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This article describes the design of the trajectory generator for a robot programming 
system called Multi-RCCL, which is a package of “C” routines for doing real-time 
manipulator control in a UNIX environment. RCCL has been used successfully in 
developing robot control applications in numerous research and industry facilities over 
the last several years. One of its strongest features is the ability to integrate real-time 
sensor control into the manipulator task specification. RCCL primitives supply the 
trajectory generator with target points for motions in joint or Cartesian coordinates. 
Other primitives allow the code developer to specify on-line functions that can modify 
the target points, or possibly cancel motion requests, in response to various sensor or 
control inputs. The design requirements of the trajectory generator are that it be able to 
integrate these on-line modifications into the overall robot motion and provide a smooth 
path between adjacent motions even when sensor inputs make the future trajectory 
uncertain. 0 1993 John Wiley & Sons, Inc. 

1, INTRODUCTION 

Multi-RCCL is a library of “C” routines and data structures for writing robot 
control programs. It is an extension to the original RCCL (Robot Control C 
Library), which was written a t  Purdue University by Vincent Hayward. I Since 
then, various enhancements have been made to the system, including the abil- 
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ity to control multiple robots and distribute the trajectory control over several 
CPUs. Most of this work has been done at McGill University and at the Jet 
Propulsion Laboratory.24 

RCCL's two fundamental features are: 

0 A comprehensive set of C language primitives for specifying robot motions 

0 The ability to write application code that processes sensory information 
and actions in a UNIX workstation environment. 

and adjusts the robot trajectory in real-time. 

These two features have made RCCL a particularly useful tool for develop- 
ing applications where manipulator actions are controlled by various sensor 
and control inputs. Because the system provides direct on-line control of the 
manipulator, special techniques have been used to obtain the required real-time 
performance from conventional UNIX  workstation^.^ 

Principal RCCL sites include the Jet Propulsion Laboratory, the General 
Electric Advanced Technology Laboratory (New Jersey), Columbia Univer- 
sity, the University of Pennsylvania, the University of Southern California, 
NASA Goddard Space Flight Center, the University of Illinois, Universitat 
Bielefeld (Germany), and several others. Specific applications for which it has 
been used include manipulator force control and telerobotics,6.' multiarm force 
control,6 visual servoing and t ra~king ,~ . '~  active visual exploration,]' and the 
development of robot programming interfaces. 

The system's trajectory generator, and its ability to integrate sensor inputs 
with preplanned actions, has thus been thoroughly demonstrated over the last 
couple of years. The purpose of this article is to present the design of the 
trajectory generator in detail. 

It should be noted that responding to dynamic events requires that virtually 
all of the trajectory generation be done directly on-line in a manner that pre- 
cludes some of the more optimal solutions that are possible if the trajectory is 
planned in a d ~ a n c e . ' ~ , ' ~  

The reader is assumed to be familiar with the original book by Richard Paul's 
and all the notational conventions used there. For purposes of clarity, we have 
omitted describing certain details and special cases. 

2. OVERVIEW 

RCCL generates the trajectories necessary to move a manipulator through 
sequences of target positions, which are submitted to a trajectory generator for 
asynchronous execution. Target positions can be specified in either Cartesian 
or joint coordinates. This article will focus only on the former; joint target 
specifications can be handled in the same way. A Cartesian target is described 
by a position equation, which is a closed kinematic loop of 4 X 4 homogeneous 
transforms containing the manipulator's T6 transform. The component trans- 
forms of such target equations may be time varying, and motions to such 
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targets will truck the variations. For example, suppose we wish to have a 
manipulator pick up an object on a moving platform. The application program 
could define the following target equation: 

Z T6ft) E = W P(t) (1) 

and motions to this target will cause the manipulator to travel to a position 
where T6 satisfies the equation (see Fig. I ) .  In this case, P(t) is time varying, 
and T6 will track the changes. A principal means by which the application 
program may vary a component transform is to attach it to a function that is 
evaluated once every control cycle by the trajectory generator; such a function 
may modify the transform based on either some preprogrammed plan or sensor 
inputs. “Stopping” at a time-varying target implies that the manipulator will 
reach the target but continue to track its motions. 

