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Abstract

Automating building processes through robotic systems has the potential to address the need
for safer, more efficient and sustainable construction operations. While ongoing research
effort often targets the use of prefabricated materials in controlled environments, here we
focus on utilizing objects found on-site, such as irregularly-shaped rocks and rubble, as a
way of enabling novel types of construction in remote and extreme environments, where
standard building materials might not be easily accessible. In this article, we present a
perception and grasp pose planning pipeline for autonomous manipulation of objects of
interest with a robotic walking excavator. The system incrementally builds a LiDAR-based
map of the robot’s surroundings and provides the ability to register externally reconstructed
point clouds of the scene, e.g. from images captured by a drone-borne camera, which helps
increasing map coverage. In addition, object-like instances, such as stones, are segmented
out of this map. Based on this information, collision-free grasping poses for the robotic
manipulator are planned to enable picking and placing of these objects, while keeping track of
them during the manipulation. The approach is validated in a real setting on an architectural
relevant scale by segmenting and manipulating boulders of several hundred kilograms, which
is a first step towards the full automation of dry-stack wall building processes.

Video – https://youtu.be/4bc5n2-zj3Q

1 INTRODUCTION

In recent years, automating construction through robotics has seen increased popularity as it promises
more efficient, more sustainable, and safer building operations (Petersen et al., 2019; Ardiny et al., 2015).
Furthermore, it pushes forward the digitalization of construction processes, enabling the implementation
of new design principles and the creation of novel types of architectural structures with unprecedented

∗The authors contributed equally to this work. R.M. was responsible for the perception pipeline and M.W. for the manipu-
lation tasks.



Figure 1: Potential application of the proposed system: robotic construction of utility structures with material found
on-site. By fusing mapping data acquired from the excavator and a drone, the observed stones are segmented in
the acquired map, while collision-free paths for the manipulator are computed and executed to move the stones of
interest to the desired locations in the vicinity of the robot.

complexity and functional properties. Of special interest is the direct utilization of raw construction material
found on-site without further processing, such as natural stones or rubble, since it can significantly increase
flexibility of construction and enable building at potentially dangerous or difficult-to-access places, while
helping to reduce material waste (Eversmann, 2018). This is particularly relevant for the task of building
utility structures (e.g. noise protection walls, river bank reinforcements or protection barriers), which are
usually constituted by great quantities of irregular elements and where the global approximate shape is more
important than the exact composition.

Deploying robotic systems in such applications, however, poses several challenges. First, the fabrication of
large-scale building structures typically requires the employment of mobile robots to overcome the constrained
workspace limitations of stationary manipulators. These robots need to move during construction, while still
being able to localize themselves with respect to the working environment and assemble structures accurately
in space (Dörfler et al., 2016). Secondly, the use of arbitrarily-shaped materials found on-site requires efficient
perception algorithms able to identify individual object instances on the fly, without having any previous
knowledge about their geometry. Furthermore, to manipulate these irregular objects reliably, such systems
must be capable of selecting good grasping poses among many possible configurations and have the ability
of planning collision-free motions in potentially cluttered environments.

In this work, we address these challenges by demonstrating autonomous manipulation of large-scale stones
with a robotic walking excavator. By extending state-of-the-art mapping and grasp planning approaches to
real environments and irregular objects, we provide the robotic skills that are necessary to deploy autonomous
construction machines for further construction applications (see Fig. 1). The proposed system initially maps
the close vicinity of the robot by fusing the data acquired by its onboard LiDAR sensors and a camera
placed on a drone, and segments single object-like instances in the resulting 3D point cloud. These segments
are then added to a database that allows keeping track of their corresponding poses during manipulation.
Finally, based on the map and the segment database, collision-free grasping poses are planned in order to
move the objects of interest to the desired locations. All experiments are executed in the real-world setting
and with the machine shown in Fig. 2, putting special emphasis on the evaluation of the robustness of the
integrated perception and manipulation pipelines.



Figure 2: HEAP is an autonomous walking excavator based on a highly customized Menzi Muck M545. It is equipped
with onboard sensors for state estimation (GNSS, IMUs, and encoders) and scanning the environment (3D LiDARs).
As shown in the inset, the two LiDARs are mounted perpendicularly to each other such that a scanning motion is
achieved not only while driving the robot around, but also while swinging the cabin.

In brief, this article presents the following contributions:

• An online laser mapping system working with two LiDAR sensors on the same platform, enhanced
with object segmentation capabilities and a segment-based registration scheme that allows fusing
mapping data acquired from heterogeneous external sensors (e.g. a drone-borne camera) into the
LiDAR-based map.

• An object database that allows keeping track of identified objects while they are being manipulated
by the robot.

• A robust collision-aware grasp planning methodology for irregular objects in slightly cluttered and
occluded scenes.

• Demonstration of autonomous mapping, segmentation and grasp planning in real-world experiments
performed with a robotic excavator.

To the best of our knowledge, this is the first demonstration of such a level of autonomy in real experiments
for a construction task on an architectural relevant scale.



2 RELATED WORK

In order to autonomously build structures with material found on-site, construction robots require the ability
to perceive and map the complex, unstructured surrounding space, segment individual objects of interest in it
and manipulate these objects safely. Despite the recent advances in the context of on-site digital fabrication,
most applications only consider the use of regular materials, such as pre-fabricated bricks (Dörfler et al.,
2016), and there still exist only a few robots integrating all the aforementioned capabilities. For example,
in (Saboia et al., 2018) and (Fujisawa et al., 2015), completely autonomous systems are shown capable of
constructing auxiliary structures in order to achieve and maintain navigability across previously untraversable
terrain. However, they use customized compliant bags as construction material or apply polyurethane foam,
respectively, and not naturally occurring building materials such as stones. Closely related to our work are
the demonstrators presented in (Furrer et al., 2017) and (Liu et al., 2019), consisting of stationary robotic
systems that detect randomly placed stones and construct balancing vertical stacks with them. Although
the focus is also put on handling building materials of arbitrary shape, the aforementioned systems assume
that the geometry of the objects of interest is known beforehand, i.e. they are initially pre-scanned in an
offline step. Our approach, on the other hand, aims towards more generic use-cases and does not consider
any previous knowledge about the objects present in the scene. Instead, it attempts to discover object-like
instances in a map of the robot’s surroundings that is built online and perform manipulation based on this
information.

