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Multiple robots are usually required in a flexible manufacturing system or a complex 
working environment. In particular, when an object under processing is too big or too 
heavy, a single robot is insufficient to handle it. Two robots are applicable in such case. 
This article aims to  develop a complete mathematical model and an adaptive controller 
for two robots carrying a common load. It will be shown that the dynamic model of the 
two-robot system turns out to  be a singular system, taking into account the object 
dynamics. The condition for which the system model holds is also discussed. The 
adaptive controller will be used to  overcome uncertainties in the object dynamics and 
robots. The distributed forces in the robot end effectors are determined by an optimal 
criterion. It will be shown that the adaptive controller surpasses the conventional com- 
puted torque controller. 

INTRODUCTION 

Recently, robots have been widely used in industry, space exploration, and 
medical treatment. However, robot application to sophisticated tasks is quite 
limited due to the robot capability. A typical example is the two arms of a 
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human being. A human being with two arms is able to carry big or heavy 
objects. Furthermore, they provide a lot of dexterity so that many sophisti- 
cated tasks, such as sewing and electronic assembly, can be easily done. In 
other words, if there are multiple robots or the robot has two arms, the perfor- 
mance and capability of the robot will be greatly enhanced. This motivates 
researchers to investigate the coordination and control of multiple robots. 

The cooperation of two robots can be proceeded in three ways: (1) two 
robots operate in the same workspace without direct contact, such as automo- 
bile assembly; (2) two robots form a closed kinematic loop, such as carrying a 
common load; (3) two robots work on the same object interactively and the 
relative position, orientation, and reaction forces between two robots are time 
varying, such as tightening screws. The first problem focuses on the collision 
avoidance of two robot arms and the task scheduling. The second problem 
emphasizes the development of two-robot system dynamics, distribution of 
reaction force, and coordination control. The third problem covers the issues in 
(1) and (2). Our focus will be on the second problem. 

Two robots carrying a common load is particularly useful for the case in 
which a single robot cannot properly handle the object to be carried. A typical 
case is that the object to be carried is too big, or too heavy, or both, such that a 
single robot cannot perform properly. In the past, the research on two-robot 
systems was focused on the dynamics and control. Dauchey and Z a ~ a t a , ~  Lim 
and C h y ~ n g , ~ . ~  and Hayati' use differential motion and homogeneous transfor- 
mation matrix to first locate the carried objects in Cartesian coordinates and 
then find the corresponding joint motion. Uchiyama et aL8 establish not only 
the Cartesian coordinates for the carried object but also relative Cartesian 
location for the two robot end effectors. In their developments of system dy- 
namics, object dynamics are often ignored. Even when object dynamics are 
considered, they are usually treated as a point mass or the dynamic equations 
including robot dynamics have to be rederi~ed.'- '~ When the carried object is 
big or heavy, the treatment of point mass is not reasonable. On the other hand, 
rederivation of the complete system dynamics is too time consuming. In those 
developments, the two-robot system is formulated as a closed-chain system. 
The closed chain may break as the robot end effector slides off the object. The 
necessary condition that the closed chain holds is not discussed there. Hence, 
suitable system dynamics should include the robot dynamics and object dy- 
namics, as given in H ~ a n g . ~  In addition, the condition that the closed chain 
holds should be addressed. In the control of a two-robot system, the master- 
slave method or leader-follower method were primarily concerned. 1 0 ~ 1 1 . 1 4  The 
master-slave control method has to identify one robot as master, the other as 
slave. The control is based on the Cartesian coordinate control of the master 
robot; the slave robot is then controlled through a so-called constrained equa- 
tion. This type of control method is simple and can be easily extended from 
single-robot control. However, the target description may not be clear and the 
carried object may move in zigzag way. Therefore, a fragile object may be torn 
away. Other researchers employ resolved motion control and the computed- 
torque method to control the two-robot s y ~ t e m . ~ . ' ~  Since the system is highly 
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nonlinear and coupling together, those results are not quite satisfactory. More- 
over, those control techniques are based on the exact system dynamics, which 
is not true in general. In particular, the carried object may vary from case to 
case. Therefore, model uncertainties should be taken into account in the con- 
troller design. Although adaptive robot controller has been addressed in the 
single-robot c a ~ e , ' ~ , ~ '  it is seldom discussed in a multiple-robot system. 