The fact that the target specification is dynamic makes the system quite 
versatile but means that virtually all of the trajectory computation must be done 
on-line. This is, in fact, the greatest constraint imposed on everything that we 
will discuss. 

Internally, the trajectory generator divides the target position equation into a 
TOOL term and a COORD term: TOOL is the set of transforms between T6 
and whatever frame the application has designated as the tool frame, and 
COORD is “other half’ of the equation. In general, these terms will be time 
varying if their components are. Assuming in the above example that the tool 
frame is designated by E, then RCCL would represent ( I )  internally as 

T6(t) TOOL = COORD(t) 

Figure 1. Kinematic loop for a manipulator target attached to a moving platform. 
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TOOL = E (2) 

COORD(t) = Z-’ W P(t) (3) 

This partioning is used for performing the drive computation (discussed alter). 
The job of the trajectory generator is to compute paths between successive 

(possible time varying) target points. The application can specify whether this 
path is to be computed in Cartesian or joint coordinates and imposes velocity 
and acceleration constraints in the selected coordinate system. The velocity 
constraint determines the overall time of the path segment (u), while the accel- 
eration constraint determines the length of time (7) spent doing a smooth trunsi- 
tion between adjacent path segments. 

Figure 2 shows (in one dimension) path segments connecting an initial point 
A,  a via point B, and a stopping point C. The u and 7 values are shown for the 
path segment B. Notice that T is actually one half the total transition time, 
which is symmetrical about the path segment endpoints. The action of “stop- 
ping” at C is also computed as a path segment (in effect another motion request 
to the same target) whose u is specified explicitly. This technique is particularly 
useful because the target position we “stop” at might actually be in motion. 
Finally, notice that unless we actually do stop at a target point, the transitions 
are computed to “undershoot” it. 

The trajectory computations are done in real-time at a fixed sample rate. The 
target position (i.e., the COORD and TOOL terms) is re-evaluated once every 
control cycle; this action will include the evaluation of any functions bound to 
the component transforms. 

Figure 2. Path segments between target positions. 
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For convenience, this article will use a time scale where the start time of the 
path segment under discussion is given by t b  and its end time is t ,  (such that u = 
r, - t b ) .  Moreover, the time corresponding to one control cycle will be defined 
as unity, and the time scale will be offset so that tb  - T = 1. Under these 
coordinates, T and u are equal to their respective number of control cycles. 

As stated above, the path interpolation can be done in either Cartesian or 
joint coordinates. The latter is accomplished using a drive transform con- 
structed in the manipulator tool frame. Individual path points are then com- 
puted from the equations 

T6(t) = COORD(2) DRIVE(t) TOOL(t)-’ 

j6(t) = A-’(T6(t)) 

where k‘() indicates an inverse robot kinematics operation. At time t b ,  the 
drive transform accommodates the initial difference between the current posi- 
tion and the target. Over the course of the path segment, DRIVE(t) is com- 
puted so as to trace a “straight line” from its initial value to the identity I. To 
do this, a function trsfToDriveO is used to convert DRIVE into a set of drive 
parameters (dp) that can be linearly scaled. Given a function driveTo7’rsf) that 
converts drive parameters back into transforms, and a normalized motion scale 
coordinate s. defined as 

the subsequent values of DRIVE(t) can be computed from 

DRIVE(1) = driveToTrsf((1 - s)dp) 

The mechanics of the drive parameters are described in chap, 5 of ref. 15. 

drive interpolation is done in joint space. The corresponding computation is 
Computing the path in joint coordinates is similar except that in this case the 

TC(t) = COORD(t) TOOL(t)-‘ 

j6(r) = A-’(TC(t)) + jdrive(r) 

where TC indicates the value of the motion target in the T6 frame. Instead of 
using a Cartesian DRIVE transform, we use a vector of joint coordinates 
jdrive. The drive parameters jdp are simply the initial values of jdrive, which 
means that 

jdrive(t) = (1  - s)jdp 
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Notice that the path will still track time variations in the Cartesian target 
position. 

