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Optimal Trajectory Planning for a Space Robot Docking
with a Moving Target via Homotopy Algorithms

Y. Chen and L. T. Watson*

The mathematical formulation of optimal trajectory planning for a space robot docking with
a moving target is derived. The calculus of variations is applied to the problem so that the optimal
robot trajectory can be obtained directly from the target information without first planning the
trajectory of the end-effector. The nonlinear two-point boundary value problemn resulting from
the problem formulation is solved numerically by a globally convergent homotopy algorithm. The
algorithm guarantees convergence to a solution for an arbitrarily chosen initial guess. Numerical

simulation for three examples demonstrates the approach.

1. Introduction

Space robots will play an important role in future space exploration. Their tasks may
include docking payload to another spacecraft, picking up space debris and rescue/repair
of stranded satellites in orbit, etc. Some tasks require that a space robot be able to dock
to a moving target accurately and smoothly. Unlike industrial robots, space robots are
mobile and usually redundant. The redundancy can be utilized to help achieve optimality,
such as the criteria of minimum energy or minimum time, which are highly desirable in a
space environment.

The topic of trajectory planning for robots with redundancy has been studied exten-

* Professor, Department of Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia 24061



sively in the recent robotics literature. Often the end-effector’s trajectory is planned (or
prescribed) first based on the target information and/or task requirements. Then either
global or local optimization methods can be used to obtain an optimal robot configuration
trajectory under a certain criterion!~? for a specific end-effector’s trajectory.

As far as the space robot itself is concerned, a lot of research has been conducted on
free-flying space robots *~%, where the robot is subject to no external forces and torques
so that the linear and angular momentum of the robot system are constant, This prob-
lem possesses some special characteristics with respect to robot kinematics. The relation
between robot end-effector variables and robot configuration variables is not merely kine-
matical. This leads to more complexity in the forward and inverse kinematics calculations,
as well as in trajectory planning.

In this article, we assume that the space robot is capable of travelling in space and
maneuvering to dock with a moving target. It is not assumed free-flying because robot
base control may be on during its mission. The target motion in an orbit is given. We

define the target trajectory vector as
r;=[R} O] ]1 (1
t t t ? )

where Ry is the target position vector in inertial space and @; is the target orientation
vector. The problem considered here is to find a robot configuration trajectory q*(¢) that
can meet the requirement of docking with the target and also minimize the performance

measure defined by

L= ¢qadt )

to

It is well known that the kinematical relation between the robot end-effector variable

vector r(t) and its configuration variable vector q{) can be expressed as

r(t) = fq(?)), (3)
where r is an m-vector and q is an n-vector. Let .J denote the Jacobian matrix of f. We

consider two problems:




Problem 1: Find q* so that
i) the end-effector reaches the target at free final time ty, i.e., re(ty) = f(q(ts));
i1) L is minimized.
Problem 2: Find q* so that
i) the same as i) in Problem 1;
ii) the velocity of the end-effector matches the velocity of the target at free final time
ts, ie., Fy(ty) = J(q(ts))a(ts) (this is the condition referred to as “smooth/soft
docking”");

iii) the same as ii) in Problem 1.

Here we simply apply the calculus of variations to our problems® instead of using

global or local optimization methods for resolving robot redundancy!. The advantage

of this approach is that it enables us to obtain the optimal robot configuration trajectory -

directly from the target information without first dealing with the end-effector’s trajectory.
A set of nonlinear two-point boundary value equations is derived by this approach. An
algorithm based on homotopy theory® is used which guarantees global convergence to a
solution.

The mathematical formulation of the problems is presented in the next section, fol-

lowed by an introduction to homotopy algorithms for solving nonlinear equations. Finally,

a numerical example of a planar two-arm space manipulator is used to demonstrate the

approach.