This article focuses on the development of complete system dynamics and 
adaptive coordination control of two robots carrying a common load. The 
system dynamics will take the object dynamics into account. The reaction 
forces between robot end effectors and the carried object will be regarded as 
state variables so that the system can be formulated as a singular system. 
Hence, the reaction force (or contact force) can be directly controlled. To 
clearly describe the object trajectory and avoid zigzag movement, a nonmas- 
ter-slave control method will be used. Furthermore, model uncertainties will 
be overcome by the proposed adaptive coordination control scheme. The opti- 
mal load distribution will be discussed as well. Finally, an example is given to 
illustrate the above development. 

TWO ROBOTS CARRYING A COMMON LOAD 

A schematic diagram of two robots carrying a common load is shown in 
Figure 1 .  This robot system is particularly useful for the case in which a single 
robot cannot properly handle the object to be carried. Multiple robots should be 
useful for this type of operations. Here, only two robots are considered. It is 
assumed that the object to be carried is an inertial load. Let q(')&R"I and q(2).sRn2 
denote the vectors of the first and second robot joint angles, respectively. The 
equations of motion of each robot without carrying object are given by: 

where M,(q(,)) is the n, x n, inertial matrix for the ith robot; F,(q('), q(") is a n,- 
dimensional vector function containing Coriclis, centrifugal, and gravity terms 
for the ith robot; and 7, is an n,-dimensional joint torque vector for the ith robot. 

To describe the kinematic relations between two robots and object S ,  a 
coordinate frame diagram is given in Figure 1. Frame {0} denotes the world 
coordinates or Cartesian coordinates. Frames (I}  and (2) are assigned to the 
base frames. Frames {le} and {2e} denote the end effector frames of each robot. 
Frame {c}  is assigned to the center of mass of the object. Let p,eR6 be the 
position vector of the center of mass of the object with respect to the world 
coordinates. Let B(') and B(2) represent the constant 4 X 4 homogeneous trans- 
formation matrices of frames (1) and (2) relative to frame (0} ,  respectively. D(') 
and D(2) are 4 x 4 transformation matrices of frame {c} relative to frames (le} 
and (2e},  respectively. They are constant matrices since the relative position 
and orientation between end effectors and the carried object are unchanged 
during motion. Again, tT(') are transformation matrices of frames {ie} relative to 
frame { i} ,  for i = 1,  2 .  Note that tT(') and tT'2) are matrix functions of q(I) and 
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Figure 1. Coordinate frame relation of two-robot system. 

q(*), respectively. :T denotes the transformation matrix of {c} relative to (0). 
From the coordinate frame diagram, two kinematic relations can be obtained 
as : 

Therefore, the implicit relation between position vector pc and the first robot 
joint angle q(') can be determined from eq. (2) as: 

Similarly, the relation between position vector pc and the second robot joint 
angle q(2) can be determined from eq. (3) as: 
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Assume the inverse kinematics can be defined as: 

Then, the relevant Jacobian matrices are given as: 

Next, we will derive the dynamic equations of the object. Assume that the 
end effector of each robot grasps the object at two points, as shown in Figure 2. 
Let ref(*) and W )  be the force and moment on the object exerted by the ith 
robot, i = 1 ,  2. They are expressed in terms of frames {ie}, and I r ; ( l )  = [ref(r)f 
r e ~ ( r ) T ] T .  N(l) and N(2) are the normal force of the robot end effectors, denoted in 
frames {le} and {2e}, respectively. The mass of the object is mc.  The center of 
mass of the object is located at [ p c x p r y p L Z ] ,  and pL = [p,,, p r y , p r z ,  $, 8, + I T .  The 
principal moment of inertias with respect to the axes of frame {c) are LI,, ,  'I,,, , 

\I/ 
mcg 

Figure 2. Grasping forces on the object. 
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and cIczz. Assume that the orientation of the object is represented by the ZYX 
Euler angle. Then, [$ 4 $ 1  and [Cw, cocy cwczl can be related by [::I = [,: :+ 1[;1 

cdc+ -s+ 0 

where { g }  is the generalized coordinate frame of the ZYX Euler angle. There- 
fore, the dynamic equations of the object in vector form can be obtained as: 

0 ‘ICXX - 
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c8 = cos 8, s8 = sin 8 

and 

= 6 X 1 force vector, i = 1, 2 
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As soon as determining the dynamics of the object, the equations of motion of 
the two robots, taking into account the reaction forces (and moments) on them, 
are given by: 

Note that eqs. (22) and (23) are equations of constraints rather than kinematic 
relations of two robots. 

