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In recent years, the robotics community has extensively examined
methods concerning the place recognition task within the scope
of simultaneous localization and mapping applications. This arti-
cle proposes an appearance-based loop closure detection pipeline
named “FILD++" (Fast and Incremental Loop closure Detection).
First, the system is fed by consecutive images and, via passing
them twice through a single convolutional neural network, global
and local deep features are extracted. Subsequently, a hierarchical
navigable small-world graph incrementally constructs a visual
database representing the robot’s traversed path based on the com-
puted global features. Finally, a query image, grabbed each time
step, is set to retrieve similar locations on the traversed route. An
image-to-image pairing follows, which exploits local features to
evaluate the spatial information. Thus, in the proposed article, we
propose a single network for global and local feature extraction in
contrast to our previous work (FILD), while an exhaustive search
for the verification process is adopted over the generated deep
local features avoiding the utilization of hash codes. Exhaustive
experiments on eleven publicly available datasets exhibit the sys-
tem’s high performance (achieving the highest recall score on
eight of them) and low execution times (22.05 ms on average in
New College, which is the largest one containing 52480 images)
compared to other state-of-the-art approaches.
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1 | INTRODUCTION

Autonomous robots have to explore unknown areas while
retaining the capability to construct a reliable map of the en-
vironment (Garcia-Fidalgo and Ortiz, 2015; Kostavelis and
Gasteratos, 2015). This process is widely known as Simulta-
neous Localization and Mapping (SLAM) and constitutes an
essential component for any modern robotic system (Cadena
et al., 2016).

Besides, place recognition –the ability to match a scene
with a different one located about the same spot– is necessary
to generate a valid map (Lowry et al., 2016). In recent years,
the mobile robot platforms’ increased computational power
allowed cameras to be established as the primary sensor to
perceive the appearance of a scene (Cummins and Newman,
2008, 2011; Engel et al., 2015; Tsintotas et al., 2019). How-
ever, the noisy sensor measurements, modeling inaccuracies,
and errors due to field abnormalities affect the performance
of SLAM. Identifying known locations in the traversed route
based on camera information to rectify the incremental pose
drift is widely known as visual loop closure detection (Mei
et al., 2010; Zhang, 2011; Botterill et al., 2011; Tsintotas et al.,
2018a; Han et al., 2021). This operation is highly related to
image retrieval, as the system tries to find the most simi-
lar visual entry within a visual database, which is explicitly
built using camera measurements gathered along a trajectory.
There are two main stages in this process, namely filtering
and re-ranking (Teichmann et al., 2019). Regarding filtering,
the database elements are sorted according to their similar-
ity to the query image, i.e., the current robot’s view. Then,
during re-ranking, each candidate image-pair generated from
the filtering is verified based on its spatial correspondences
(Radenovic et al., 2018).

Early studies in image retrieval used global description
vectors, such as color or texture, to represent the visual data
(Oliva and Torralba, 2001; Torralba et al., 2003; Konstantini-
dis et al., 2005; Oliva and Torralba, 2006). The subsequent
pipelines utilized the shape and local information extracted
through point-of-interest detection and description methods
to find the most similar candidates (Lowe, 2004; Bay et al.,
2006; Calonder et al., 2010; Amanatiadis et al., 2011; Rublee
et al., 2011). These approaches provided robust detection
against rotation and scale changes. However, the increased

time needed to extract and match local features constitutes a
significant bottleneck, particularly in highly textured environ-
ments (Tsintotas et al., 2019). Therefore, researchers adopt
more sophisticated solutions to overcome this drawback, such
as quantizing the descriptor space, producing more compact
representations, and faster indexing.

The so-called Bag-of-Words (BoW) model (Sivic and Zis-
serman, 2003), usually constructed through k-means clus-
tering (MacQueen et al., 1967), employs the widely uti-
lized Term-Frequency Inverse-Document-Frequency (TF-
IDF) technique to generate visual words histograms that repre-
sent the camera data. In many BoW-based place recognition
approaches, the proper image-pair is retrieved via histogram
comparisons (Gálvez-López and Tardós, 2012; Mur-Artal
and Tardós, 2014; Bampis et al., 2016, 2018; Tsintotas et al.,
2018b). Such methods exhibit high accuracy and low execu-
tion times, which are achieved due to the utilization of index-
ing techniques, e.g., the hierarchical k-means tree (Nicosevici
and Garcia, 2012), k-d tree (Liu and Zhang, 2012), and k-NN
graph (Hajebi and Zhang, 2014). Nevertheless, their function-
ality is highly dependent on the training environment wherein
the visual data are extracted and, in turn, on the produced
vocabulary. Some visual loop closure detection frameworks
incorporate mechanisms to map the environment through an
incrementally generated visual vocabulary to cope with such
dependencies (Filliat, 2007; Angeli et al., 2008; Labbe and
Michaud, 2013; Khan and Wollherr, 2015; Tsintotas et al.,
2018). However, due to their database construction, these
pipelines mainly adopt voting techniques to indicate the most
similar location within the traversed route.

Compared to hand-crafted, the features extracted from spe-
cific layers of Convolutional Neural Networks (CNNs) show
high discrimination power (Babenko et al., 2014; Sünder-
hauf et al., 2015; Hou et al., 2015; Gordo et al., 2016; An
et al., 2019). Thus, CNN-extracted elements became a pop-
ular choice for many image classification (Krizhevsky et al.,
2012) and scene recognition (Zhou et al., 2014) applications.
Afterward, the proper image is selected through comparison
techniques similar to BoW schemes. However, the spatial
information embedded in image frames, which is crucial for
data association between image-pairs for SLAM, is missing
in the location’s global representation. Hence, methods for
extracting local features have been developed. DEep Local
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Feature (DELF), one of the original methods proposed for lo-
cal CNN-based feature extraction, selects key-points based on
an attention mechanism (Noh et al., 2017). Subsequently, the
description stage is achieved using dense, localized features.
Finally, Principal Component Analysis (PCA) whitening re-
duces the descriptor space and improves the retrieval accuracy
(Jégou and Chum, 2012).

In our previous work (An et al., 2019), CNN-based global
features extracted by MobileNetV2 (Sandler et al., 2018)
were fed into a Hierarchical Navigable Small World (HNSW)
graph (Malkov and Yashunin, 2018) to map the environment
via an incrementally generated visual database. In addition,
the graph allowed for short indexing times when searching for
Nearest Neighbors (NN). Then, local features, extracted via
Speeded Up Robust Features (SURF) (Bay et al., 2006), were
converted to binary codes to achieve real-time geometrical
verification between the chosen image-pair. In this work, a
similar scheme for mapping the robot’s traversed path has
been adopted. Besides, we utilize two forward passes through
a single network for global and local features extraction. The
main advantages offered by this strategy are: (i) the highly
reduced execution time for feature extraction and (ii) a signifi-
cant accuracy improvement due to CNN-based features’ better
representation. Furthermore, in this article, we introduce a
re-ranking optimization, which is based on local features’ low
dimensional space (40 bins). Due to this fact, an exhaustive
search is employed, unlike our previous work where hash
codes were employed (Cheng et al., 2014), to improve the
verification process. Finally, the proposed framework is more
compact, simpler, and much faster than FILD (An et al., 2019).
The presented algorithm is evaluated experimentally against
a total of eleven benchmark datasets. As a final note, the
source code1 of our Fast and Incremental Loop closure Detec-
tion (FILD) pipeline, dubbed as “FILD++," is made publicly
available to facilitate future studies.