Estimating the robot’s pose together with an internal representation of the observed scene, which is com-
monly referred to as Simultaneous Localization And Mapping (SLAM), has been an extensively studied
problem by the robotics community in the last decades (Cadena et al., 2016). Particularly, LiDAR-based
SLAM approaches (Mendes et al., 2016; Droeschel et al., 2017; Shan and Englot, 2018) have become quite
popular due to its applicability to self-driving vehicles and other types of ground robots. However, these
systems typically target autonomous navigation use-cases and mainly seek to achieve good pose estimates
over very long trajectories, producing purely geometric maps of the traversed environment. Conversely, to
aid the manipulation tasks, we aim towards a higher-level scene representation where the notion of object
instances is available. While object-aware mapping systems have gained attention recently (Furrer et al.,
2018; McCormac et al., 2018; Grinvald et al., 2019), most of the existing approaches use volumetric map
representations and rely on RGB-D sensing, whose applicability is usually inhibited in large-scale outdoor
environments due to the limited working range and the poor performance under sunlight of depth cameras.
Our mapping approach, on the contrary, is more similar to (Dubé et al., 2017b), which uses a map repre-
sentation based on geometric segments extracted from 3D LiDAR point clouds. The main difference is that,
while in (Dubé et al., 2017b) these segments often correspond to partial observations of objects or structures
and are mainly used for localization and loop-closure detection (Dubé et al., 2017a), here we aim at obtaining
complete models of the individual objects in the scene in order to assist interaction planning.

Achieving an accurate and complete reconstruction of the scene becomes especially challenging when oper-
ating on construction sites, as the presence of bulky objects (e.g. building material) can limit the robot’s
mobility and occlude large regions of the map. To overcome this drawback, we take inspiration from works
on aerial-ground registration (Forster et al., 2013; Gawel et al., 2017) and enable the augmentation of the
LiDAR-based map with additional mapping data acquired by an external sensor that can observe the scene
from different viewpoints, such as a camera placed on a drone. A general approach to solve the 3D global
registration problem is to extract features from the input maps, match them and estimate the geometric
transformation that best explains the set of found correspondences (Holz et al., 2015). Similarly to (Dubé
et al., 2017a), our method aims at directly aligning sets of point-cloud segments extracted from the input
maps, as they are typically the most salient elements in the observed scene. However, instead of treating
these segments as single features, which might struggle when dealing with large differences in viewpoint
(Gawel et al., 2017), we compute local descriptors on these segments and then use the segments’ centroids
to efficiently select a geometrically consistent set of descriptor correspondences.



Grasp planning is often divided into analytical methods (Prattichizzo and Trinkle, 2016) that evaluate the
performance of a grasp according to physical properties such as the ability to endure external wrenches, and
empirical (data-driven) methods (Bohg et al., 2014) that use physical trials or human labels to evaluate
the performance. For analytical methods, the pose of the object to grasp is first estimated in the scene
and subsequently it is reasoned about where and how to place the gripper into a grasp configuration to
achieve the desired contact configuration. While it can be already difficult to accurately localize the pose
of an object in a cluttered scene, given a noisy and only partial point cloud (Glover and Popovic, 2013), it
implies that an accurate model of the object to manipulate already exists, which is not applicable to our use
case. For empirical methods on the other hand, there are multiple grasp detection approaches generating
grasp configurations in cluttered scenes directly without localizing single object instances first (ten Pas and
Platt, 2015; Kappler et al., 2015; Herzog et al., 2014). These approaches generate first a large number of
grasp candidates on the input point cloud, usually originating from an RGB-D camera. Then, they evaluate
the probability of the candidates being a grasp, e.g. in terms of force closure. For this, a classifier or
regression system is trained to detect the parts of a point cloud that can be grasped, given a large amount
of labeled data. Since these methods detect grasps based on graspable regions and independently of object
instances, they generalize well for new objects. In our outdoor case, depth images of the scene are not
available directly. Therefore, we perform the grasp detection on the point cloud reconstructed by 3D LiDAR
mapping. Additionally, in our approach we incorporate the available information of the segments in order
to augment the point cloud used for grasping. The registered object segments are added to the grasp cloud
as well as an estimate of the ground plane in order to compensate for missing information in the partially
cluttered scene. We use a similar approach as presented in (ten Pas et al., 2017) to sample grasp hypotheses
on the point cloud and classify the grasp candidates. However, from the sampled grasps we perform a further
selection step where the remaining candidates are filtered for heuristic criteria derived from the specific task
to obtain the final grasp candidate. The idea of filtering the best generated hypotheses is that we are not
necessarily interested in the one optimal grasp (Borst et al., 2003). Many hypotheses might have a similar
score, and we are rather interested in a sufficiently good grasp that fulfills other requirements like how easily
the configuration can be reached.

3 SYSTEM DESCRIPTION

As robot platform we use HEAP (Hydraulic Excavator for an Autonomous Purpose), a highly customized
Menzi Muck M545 excavator developed for autonomous use cases as well as advanced teleoperation. This
machine, shown in Fig. 2, has customized, precisely force and position controllable, hydraulic actuators in
the arm and the legs, making it adaptable to any kind of terrain. On the sensing side, HEAP is equipped
with a Leica iCON iXE3 with two Global Navigation Satellite System (GNSS) antennas and a receiver that
can be used for localization of the cabin. Real-time kinematic (RTK) corrections for the GNSS signals are
received over the Internet from permanently installed base stations. In addition, SBG Ellipse2-A Inertial
Measurement Units (IMUs) are installed both in the cabin and on the chassis, and Sick BCG05-C1QM0199
wire draw encoders are used to measure the piston position and velocity of the arm cylinders, whose force is
estimated with pressure sensors integrated in the servo valve control modules. Finally, two Velodyne Puck
VLP-16 LiDAR scanners placed at the front edge of the cabin’s roof are used for mapping tasks. As shown
in Fig. 2, the LiDARs are mounted orthogonally to each other such that a scanning motion is achieved not
only while driving the robot around, but also while swinging the cabin. In the scope of this work, the sensor
mounted perpendicularly to the ground plane will be referred to as the vertical LiDAR, whereas the other
one will be named horizontal LiDAR. For a more detailed description of the system’s sensors and actuators,
we refer the reader to (Jud et al., 2019).