The above equations can be conveniently represented in the form of singular 
system as: 

0 

-T(l) - J(l)T(q(l))i(l) - F(l)(q(l), 4'1)) 

T(2) - J(2)T(q(2))i(2) - F(2)(q(2), 4(2)) 

i(') + i(2) - F,(p,, 6,) 
p, - H(')(q(')) 

- - 

Note that the matrix 

0 0 0  

M(2)(q(2)) 0 0 0 

0 0 0 0 0  



Huang and Chen: Control of a Two-Robot System 73 

is singular. However, the generalized contact forces i( l )  and i'(2) can be elimi- 
nated by using constraint eqs. (22) and (23). Hence, a nonsingular model of the 
system is given by: 

where 

Note that T depends on both T(') and T(2). 

NECESSARY CONDITION FOR CLOSED-CHAIN SYSTEM 

The Cartesian location of the carried object is obtained through kinematic 
relation. During the development of dynamic equations of the two-robot sys- 
tem, matrices D(I) and D(2) are assumed time invariant and configuration inde- 
pendent. Hence, the necessary condition for the kinematic relation (or closed 
chain) to hold is that the contact between two robot end effectors and carried 
object must be maintained. Sliding is prohibited. Consider Figure 2. N(') de- 
notes net grasping force and is perpendicular to Z-X plane in frame {ie}. g,, gy,  
and g, represent the gravitational acceleration components in X ,  Y, and 2 axes, 
respectively. Since the object is grasped in the Y-direction of frame { ie} ,  no 
sliding occurs in this direction. While in X-Z plane, the sliding is overcome by 
friction. Suppose p is the maximum static friction coefficient between the robot 
end effector and the carried object; then, the maximum static friction force is: 

where 
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Note that [rl4r24r34IT and [r;4r14r.34] are position vectors from frame {le} to {c}  
and frame {2e} to {c}. To avoid sliding, the following force must be canceled by 
friction force: 

Namely, 

From eqs. (30)-(33), the necessary condition for the kinematic relation to 
hold can be obtained in terms of normal contact force N(') as: 

This implies that for sliding avoidance the net normal contact force N(') must 
have a minimum value. In practice, N(') also have limitation on the maximum 
value in order not to damage the carried objects. As to the value of jef(;), it can 
be obtained from force sensor or force estimator. 

ADAPTIVE COORDINATION CONTROLLER 

A two-robot system, taking into account the object dynamics, is quite com- 
plicated. In the controller design, most researchers simply ignore the object 
dynamics. However, when two robots carry a common load, the carried object 
is usually big and heavy. Hence, the object dynamics cannot be ignored. Fur- 
thermore, there exist uncertainties of two robots. Due to those uncertainties in 
the system, if the controller is not "robust" enough, the carried object may be 
damaged by the robots. To improve the control performance and adapt to 
varied uncertainties, it is desired to design an adaptive controller for the two- 
robot system. The adaptive controller will be based on the computed torque 
control. The optimal grasping force exerted by each robot end effector to the 
carried object will be designed and controlled. The main idea is to control the 
center of mass of the camed object to follow a desired trajectory rather than 
directly control the robot trajectory. 