The remainder of the paper is organized as follows: In
Section 2, a literature review of the most prominent works
on visual loop closure detection is given. Section 3 describes
our deep features, and Section 4 introduces our HNSW visual
database. In Section 5, the proposed detection pipeline is
detailed, while the experimental protocol and the outcoming
comparative results follow in Sections 6 and 7, respectively.

1https://github.com/AnshanTJU/FILD

Finally, Section 8 discusses the proposed approach, draws
conclusions, and provides our plans.

2 | RELATED WORK

This section presents a literature review regarding the ap-
proaches which tackle the task of appearance-based loop clo-
sure detection. Depending on their visual feature extraction
techniques, these pipelines are distinguished into two cate-
gories: hand-crafted features and CNN-based features.

2.1 | Approaches using Hand-crafted
Features

Since many researchers quantize the extracted features to gen-
erate a visual vocabulary and cope with the large amount of
features, off-line and incremental approaches are presented ac-
cording to the process they follow to construct their database.
Fast Appearance-Based MAPping (FAB-MAP) is considered
to be the most popular off-line approach (Cummins and New-
man, 2008, 2011). It uses a pre-trained SURF dictionary and a
Chow Liu tree to learn its words’ co-visibility (Chow and Liu,
1968). BoWSLAM allows robots to navigate in unknown en-
vironments by utilizing the BoW feature matching with FAST
corner detector and image patch descriptor (Botterill et al.,
2011). Gálvez-López and Tardós (2012) proposed a hierarchi-
cal BoW model, built with local binary features in addition
to direct and inverse indexes. Their method was improved
by employing ORB features (Rublee et al., 2011) to incorpo-
rate rotation and scale invariance properties (Mur-Artal and
Tardós, 2014). Similarly, previously visited locations were
detected inside a Parallel Tracking and Mapping (PTAM)
framework (Klein and Murray, 2007). Bampis et al. (2016,
2018) combined the visual words’ occurrences of sequence
segments, i.e., groups-of-images, to assist the matching pro-
cess. Recently, points and lines were combined based on
information entropy to realize accurate loop closure detection
(Han et al., 2021).

While the approaches mentioned above relied on a static
visual vocabulary adapted to the training environment, in the
work of Angeli et al. (2008) an incrementally constructed
vocabulary was proposed. Loops were identified via the
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matching probability of a Bayesian scheme. In a similar
manner, an agglomerative clustering algorithm was adopted
for database generation (Nicosevici and Garcia, 2012). The
stability between visual elements’ associations was attained
using an incremental image-indexing process in conjunc-
tion with a tree-based feature-labeling method. Real-Time
Appearance-Based Mapping (RTAB-Map) proposed a mem-
ory management mechanism to limit the number of candidate
locations (Labbe and Michaud, 2013). An Incremental bag of
BInary words for Appearance-based Loop closure Detection
(IBuILD) was proposed by Khan and Wollherr (2015). Visual
words were generated via feature matching on consecutive
images, while a likelihood function decided about the loca-
tion pairing. Hierarchical Topological Mapping (HTMap)
proposed by Garcia-Fidalgo and Ortiz (2017) relied on a loop
closure scheme based on the Pyramid Histogram of Oriented
Gradients (PHOG) (Bosch et al., 2007). Similar locations are
highlighted due to binary local features’ correspondences. An
incremental approach exerting binary descriptors and dynamic
islands was proposed in the work of Garcia-Fidalgo and Ortiz
(2018), while Tsintotas et al. (2018) dynamically segmented
the incoming image stream to formulate places represented by
unique visual words. A probabilistic voting scheme followed,
aiming to indicate the proper place, while an image-to-image
pairing was held based on the locations’ spatial correspon-
dences. The same authors, proposed a mapping algorithm
based on an incrementally generated visual vocabulary con-
structed through local features tracking (Tsintotas et al., 2019).
The authors improved their method through the addition of
a temporal filter and a vocabulary management technique in
(Tsintotas et al., 2021). The candidate locations were chosen
through their probabilistic binomial score (Gehrig et al., 2017).
A modified growing self-organizing network was proposed
by Kazmi and Mertsching (2019) for learning the topologi-
cal representation of global gist features (Oliva and Torralba,
2001).

2.2 | Approaches using Convolutional
Neural Networks Features

The impressive performance of CNNs, exhibited on a wide
variety of tasks, has been the main reason for their becom-
ing the principal solution to many visual place recognition

systems. Utilizing an end-to-end trainable and generalized
VLAD layer (Jégou et al., 2010), NetVLAD was proposed for
similar locations’ identification (Arandjelovic et al., 2016).
A Spatial Pyramid-Enhanced VLAD (SPE-VLAD) layer was
proposed by Yu et al. (2020) to encode the feature extrac-
tion and improve the loss function. PCANet (Chan et al.,
2015) employed a cascaded deep network to extract unsuper-
vised features improving the loop closure detection pipeline
(Xia et al., 2016). Cascianelli et al. (2017) proposed a vi-
sual scene modeling technique that preserved the geometric
and semantic structure and, at the same time, improved the
appearance invariance. A multi-scale pooling exertion al-
lowed for condition- and viewpoint-invariant features to be
generated (Chen et al., 2017). Omnidirectional CNN was
proposed to mitigate the challenge of extreme camera pose
variations (Wang et al., 2018). In the work of Chen et al.
(2018), the authors proposed an attention mechanism capable
of being incorporated into an existing feed-forward network
architecture to learn image representations for long-term place
recognition. A useful similarity measurement for detecting
revisited locations in changing environments was proposed
by Xin et al. (2019). The combination of a neural network
inspired by the Drosophila olfactory neural circuit with an 1-d
Continuous Attractor Neural Network resulted into a compact
system exhibiting high performance (Chancán et al., 2020).
Such works commonly used CNNs to extract the global de-
scriptor of a scene, while few of them applied CNNs to extract
local information for appearance-based loop closure detection.

3 | IMAGE REPRESENTATION

Our feature extraction module relies on a Fully Convolutional
Network (FCN) to generate specific representations from the
incoming image frames. Aiming to achieve an enhanced im-
age representation, the proposed architecture is implemented
upon a modified version of DELF employing both global and
local features in different scales through a double-pass process.
We choose the initial three convolutional blocks of ResNet50
(He et al., 2016) as the backbone of our network, while the
output of the last layer is fed into the feature extraction module
as depicted in Fig. 1. Aiming for compact and discriminative
features, image-level labeled information is used to train the
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FIGURE 1 The modified version of DEep Local Feature (DELF) (Noh et al., 2017) architecture for feature extraction. We
extract the incoming visual stream’s global and local representations via two passes of the proposed fully convolutional network.
Three components constitute its structure, namely: the backbone, the global feature extraction branch and the local feature
extraction branch. The first component is based on the residual blocks of ResNet50 (He et al., 2016). Simultaneously, for the
global and local branches, an average pooling technique, an attention module and a dimension reduction method are used. The
attention module is adopted for the corresponding scores’ generation. This way, the most relevant features are assigned with
higher scores prior to their dimensionality reduction. More specifically, the first-scale features are fed to the global branch, while
the features from the second are sent to the local branch.

network.