Besides HEAP, an AscTec Neo hexacopter equipped with a Visual-Inertial (VI-) Sensor (Nikolic et al., 2014)
is used in the experiments presented in this work to provide additional mapping data of the environment.
This data is registered into the excavator’s LiDAR-based map leading to a reconstruction of the scene that
is free of occlusions, as explained in Sec. 4.4.
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Figure 3: Overview of the perception pipeline developed for the excavator HEAP. The LiDAR, inertial and GNSS
measurements are processed online to estimate the sensor-suite’s pose and create a point-cloud map of the environ-
ment. When triggered, the segmentation routine extracts object-like segments from the current map and stores them
as separate entities in the Object Database. Additionally, the registration module allows the fusion of externally
built maps for improved scene reconstruction.

4 PERCEPTION PIPELINE

As the goal here is to autonomously manipulate objects of interest present in the scene, we are looking to
achieve a consistent and up-to-date map of the robot’s (i.e. excavator’s) surroundings as well as accurate
segmentation masks for the objects in the map. In this work, we assume no prior knowledge of the envi-
ronment or of the objects to be grasped, for the sake of a generally applicable methodology. Therefore, we
present a mapping pipeline that uses the excavator’s onboard LiDAR sensors to incrementally build a 3D
point-cloud map of the environment and is able to segment generic objects in it. Additionally, the system
features a segment-based global registration module that enables fusing external mapping data, such as
point-cloud maps generated from drone-borne vision sensors, into the LiDAR-based map to achieve a more
complete reconstruction of the scene. The object-like instances segmented out from this map are stored in a
database that is consulted to update the map following the movement of objects in the scene by the robot.
An overview of the different modules constituting the perception pipeline is depicted in Fig. 3.

4.1 Vision-based Pre-mapping Using a Drone

With the aim of providing a complete map of the scene for grasp pose planning (i.e. free of occlusions),
we intend to reconstruct a point cloud of the region of interest from multiple viewpoints and register it
later on with the excavator’s LiDAR-based map. To this end, we initially collect some visual data with a
VI-Sensor mounted on the AscTec Neo hexacopter, which is manually piloted over the region of interest.
The trajectory of the VI-Sensor’s left camera is estimated online using the VINS-Mono SLAM system (Qin
et al., 2018). Once this inspection task is done, we select a subset of about 200 images from the recorded



data and we perform an offline reconstruction of the scene based on Structure from Motion (SfM) using
COLMAP (Schonberger and Frahm, 2016). The scale of the reconstructed model is finally recovered by
computing the 3D similarity transformation between the camera locations provided by the SfM pipeline and
the corresponding camera positions previously estimated with VINS-Mono. Although efficient vision-based
online mapping algorithms exist, we decide to use a method that produces high quality point clouds (see
Fig. 7 for an example), allowing for a better alignment with the LiDAR-based map. Note, however, that
this method is used as a proof of concept and that other sensing modalities and mapping approaches able
to reconstruct point-cloud maps of an observed scene (e.g. LiDAR-based) could also be employed here.

4.2 LiDAR-based Scene Mapping

The excavator’s LiDAR-based mapping system exploits the well-established graph-based SLAM formulation
(Grisetti et al., 2010), which typically models the underlying structure of the problem as a pose graph. In
graph-based SLAM, every node in the graph corresponds to a robot pose, while edges connecting these nodes
encode spatial constraints between robot poses (i.e. relative transformations) that result from observations
or odometry measurements. Solving the SLAM problem then consists of determining the set of robot poses
that best satisfies all the spatial constraints.

In mathematical terms, given a set of state variables X = {x1, ...,xm}, where xi describes the pose of node
i, and a set of measurements, with zij and Ωij being respectively the mean and the information matrix of
a single measurement relating nodes i and j, the goal of this maximum likelihood approach is to find the
configuration of the nodes X ∗ that minimizes the negative log-likelihood of all the observations. This is
equivalent to solving the following least squares error minimization problem:

X ∗ = argmin
X

∑

〈i,j〉∈C

e
T
ijΩijeij , (1)

where C denotes the set of pairs of indices for which a measurement is available and eij = zij − ẑij (xi,xj)
is a vector error function that measures how well the constraint originated from measurement zij is satisfied
by the predicted measurement ẑij (xi,xj), given a configuration of the nodes xi and xj .

The nonlinear optimization problem in Eq. 1 can be effectively solved using the Gauss-Newton approach.
Specifically, the proposed mapping system builds on top of the LaserSLAM (Dubé et al., 2017b) back-end,
which performs incremental pose-graph update and optimization using the iSAM2 (Kaess et al., 2012) al-
gorithm to estimate the robot’s trajectory in real time. Measurements provided by the onboard sensors are
processed by a customized front-end to generate odometry and scan-matching constraints between consecu-
tive nodes of the pose graph. In this work, odometry constraints are generated from state estimation, which
fuses GNSS measurements with the inertial data provided by the robot’s IMUs. Scan-matching constraints,
on the other hand, are computed by aligning consecutive LiDAR scans using a process that consists of the
three following steps:

1) Self-filtering: To prevent the scene map from being corrupted by the robot’s arm and legs, which move
mostly inside the field of view of the LiDAR sensors, each incoming scan is initially processed by a self-
filter that approximates the excavator’s links with simple shapes, such as boxes or cylinders, and uses the
robot’s current state to discard the points lying on the robot itself (Jud et al., 2019).

2) Scan Pair Assembly: Once a new pair of filtered scans is available, the vertical scan SV
k is merged with

the corresponding horizontal scan SH
k to form an ”assembled scan pair” Sk, i.e. a point cloud composed

of both SV
k and SH

k , expressed in the frame of the horizontal LiDAR. This requires SV
k to be transformed

into the frame of SH
k , which is achieved by applying a fixed pre-calibrated transformation THV from

the vertical LiDAR frame V to the horizontal LiDAR frame H. Since the sensors are not synchronized,
we additionally use the state estimation measurements to correct for the potential motion of the cabin
between the timestamps at which the two scans being merged were acquired.