2. Formulation

Formulation for Problem 1

Given the measure L = j;tof #(q, q)dt and the boundary conditions of Problem 1:

q(te) = Co, (4a)
£(q(ts)) = re(ts), (40)
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the calculus of variations {note that t; is free) yields the necessary conditions:

gp d [0
L2 = t t<t
2z ) =0, o<t<ts, (5a)
q(te) = Ca, (58)
17, .
a—? bq| +¢(q,q)| bty =0. (5¢)
q tf t! t_f
Based on the relation
Say=da| +a(ty)ts (6)
ty

shown in Figure 1, Eq. (5c) can be expressed as

5(]f
g =0, (7N
6ty
h _[/a8\* . O0d. : & .
where g = % #(a,q) — 34 t is an (n+1)-dimensional row vector. Equa-
!

tion (7) is the transversality condition at ¢ = t;. It is required that m < n + 1 for the
existence of solutions. In the case m = n + 1, the problem becomes trivial in the sense
that the final state q*(¢7) and the final time ¢5 can be determined from Eq. (4b) itself

and a standard two-point boundary value problem is formulated as

o6 d [(3p\ _
aq_dt(éﬁ>_0’ to <t <t

q(to) = Co, (8)

qfts) = q".

H m < n+ 1, we denote the hypersurfaces of Eq. (4b) by

F(q(ts)tf) = 0. (9)

By variation and writing qy for q(¢s), we have

AT 1 [ %9r
[(ﬂ) %] —0, i=1,...,m. (10)
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Defining the (n 4 1)-vector

T T
uj = [(Q_F_:) 95_‘] (11)
dq; Oty
as the gradient vector of hypersurface j, (j = 1,...,m), we conclude that the necessary

condition of Eq. (7) is that g is a linear combination of m vectors uj, i.e.,
g=d1u1+d2u2+---+dmum. (12)

Now we write Eqgs. (5a), (4a), (9) and (12) together as:

%-—%(g—z) =0, iy <t <1y, (13a)

q(te) = Co, (138)

F(q(ts),t5) = 9, (13¢)

g(as, as) = dimi(as,t) + dona(Qs ty) + -+ dmum(dy, tr)- (13d)

Equations (13) represent a nonlinear two-point boundary value problem. The (2n+m +
1) boundary conditions of Egs. (13b}~(13d) determine 2n constants of integration, m

variables dy,...,dn,, and one variable ¢, altogether (2n 4+ m + 1) unknowns.

Formulation for Problem 2
The difference between Problem 2 and Problem 1 is that the forme.r includes the

additional boundary conditions

J(a(ts)alts) = telty), (14)

where J is the Jacobian matrix of f. Therefore the constraint equations at final time {;

are

F(a(ts),tr) = f(a(ts)) — relty) =0, (15a)

G(q(ts),a(ts).tr) = J(a(ts))alty) ~ ru(ty) = 0. (155)
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Based on the differential equation (13a) and its initial condition for g{¢y), we can

regard the final state q(t¢) and §(#y) as functions of q(#,) and iy, i.e.,
q(tf) =M (Q(t0)1tf), (16(1)

q(ts) = p2(q(te). ty). (16b)

From Eqs. (16), we have in general a relation between ¢(t5) and q(ts) expressed as
alts) = plaltr) ) an)
Substituting Eq. (17) into Eq. (15b} gives
H(a(ts). 1) = J(a(ts))p(alts),tr) — bults) = 0. (18)

It is required that 2m < n + 1 for the existence of solutions. In the case 2m =n + 1, the
problem becomes trivial in the sense that the final state q*(#;) and the final time ¢; can
be determined from Eqs. (15a) and (18) alone and a standard two-point boundary value
problem is formulated the same as Eqgs. (8).

I 2m < n+ 1, we follow the same procedure as for Problem 1 concerning the hyper-

surfaces of Egs. (15a) and (18). By defining the gradient vectors u; from Eq. (11} and v;

from
oY  oH; 1T
Vi = _— » (19)
qu at_f
the transversality condition of Eq. (7) is satisfied if and only if g is a linear combination
of 2m vectors u; and v; (7 =1,---,m), i.e,
g=> diu;+e;vi. (20)
i=1

We can then formulate Problem 2 as

8¢ d [9p\ _
—é—iua(%‘)—o, t0<t<tf, (21(1)
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q(to) = Co, (21b)

F(a(ts)tf) =0, (21c)
G(Q(tf)a Q(tf): tf) =0, (21d)
glas.ar) = Y dimi(ay, i) + eivi(as, tr). (21e)

1=1
Equations (21) represent a nonlinear two-point boundary value problem. The (2n+2m+1)
boundary conditions of Eqs. (21b)-(21e) determine 2n constants of integration, variables

di,...,dm, m variables ey, ..., em, and one variable 7, altogether (2n +2m+1) unknowns.