3.1 | Incoming Image Frame

To extract representative and robust features, we use differ-
ent scales to extract the global and local features. Contrary
to the original version of DELF, where image pyramids are
constructed using seven different scales, the proposed system
employs only two of them; one for global and the other for
local features’ extraction. According to the experiments, the
scales for extracting global and local features are set as 0.5 and
1.4. Our method performs even better when specific scales for
different datasets are used. However, the forward processing
on multiple scales requires more times than a single scale.
Due to this fact, the selected parameters (see Section 7.2) pro-
vide a good trade-off between accuracy and timing, affording
a system with low complexity and high performance.

3.2 | The Backbone Network

Our backbone network comprises the first three convolutional
blocks of ResNet50. The initial block contains a 7 × 7 con-
volution layer followed by a Batch Normalization (BN), a
Rectified Linear Unit (ReLU), and a 3 × 3 max-pooling layer
with stride 2. The second convolutional block includes three

residual blocks each of which comprises three layers: 1 × 1,
3 × 3, and 1 × 1, respectively. The 1 × 1 convolution layers
are used to reduce/increase the feature map’s channels, while
a BN and a ReLU follow each layer. The final convolutional
block comprises four residual blocks, which are similar to the
previous block but are considered for the feature map’s dual
channels.

3.3 | Global Features

A Global Average Pooling (GAP) layer (Lin et al., 2013) is
applied to the output feature map w × ℎ × c of the backbone
network to produce a single description vector for the incom-
ing visual data. Here, w, ℎ, c are feature map’s width, height
and channels, respectively. As a result, the feature map’s di-
mensionality is reduced to 1 × 1 × c since GAP generates a
single number per channel, which is the average of all w × ℎ
values. GAP’s output forms the employed global feature.

3.4 | Local Features

3.4.1 | Attention-based local features

Each pixel in the backbone network’s output is considered
as a local grid; the feature map is the dense sample of this
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grid. The tensor composed of all grid channels is treated as a
local feature, while the corresponding keypoint is located at
the center of the receptive field in the pixel coordinates.

Since not all the densely extracted elements are appropriate
for the intended recognition task, an attention module con-
sisting of two 1 × 1 convolutional layers is applied to select a
subset of them. This module aims to learn a score function for
each local feature and creates the corresponding score map
of size w × ℎ × 1. A softplus activation (Dugas et al., 2001)
is deployed in the second layer to ensure the score is non-
negative. Then, the elements which present a value higher
than a score threshold are selected. It is noted that in this
case, the local features are firstly computed and then selected.
This process differs from the hand-crafted techniques wherein
the keypoints are firstly detected, and then their description
vectors are generated.

The score map learning process is the same as the original
version. The features to be learned by the attention model
are denoted as fn ∈ ℝd , n = 1, ..., N , with d is the feature
dimension. The score function for each feature is �(fn; �),
with � denoted the paramter of function �(⋅). The network
generates the output logit y by a wesighted sum of the feature
vectors:

y = W(
∑

n
�(fn; �) ⋅ fn) (1)

W ∈ ℝM×d is the weight of the final fully-connected layer of
the network. M is the number of classes to be predicted.

The cross-entropy loss is used for the training, which is
defined as:

 = −y∗ ⋅ log(
exp(y)

1Texp(y)
) (2)

Here y∗ denotes ground-truth in one-hot representation. 1 is
one vector. The backpropagation is used to train the parame-
ters �(⋅). The gradient is defined as:

)
)�

= )
)y

∑

n

)y
)�n

)�n
)�

= )
)y

∑

n
Wfn

)�n
)�

(3)

3.4.2 | Local Features’ Dimensionality
Reduction

A commonly used feature dimension reduction method (Jégou
and Chum, 2012) is incorporated to reduce the dimension
of local features. We firstly pre-process the local features
with L2 normalization. Then, their dimension is reduced
using PCA to generate 40-dimensional features. Finally, the
features are processed again through a L2 normalization, as
it has been demonstrated by Jégou and Chum (2012) that the
re-normalization provides a better mean average precision in
image retrieval tasks.

4 | HIERARCHICAL NAVI-
GABLE SMALL WORLD
GRAPH DATABASE

Our system employs the HNSW graph to index the gener-
ated global features. The proposed method is selected as it
constitutes a reliable technique that outperforms other con-
temporary approaches, such as tree-based BoW (Muja and
Lowe, 2014), product quantization (Jegou et al., 2011), and
locality sensitive hashing (Andoni and Razenshteyn, 2015).
The following sub-sections describe its properties and the way
HNSW is used to construct the graph-based visual database.

4.1 | Hierarchical Navigable Small World

HNSW is a fully graph-based incremental k-Nearest Neighbor
Search (k-NNS) structure, as shown in Fig. 2. It is based on
the Navigable Small World (NSW) model (Kleinberg, 2000),
which follows a logarithmic or polylogarithmic scaling of
greedy graph routing. Such models are important for under-
standing the underlying mechanisms of real-life networks’
formation.

A graphG = (V ,E) formally consists of a set of nodes
(i.e., feature vectors) V and a set of linksE between them. A
link eab connects node a with node b in a directional manner,
i.e., form a to b, on HNSW. The neighborhood of a is defined
as the set of its immediately connected nodes. HNSW exploits
strategies for explicit selection of the graph’s enter-point node,
separates links of different length scales, and chooses neigh-
bors using an advanced heuristic. Then, the search process



AN ET AL. 7

Generation of LCD candidates Geometrical verification of LCD

CNN local features

CNN global 

features IN OUT

FIFO Queue

Insertion Searching

HNSW Graph

Layer=2

Layer=1

Layer=0

D
ec

re
a
si

n
g
 c

h
a
ra

c
te

ri
st

ic
 r

a
d
iu

s

Temporal 

Consistency Check

Calculate the 

Fundamental Matrix 

using RANSAC

Get top n 

candidates

Generate 

Final LCD

...

Brute-Force 

Matching with 

Ratio Test

Global Filtering Module Local Re-ranking ModuleFeature Extraction Module

Get an Image with 

max Inliers

FIGURE 2 An overview of the proposed loop closure detection pipeline. Global and local Convolution Neural Network
(CNN) -based features are extracted as the incoming image stream enters the system. The global features enter the
First-In-First-Out (FIFO) queue, and subsequently, they are fed into the HNSW graph (Malkov and Yashunin, 2018), to generate
the incremental database. Simultaneously, the top n nearest neighbors are retrieved using the global feature, while a brute-force
matching technique between the candidate image-pairs is performed at the local features space. A ratio test is implemented to
eliminate false matches in conjunction with a RANSAC-based geometrical verification check. Finally, a temporal consistency
check is employed to approve the final loop closure pair.

is performed in a hierarchical multilayer graph, which allows
logarithmic scalability.