3) Scan Matching: Constraints relating consecutive robot poses are obtained using the Iterative Closest
Point (ICP) algorithm to register the current scan pair Sk against a submap composed of the m previous
scan pairs, expressed in the frame of the previous horizontal LiDAR’s pose. Compared to performing
scan matching for each individual scan, our approach has two main advantages: first, given that scan
pairs contain more points, the ICP registration against the submap becomes more robust; secondly, since
nodes are added on a scan pair basis, the pose graph keeps the same size as if a single LiDAR sensor was
used.

The LiDAR-based map is created by accumulating the 3D scan pairs once the corresponding nodes are
optimized by the back-end. To avoid uninformative accumulation of data and the growth of the pose graph
when the robot is not moving, a new node together with one odometry and one scan-matching constraint
is added to the graph only if the horizontal LiDAR has travelled a minimum distance dposes. Furthermore,
since we are mostly interested in mapping the excavator’s workspace, a local point cloud is extracted upon
addition of new scans by defining a robot-centric cylindrical region, whose radius Rmap is set to be slightly
higher than the maximum arm’s reach. The map data is finally filtered and downsampled using a voxel
grid of resolution resvoxel with nmin, a minimum number of points per voxel to consider it as occupied. The
result is a 3D point cloud map that is incrementally built around the current robot location without being
corrupted by the platform’s moving parts.

4.3 Map Segmentation

When the point density of the LiDAR-based map reaches a certain threshold during an initial scanning
phase, a segmentation routine is automatically triggered in order to detect any distinct objects of interest
present in the scene. Such objects are extracted from the current map as a set of 3D point clusters Pi (i.e.
segments) using a geometric technique inspired by (Douillard et al., 2011). This method assumes that the
ground operates as a separator between the segments and thus requires it to be previously removed from the
input point cloud. In our implementation, this is achieved by running a RANSAC-based 3D plane fitting
algorithm with a distance margin dplane that accounts for potential terrain undulations. After most of the
points belonging to the ground have been removed, Euclidean clustering is used to grow segments. The
extracted clusters then go through a RANSAC-based planarity check that discards nearly planar segments,
which usually correspond to regions of the terrain not having been filtered out previously. Finally, the
remaining non-planar segments Pi and their centroids ci (i.e. the average of all Pi’s points), are added to
the Object Database described in Sec. 4.5.

4.4 Segment-based Global Registration

The registration module gives the perception system the ability to align externally built point cloud maps
with the LiDAR-based map that the robot uses for localization. This becomes especially valuable when the
goal is to perform manipulation tasks, since augmenting the robot’s map with additional data acquired by
an external sensor (e.g. a camera placed on a drone) helps adding information in occluded regions of this
map and allows for effective 3D reconstruction of the objects in it.

Our registration approach, whose goal is to find the transformation that best aligns the externally built
(i.e. source) map with the LiDAR-based (i.e. target) map, leverages the segmentation module presented
in Section 4.3 to perform registration on the basis of local geometric descriptors computed on segments.
The resulting transformation is finally used to align the two original input maps and merge the overlapping
segments from the source and target point clouds. By choosing a purely geometric method instead of relying
on GPS-based co-localization strategies, our method is able to deal with mapping data acquired by robots
that do not use GPS-based localization and is also suitable in GPS-denied environments. The proposed
approach consists of the following steps:



1) Segmentation of the Input Maps: When the registration is triggered, the source map is initially
filtered using a voxel grid of resolution resvoxel (i.e. the same that is used to downsample the LiDAR-
based map), resulting in a point cloud which has a similar point density to the target map. Both the
source and the target point clouds are segmented using the method described in Sec. 4.3. This step is
especially useful to remove parts of the input maps whose geometry is not descriptive enough to allow
for robust matches, e.g. planar or low point-density regions.

2) Keypoint Extraction and Description: From both segmented point clouds, we extract keypoints
using the Intrinsic Shape Signatures (ISS) detector (Zhong, 2009) and describe them using the Unique
Signatures of Histograms for Local Surface Description (SHOT) (Tombari et al., 2010). Besides SHOT, we
tested two additional descriptors, namely the Fast Point Feature Histograms (FPFH) (Rusu et al., 2009)
and the Rotational Projection Statistics (RoPS) (Guo et al., 2013), but they exhibited lower performance:
the former were less robust in the matching step, whereas the latter, despite achieving comparable results
to the SHOT descriptors, were considerably more expensive to compute, because the triangulation of
both input point clouds was required in this case.

3) Descriptor Matching: The matching module solves the data association problem between keypoints
extracted from both input maps by comparing their descriptors. In our implementation, we perform an
efficient nearest-neighbour search in the descriptor space using a kd-tree.

4) Geometric Verification: From the set of 3D keypoint correspondences identified in the previous step,
we extract clusters of geometrically consistent matches (i.e. matches that vote for the same geometric
transformation) and select the b most voted for transformations. These transformations are then used to
transform the source segment centroids from the source map frame S to the target map frame M. For
each set of transformed source centroids, we perform a nearest-neighbour search against the set of target
centroids. Matches between closest centroids are accepted if the Euclidean distance between them lies
below a threshold dmatch. Finally, after all candidate transformations have been evaluated, the one that
gives the highest number of inlier centroid matches gets selected. To discriminate between transformations
leading to same inlier ratios, we choose the one that minimizes the highest distance between matched
centroids.

5) Transformation Refinement: The transformation selected in the previous stage, which we denote as
T

coarse
MS , is used as a prior in an ICP step that refines the alignment of the source and target point clouds,

yielding an improved transformation T
icp. To reject unsuccessful registrations, we apply a threshold

e∗icp to the Root Mean Square Error (RMSE) of ICP, which is computed using only the segments whose
centroids have been matched in the geometric verification step. The final transformation between the
source and the target maps, TMS , is then computed as follows:

TMS = T
icp · T coarse

MS (2)

6) Map and Segments Alignment: The transformation obtained as a result of the registration process,
TMS , is used in a last stage to align the original maps. In addition, overlapping segments from the
source and target maps are combined forming single object models. This is done by merging each pair
of previously matched segments in a common point cloud, which is then downsampled using a voxel grid
filter. This way, the output of the registration pipeline is not only a map containing the registered input
point clouds, but also the segmented, better reconstructed object models, which are fed into the Object
Database described in Sec. 4.5 to aid the manipulation tasks.