Following from the above discussion, the rest of this article will describe, in 
general, how Multi-RCCL (1) computes transitions between path segments, (2) 
determines the drive parameters, and (3) computes cr and T, under conditions 
where the target position may be changing. A detailed description of the spe- 
cific Joint and Cartesian path generation algorithms is also included. 

3. TRANSITIONS BETWEEN PATH SEGMENTS 

When we abut adjacent path segments, we must generally allow a transition 
time T during which one path segment can be smoothly blended into another. 
The magnitude of T reflects the maximum amount of acceleration that can be 
tolerated by the manipulator; a longer value of T is necessary for path changes 
involving larger velocity changes. The T for any motion is computed dynami- 
cally (Section 5.1). 

The path segment blending algorithm used by RCCL is quite independent of 
the other parts of the trajectory calculation, and so we discuss it first. For 
illustration, we will consider the blending of two 1-D path segments S&) and 
S&). Each path segment is the combined result of a drive toward a target plus 
variations in the target itself. 

To smoothly connect the path segments, a blend function p (see Fig. 3) is 
applied to Sl(t) over the interval 1 5 t 5 t b  + T (recall that t h  - T = 1). The 

i-'- -T- 
time 

I I I - 
t b - f ( = l )  t b  t b + z  

Figure 3. Blending two path segments together. 
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implication of this is that the computation for a path segment actually starts at 
time t h  - 7 before the time f b  when it officially starts. 

All the parameters needed to compute the blend function can be determined 
from the initial position, velocity, and acceleration of SO and SI at t = 1. 
Assume for the moment that the blend function can be applied simply by adding 
it to SI (although this is not true for rotations; see Section 3.2). It must then 
satisfy the following constraints: 

SI( 1)” + p( I )”  = So( l),, 

These can be satisfied by computing the blend function with a fifth-order Her- 
mite polynominal: 

where h is a time parameter normalized to span the interval [O,I] during the 
transition: 

Defining the difference between SI and Sz to be 6( t )  = Sl ( r )  - S2( t ) ,  the 
coefficients of (5 )  that satisfy (4) are 

a0 = 6(0) 

a1 = S’(0) 

= 0.5 s”(0) 

a3 = -10 S(0) - 6 S‘(0) - 1.5 S”(0) 

a4 = 15 6(0) + 8 6’(0) + 1.5 6”(0) 

a5 = -6 6(0) - 3 6’(0) - 0.5 ij”(0) 
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Joint space paths, and the translational components of Cartesian paths, can 
be blended by the direct extension of this formulation to several dimensions. 
The blending of rotational trajectories, which is more complicated because 
rotations do not commute and therefore cannot be treated as vector quantities, 
is discussed in Section 3.2. 

The blend function is actually just the ‘‘DRIVE transform” revisited, only 
here discontinuities are being removed in the derivative terms. We could dis- 
pose of the drive computation all together and simply make the transition 
interval cover the entire path segment. We do not do this, however, because 
applications often desire constant-velocity straight-line trajectories. 

Notice that in Figure 3 So and SI intersect at t b .  Generally, the trajectory 
generator sequences events so this is in fact the case, yielding an “undershoot” 
transition (of the sort described in ref. 15) that goes through the inside of the 
intersection point. However, the paths do not have to intersect at t b ;  different 
blending behaviors will result depending on where (or even if) they intersect. 
Variations on the blend function described here have been suggested that allow 
the application to “tune” the extent of the via-point undershoot or specify an 
overshoot.I6 

The principal advantage of the blend technique is that it is robust: We do not 
need to know anything about the path SO after time t = 1 and we do not need to 
know anything about path SI in advance. SO and SI do not even have to be 
straight lines, as illustrated in the figure. This is important because the target 
may be time-varying and sensor-driven and hence not completely predictable. 

3.1. initializing the Blend Parameters 

To initialize the blend function, it is necessary to know the values of So and SI 
and their derivatives at time t = 1. 