4.2 | Database Construction

In BoW-based approaches, the visual vocabulary is usually
constructed using k-means clustering. A search index is built
over the visual words, which are generated using feature de-
scriptors extracted from a training dataset.

HNSW has the property of incremental graph building
(Malkov and Yashunin, 2018). The image features can be
consecutively inserted into the graph structure. An integer
maximum layer l is randomly selected with an exponentially
decaying probability distribution for every inserted element.
The insertion process starts from the top layer to the next
layer by greedily traversing the graph to find the ef closest
neighbors to the inserted element q in the layer. The found
closest neighbors from the previous layer will be used as an
enter point to the next layer. A greedy search algorithm is
used to find the closest neighbors in each layer. The process
repeats until the connections of the inserted elements are
established on the zero layer. In each layer higher than zero,
the maximum number of connections that an element can have
per layer is defined by the parameter M , which is the only

meaningful construction parameter. The construction process
of the HNSW graph is illustrated in the middle of Fig. 2.

During the mobile robot’s movement, the deep global fea-
tures of the images are inserted into the graph vocabulary. The
whole process is on-line and incremental, thus eliminating
the need for prebuilt vocabulary. Therefore, the use of HNSW
ensures the robot’s working in various environments.

4.3 | k-NN Search

The k-NN Search algorithm in HNSW is roughly equivalent
to the insertion algorithm for an item in layer l = 0. The
difference is that the closest neighbors found at the ground
layer are returned as the search result. The search quality is
controlled by the parameter ef .

The distance between two global features or nodes in the
HNSW graph, indicates the corresponding images’ similarity.
We use the normalized scalar product (cosine of the angle
between vectors) to compute the distance of two nodes during
graph construction and k-NN search, which is calculated as:

spq =
XT
p ⋅Xq

‖

‖

‖

Xp
‖

‖

‖2
⋅ ‖‖
‖

Xq
‖

‖

‖2

. (4)
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where spq is the distance score between images Ip, Iq and
Xp, Xq are the global description vectors. ‖X‖2 =

√

XTX

denotes the Euclidean norm of vector X. Since we aim to
build a computational inexpensive system, we have chosen to
make use of the Advanced Vector Extensions instructions to
accelerate the distance computation.

5 | DETECTION PIPELINE

5.1 | System Overview

As the robotic platform navigates into the working area, its
incoming sensory information, provided by the mounted cam-
era, passes through the CNN to extract the visual features.
Firstly, the global features enter the First-In-First-Out (FIFO)
queue, aiming to avoid early visited locations’ detection, and
then are placed into the database. The nmost similar locations,
indicated by k-NN, are selected, while an image-to-image cor-
relation eliminates false positive matches through a ratio test.
Eventually, geometrical and temporal consistency checks are
employed to generate the final loop closure pair. An overview
of the proposed scheme is illustrated in Fig. 2, while its steps
are described in Algorithm 1.

5.2 | Retrieval Strategy

The n most similar locations are determined via the HNSW’s
k-NN search using the query’s extracted global feature. Since
the image frames are captured sequentially, the adjacent loca-
tions to query, i.e., images acquired in close time proximity,
are highly possible to share semantic information yielding to
high similarities among them. When searching the database
this area should be avoided, so as to keep the system safe from
false positive detections. Therefore, we use the FIFO queue to
store images’ global representations. As shown in Algorithm
1, the global feature Xi, belonging to image Ii, firstly enters
the queue Q, and subsequently it remains there aiming to be
inserted at the HNSW graph when the robot runs out of the
non-search area. The non-search area is defined based on a
temporal constant  , and the camera’s frame rate �. Conse-
quently, when we use the current feature as query, it will only
search in database area defined via N −  × �, where N is
the number of the entire set of camera measurements up to

Algorithm 1 Our loop closure detection pipeline
Input: the image Ii captured by the visual sensory module
during robot’s navigation; the excluded area, defined by frame
Nnon as  × �, where  is a temporal constant and � is the
frame rate of the camera; the returned number of nearest
neighbors n; the threshold of inlier points �.
Output: whether the i detection constitute a loop closure or
not.
1: initialize a First In First Out (FIFO) queue Q.
2: while true do ⊳ perform the loop closure detection

pipeline during robot’s mission.
3: Ii ← read the current image.
4: Xi, Li ← extract global and local visual features.
5: if (i > Nnon) then
6: Xpre ← pop the FIFO queue Q.
7: add Xpre to HNSW graph visual database.
8: k-nearest neighbor search of Xi in the database

to
obtain the n among them.

9: inliermax ← −1, ind ← −1
10: for r = 1 to n do
11: perform geometrical verification for Li and

Lr
12: if failed then
13: continue
14: end if
15: inlier← the number of inliers
16: if inlier > inliermax then
17: inliermax ← inlier

18: ind ← r

19: end if
20: end for
21: temporal consistency check for Li and Lind
22: if success then
23: Loop detected.
24: end if
25: end if
26: push Xi to the FIFO queue Q.
27: end while

time i. As a final note, the images in the non-search area will
never appear in the results.
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TABLE 1 Descriptions of the Used Datasets

Dataset Description Image Resolution (px) # Images Frame rate (Hz) Distance (km)
KITTI (Geiger et al., 2012) Seq# 00 Outdoor, dynamic 1241 × 376 4541 10 3.7

Seq# 02 1241 × 376 4661 5.0
Seq# 05 1226 × 370 2761 2.2
Seq# 06 1226 × 370 1101 1.2

Oxford New College (Smith et al., 2009) Outdoor, dynamic 512 × 384 52480 20 2.2
City Center (Cummins and Newman, 2008) 640 × 480 1237 10 1.9

Malaga 2009 (Blanco et al., 2009) Parking 6L Outdoor, slightly dynamic 1024 × 768 3474 7 1.2
St. Lucia (Glover et al., 2010) 100909 (12:10) Outdoor, dynamic 640 × 480 19251 15 ∼17.6

100909 (14:10) 20894
180809 (15:45) 21434
190809 (08:45) 21815

5.3 | Image-to-Image Matching

As described in Section 3, we extract local deep features for
each incoming image. Thus, the matching process is per-
formed between the query q and the n closest neighbors based
on a brute-force matching algorithm. This technique is rarely
reported in the literature for visual data association due to the
presented high complexity. However, when low-dimensional
floating point global descriptors are used, such in our case,
brute-force matching does not demand relatively high com-
putation time. At last, a distance ratio check (Lowe, 2004),
defined through a threshold ", is employed on the proposed
pair.

5.4 | Geometrical Verification

Our system incorporates a geometrical verification step to
discard outliers, i.e., false positive detections. In order to
achieve this, we compute the fundamental matrix T between
the chosen candidate pair of images using a RANdom SAm-
ple Consensus (RANSAC) -based scheme (Torr and Murray,
1997). We record the candidate with the highest number of
inliers when the calculation succeeds.