4.5 Object Database and Dynamic Object Handling

To properly deal with potentially movable object instances in the map, we set up a database where, for each
segmented object, we store its globally referenced point cloud Pi, its centroid position ci and an identification
number i. These object instances are generated as a result of the segment-based registration process, when
an external map is available, or by simply segmenting the LiDAR map using the module described in Sec. 4.3.



The database is then used to aid the manipulation tasks by constantly updating the locations of the objects
in the map, as described in the remaining of this section.

When an object is grasped, we associate the transformation between the map frame M and the gripper frame
G, T grasp,i

MG , given by the state estimation, with the corresponding object instance stored in the database.
In addition, we remove all map points inside a sphere of radius Robj centered around the grasped object’s
centroid in the LiDAR map. After lifting the robot’s arm, the hole created in the map will be replaced
gradually by newly detected points on the ground, while the self-filter described in Sec. 4.2 will prevent the
object from being remapped as long as it lies inside the gripper.

As soon as the object is released in a new position, we again extract from state estimation the transformation
representing the gripper pose with respect to the map frame, T release,i

MG , and use it together with the previously
stored grasp pose to estimate the transformation T

i experienced by the corresponding object instance in the
scene:

T
i = T

release,i
MG ·

(

T
grasp,i
MG

)−1

(3)

This transformation is then applied to the object’s point cloud and centroid. Note that, by representing the
objects with their globally referenced point clouds, we implicitly keep track of their position and orientation
in the map.

After releasing the object, a scanning motion is performed, which causes the object to be remapped by the
LiDARs. At this point, an ICP step is triggered to realign the transformed object point cloud with the
LiDAR map, correcting for potential inaccuracies in the predicted object’s location. This way, the map and
the Object Database are always kept consistent with the state of the environment and, at the same time,
the identified objects can be individually tracked as they are being moved by the robot.

5 GRASP POSE PLANNING PIPELINE

The goal of the grasp pose planning pipeline (Fig. 4) is to find viable grasp configurations in order to pick
the segmented objects instances. In the case of the autonomous excavator, a grasp configuration is defined
as a 6 degree of freedom (DoF) pose of the gripper where a contact configuration with the object can be
performed. A grasp configuration with contact wrenches that span the origin of the object is called a force
closure grasp. The purpose of grasp pose detection is to find force closure grasps on the object of interest.
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Figure 4: Overview of the grasp pose planning pipeline. The LiDAR map is augmented with the registered object
segments and cropped to the region of interest around the selected segment. The generated grasp cloud is used for
sampling grasp hypotheses which are filtered and ranked to obtain the final grasp.



The grasp pose planning consists of three steps: identification of the region of interest and generation of
a planning point cloud; detection of grasp candidates in the region of interest; and subsequent filtering
and ranking of the candidates to obtain a feasible grasping configuration. We will focus here on finding
grasp poses for two-finger grippers, as the excavator is equipped with a two-jaw angular gripper. Both jaws
are mechanically connected and are moved by the same hydraulic actuator, giving one DoF. The jaws are
mounted on the base part of the gripper that we will further reference to as palm. For collision checking
between gripper and planning point cloud, the gripper shape is approximated with convex polyhedra enclosing
the jaws and the palm.

5.1 Segment Identification

The grasp pose detection tries to find feasible grasp configurations directly on a point cloud representing the
proximity of segmented objects, called planning point cloud. This allows not only to evaluate the quality of
grasps, but also to consider the collision with surrounding objects and the ground. In a typical application
the decision which object to grasp would come from a higher level planning instance, and depends on the
structure to be built. In our case we decide to grasp the largest segment with the most points from all
the available segments Pi (Sec. 4.3). Starting with the largest segment is motivated by using them first for
building a construction.

5.2 Grasp Planning Point Cloud

The grasp planning point cloud around an object of interest is generated as preparation for subsequent
manipulation. In order to obtain the planning point cloud, we crop the LiDAR-based map (Sec. 4.2) around
the location of the selected segment’s centroid ci with a margin corresponding to the full gripper width
(Fig. 5a) and combine it with the registered external point cloud (Fig. 5b). The merged maps are down-
sampled to obtain a uniform point density on the grasp planning point cloud (Fig. 5c).

If no external point cloud is available, e.g. after relocating the segments from their initial position, we could
only rely on the LiDAR map for grasp planning (Fig. 6a). However, the LiDAR-based map may be partially
cluttered and occluded by the objects itself due to the view point, leading to holes in the map where no data
points are available. To provide a complete map for grasp pose planning without external map, the aligned
object models from the Object Database are merged to the planning point cloud, assuring that we also have
information on the opposite side to the LiDAR direction (Fig. 6b). There might still be holes in the ground
plane due to the occlusion by the objects, leading to grasps that would penetrate the ground. To fill these
holes, a RANSAC plane estimation is performed to find the ground plane and to artificially augment over
the complete planning point cloud (Fig. 6c).

(a) (b) (c)

Figure 5: Given an externally built scene point cloud, the grasp planning cloud is obtained by cropping the LiDAR
map in a region of interest around the desired Segment (a) and merge it with the registered external point cloud (b).
The merged map is down-sampled to get a uniform distribution (c).



(a) (b) (c)

Figure 6: Without external point cloud, the grasp planning cloud is obtained by cropping the LiDAR map in a region
of interest around the desired Segment (a). The registered segments are merged to the planning cloud (b) and a
ground plane is fitted to fill holes in the map due to occlusion (c).

5.3 Grasp Detection

The intention of grasp detection is to generate a large number of grasp hypotheses on the planning point
cloud that do not collide with the environment. In a subsequent step, the hypotheses can be filtered and
ranked according to their applicability and success chance. To generate the grasp hypotheses, N points are
sampled on the desired segment Pi in the planning point cloud. Each sample p is assigned a local reference
frame F by evaluating the Eigenvectors of the matrix

M (p) =
∑

q∈Br(p)

n (q)n (q)
⊤

(4)

where n (q) is the outwards pointing unit surface normal at point q, and Br (p) is the r-ball around point p.
The local reference frame is composed of F = [ν3 (p) ,ν2 (p) ,ν1 (p)], where ν1 (p) corresponds to the largest
Eigenvalue and ν3 (p) to the smallest one. This assures that the x-axis of the reference frame is pointing
away from the object and the z-axis is pointing along the axis of minimal curvature. For each sample point p,
we generate multiple orientations by rotating around the y- and z-axis of the local reference frame in discrete
intervals. The resulting x-axis of the rotated frame is denoted as approaching direction. The polyhedral
gripper model with open jaws is moved along the approaching direction until palm or jaws are in contact
with the planning point cloud. We add a sampled pose to the list of grasp hypotheses if the closing region
of the jaws is not empty.