For computational reasons, RCCL does not presently worry about any initial 
difference in acceleration between the path segments: For purposes of comput- 
ing the blend function, it is assumed that Sd(1) - SY(1) = 0. We therefore need 
only Sdl), Si(1), SI(l), and Si(1). In general, however, we do not have SX1) 
because we have only started computing Sl( t )  during the first control cycle. To 
accommodate this, the trajectory generator waits for one more control cycle 
and then computes S1(2), from which Sl(1) may be estimated as Si(1) = S1(2) - 
Sl(1). The output setpoints for the first control cycle are simply set equal to 
SO(1). 

Two interface functions are defined that compute the required derivatives 
and blend parameters from the values of SO and SI at times 1 and 2: 

setBlend2 (So( 1 1, S I (1 ) , 27) 

The third argument to setBlend2O gives the total length of the transition time, 
which is needed to compute h. 
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Because the blend function cannot always be applied by simple addition, its 

The computation of & ( I )  and So(2) is currently done by extrapolating the 
application to SI will be indicated in general as D(S,(f)). 

initial path: 

So(2) = So(0) + 2SIxO) 

There are two reasons for doing this instead of computing &(t)  directly. The 
first is simply to save computation. The second is that we do not wish (under 
the present implementation) to compute So at the same time we are computing 
SI because some of the transforms that define the first target may also be used 
in the definition of the second target. If any of these transforms are bound to an 
application-defined function, then that function would have to be called twice 
during the same control cycle in two different motion contexts. Resolving this 
properly would require adjustments to the present application interface. The 
small errors introduced by extrapolating SI have not caused any difficulties to 
date. 

3.2. Blending Rotations 

Analogous to the previous discussion, we can consider the problem of blend- 
ing rotations as computing a smooth transition between two rotational paths 
RO(h) and Rl(h) over a normalized time interval [0,1]. Unlike the treatment 
above, however, we cannot do this using a simple Hermite polynominal be- 
cause there is no vector-like representation for rotations that defines a proper 
metric for them.* 

One obvious solution to this problem is to find a space that does form a metric 
for rotations and do the blending there. For distance, the unit sphere in 9't4 
formed by the set of unit quaternions forms a metric for rotations and it is 
possible to construct curves on the surface of this sphere to smoothly connect 
different rotation states." Unfortunately, this technique is too expensive (com- 
putationally) to be of use for one-line calculation. 

Instead, we use a method that has some similarities to the work described in 
ref. 18. To begin with, the computation has been simplified by ignoring initial 
rotational accelerations. This has not caused any noticeable problems, and 
acceleration compensation could be added, if necessary, as a simple extension 
of the following method. 

The blend function p takes the form of a blend rotation RB(h) that is applied 
to Rl(h) over the transition interval, producing the output rotation R(h): 

R(h) = Rl(h) RB(h) 

*Although vector blending can work if the rotational distance between RO and Rl  is 
not large; for instance, interpolation of quaternions works quite nicely for displace- 
ments less than 45". 
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Let the rotational velocities of RO, R1, and RB be given by a,, a,, and 0 s .  We 
then have the following boundary conditions: 

RB(0) = R1(0)-' RO(0) 

RB(1) = I 

a,(l) = 0 

The velocities in the third equation are described with respect to the RO(0) 
coordinate frame. 

Looking at the boundary conditions, we see that what we essentially want to 
do is remove the initial displacement and velocity of RB. The initial displace- 
ment RB(0) can be expressed as a single rotation about some axis. If this axis is 
parallel to fl,(O), then the whole problem reduces to a one-dimensional one in 
terms of the rotation parameter about that axis. While this is not in general true, 
it suggests resolving RB into separate rotations that compensate for velocity 
and displacement. Let the notation rof(8, u) denote a rotation of 8 about the 
axis u. Now, let wo = Il&(O)ll, let u, be a unit vector parallel to ado), and define 
RB as the following product: 

RB(h) = R1(0)-' RO(0) RC(h) RV(h) 

The first two (constant) terms compensate for the initial displacement. 
The RV(h) term, which is initially equal to I, acts to bring &do) to 0: 

RV(h) = rot(w0 g , (h) /2 ,  u,) 

where g, is the polynomial 

g, = (h3 - 2hZ + 2)h 

defined so that RV satisfies the boundary conditions that require it to have an 
initial velocity of wo and a final velocity of 0, and 0 acceleration at both ends. 