3. Homotopy Algorithm

Equations (13) or (21) constitute a nonlinear two-point boundary value problem. The
solution of such problems is generally very difficult to obtain, particularly for systems
whose dimension is not small. The shooting method reduces the problem to the solution

of a system of nonlinear equations
F(w) =0, (F,w € B") (22)

which is usually solved by Newton’s method. The approach suffers from sensitivity to
initial guesses and the Newton iteration can diverge. As an alternative, one can consider

the continuation method with Eq. (22) replaced by
Ala,w) = aF(w)+ (1 —a)S(w) =0, (23)

where a € [0,1] is a parameter and S{(w) is a function such that the equation S(w) =01s
relatively easy to solve. However, if Newton’s method is applied to Eq. (23), failure may
still occur, because continuation postulates that w = w(a) in Eq. (23), and the zero set

of Eq. (23) does not necessarily increase monotonically in a.
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Quite recently, a new version of the continuation method, known as probability-one
homotopy algorithms, has been developed®. In the algorithm, a homotopy map T, :

[0,1) x E™ — E™ is defined by
Ta(a,w) =T(a,0,w) = aF(w) + (1 — a)(w —a). (24)

According to the probability-one homotopy theory, for almost all a € E™, there is a
zero curve 4 of I'y emanating from (0, a}, along which the Jacobian matrix DI, has full
rank. The curve v is continuously differentiable, does not intersect itself, and is disjoint
from all the other zeros of T'y. Furthermore, v must either reach a point (1, W), in which
case W solves Eq. (22), or go off to infinity. Since ¥ is smooth, it can be parameterized by

arc length s : a = a(s), w = w(s). Then the zero curve v of Eq. (24) satisfles

Lu(a(s),w(s)) = 0 (25)
identically in s. Thus
d
—TI.{a(s), w(s)) = 0. (26)
ds
Equation (26) can be written as
do
or, or ds
2 2 =0 27
[ da Ow ] dw ’ (27a)
ds

and since the derivative is a unit tangent vector,

do  dw
= 2= =1, 27b
Iz &)= 1)
where || |l denotes the Euclidean norm. Equations (27) are subject to the initial conditions
a{0) =0,
(28)
w(0) = a.

At the point s = s* for which a(s*) = 1, the solution W = w(s*) is obtained.
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In solving Eqs. (27), a is allowed to increase or decrease arbitrarily for s € [0, s*],
as long as the zero curve v is followed. This is a distinct advantage over a Newton-based

continuation method. Under fairly general assumptions on F(w), the homotopy theory
[7) N} A
Oa

curve v and + is bounded. This implies the global convergence (with probability one) to a

says that for almost all a the Jacobian matrix [ ] has full rank along the zero

solution of the nonlinear problem.

4. Numerical Examples

A planar satellite-based manipulator is used as an example system to demonstrate
the approach presented here. As shown in Figure 2, the space robot consists of a satellite
base, two manipulator arms and an end-effector. The arm lengths are L, = Lé = 10.0m,
Ly =20m. Wedefiner=[z y ¢ ]T as the manipulation vector of the end-effector and
q=[{z0 yo b 6, b & ]T as the robot configuration vector. We also assume that
the base orientation 8, of the robot is controlled to be fixed in orbit (at §p = 0), so that

the kinematical relation in Eq. (3) is simply
2 =129+ Ly cosb, + Lo cosBy + L3 cosbs,

Yy =Y + Lisin 81 + Ly sinfy + Lysin 8, (29)
=6
The performance measure is given by
i
L= / T qdt (30)
to

and the initial configuration of the robot is q(p) = Cp = 0.

