the initial state z̄(0) =
[
x(sG)

T α(sG) −ω(sG)
]T . Finally,

since the solution z̄(s̄), s̄ ∈ [0,sG] also lies entirely in Zc, this solution is also unique.

Proof of Theorem 1

Let (z(s),up(s)), s ∈ [0,sG] denote a feasible solution to the optimal path planning problem (7)
with objective functional value J. Now, consider the reverse optimal path planning problem

minimize
ūp(·), s̄G

J̄ =
∫ s̄G

0
L(x̄(s̄), ᾱ(s̄), ω̄(s̄), ūω(s̄))ds̄ (60a)

subject to
dz̄
ds̄

= fz(z̄(s̄), ūp(s̄)), (60b)

z̄(0) = zG, z̄(s̄G) = zI, (60c)

z̄(s̄) ∈ Zfree, ūp(s̄) ∈ Up. (60d)

Then, using the invertible transformations (57)–(58):

z̄(s̄) =
[
x(sG− s̄)T α(sG− s̄) −ω(sG− s̄)

]T
, s̄ ∈ [0,sG], (61a)

ūp(s̄) =
[
−v(sG− s̄) uω(sG− s̄)

]T
, s̄ ∈ [0,sG] (61b)

and s̄G = sG, the reverse optimal path planning problem (60) becomes

minimize
up(·), sG

J̄ =
∫ sG

0
L(x(sG− s̄),α(sG− s̄),−ω(sG− s̄),uω(sG− s̄))ds̄ (62a)

subject to
d
ds̄

 x(sG− s̄)
α(sG− s̄)
−ω(sG− s̄)

=

−v(sG− s̄) f (x(sG− s̄), tanα(sG− s̄)/L1)
−ω(sG− s̄)
uω(sG− s̄)

 , (62b)

[
x(sG)

T α(sG) −ω(sG)
]T

= zG, (62c)[
x(0)T α(0) −ω(0)

]T
= zI, (62d)[

x(sG− s̄)T α(sG− s̄) −ω(sG− s̄)
]T ∈ Zfree, (62e)[

−v(sG− s̄) uω(sG− s̄)
]T ∈ Up. (62f)
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Let s= sG− s̄, s∈ [0,sG]. It then follows from Lemma 1 that (62b) simplifies to dz
ds = fz(z(s),up(s)).

From Assumption 1 it follows that

J̄ =
∫ sG

0
L(x(sG− s̄),α(sG− s̄),−ω(sG− s̄),uω(sG− s̄))ds̄ = {s = sG− s̄}

=−
∫ 0

sG

L(x(s),α(s),−ω(s),uω(s))ds

=
∫ sG

0
L(x(s),α(s),−ω(s),uω(s))ds = {L(x,α,−ω,uω) = L(x,α,ω,uω)}

=
∫ sG

0
L(x(s),α(s),ω(s),uω(s))ds = J. (63)

Hence, the problem in (62) can equivalently be written as

minimize
up(·), sG

J =
∫ sG

0
L(x(s),α(s),ω(s),uω(s))ds (64a)

subject to
dz
ds

= fz(z(s),up(s)), (64b)[
x(sG)

T α(sG) −ω(sG)
]T

= zG, (64c)[
x(0)T α(0) −ω(0)

]T
= zI, (64d)[

x(s)T α(s) −ω(s)
]T ∈ Zfree, (64e)[

−v(s) uω(s)
]T ∈ Up. (64f)

From the symmetry of the set Up = {−1,1}× [−uω,max,uω,max], (64f) is equivalent to up(s) ∈Up.
From Assumption 2, (64e) is equivalent to z(s) =

[
x(s)T α(s) ω(s)

]T ∈ Zfree. Moreover, since
zI =

[
xT

I αI 0
]T and zG =

[
xT

G αG 0
]T , the problem in (64) can equivalently be written as

minimize
up(·), sG

J =
∫ sG

0
L(x(s),α(s),ω(s),uω(s))ds (65a)

subject to
dz
ds

= fz(z(s),up(s)), (65b)

z(0) = zI, z(sG) = zG, (65c)

z(s) ∈ Zfree, (65d)

up(s) ∈ Up, (65e)

which is identical to the optimal path planning problem in (7). Hence, the OCPs in (7) and (9)
are equivalent [14] and the invertible transformation relating the solutions to the two equivalent
problems is given by (61) and s̄G = sG. Hence, if an optimal solution to one of the problems is
known, an optimal solution to the other one can immediately be derived using (61) and s̄G = sG.
Or more practically, given an optimal solution in one direction, an optimal solution in the other
direction can be trivially found.
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Derivation of the path-following error model