Finally, the RC(h) term brings all displacements to 0, including those in- 
curred by RV. Because RB(1) = I, we have that 

RC(1) = RO(O)-' Rl(0) RV(I)-' 

Letting uc be the axis of rotation for RC(1) and 8, be the angle of rotation, 
RC(h) is computed from 
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where g, is the polynomial 

g ,  = (6h2 - 1% -t 10)h3 

which gives RC a velocity and acceleration of 0 at the transition endpoints. 

4. COMPUTING THE DRIVE PARAMETERS 

In this section, we continue to use the one-dimensional paths SO and S1 to 
illustrate how drive parameters are computed, first for fixed targets and then for 
time-varying targets. 

4.1. Fixed Targets 

Refer to Figure 4. When the computation begins for path SI a? ? = 1, the 
manipulator is following path So is on its way to some point B. If CO is the 
official target point for path SO, and is constant, then B = CO. If the CO(?) is not 
constant, then B = C&), which creates a minor problem because C O ( ? ~  is 
generally not known ahead of time. In this case, B can be estimated by extrapo- 
lation: 

. . . . . .=. c1 
.t 
i time 

SO 

I 

1 t b  ( = % +  1 )  

Figure 4. Computing the drive parameter for fixed targets. 
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Another instance where it becomes necessary to do this is when the motion 
along So is interrupted prematurely, before it has had time to approach the 
official target. 

Assume that the (constant) target for the next path segment is CI . The drive 
parameter L) for this motion is then simply 

D = B - c ,  (7) 

and S1 can be computed by 

S,(f )  = c1 + (1 - s)D (8) 

4.2. Time-Varying Targets 

If Cl(t) is time varying, then there is another minor problem deciding how to 
compute the drive parameter. During the first cycle, the drive offset O(1) can be 
computed from the initial target value as 

O(1) = B - CI(1) 

But, repeating the computation during the second cycle yields 

O(2) = B - CI(2) 

which may be different. What we really want is the drive offset for time f b  (see 
Fig. 5) :  

O(fb) = b - cl(fb) 

This yields an equation for Sl that looks like 

Substituting in for time t b ,  we notice that 

which is correct. 
While O(tb) cannot be known with certainty ahead of time, if it is assumed 

that Cl(f) is roughly linear in the transition region then O(fb) can be estimated 
by extrapolation: 

This requires postponing the computation of D until the second control cycle, 
but we already have to “coast” for the first cycle anyway for purposes of 
calculating the blend parameters. 
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1 2  tb  

Figure 5. Computing the drive parameter for moving targets. 

Once D has been computed, it is necessary to compute Sl(2) and “backcom- 
pute” SI( 1) to initialize the blend parameters. This can be done using (9), which 
yields, with the 1 - s term expanded, 

Sl(1) = Cl(1) + (G) D 

4.3. Stopping 

The path generation methods given above are versatile and can handle a 
variety of cases. For instance, if we switch path interpolation modes from the 
previous cycle then we only have to transform the initial velocity estimate 
associated with Sh(0). Because path points are computed in both Cartesian and 
joint coordinates anyway, this is easy. We can also handle motion interruption 
easily: If a motion is canceled before it has reached its anticipated target, its 
“virtual target” B can be computed using (6) and the rest of the computation is 
the same. 

There is one particular case that is treated separately: stopping. Recall that 
this is implemented as a duplicate motion to the same target point. This implies 
some simplification in computing the trajectory paths. For one thing, there is no 
need to do a drive computation: by definition, the manipulator has already 
reached its target. It might be necessary to maintain a fixed drive offset, how- 
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ever: In cases in which the preceding motion was interrupted before comple- 
tion, the most natural option is to stop at the point where the motion was 
interrupted rather than at a point that was never reached in the first place. 

This is done in the following way. During the first computation cycle of the 
stop segment, the final scale factor sf associated with the previous motion is 
determined. If the motion went to completion, then sf = 1; otherwise, sf < 1. 
The constant term (1 - sf)D is then used in (9) in place of the time-varying term 
(1 - s)D. 