Adaptation Law 

The purpose is to control the center of the mass of the object to track a 
desired trajectory. Therefore, the system dynamics must be expressed in terms 
of the object motion, i.e., pc, pc. From eq. (25) we obtain the nonsingular model 
of the system as: 

(35) M(pc>Pc + W P C ?  P c )  = T 
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Note that M(p,) is composed of M,, M(l)(q(')), and M(2)(q(2)). T consists of T(') 
and T(2). The computed torque control law can be designed as: 

where Pcd, p c d ,  and pcd are the desired motion trajectory of the carried object; 
K, and Kp are 6 x 6 positive definite matrices, K, = diag(kUl, . . . , ku6), Kp = 
diag(kpl, . . . , k p d ;  and M(pc) and F(p,, p,) are the estimated values of M(p,) 
and F(p,, p,). Using eq. (36) in eq. (33, we obtain the error model: 

E + K,E + K,E = M-'(p,)[M(p,)p, + F(pc, p,)] (37) 

where 

M(pJ = Wp,) - M(PJ 

F(pc, pc> = u p , ,  p,> - F(pc, p c >  

(39) 

(40) 

It is clear that if the estimated values M(p,) and F(p,, pc) equal to the actual 
values M(p,) and F(p,, pc), then eq. (37) reduces to: 

M(p,)[E + K,E + K,E] = 0 (41) 

Since M(p,) is nonsingular, the error E(t) will converge to zero. However, it is 
not true in general. Hence, M(p,) and F(p,, pc) should be estimated and ad- 
justed. Suppose the overall system has r unknown parameters to be estimated. 
These unknown parameters are denoted by 0 = [01, . . . , @ , I T  and their 
estimated values by 8 = [6,, . . . , 6,17. The parameter error is defined by: 

Therefore, eq. (37) becomes: 

E + K,E + KpE = M-'(p,)W(pc, pc, p,)@, (43) 

where 

During adaptation phase, the product M-IW should remain bounded at all 
times. Since W consists of bounded functions of the object trajectory, W will 
remain bounded as long as the object trajectory remains bounded. The matrix 
M(p,) will be positive definite if all parameters are ensured to remain within a 
sufficiently small range near the actual parameter value. Namely, the estimates 
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of the parameters will be restricted to lie within bounds so that M remains 
bounded. 

The adaptation law will adjust the estimated parameters according to a fil- 
tered servo error signal. The filtered servo error E ,  is: 

E,  = E + cuE (45) 

where a = diag (al, . . . , ag) ,  a; > 0. Note that the filter need not be imple- 
mented, and E ,  can be computed from sensor reading. From eq. (43), M-lW@ 
can be regarded as the input and E, as the output; then, ai can be chosen so that 
the transfer function 

is strictly positive real. Namely, 

0 < aj < k,, j = 1, 6 (47) 

The subsequent development is similar to that given by CraigI6 for a single 
robot. The adaptive law can be obtained as: 

8 = rWTM-lE, (48) 

where r = diag(r,, . . . , rJ, Ti > 0, is a weighting matrix. To restrict the 
parameter estimates to lie within bounds, the parameters should be reset to 
their bounds as the estimates move outside their known bounds. Namely, 

where li, hi are the lower and upper bounds of the parameter estimate 6; and 6 
is a small positive number. At the instant of parameter resetting, the corre- 
sponding Lyapunov function used for deriving the adaptation law, eq. (48), 
should keep negative definite. Craig16 has shown that the adaptive scheme is 
stable in the sense that all signals remain bounded, and trajectory tracking error 
E and E converge to zero. In addition, if W satisfies the persistent excitation, 
i.e., 

C'' WTWdt 2 PIr, P > 0, p > 0 (50) 

then the parameter error @ will converge to zero. In other words, the persistent 
excitation condition is met if the desired trajectory satisfies 
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where Wd = w(p,d, p c d ,  pcd). This implies that the parameter convergence can 
be determined by trajectory planning. 

Optimal Grasping Force 

The motion of the carried object is governed by eq. (36), and the parameter 
update is determined by eq. (48). However, the controller T in eq. (36) consists 
of T(') and T(2), namely, 

The individual controller of each robot, T(') and T(2), should be further deter- 
mined. 