5.5 | Temporal Consistency Check

As a final step, a temporal consistency check is employed
intending to examine whether the aforementioned conditions
are met for � consecutive camera measurements similarly to

Tsintotas et al. (2018). This way, the proposed pipeline may
lose a possible loop closing identification in cases where the
query image is the initial in a sequence of pre-visited loca-
tions, however we prefer to prevent the system from wrong
identifications preserving. When the aforementioned condi-
tions are met, the matched pair is recognized as a loop closure
event.

6 | BENCHMARK

6.1 | Benchmark Datasets

Eleven challenging and publicly available image-sequences
have been chosen to evaluate the performance of our frame-
work. These datasets are captured in different operating en-
vironments, e.g., various lighting conditions, strong visual
repetition and dynamic occlusions such as cars and pedestri-
ans. A detailed description of each image-sequence is listed
in Table 1. Regarding KITTI vision suite (Geiger et al., 2012),
Malaga 2009 Parking 6L (Malaga6L) (Blanco et al., 2009),
and St. Lucia (Glover et al., 2010), the incoming visual stream
is obtained via a camera mounted on a moving car, while New
College (Smith et al., 2009), and City Center (Cummins and
Newman, 2008) are recorded through the vision system of a
wheeled robot. Malaga6L, New College and City Center are
composed of stereo images; in the course of our experiments,
we have chosen the left camera stream for the first and the
right camera for the rest. Our experimental setup is chosen
according to the work of Kazmi and Mertsching (2019).
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FIGURE 3 Examples of image pairs which are not
correctly labeled in the ground truth data derived via the
Global Positioning System (GPS) logs.

6.2 | Ground Truth Labeling

Commonly, the ground truth data, referring to the correct
loop events, is generated according to the Global Positioning
System (GPS) logs. For example, St. Lucia and Malaga6L
utilize a GPS distance-range of 10 m and 4 m from the query,
respectively, to define the ground truth. We carefully checked
this data for each dataset recognizing that some image pairs
were not accurately labeled, as shown in Fig. 3. In many cases,
this occurs owing to the robot traversing through locations
that surpass the GPS’s distance threshold, though the captured
visual content might be similar. However, in such cases, if
a valid fundamental matrix is computed, the transformation
matrix between the two camera poses can be available. Such
pairs should be treated as true positive loop closure events.
Another problem concerns the situation wherein the robot’s
viewpoint differs from the viewpoint confronted in its first
traversal. Regardless of the system being precisely located at
the same place, these image pairs are considered true negative
events. An exemplar case of this situation is illustrated in
Fig. 4.

Considering the GPS logs are not accurate, we adopt hu-
man labelling for the ground truth generation. We produce
image pairs which are located less than 40 meters in GPS
logs. Then these pairs are labelled by asking whether they
are from the same place by crowdsourcing. During label-
ing, if a decision was hard to be taken, the proposed pairs
are re-checked by experts familiar with the place recognition
task. Each of the aforementioned datasets is processed two
times before used, while for the KITTI image-sequences, the
data were accurate enough avoiding this procedure. Our ac-
curate, manually-labeled ground truth files are made publicly

available in order to facilitate further studies.

7 | EXPERIMENTAL RESULTS

This section presents the experiments conducted to demon-
strate the proposed pipeline’s effectiveness. Our setup includ-
ing training strategy, parameters and evaluation metrics are
introduced in 7.1, while different settings for the proposed
features’ extraction module are evaluated in 7.2. Next, we
analyze the HNSW parameterization in 7.3, and evaluate the
geometrical verification process in 7.4. A comparison of our
global feature with two contemporary CNN-based features
is presented in 7.5. The system’s performance and quanti-
tative comparison with the state-of-the-art are presented in
7.6. Finally, we measure our system’s complexity on the
representative datasets in 7.7.

7.1 | Experimental Settings

7.1.1 | Training Strategy

Since our feature extractor is hard to get trained directly, owing
to the employment of the attention module, a two-step strategy
is applied. Firstly, our base network is trained, leaving the
attention module out; subsequently, two Fully Connected Lay-
ers (FCLs) are adjoined for the classification. ResNet50, upon
which the proposed system is built, is trained on the ImageNet
(Russakovsky et al., 2015) and then the model is fine-tuned
on a large-scale landmark dataset (Weyand et al., 2020). The
cross-entropy loss is used for the image classification.

Next, when the base network is trained, its weights are
squeezed. The attention module is added, and the resulted
score map is used to pool the features by a weighted sum.
Subsequently, the features enter the fully connected layer for
the classification with the cross-entropy loss. Finally, we use
this model to obtain discriminative deep features.

7.1.2 | Training Parameters

Our network was trained through the stochastic gradient de-
scend (SGD) optimizer. An initial learning rate of 0.001 and
25 epochs as the maximum number for training was selected,
with its rate being halved every 10 epochs. Similarly, the
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FIGURE 4 A labeling correction: the image sequence in the first row shows the robot’s trajectory as it turns to the right
road, while in the second row, it turns to the left road at the same place. Frames #835 and #147 are visually different but are
labeled as loops according to the GPS, for its distance is lower than 10 m. During our experiments, these images are considered
as true negative pairs.

same optimizer was chosen for the attention module with an
initial learning rate set at 0.01 at the maximum number of 20
epochs, while the learning rate is halved every 10 epochs. We
implemented the two networks using the batch size of 256.

7.1.3 | Baseline Approaches

The compared methods include classic and recently published
place recognition systems namely: DLoopDetector (Gálvez-
López and Tardós, 2012), Tsintotas et al. (2018), PREVIeW
(Bampis et al., 2018), iBoW-LCD (Garcia-Fidalgo and Ortiz,
2018), Kazmi et al. (Kazmi and Mertsching, 2019), as well
as our previous method (An et al., 2019). Most of the chosen
methods are implemented using the respective open-source
codes. For Kazmi’s method, we directly report their results
as published in their article.

7.1.4 | Evaluation Metrics

For the loop closure detection task, the commonly used metric
is the recall rate at 100% precision. The precision-recall metric
is defined as:

Precision =
true positives

true positives + false positives (5)

Recall = true positives
true positives + false negatives (6)

where true positives is the number of correct identifications,
indicating the detected loop closures are true loops according
to the ground truth. False positives is the number of wrong
detections, representing the identifications found by the algo-
rithm; however, these are not labeled to ground truth. False
negatives indicate the number of true loop closure events,
which are not found by the algorithm.

7.1.5 | Implementation

Experiments were performed on a Linux machine with an
Intel Xeon CPU E5-2640 v3 (2.60 GHz) and an NVIDIA
Tesla P40 GPU. More specifically, only feature extraction
was performed on the GPU; any other operation ran on the
CPU. The proposed network is implemented via TensorFlow,
yet bindings are provided in C++. Besides, to test the speed
on embedded devices, we additionally implemented FILD++
on an NVIDIA Jetson TX2 GPU and report the respective
outcome in subsection 7.7.

7.2 | Image Scales Evaluation

The original DELF utilizes image pyramids to generate de-
scriptors of different scales. It uses 7 different scales ranging
from 0.25 to 2.0, which are a √2 factor apart. As processing
times are crucial for mobile robotic applications, we propose
to use only one scale for global feature extraction and another
one scale for local feature extraction.
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TABLE 2 The recall at 100% precision and the feature extraction speed (ms) on different scales of global and local features.