In this section, the details regarding the derivation of the model in (18) are presented. First, the
nominal path in (14) gives:

dθ3,r

ds̃
= vrκ3,r, s̃ ∈ [0, s̃G], (66a)

dβ3,r

ds̃
= vr

(
sinβ2,r−M1 cosβ2,rκr

L2 cosβ3,rC1(β2,r,κr)
−κ3,r

)
, s̃ ∈ [0, s̃G], (66b)

dβ2,r

ds̃
= vr

κr−
sinβ2,r

L2
+ M1

L2
cosβ2,rκr

cosβ3,rC1(β2,r,κr)

 , s̃ ∈ [0, s̃G]. (66c)

Moreover, the models of θ3, β3 and β2 in (1) can equivalently be represented as

θ̇3 = v3
tanβ3

L3
, (67a)

β̇3 = v3

(
sinβ2−M1 cosβ2κ

L2 cosβ3C1(β2,κ)
− tanβ3

L3

)
, (67b)

β̇2 = v3

(
κ− sinβ2

L2
+ M1

L2
cosβ2κ

cosβ3C1(β2,κ)

)
, (67c)

where v has been replaced with v3 using (3). Now, since θ̃3(t) = θ3(t)−θ3,r(s̃(t)), the chain rule
together with the equation for ˙̃s in (17a) yields

˙̃
θ3(t) = θ̇3− ˙̃s

d
ds̃

θ3,r(s̃)

= v3

(
tan(β̃3 +β3,r)

L3
−

κ3,r cos θ̃3

1−κ3,r z̃3

)
= v3 f

θ̃3
(s̃, x̃e, κ̃), t ∈Π(0, s̃G). (68)

In analogy, taking the time-derivative of β̃3(t) = β3(t)−β3,r(s̃(t)) and applying the chain rule gives

˙̃
β3 = β̇3 + ˙̃s

d
ds̃

β3,r(s̃)

= v3

(
sin(β̃2 +β2,r)−M1 cos(β̃2 +β2,r)(κ̃ +κr)

L2 cos(β̃3 +β3,r)C1(β̃2 +β2,r, κ̃ +κr)
−

tan(β̃3 +β3,r)

L3

− cos θ̃3

1−κ3,r z̃3

(
sinβ2,r−M1 cosβ2,rκr

L2 cosβ3,rC1(β2,r,κr)
−κ3,r

))
= v3 f

β̃3
(s̃, x̃e, κ̃), t ∈Π(0, s̃G). (69)
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Finally, taking the time-derivative of β̃2(t) = β2(t)−β2,r(s̃(t)) and applying the chain rule again
yields

˙̃
β2 = β̇2 + ˙̃s

d
ds̃

β2,r(s̃)

=v3

 κ̃ +κr−
sin(β̃2+β2,r)

L2
+ M1

L2
cos(β̃2 +β2,r)(κ̃ +κr)

cos(β̃3 +β3,r)C1(β̃2 +β2,r, κ̃ +κr)


− cos θ̃3

1−κ3,r z̃3

κr−
sinβ2,r

L2
+ M1

L2
cosβ2,rκr

cosβ3,rC1(β2,r,κr)

= v3 f
β̃2
(s̃, x̃e, κ̃), t ∈Π(0, s̃G), (70)

which finalizes the derivation. Moreover, by inserting (x̃e, κ̃) = (0,0) in (68)–(70) yield ˙̃
θ3 =

˙̃
β3 =

˙̃
β2 = 0, ∀t ∈Π(0, s̃G), i.e., the origin is an equilibrium point. Finally, from (3), we have that

v3 = vgv(β2,β3,κ) and the models in (68)–(70) can in a compact form also be represented as

˙̃
θ3 = vgv(β̃2 +β2,r, β̃3 +β3,r, κ̃ +κr) f

θ̃3
(s̃, x̃e, κ̃), t ∈Π(0, s̃G), (71a)

˙̃
β3 = vgv(β̃2 +β2,r, β̃3 +β3,r, κ̃ +κr) f

β̃3
(s̃, x̃e, κ̃), t ∈Π(0, s̃G), (71b)

˙̃
β2 = vgv(β̃2 +β2,r, β̃3 +β3,r, κ̃ +κr) f

β̃2
(s̃, x̃e, κ̃), t ∈Π(0, s̃G), (71c)

where the origin is still an equilibrium point since f
θ̃3
(s̃,0,0) = f

β̃3
(s̃,0,0) = f

β̃2
(s̃,0,0) = 0, ∀s̃ ∈

[0, s̃G].
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