Let us consider the singular model of the two-robot system, given in eqs. 
(19)-(23). If the grasping forces, f(l) and f(2), in eqs. (19)-(21) are treated as the 
control input, then the computed torque controller for the singular model can 
be obtained as: 

T(1) - J(I)'(q(l))i(l) = M(')3(')[H(l)(q('))J{pcd 

+ Ku[Pcd - J(  I )  (q ('))q(l)] + Kp[pcd - H(')(q('))]} 
+ M(~)(q(l))J(~)[H(~)(q(~)), J(l)(q(l))q(l)] J(i)(q(l))q(l) 

+ qm) (52) 

+ Ku[Pcd - J(2)(q'2')q'2'] + Kp[Pcd - H( 2) (9 (2))]} 

+ @ ( 2 ) ( p ,  q") (53) 

T(2) - J(2)T(q(2))f(2) = M(2)J(2)[H(2)(q(2))]{pcd 

+ M(2)(q(2))J(Z)[H(Z)(q(2)), J(2)(q(2))q(2)]J(2)(q(2))q(2) 

i ( l )  + i(2) = Mc[H(I)(q(I))]{pcd + K, 

[pcd - J(l)(q(l))q(')] + Kp[pcd - H(')(p('))]} 

+ FC[H(1)(q(l)), J(l)(q(l))#l)] (54) 

Multiply eq. (52) by J(')T(pc) and eq. (53) by J(2)T(pc), then add them together 
with eq. (54). The resultant controller is exactly the same as the controller T 
given in eq. (36). Namely, the individual robot controller T(') and T") can be 
determined from eqs. (52)-(54). Note that relationships pc = H(I)(q!')) = 
H(2)(q(2)) and pc = J(l)(q(l))q(I) = J(2)(q(2))q(2) have been implicitly used in the 
above derivations. 

FromJhe physjcal configuration, as shown in Figure 2, the force and mo- 
ment, lef(l) and 2ef(2), determine the motion of the object; however, there may 
exist many combinations of lei(1) and 2ef(2). Note that lef(i) = [ief(i)T ied')T]T. 
Improper combinations of lef(l) and 2ef(2) may move the object along the desired 
trajectory but cause damage on the object. Therefore, the force distribution 
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should be carefully designed. To minimize the energy consumption, as well as 
to avoid damage to the object, the internal reaction force and moment are 
required to be minimum. The following performance criterion is proposed: 

J = l+(l)TQllei(l)  + 2ei(2)TQ22ei(2)  (55) 

where Q I ,  Q2 are weighting matrices. Assume that fJ is nonsingular, i.e., 
8 # 290" in the Euler angle (+, 8 ,  4). Then 

Using eq. (56) in ( 5 9 ,  we have: 

where 

From eqs. (57) and (54), the optimal grasping force i ( l )  and i(2) can be deter- 
mined as: 

Substituting eq. (59) into eqs. (52) and (53), T(') and T(2) can be obtained as: 
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The arguments in the above are omitted for simplicity. Equations (60) and (61) 
denote the joint torque controller for each robot. The grasping force exerted by 
an individual robot can be indirectly controlled through eq. (59). The complete 
schematic diagram for the adaptive controller is shown in Figure 3. 

SIMULATION EXAMPLE 

The above developments have established the system dynamics and the 
adaptive controller for the two-robot system. In this section, one example will 
be used to demonstrate the above developments. In the example, two Cartesian 
robots are used to carry an object from the initial location (0.4 m, 0.2 m) to the 
final location (1.2 m, 0.6 m). The object is constantly accelerated from the 
initial location to the middle location (0.8 m, 0.4 m) and then constantly decel- 
erated to the final location. The total time duration is 2.4 s, and the maximum 
speed is 0.745 m/s. The schematic diagram is shown in Figure 4. 

First, the dynamic equations of the system can be obtained as follows: 

where ml, m2, m, are masses of linkl, link2, and the carried object; [qrl) qy)]T is 
the joint coordinates of robot 1 and [qi2’ qi2)lT of robot 2; [p, pcJT is the 
Cartesian coordinates of the center of mass of the carried qbject; [T:” T/1)IT and 
[TY’ Ti2)IT are the generalized force of the two robots; and [f:” @ITand [i(*) I 2  $’)IT 
are the grasping forces exerted by robot end effectors to the object. The rele- 
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Contml ler Two-robot system , 
1 

Pc 
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robot 1 

Figure 4. Two robots carrying a common load. 

vant data are given in Table I. By eliminating the grasping forces, the system 
dynamics expressed in nonsingular form can be obtained as: 

Table I. System parameters of two-robot system. 