5. COMPUTING THE PATH SEGMENT AND TRANSITION TIMES 

This section outlines briefly the calculation of T and u. It should be men- 
tioned in passing that although these times are normally computed automati- 
cally, as described here, RCCL does permit the application to specify them 
explicitly. All operations described here are assumed to be normalized to the 
appropriate units. 

5.1. Transltion Tlmes 

RCCL computes its path segment transition times “on the fly,” taking into 
consideration the current velocity, the distance to the next target, and the 
specified velocity and acceleration limits. While the method used is only a 
heuristic, it works reasonably well and is computationally tractable. The com- 
putation for Cartesian motions will be described here. The equivalent computa- 
tion for joint motions is analogous. 

Velocity and acceleration constraints for Cartesian motions are specified in 
terms of a maximum translational “cruising” speed U,, a maximum rotational 
speed V,, a maximum translational acceleration ii, , and a maximum rotational 
acceleration ii,. To determine T, the system estimates the peak translational 
and rotational velocity (0, and 0,) for the upcoming path segment, subtracts 
these from the current velocities vm and v ~ ,  and divides by the appropriate 
acceleration limit. 

The path segment velocities are estimated as follows. Assume that the ma- 
nipulator is currently heading toward a target point Cl(t), and the target point 
for the next path segment is C2(t). The displacement D between these two 
targets can be computed as 

D = Cl(t)-l C2(t) 

D is used to compute u, (a unit vector parallel to the translation vector), d, (the 
magnitude of the translation vector), U, (a unit vector describing the equivalent 
axis of rotation), and d, (the angle of rotation about u,). 

The path segment is assumed to consist of an acceleration phase, a cruise 
phase, and a deceleration phase. Considering first the translational component, 
the system constructs estimates of the speed (0,) and path segment time (+,). 
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Let 6, = ($/Z,) be the nominal translational distance covered during the accel- 
erationldeceleration phase. If 6, I d , ,  then 6, and Cr, are given by 

0, = v, 

Otherwise, if 6, > d , ,  then the desired cruising velocity E, will not be reached 
and 0, and 6, are given by 

6, = 2 a  

The same computation may be repeated for the rotational component to obtain 
6, and 0,. Because 6, and 6, will generally not be equal, the actual estimate of 
the path segment time 6 is set to the maximum of the two: 

6 = max(cr,, cr,) 

8, and 8, can now be computed as 

8, = (F) u, 
cr, = (y) u, 

Finally, 7 is determined from 

If the next path segment is a stop request, then 8, and 8, are 0 and may be 
eliminated from the computation altogether. 

5.2. Motion Segment Tlme 

The motion segment time cr was estimated during the computation of 7. 
However, this considered only the anticipated displacement for the path seg- 
ment and was not updated to be consistent with the final computed value of 7. 

During the first computation cycle of the path segment, cr is recomputed 
using the distance to the target and the known value of T. This calculation is 
simple and is illustrated again using the translational component. This time, let 
6, = dt - 27Vt represent the total distance covered during the cruise phase of 



384 Journal of Robotic Systems-1 993 

the path segment. If 6, > 0, then u, is computed from 

u, = 27 + d,h,  

Otherwise, the path segment does not contain a cruise phase and 

u, = 27 

After repeating these computations for the rotational component to obtain a;, 
the final value of u is computed from 

u = max(u,, ur) 

5.3. General Remarks 

For joint-interpolated motions, the computations are similar to those above, 
with each joint value being treated as an independent constraint component. 

It is emphasized again that the computation of 7 is only approximate, with 
computation time being the chief limiting factor. In particular, a precise deter- 
mination of 8, and tr would have to also consider the initial velocities v , ~  and vd .  

These calculations require that C2(2) be computed simultaneously with the 
current motion target Cl(t). It was mentioned briefly in Section 3.1 that RCCL 
avoids computing two paths simultaneously so as to not have to evaluate a 
functionally bound transform twice in two different motion contexts. This rule 
is still adhered to; C2(t) is determined by multiplying the transforms of the 
associated position equation but not calling any €unctions that may be attached 
to them. This can cause inaccuracies if a transform's function introduces dis- 
continuities to its value at the beginning of the motion, although such cases are 
rare. 