Note that the grasp detection does not require a perfect segmentation of the object as the planning point
cloud represents the closer vicinity of an object. However, faulty segmentation, like merging close objects to
one segment, may cause that grasp contact points to be placed on several different objects, which is undesired
because it reduces the grasp success rate and we are generally interested in manipulating one object at the
time.

5.4 Grasp Filtering and Ranking

The grasp detection can generate hundreds of grasps for a single object that have to be filtered and scored
in order to obtain the desired grasping configuration. In a first step, the grasp hypotheses are evaluated for
force closure. In (ten Pas et al., 2017) they present a grasp classifier using a four-layer Convolutional Neural
Network (CNN) that predicts if a grasp is a force closure based on the planning point cloud and a 2-finger
gripper model. We apply this classifier to the detected grasp hypotheses. This predicts whether the grasps
are force closure, but still many candidates may be valid. To select the final grasp candidate, we sequentially
rank and filter the remaining grasps by task specific criteria that showed to provide reliable grasps. First,
the grasps are ranked according to their approaching direction. Given the upwards directed normal of the



ground plane nground and the approaching direction of a grasp hypothesis, which is the normal pointing
away from the palm napproach, the alignment cost calign is given as the angle between the two vectors

calign = arccos
(

−n
⊤
groundnapproach

)

. (5)

We prefer approaching directions that are normal to the ground plane because they correspond to a nominal
configuration of the excavator arm. Furthermore, they help assuring that the arm is not colliding with
surrounding objects. After selecting the best 40 grasps based on the approach normal by minimizing calign,
they are ranked on how much the object is enclosed by the gripper and the 20 best grasps are selected.
An enclosing (or power) grasps is preferable to a pinching (or precision) grasp as the object can be gripped
more stably. The enclosing cost cenc is represented by the distance between the palm and the centroid in
approaching direction

cenc = rCoMnapproach, (6)

where rCoM is the position vector from the palm center to the object centroid ci. Finally, the grasps are
ranked by closeness to the centroid of the segment. The closeness of a grasp to the centroid is given by the
distance

cdist =
‖rCoM × napproach‖

‖napproach‖
(7)

between the centroid of a line going through the Tool Center Point (TCP) along the approaching direction.
This criterion is motivated by the need to avoid torsional moment on the grasped object during motion that
might lead to rotational shift of the object in the gripper. The best ranked grasp is selected to be executed.

6 EXPERIMENTS

To show the applicability and repeatability of the presented system, we implemented the different modules
using the Robotic Operating System (ROS) (Quigley et al., 2009) and integrated them on the robotic
excavator HEAP to perform autonomous manipulation of large objects. The goal is to autonomously map,
segment and grasp a set of randomly placed, irregularly-shaped stones and move them to user-predefined
positions, while constantly updating the map in the process, as shown in the complementary video footage1.

6.1 Experimental Setup

We use a set of seven gneiss rocks which show variety in properties like shape and size, ranging from 0.5m3

to 1m3, approximately. The geometric models of the stones are not available beforehand and therefore need
to be discovered and segmented on the fly.

We perform two experiments, each of them starting with the stones randomly placed on rough terrain
within the reach of the excavator’s arm. In a first step, a point cloud of the initial stone arrangement is
reconstructed from the data acquired by the drone-borne VI-Sensor using the method explained in Sec. 4.1
(see Fig. 7 for an example). Upon creation of the vision point cloud, we start building the LiDAR map online
by swinging the excavator’s cabin. When the region of interest has been scanned by the LiDAR sensors,
the vision point cloud is registered into the LiDAR map using the approach described in Sec. 4.4 and the
segmented object instances are fed into the Object Database. Then, the robot starts planning viable grasp
configurations and paths in order to pick the detected objects and place them at different user-predefined
positions, while updating the map accordingly. In the scope of these experiments, the stones are moved
to equally-spaced fixed locations on the ground. To achieve actual architectural construction, additional
planning is necessary to decide the exact location of the objects in the target structure. This is an involved
process as not only geometric fit, but also structural stability and functionality of the target structure have
to be considered (Johns et al., 2020), and therefore will not be addressed in detail in this work.

1https://youtu.be/4bc5n2-zj3Q



Figure 7: Top view of the reconstructed point cloud of the second experiment’s initial stone arrangement from drone
images. The red frusta represent the camera poses from which the registered images were taken.

All the movements of the platform are planned and executed autonomously except for the closing and opening
of the gripper, and the operator is placed in the cabin for supervision and safety only. For motion planning,
we use a whole-body trajectory planning framework that is suitable for both, wheeled (legs) and non-wheeled
(arm) limbs (Jelavic and Hutter, 2019). However, since the focus of this work is the manipulation of the
stones and not the traversing of the terrain, we keep the excavator base always at the same desired location
during manipulation. For the arm motion itself, a simple heuristic-based planning approach suffices. The
arm trajectory is composed of waypoints that respect collision constraints with the excavator’s cabin and legs,
and approach the start and goal poses perpendicularly to the ground. These waypoints are then interpolated
with Hermite splines to put together a trajectory. The arm controller used to track the trajectory relies on
a hierarchical-optimization based inverse kinematics approach that computes joint velocities and enforces
kinematic limits (Bellicoso et al., 2016).

In the first experiment, the stones are grasped and moved once, whereas in the second one, the process of
grasping and relocating all the stones is repeated four consecutive times without resetting the map. With
this, we demonstrate that the perception pipeline effectively handles objects being moved by the robot and
the map can therefore be used for planning grasp poses and safe motions during the course of a continuous
application.