5 2 1 0.1 0.1 0 1.8 
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For the adaptive controller design, the weighting matrices in eq. (55) are chosen 
as: 

From eqs. (60) and (61), the controller can be obtained as: 

(66) 1 p c x d  f K u ~ ( P c x d  - qi2)) K p I [ P c x d  - (1.1 - q$")] 

pcyd + K u 2 ( P c y d  - qf') + K p 2 ( p c y d  - qi2') 

where rill, m2, mc are the estimate values of ml, m2, m, and [ P c x d  Pcyd]' is the 
desired trajectory. From eq. (48), the adaptive law is given by: 

& = rlij;)[(Pcxd - q$l)) + al(pcxd - cq:" + o. i ) )1/6~ (67) 

(68) 

where 6' = mc + 2m2 and 6, = A, + 2(A1 + A*). In the adaptive law, Ol # 0 
and O2 # 0, If quantities qi'), qi') cannot be measured, they can be calculated by 
the following equation: 

8, = r2ij;1)[(i)cyd - qil)) + a2(pcyd - q l  (1) 11 /&, 

qy)[(k + l)A] - qy)(kA)]/A, i = 1 or 2 (69) 

where A is the servo sampling time. Note that the parameter estimates will 
converge since the persistent excitation 

0 0.2778 
trp W,TWddt = [ 

0.5556 
0 0.2778 ] d i ? a [ ;  y ] ,  p , 0 1 > 0  
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Table 11. Parameters for case 1. 

rl r2 ai az Kui Kuz Kpi KPZ 
10,000 50,000 1 1 10 10 25 25 

is satisfied. With this adaptive law, the adaptive controller can be obtained as: 

Two cases will be simulated. One concerns the parameters’ convergence; the 
other considers the sudden change of the payload. 

Case 1 

This case deals with the parameter convergence. Inexact initial system pa- 
rameters are used to test the performance of the adaptive controller. Results 
are also compared with those by using traditional computed torque contrpllers. 
True parameters are [@I @217 = [5 1517. The initial estimates are [6,,(0) @2(0)lT 
= [8 20IT. The other relevant parameters are given in Table 11. The results are 
shown in Figures 5-1 1. Clearly, the adaptive controller gives better perfor- 
mance than the computed torque controller. It seems that the parameters will 
converge to their true values in spite of inexact initial estimates. In other 
simulation runs, it was found that larger weighting factors rl, r2 or larger filter 
gains a l ,  a2 result in faster convergence and better control performance. 

Case 2 

This case deals with the sudden change of the parameters. At t = 0.64 s, one 
additional payload with the mass of 1 kg is added to the system. The other 
relevant parameters are given in Table 111. The simulation results are given in 
Figures 12-18. Again, the adaptive controller surpasses the performance of the 

Table 111. Parameters for case 2 .  

5 15 10,000 50,000 1 1 10 10 25 25 
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Figure 5. 
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Figure w. Case 2, position error in y-axis. 
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Figure 14. Case 2, convergence of parameter 0 1 .  
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Figure 18. Case 2, joint force of y-axis. 
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traditional computed torque controller. It seems that the adaptive controller is 
able to adapt to the sudden change in the object load while the computer torque 
controller is unable to do so. 

CONCLUSION 

In this article, we developed the complete model for the two-robot system. 
The model turns out to be a singular system. In coordination control of the two- 
robot system, the common workspace, the mass, and the inertia of the object 
should be considered in advance. Otherwise, uncertainties in the dynamic 
model will result in damage and large position error in the object being handled. 
The workspace problem can be overcome by the trajectory planner, while the 
uncertainties in the object dynamics and the robots are alleviated by the pro- 
posed adaptive controller. The optimal grasping forces for each robot can be 
controlled directly or indirectly. It has been shown that the adaptive controller 
gives a better performance. 

The authors thank the reviewers for their unanimous comments. The work of this article 
was supported in part by the National Science Council, the Republic of China, under 
Grant NSC-76-0201 -E002-05. 
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