Finally, it should be mentioned that ii, and ii, could be computed dynamically 
using the manipulator Jacobian and the joint acceleration limits, although this is 
not done at the present time. 

6. CARTESIAN MOTIONS 

This section presents the specific computations used by the trajectory gener- 
ator to do Cartesian interpolated motions. Some things have been omitted, 
including calculations related tod Sections 4.3 and 5.  

6.1. Special Operations Used 

A few of the operations used in the general discussion need to modified for 
Cartesian coordinates. In particular, it is not possible to simply extrapolate a 
transform matrix M directly by computing something like 

M(k) = M(0) + kM'(0) 
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An equivalent computation is possible, however. Suppose that a displacement 
is represented not by a transform but by a 7-tuple consisting of a position 
vector, an axis of rotation, and an angle of rotation about the axis.* RCCL 
maintains such objects and calls them DSPLs (for displacements). The func- 
tions trsfloDspl() and dsplToTrsfl) are used to convert between them and 
transforms. A DSPL representation can be easily scaled by simply multiplying 
the position vector and the rotation angle. The combined operation of scaling a 
DSPL and converting it back to a transform is performed by the function extrup 
TrsfByDspl() (notice that this function returns a transform). Because a DSPL 
can represent a velocity as well as finite displacement, the equivalent to (10) 
can be constructed as 

M(k) = M(0)extrup TrsfByDspl(v, &) 

where v is a DSPL representing a one-cycle displacement. This can be easily 
computed from two successive transform values: 

v = trsfloDspl(M0-' M I )  

Note that, like drive parameters, DSPLs can be easily interpolated. DSPLs 
could be used in place of drive parameters, although the two-angle interpola- 
tion used for drive parameters offers some advantages in robot task specifica- 
tion. 

The blending of Cartesian path segments is done in the manipulator T6 
frame, which means that SO and SI correspond to values of T6 that will be 
designated as SO and S1. 

We are now ready to present the path computation algorithm. 

6.2. First Path Segment Computation Cycle 

It is assumed that T6(0) and vo (a DSPL representing the unit velocity in the 
T6 frame) are initially available. We first compute the value of T6 toward which 
we are heading either by setting it equal to the previous motion's T6 target (if it 
is constant and the previous motion was not interrupted) or by estimating it 
from 

'6 = T6(0) extrup Trs@yDspl(vo, 7 + 1) 

Next, an initial value drive offset is computed: 

O(1) = COORD(I)-' T^B TOOL (1) 

*This forms a computationally convenient representation for a finite screw. 
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SO(1) and SO(2) are then computed by extrapolation: 

SO(1) = T6(0) extrup TrsflyDspl(v0, 1)  

SO(2) = T6(0) extrup TrsjByDspl(v0, 2) 

and SO(1) is used as the output setpoint: 

j6( 1) = A-'(SO( 1)) 

6.3. Second Path Segment Cornputation Cycle 

offsets are extrapolated to obtain the real drive parameters dp: 

O(2) = COORD(2)-' T^B TOOL(2) 

This cycle is the busiest. A second drive offset is computed, and then the two 

ov = trsJToDspl(O(1)-'0(2)) 

dp = trsfloDriue(O( 1) extrup TrsjByDspl(ov, 7) )  

The values of DRIVE(?) corresponding to cycles 1 and 2 are then computed: 

DRIVE(1) = extrup TrsjByDrivefdp, (tc - l)/cr) 

DRIVE(2) = extrup TrsflyDriuefdp, ( tc - 2)lcr) 

These are used to compute Sl(1) and Sl(2) and set the blend parameters: 

S1( 1)  = COORD( 1) DRIVE( 1) TOOL( l)-'  

Sl(2) = COORD(2) DRIVE(2) TOOL@)-' 

setElendl(SO(l), S1( 1)) 

setElend2@0(2), S1(2), 27) 