6.2 Segmentation and Global Registration

Fig. 8 illustrates the maps obtained as a result of the initial mapping phase in the two experiments, before
moving any stones. These maps are created by swinging the excavator’s cabin for about 20 seconds before
triggering the registration routine to align the previously reconstructed vision point cloud with the LiDAR
map, which is being built online. For each stone arrangement, we show the registered vision and LiDAR-
based point clouds, as well as the segmented object instances, which are obtained after merging corresponding
segments extracted from both input point clouds. These qualitative results evidence that the registration
module is especially useful for adding information in occluded regions of the LiDAR map and improving the
completeness of the segmented object models.



(a) (b)

(c) (d)

Figure 8: Example results of the map registration and segmentation process during the first (a, b) and the second (c,
d) experiments. The left pictures show the aligned LiDAR (green) and vision (red) maps, whereas the right pictures
illustrate the merged map (grey) overlaid with the segmented object instances (shown in different colors).

To evaluate the robustness of the segmentation and registration modules against a variable number of
accumulated LiDAR scans, we use additional LiDAR data that was collected while swinging the excavator’s
cabin after setting up each of the experiments mentioned above, as well as the reconstructed vision point
clouds of the two initial stone arrangements. The recorded data is played back and, while the LiDAR map is
being built, the registration routine is triggered every five seconds for a total duration of one minute. Each
trial is defined as successful if the RMSE of the final ICP step, as defined in Sec. 4.4, lies below e∗ICP and
the seven stones get detected as single objects in the map.

Results show that approximately 15 seconds need to be spent in building a LiDAR map of the initial region
of interest, which in our experiments is of about 50m2, before achieving the first successful registration. The
subsequent registration attempts (here 20 attempts in total) are executed with an overall success rate of
90%, proving our segmentation and registration methods to be able to handle different point densities in the
LiDAR map. The observed failure cases are caused by the fact that many of the extracted 3D features are
wrongly matched and the algorithm is not able to find a geometrically consistent transformation that is close
enough to the optimal one. In the real-world application, however, these cases are detected by monitoring
the RMSE of the final ICP step, and the system continues accumulating LiDAR scans until a successful
registration is achieved.

For the sake of completeness, in Table 1 we report the computational times of the individual steps in the
registration pipeline, including the initial segmentation of the input point clouds, when executed on an Intel
Xeon E-2176M CPU. As it can be observed, the complete segment-based registration routine is executed in
approximately 1 second in both of our experiments, which makes our approach suitable for online operation.
The sizes of the maps used to perform the experiments detailed in this section are reported in Table 2.
Additionally, the most relevant parameters of the perception pipeline are summarized in Table 3.



Table 1: Mean computation times and standard deviations (in ms) of each step involved in the registration process,
as computed on an Intel Xeon E-2176M CPU.

Submodule
Experiment 1 Experiment 2

LiDAR Vision LiDAR Vision

Segmentation 52 ± 8 58 ± 1 61 ± 17 58 ± 1

Keypoint extraction 57 ± 7 47 ± 2 48 ± 14 53 ± 2

Keypoint description 17 ± 2 18 ± 1 20 ± 12 21 ± 1

Descriptor matching 279 ± 23 284 ± 64

Geometric verification 8 ± 1 7 ± 2

Transform. refinement 470 ± 226 420 ± 275

Total 998 974

Table 2: Sizes of the LiDAR-based and vision maps (mean and standard deviation given in number of points) in the
registration experiments. Note that the size of the LiDAR maps varies as the number of accumulated scans increases,
whereas the vision point clouds are pre-computed and therefore their size is fixed.

Experiment 1 Experiment 2

LiDAR Vision LiDAR Vision

92301 ± 9443 73547 123564 ± 29622 98190

Table 3: Main parameters of the perception pipeline.

LiDAR-based Mapping

Min. distance between poses, dposes 1 cm

Num. of scan pairs per submap, m 10

Local map radius, Rmap 10 m

Voxel grid resolution, resvoxel 3 cm

Min. point count per voxel, nmin 1

Radius for object removal, Robj 1 m

Segmentation and Registration

Plane fitting distance threshold, dplane 10 cm

ISS detector salient radius, Riss 6 cm

SHOT descriptor radius search, Rshot 10 cm

Max. num. of candidate transformations, b 10

Max. dist. btw. matched centroids, dmatch 1 m

ICP RMSE threshold, e∗icp 3 cm



6.3 Grasp Pose Planning

The stones were grasped and relocated five times each, resulting in a total of 35 grasp attempts. The best
ranked grasp from the grasp pose planning pipeline was selected and could be executed with a success rate
of 88.6%. A grasp is deemed successful if it is collision-free, force closure and allows moving the object
without dropping it. Grasp attempts that are not successful are detected by applying a closing force while
lifting the stone. In case of slippage or dropping, the gripper jaws further close during the lift process, which
is detected by the wire draw encoder of the gripper piston. A sudden drop of the object after lifting can be
recognized by monitoring the arm cylinder forces. Note that this notion of grasp success does not account
explicitly for any safety margin, i.e. whether the grasped object can withstand an external disturbance force,
but it implies robustness to orientation changes and shaking during placing trajectory execution. If the best
ranked grasp could not be executed successfully, the grasp pose was manually adjusted in order to relocate
the object.

The grasp filtering and ranking is designed to successively filter grasps with high costs for a certain criteria
and finally select a grasp that achieves the lowest cost for the distance between the TCP and the stone
centroid. Fig. 9 compares the costs of the grasp filtering and ranking by the three criteria consisting of
the alignment of the approaching direction to the ground plane (a), the enclosing of the grasp as distance
between the centroid and the palm (b), and the closeness of the grasp to the centroid (c) for all generated
grasps predicted being force closure and the finally selected grasps. For better comparison, each grasp cost
is normalized by its median value of all generated grasps. The evaluation is shown for two different stones
labeled with 1 and 6 (see Fig. 10). Stone 1 is more roundish, whereas stone 6 is an example of a flat stone.
The evaluation for the other stones shows similar results and is left out for the sake of brevity.