Scales (Global)
Scales (Local)

0.25 0.35 0.5 0.7 1.0 1.4 2.0
recall speed recall speed recall speed recall speed recall speed recall speed recall speed

0.25 0.9123 8.11 0.9073 8.90 0.9010 10.01 0.9123 12.54 0.9135 16.49 0.9261 28.25 0.9236 56.07
0.35 0.8972 8.73 0.9273 9.40 0.9110 10.56 0.9110 13.19 0.8960 17.14 0.8960 28.86 0.9023 56.28
0.5 0.8972 9.61 0.9110 10.28 0.9098 11.23 0.9261 14.00 0.9110 17.93 0.9492 29.62 0.9480 57.15
0.7 0.8972 11.73 0.9110 12.41 0.8997 13.56 0.9248 16.09 0.9098 19.90 0.9492 31.79 0.9492 59.01
1.0 0.8910 14.61 0.8985 15.25 0.8935 16.22 0.9261 18.77 0.9035 22.64 0.9211 34.53 0.9323 61.90
1.4 0.8922 20.95 0.9035 21.69 0.8935 22.47 0.9286 24.96 0.9048 28.89 0.9223 40.26 0.9336 68.97
2.0 0.8947 35.08 0.9023 35.57 0.8960 36.46 0.9261 38.95 0.9060 42.76 0.9223 53.97 0.9336 81.00

We conduct extensive experiments to evaluate the recall
and the extraction speed of using different feature extraction
scales. For KITTI 00 dataset, the results of different combi-
nation of scales for extracting global and local features are
given in Table 2. The 3 highest recall scores are marked in
blue. As shown, the scales of 0.7 and 2.0 for global and local
features, respectively, reach the highest recall rate at 100%
precision. A similar score is obtained at the scales of 0.5 and
0.7 for global features and 1.4 for local features. However,
considering the extraction time, we chose the scales of 0.5
and 1.4 which achieve the same recall through a timing below
30 ms. It is also notable that for the scales of 0.25 for both
global and local deep features, the extraction time is only 8.11
ms. Our algorithm’s parameters are summarized in Table 3,
determined via the experimentation reported in Sections 7.2,
7.3, 7.4.

TABLE 3 Parameters list

Image scale for global feature extraction sg 0.5
Image scale for local feature extraction sl 1.4

Score threshold of local feature � 15
Number of nearest to q elements to return, ef 40

Maximum number of connections for each element per layer,M 48
Search area time constant,  40

Ratio of ratio test, " 0.7
Images temporal consistency, � 2

Number of of matches for geometrical verification, n 5
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FIGURE 5 Evaluating the parameterM on KITTI 00
(Geiger et al., 2012) and New College (Smith et al., 2009).
(Left) Our pipeline’s recall scores for perfect precision using
a variety of values ranging from 6 to 48. (Right) The timing
needed for new feature addition and database search.

7.3 | Hierarchical Navigable Small World
Parameters’ Evaluation

For HNSW graph construction and searching, there are two
parameters that could affect the search quality: the number of
nearest to q elements to return, ef ; and the maximum number
of connections for each element per layer,M . The range of
the parameter ef should be within 300, because the increase
in ef will lead to little extra performance but in exchange,
significantly longer construction time. The range of the pa-
rameterM should be 5 to 48 (Malkov and Yashunin, 2018) .
The experiments in (Malkov and Yashunin, 2018) show that a
biggerM is better for high recall and high dimensional data,
which also defines the memory consumption of the algorithm.

We perform the experiments on the KITTI 00 and the New
College datasets to chooseM and ef for the HNSW graph.
The parameter ef is set to 40 whenwe changeM . The number
of matches for geometrical verification n is set to 5. As 100%
precision can be reached with the temporal consistency check.
The recalls are shown in the left part of Fig. 5. We can see
whenM increases, the recall will also increase. In the right
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FIGURE 6 Evaluating the parameter ef on KITTI 00
(Geiger et al., 2012) and New College (Smith et al., 2009).
(Left) Our pipeline’s recall scores for perfect precision using
a variety of values ranging from 20 to 300. (Right) The
timing needed for new feature addition and database search.

part of Fig. 5, the feature adding time and searching time will
be increased whenM increases. To achieve a better recall,
we chooseM = 48 in the following experiments.

For evaluating different ef , it can be seen that in the left
part of Fig. 6, the recall does not significantly change when the
ef increases. In the right part of Fig. 6, the feature adding time
will be increased when ef increases, while the searching time
remains with no growth. Therefore, ef = 20 was selected.

Besides, we evaluate the searching time of the HNSW
graph for different returned number k of nearest neighbors.
As shown in Fig. 7, we can see that the searching method costs
nearly logarithmic time when increase the returned nearest
neighbors. The time cost accords with the time complexity of
the HNSW graph (Malkov and Yashunin, 2018).
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FIGURE 7 The searching time for different k on the
KITTI 00 dataset (Geiger et al., 2012) and the New College
dataset (Smith et al., 2009).
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FIGURE 8 Evaluating the parameter n on KITTI 00
(Geiger et al., 2012) and New College (Smith et al., 2009).
(Left) Our pipeline’s recall scores for 100% precision using a
variety of values n. (Right) The timing needed for
geometrical verification.
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FIGURE 9 The image matching time of our algorithm
on the KITTI 00 dataset (Geiger et al., 2012) (Left) and the
New College dataset (Smith et al., 2009) (Right) using
different matching strategies.

7.4 | Evaluating Geometrical Verification

As image-to-image matching through RANSAC is compu-
tationally costly, we evaluate the parameter n using values
ranging from 1 to 10. As shown in Fig. 8, the timing needed
for geometrical verification increases linearly with n, as a
new RANSAC estimation needs to be done on each round.
For KITTI 00, timing varies from 0.73 ms to 7.59 ms for
n = [1, 2, 3, ..., 10]. New College timing varies from 0.61 ms
to 6.72 ms. However, the higher the value of n the better the
performance. Aiming to achieve a trade-off between recall
and computational complexity, we have chosen n = 5. We
empirically fix the ratio test " to 0.7. This value is frequently
used for image matching using SIFT (Lowe, 2004) and SURF
(Bay et al., 2006).

Furthermore, we evaluate the processing time for two dif-
ferent imagematching strategies namely: the FLANNmatcher
(Muja and Lowe, 2009) and brute-force matcher. As shown in
Fig. 9, the brute-force matcher’s timing is significantly lower
than FLANN. For KITTI 00, the average score is 3.32 ms,
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FIGURE 10 Our algorithm’s precision-recall curves on
each evaluated dataset.

while for FLANN is 40.70ms. Respectively, for New College,
the timings are 0.91 ms and 15.62 ms. This happens due to
the proposed local features’ low dimension (40-dimensional).