Last, the output setpoint is determined by applying the blend function to Sl(2): 

j6(2) = A-'(P(S1(2))) 

6.4 Remaining Computation Cycles 

The value of DRIVE@) is computed: 

DRIVE(?) = extrup TrsflyDriue(dp, 1 - s)  
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and used to compute the output setpoint directly. The application of the blend 
function p is omitted if t L th + 7:  

j6(t) = A-'(P(COORD(t) DRIVE(t) TOOL(t)-')) 

7. JOINT COORDINATES 

This section presents the specific computations used by the trajectory gener- 
ator to do joint-interpolated motions. Because joint coordinates can be treated 
as vector quantities, their associated path computations follow directly from 
the introductory discussion given earlier. Because the path segment blending is 
done in joint coordinates, the values of So and S, correspond to values of j6 that 
will be designated as js0 and jsl .  

7.1. First Path Segment Computatlon Cycle 

Assume that the initial joint angles j6(0) and velocities jv(0) are available. 
The value of j6 toward which we are heading is computed either by setting it 
equal to the previous motion'sj6 target (if it is constant and the motion was not 
interrupted) or by estimating it from 

j b  = j6(0) + (7 + l)jv(O) 

Next, the value of the motion target is computed in joint coordinates (ic) and 
used to find an initial value for the drive offset jo: 

jc(1) = A-YCOORD(1) TOOL(l)-') 

jo(1) = jb - jc(1) 
h 

jsO(1) and jsl(2) are then computed by extrapolation: 

jsO(1) = j6(0) = jv(0) 

jsO(2) = j6(0) = 2jv(O) 

and j6( 1 )  is set equal to jsO( 1) .  

7.2. Second Path Segment Computatlon Cycle 

to determine the drive parameters jdp: 
A second value for the drive offset is computed and used with the first value 

h 

jo(2) = jb - A-'(COORD(2)TOOL(2)-') 

jdp = jo(1) + ~( jo (2 )  - jo(1)) 



388 Journal of Robotic Systems-1993 

jsl(1) and jsl(2) are then computed and used to set the blend parameters: 

setBlendZ(jsO( l) ,  jsl( 1)) 

setBlen&(jsO(2), js1(2), 27) 

Last, the output setpoint is computed by applying the blend function p to jsl(2): 

7.3. Remaining Computatlon Cycles 

omitted if t 2 t b  + 7: 

The output setpoint is just computed directly, with the blend function p being 

j6(t) = p(A-’(COORD(t) TOOL(t)-I)) + (1 - s)jdp) 

8. COMPUTATION TIMES 

How much CPU time do the trajectory computations described here require? 
On a microVAX I1 system (now somewhat obsolete), the trajectory generator 
can control one PUMA robot quite comfortably at a 30-ms sample rate. The 
trajectory computation itself, involving closed-form inverse kinematics, sev- 
eral transform multiples, the application of a blend function, and precomputa- 
tion of the next motion request, typically requires no more than 10 ms. An 
additional 5 ms or so may be required for the extra computations during the first 
two cycles of a motion. 

On a Sun4 Sparc system, one robot can be controlled easily at 5 ms, with the 
trajectory computations taking up about 1.5 ms of this time. Newer systems 
such as Silicon graphics workstations running the MIPS R3000 CPU can do all 
of the trajectory computations in as little as 0.5 ms. 

To help achieve these speeds, most computations are done using single preci- 
sion and the trigonometric and square root functions are computed using lin- 
early interpolated lookup tables with a worst case error of about Y7. 

9. CONCLUSION 

The robot programming system RCCL has been demonstrated over the last 
several years to be a useful platform for developing a wide variety of robot 
control applications. The trajectory generation technique described here, 
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which uses first-order velocity extrapolation combined with path blending, has 
been shown to be effective in handling various situations where the robot’s path 
is subject to on-line modification from a wide range of stimuli. Examples of 
these stimuli include operator control inputs from joysticks or hand controllers, 
readings from force/torque sensors used to implement impedance control, or 
various types of visual and range-finding information used to implement track- 
ing. 
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