We can see that for the roundish stone 1, the generated grasp hypotheses have a larger variation in the
cost representing alignment to the ground plane (see Fig. 9a) as for the flattish stone 6, meaning that the
generated grasps are approaching the object from directions all around it. Whereas stone 6 is flat and has to
be pinched by the gripper, stone 1 is better suited for an enclosing grasp as it is larger and more roundish,
resulting in a better enclosing cost (see Fig. 9b). Because the distance between the TCP and the centroid is

ge
ne
ra
te
d

se
le
ct
ed

ge
ne
ra
te
d

se
le
ct
ed

0

1

2

3

4

5

Stone 1 Stone 6

[-
]

(a) Alignment

ge
ne
ra
te
d

se
le
ct
ed

ge
ne
ra
te
d

se
le
ct
ed

0

1

2

3

4

5

Stone 1 Stone 6

[-
]

(b) Enclosing

ge
ne
ra
te
d

se
le
ct
ed

ge
ne
ra
te
d

se
le
ct
ed

0

1

2

3

4

5

Stone 1 Stone 6

[-
]

(c) Distance CoM - TCP

Figure 9: Grasp costs of the hierarchical filtering steps in terms of the alignment of the grasp approaching direction
to the ground plane normal in (a), the enclosing, measured as distance from the palm to the centroid in approaching
direction in (b), and the closeness of the tool center point to the centroid of the stone in (c). Shown are the cost
distribution of all generated grasps predicted being force closure and the selected grasps of stone 1 and 6. For
comparison, each grasp cost is normalized by its median value of all generated grasps.



Figure 10: Mesh reconstruction from point cloud data of stone 1 (left) and stone 6 (right). Stone 1 has a rather
roundish shape, whereas stone 6 is flatish.

the final filtering criteria, we can observe the largest impact on the cost for the selected grasps (see Fig. 9c).
We see that the sequential filtering improves all cost criteria while maintaining a balance between them,
leading to a success-promising grasp selection.

Four grasps out of 35 had to be adjusted manually because the selected grasping pose could not be executed
successfully (slippage of the stone). Especially for flat but relatively thin objects, the grasp detection provided
only a small number of grasp hypotheses (around 10) that are labeled force closure. This is due to the noise
in the point cloud and the fact that the grasp has to be placed close to the ground. Thus, the subsequent
filtering and ranking selects the grasp based only on where the TCP is closest to the centroid of the object
without considering the other criteria.

(a) (b)

(c) (d)

Figure 11: State of the excavator’s map at four different instants of the second experiment: (a) before moving any
stones, (b) after moving the 2nd stone (c) after moving the 4th stone and (d) after moving the 7th stone. The object
instances are effectively tracked (note that same color is always associated with same stone across all figures) and
realigned with the map when moved by the robot.



6.4 Dynamic Object Handling

Fig. 11 depicts the state of the map overlaid with the segmented objects in four different instants during the
course of the second experiment mentioned in Sec. 6.1. The illustrations qualitatively show that the object
models are effectively tracked (the same color is always associated with the same stone across all four figures)
and realigned with the LiDAR-based map after being moved. Although no ground truth data is available to
quantify how precise the object models and their estimated locations in the map are, the high success rates
achieved by the grasp pose planning module (see Sec. 6.3) indirectly indicate that the overall accuracy of
the perception pipeline is sufficient for the task at hand.

7 CONCLUSION AND OUTLOOK

In this article, we have introduced an integrated perception and grasp pose planning system for autonomous
manipulation of large-scale irregular objects with a robotic excavator. The core of the perception pipeline
constitutes of a LiDAR-based mapping algorithm coupled with a segmentation approach that enables the
detection of object-like instances in the observed scene. Furthermore, it is enhanced with multi-sensor data
fusion capabilities, allowing for the registration of externally built maps of the regions of interest (e.g. 3D
reconstructions from images captured by a drone-borne camera, as shown in the experiments), and with
a database that helps keeping track of the identified objects’ poses during manipulation. The grasp pose
planning pipeline, on the other hand, is capable of sampling grasp hypotheses in a 3D scene given the
information provided by the mapping system, i.e. a point-cloud map of the robot’s surroundings and the
segmented objects in it. Besides selecting the grasp hypotheses by predicted force closure, a custom filtering
and ranking step is added in order to increase the grasp reliability. To the best of our knowledge, this is the

Figure 12: The presented mapping and manipulation tools in this paper were used for the application of dry stone
wall construction with the autonomous hydraulic excavator HEAP. The in-progress wall is overlaid with a potential
extension of the structure, generated by allowing the geometric planning solver to continue with additional digital
stone models. Further details on the geometric planning of the desired stone poses can be found in (Johns et al.,
2020).



first demonstration of such a level of autonomy in real experiments for a construction task on an architectural
relevant scale.

The mapping, segmentation and grasping system presented in this work is a required step towards fully
automated construction of utility structures such as noise protection walls, retaining walls, river bank rein-
forcements, or protection barriers. The described mapping and manipulation tools have already been used
in an actual application to build a wall-like irregular stone-based assembly on an architectural scale (see
Fig. 12). In this case, instead of simply placing stones in user-predefined positions, complete 3D recon-
structions of the grasped objects are generated and the desired pose of each stone is computed immediately
before placing. The reconstructed stone models are relocalized after being placed in the structure using the
approach explained in Sec. 4.5, which allows to account for settling and unexpected deviations in the target
structure. The geometric planning of the desired stone pose, which follows an iterative selection process
that aligns the considered stone with the geometric constraints of the target shape and verifies stability
in a physics engine, is beyond the scope of this work and described in more detail in (Johns et al., 2020).
Note, however, that the mapping and manipulation tools presented in this work are task-agnostic and can
be employed with different planners for autonomous construction and demolition applications.

A limitation of the current system is that the boulders need to be initially spread for accurate segmentation.
While this is still a realistic scenario that can be achieved by careful unloading of the material on site, we
aim at handling even more generic and practical situations in the future. Therefore, an important area of
research will focus on identifying individual object instances in more challenging settings, such as piles of
stones. For this, current work investigates the addition of a camera on the excavator’s arm, which could
potentially be used to map regions of the scene that are not visible by the onboard LiDARs and to introduce
more advanced segmentation techniques leveraging both texture and geometry. In addition, tracking the
object’s pose in the gripper will be necessary to improve the execution accuracy of the computed plans.

On the manipulation side, our experiments showed that it is not realistic to achieve a perfect success rate on
the first grasp attempt. Therefore, we plan to improve the autonomy of the grasp process with an automated
strategy for adapting the grasp or performing complete re-grasping upon detection of stone slippage or
dropping. This approach of attempting a grasp, observing if slippage appears, and adapt correspondingly is
also inspired by how human operators grasp irregular objects.
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