7.5 | Evaluating Deep Global Features

A comparison of our global feature against two other contem-
porary CNN-based features is presented. NetVLAD (Arand-
jelovic et al., 2016) and Resnet50-AP-GeM (Revaud et al.,
2019) have been selected since these are the features com-
monly used as feature extractors in place recognition. For our
experiments, features extracted from NetVLAD and Resnet50-
AP-GeM replaced our global representations. However, the
other modules remain the same. As we can see in Table 4,
the features provided by FILD++ achieve the highest recall
rate in most of the evaluated datasets. We also recorded the
timing needed for feature extraction when different extractors
are used in Table 5. Our method requires only 11.23 ms when
applied on City Center, while NetVLAD and Resnet50-AP-
GeM need 105.60 ms and 22.60 ms, respectively. The results
show that our global feature outperforms the other methods
in terms of speed and recall.

7.6 | FILD++ Performance

In Table 6, we list our system’s highest recall score at 100%
precision on eleven datasets, while compared to the baseline
methods. As shown FILD++ outperforms the other methods

on eight out of eleven image-sequences. Malaga6L is recorded
at a parking site, thus presents high scene similarity due to the
absence of distinct differences between the roads. Therefore,
each of the evaluated methods performs poorly. As far as
the KITTI vision suite and Oxford datasets are concerned,
improved performance is demonstrated. This is mostly owing
to architectural constructions appearing in these environments,
which are similar to the training set of our feature extraction
network. Hence, our pipeline can extract more representative
deep features and compare themmore precisely for these types

TABLE 4 Recalls at 100% Precision: A Comparison of
Our Method with Different CNN-based Global Features

Dataset NetVLAD
(Arand-
jelovic
et al.,
2016)

Resnet50-
AP-GeM
(Revaud
et al.,
2019)

FILD++

KITTI Seq# 00 91.88 91.24 94.92

Seq# 02 74.77 73.21 73.52
Seq# 05 91.81 94.70 95.42

Seq# 06 98.90 97.79 98.16
Oxford New College 83.35 84.85 82.37

City Center 89.84 90.56 90.01
Malaga
2009

Parking 6L 59.83 60.11 62.74

St. Lucia 100909
(12:10)

80.46 79.26 83.39

100909
(14:10)

63.80 58.10 66.41

180809
(15:45)

79.67 69.36 81.36

190809
(08:45)

83.21 82.91 87.86

TABLE 5 Average Feature Extraction Time (ms)
Comparison of Our Method with Different CNN-based
Global Features

Methods KITTI
00

City
Center

Malaga6L St. Lu-
cia 100909
(1210)

NetVLAD (Arandjelovic et al., 2016) 105.60 94.25 131.07 85.97
Resnet50-AP-GeM (Revaud et al., 2019) 22.60 19.90 35.33 16.93

Proposed Global Feature 11.23 8.38 17.25 8.54
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FIGURE 11 Some example images of the detected
loop-closure locations.

FIGURE 12 Robot trajectories (left) and example
images (right). From top to bottom: KITTI 00 (Geiger et al.,
2012), KITTI 06 (Geiger et al., 2012), City Center (Cummins
and Newman, 2008), Malaga6L (Blanco et al., 2009), St.
Lucia 100909 (12:10) (Glover et al., 2010). The loop closure
detections are labelled using red circles.
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FIGURE 13 Execution times of our algorithm.

of scenes.
Fig. 10 illustrates the precision-recall curves generated by

varying the number of RANSAC inliers. Our framework can
successfully detect loops through a recall score ranging from
62.74% (Malaga6L) to 98.16% (KITTI 06). Malaga6L is the
most challenging dataset and KITTI 06 is the smallest dataset
among the rest. Some examples of TP detections are shown
in Fig. 11. It is worth noting that when dynamic objects are
included, e.g., cars in Fig. 11 (a) and people in Fig. 11 (c),
FILD++ can correctly identify the pre-visited location. The
example in Fig. 11 (b) demonstrate that our system can handle
the viewpoint changes, while Fig. 11 (d) shows its ability to
deal with illumination variations. We show the loop closure
detections detected by our framework on to of the robot’s
trajectories in Fig. 12.

7.7 | Time Requirements

We have estimated our system’s complexity on four represen-
tative datasets. As shown in Table 7, FILD++ achieves a
higher speed than its predecessor. In general, this improve-
ment is owing to the local features’ low dimensionality which
permits faster image matching.

The average execution times for different pipeline stages
are presented in Table 8. Also, in Fig. 13, we present the tim-
ings for features’ extraction and loops’ detection as a function
of frame number. As illustrated, FILD++ requires constant
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TABLE 6 Recalls at 100% Precision: A Comparison of The Baseline Methods with Our Framework
Dataset DLoopDetector

(Gálvez-López
and Tardós,
2012)†

Tsintotas et
al. (Tsin-
totas et al.,
2018)

PREVIeW
(Bampis
et al.,
2018)‡

iBoW-LCD
(Garcia-
Fidalgo
and Ortiz,
2018)§

Kazmi et al.
(Kazmi and
Mertsching,
2019)¶

FILD (An et al., 2019) FILD++

KITTI Seq# 00 72.43 93.18 89.47 76.50 90.39 91.23 94.92
Seq# 02 68.22 76.01 71.96 72.22 79.49 65.11 73.52
Seq# 05 51.97 94.20 87.71 53.07 81.41 85.15 95.42
Seq# 06 89.71 86.03 80.15 95.53 97.39 93.38 98.16

Oxford New College 47.56 52.44 80.87 73.14 51.09 76.74 82.37
City Center 30.59 16.30 49.63 82.03 75.58 66.48 90.01

Malaga 2009 Parking 6L 31.02 59.14 33.93 57.48 50.98 56.09 62.74
St. Lucia 100909 (12:10) 37.22 26.27 60.93 70.02 80.06 76.06 83.39

100909 (14:10) 14.87 9.77 23.06 68.06 58.10 53.84 66.41
180809 (15:45) 31.36 15.07 49.79 87.50 72.55 66.96 81.36
190809 (08:45) 39.78 27.68 56.69 59.36 80.13 78.00 87.86

† Compared to (Gálvez-López and Tardós, 2012), we use different number of images for New College and Malaga6L. We have changed the normalized
similarity score threshold to achieve 100% precision, as there are false detections using the default parameters. ‡ We report the recall using the default
parameters. However, the precision of each dataset cannot achieve 100%. § We report the iBoW-LCD recalls on KITTI dataset from (Kazmi and
Mertsching, 2019). ¶ We quote the results as reported in (Kazmi and Mertsching, 2019), as an open-source implementation were not available.

TABLE 7 Average Execution Time (ms/query) on The
Representative Datasets

Approach KITTI
00

City
Center

Malaga6L St. Lu-
cia 100909
(1210)

DLoopDetector (Gálvez-López and Tardós, 2012) 111.04 27.51 42.57 91.04
Tsintotas et al. (Tsintotas et al., 2018) 521.54 183.23 638.61 625.05

PREVIeW (Bampis et al., 2018) 32.39 34.09 36.33 25.40
FILD (An et al., 2019) 62.68 40.23 68.16 49.10

FILD++ 38.70 32.10 56.56 34.20

time for each dataset, while the features’ extraction is the most
costly procedure. For Malaga6L, our pipeline needs about 50
ms to 80 ms for the total execution time, while the feature ex-
traction requires about 45ms. This happens due to the images’
resolution, which is the largest among the evaluated datasets.
Concurrently, for St. Lucia, the average timing is below 40
ms, because of the different image resolution. Furthermore, it
is observed that the timing for our indexing graph-based tech-
nique is below 1ms and the whole system’s speed ranges from
32 ms to 57 ms demonstrating FILD++’s high efficiency. In
Table 9, we test our system’s scalability setting the frequency
of New College to f = 20 Hz and obtained 52480 images.
The average execution time is about 22 ms. As can be seen

TABLE 8 Average Execution Time (ms/query) of Our
method in Different Datasets

Stages KITTI
00

City
Center

Malaga6L St. Lu-
cia 100909
(1210)

Feature Extraction 29.67 22.04 45.41 22.48
Adding Feature 4.69 4.30 3.63 6.03
Graph Searching 0.64 0.33 0.47 0.70
Feature Matching 3.32 2.17 4.13 2.26

RANSAC 0.38 3.26 2.92 2.73
Whole System 38.70 32.10 56.56 34.20

in Fig. 14, an increase of frames number would not induce a
rise of processing time.

We also implemented our algorithm on the Jetson TX2
platform in Max-N mode (all CPU cores in use and GPU
clocked at 1.3GHz) and show the timing in Fig. 15. FILD++
does not require extra processing time even if applied in an
embedded platform. The most time-consuming stage is the
features’ extraction as we perform two forward passes for each
image frame. In Table 10, we list the average time for the
feature extraction, the loop detection and the whole system.
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TABLE 9 Average Execution Time (ms/query) in New
College with 52480 Images

Stages Mean Std Max Min

Feature Extraction 14.62 0.65 21.13 12.30
Adding Feature 3.97 2.47 22.63 0.04
Graph Searching 0.67 0.19 3.20 0.04
Feature Matching 1.06 0.10 14.04 0.08

RANSAC 1.72 1.08 17.01 0.0
Whole System 22.05 5.04 58.98 14.56
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FIGURE 14 Execution times in New College with
52480 images.

The proposed system processesMalaga6L in 388.66ms, while
for any other dataset, processing times are below 300 ms
indicating its low computational complexity.

8 | DISCUSSION AND CONCLU-
SION

In this article, a visual loop closure detection approach is pro-
posed, dubbed as FILD++. Through two forward passes of
a single network, our system extracts global and local deep
features for filtering and re-ranking, respectively. Along with
the robot’s navigation, an HNSW graph is built incremen-
tally based on the global features permitting fast indexing and
database search during query. When a candidate location is
retrieved it is geometrically verified using the provided local
features. Eleven publicly-available datasets are chosen for our
evaluation showing FILD++’s effectiveness and efficiency
compared with other state-of-the-art approaches.

The proposed FILD++ framework has three advantages

0 200 400 600 800 1000 1200

Frame Number

0

100

200

300

400

500

600

T
im

e(
m

s)

City Center

Feature Extraction
Loop Detection
Total Exec. Time

0 1000 2000 3000 4000

Frame Number

0

100

200

300

400

500

600

T
im

e(
m

s)

KITTI 00

Feature Extraction
Loop Detection
Total Exec. Time

0 500 1000 1500 2000 2500 3000

Frame Number

0

100

200

300

400

500

600

T
im

e(
m

s)

Malaga6L

Feature Extraction
Loop Detection
Total Exec. Time

0 1000 2000 3000

Frame Number

0

100

200

300

400

500

600

T
im

e(
m

s)

StLucia100909(1210)

Feature Extraction
Loop Detection
Total Exec. Time

FIGURE 15 Execution times on an NVIDIA Jetson
TX2 GPU.

TABLE 10 Average Execution Time (ms/query) on an
NVIDIA Jetson TX2 GPU

Stages KITTI
00

City
Center

Malaga6L St. Lu-
cia 100909
(1210)

Feature Extraction 200.12 135.97 292.06 128.19
Loop Detection 78.84 68.44 96.60 72.39
Whole System 278.96 204.41 388.66 200.58

compared with the previous FILD method. Firstly, the pro-
posed framework is more compact. This is because only
one network was used for feature extraction. In addition,
the extracted deep local features are only 40-dimensional,
which is significantly lower than SURF (128-dimensional).
Because there is only one network and without the usage of
CasHash (Cheng et al., 2014), the source code of FILD++ is
more concise than FILD, as given in the GitHub2. Besides, the
dimension of global feature in FILD++ is also lower than that
in FILD, which is 1024-dimensional vs. 1280-dimensional.

Secondly, the proposed method is simpler than the pre-
vious method. For feature extraction, FILD extracts global
features using MobileNetV2 and local features using SURF.

2https://github.com/anshan-ar/FILD
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TABLE 11 Average Execution Time (ms/query) of
FILD (An et al., 2019) and FILD++ in New College with
52480 Images

Method FILD (An et al., 2019) FILD++

Feature Extraction 17.69 14.62
Hash Codes Creation 16.94 0.0

Adding Feature 5.21 3.97
Graph Searching 0.93 0.67
Feature Matching 2.23 1.06

RANSAC 7.55 1.72
Whole System 50.28 22.05

We simplify the feature extraction process in this work. The
deep global features and local features are extracted via two
forward passes of a single network. This dramatically sim-
plifies the feature extraction process. Because the dimension
of the deep local feature extracted by our method is only 40-
dimensional, we can use a brute-force matcher for efficient
feature matching. Therefore we did not use CasHash (Cheng
et al., 2014) in FILD++. As a result, the hash code creation
process is unnecessary, which simplifies the whole process.

Last but not least, FILD++ is much faster than its previ-
ous version. As shown in Table 7, FILD++ costs 38.70 ms
per query on KITTI 00 dataset, while FILD requires 62.68
ms. Thus, it can be seen that FILD++ is significantly faster
than FILD on all datasets. Table 11 also shows the average
execution time of FILD and FILD++ in the New College
dataset (52480 Images). As can be seen, the feature extrac-
tion in FILD needs more time than in FILD++. The hash
codes creation step in FILD is also time-consuming, while
there is no such step in FILD++. Because SURF features in
FILD are different from the deep local features, we extracted
in FILD++, the timing for RANSAC scheme is different. We
can see our approach also takes less time at this step. The
overall time cost of the proposed FILD++ is 22.05 ms per
query, while for FILD is 50.28 ms. This indicates the speed
advantage of our new method when applied in large datasets.

Our system’s performance depends on several factors: the
reliability of its deep features, the HNSW’s retrieval precision,

and the effectiveness of the geometrical verification. The
similarity scores of the query and the candidate images are
not utilized. A proper threshold may have helped us with FP
elimination; however, the complexity of the system would
be inevitably high. During geometrical verification, as the
number of matches n is an important parameter, the easiest
way to achieve a higher recall is to increase its value. Howbeit,
as illustrated, such action is time-demanding; therefore, a
convenient trade-off is considered.

Our plans include the integration of the proposed method
to a SLAM framework, while an increase of the classifica-
tion accuracy will lead to higher performance. Consequently,
using more powerful networks, such as ResNeXt (Xie et al.,
2017) and ResNeSt (Zhang et al., 2020), we should be able to
improve the system’s performance.
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