Numerical computations have been done for three examples.

Example 1:
The target trajectory in space is specified as
z; = 104,
y: = 10 4 10, (31)
Y, = [ (const).
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It is required that the position and orientation of the robot end-effector match the position
and orientation of the target at some final time t§ and meanwhile minimize the performance
measure defined in Eq. (30). Therefore Eqs. (13) associated with Problem 1 are used.
Here we have n = 5 (6 is dropped from q as the robot base orientation 8y is assumed
fixed) and m = 3. The solution exists and is nontrivial since m < n + 1. The dimension
of the problem is (2n +m + 1) = 14.

The details of the derivation of Egs. (13} and their conversion to a nonlinear system
Eq. (22) are easy but rather lengthy, and F(w) in (22) is only defined implicitly. Here
shooting is used to define F(w), whose components are thus given in terms of the solution
to an initial value problem, evaluated at ¢;. Hence F(w) can only be expressed implicitly.
Note that Eqs. (13) can alsé be converted to a nonlinear system F(w) = O by finite
differences, collocation, or finite elements. Each of these methods has certain advantages
over shooting, but shooting was sufficient for the examples here. Several different cases
were solved by a homotopy based nonlinear equation solver, using the HOMPACX software
described in ref. 9. The optimal robot configuration trajectories with respect to different
target orientations 8 are shown in Figures 3-4.
Example 2:

The target trajectory in space is specified as

Ty = IOt,
ye = 10 + 10¢, (32)
Py = 1.

It is required that the position and orientation of the robot end-effector, as well as their
velocities, match those of the target at some final time and meanwhile minimize the per-
formance measure defined in Eq. {30). This is an example of Problem 2, with n = 5 and
m = 3 so that n + 1 = 2m. Therefore, as described in Section 2, the problem becomes
trivial. The final state q(fs) and the final time ¢; can be obtained by solving directly

the constraint equations. Then, solving a standard (simple explicit boundary conditions)
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nonlinear two-point boundary value problem, the optimal robot configuration trajectory
can be obtained as shown in Figure 5.
Example 3:

With the same target trajectory defined in Eq. (32), we now drop the requirement on
orientation in the constraint equations. It is only required that the end-effector’s position
and velocity match those of the target and meanwhile minimize the performance measure
of Eq. (-30). Now n = 5 and m = 2 so that 2m < n+1. Therefore Egs. (21) associated with
a nontrivial solution of Problem 2 are used. The dimension of this problem is 2n+2m+1 =
15.

The optimal robot configuration trajectory is shown in Figure 6. Figure Tis the homo-
topy zero curve for this problem, clearly not monotone in «, and showing why continuation
in o would fail. The many sharp turns also show why sophisticated mathematical software

(such as HOMPACK?!?) is required to track the homotopy zero curve.

5. Conclusions

In this article, a mathematical formulation of optimal trajectory planning for a space

robot docking with a moving target was derived. The calculus of variations was applied to

the problem so that the optimal robot trajectory can be obtained directly from the target
information, without first planning the trajectory of the end-effector.

Two problems were considered: the first for the position (and/or orientation) match of
two docking objects, the second for the position (and/or orientation) and velocity match of
two docking objects. The degrees of freedom n of the space robot, must satisfy an inequality
for the existence of a solution. For Problem 1, the inequality is n > (m — 1); for Problem
2, n > (2m — 1). The difference between the two problems’ formulations seems only their
dimensions. However, the formulation of Problem 2 required the relation between ¢(ty)
and q(t¢), _as'expressed in Eq. (17). In most cases, unlike Example 3 ﬁresented here, the

relation will be implicit. Some special treatment would be required and the dimension of
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the equations F(w) = 0 might increase further. Thus, from a numerical point of view,
Problem 2 is much more difficult than Problem 1.

The nonlinear two-point boundary value problem resulting from the problem formula-
tion can be solved numerically by a globally convergent homotopy method. The examples
verified the global convergence of the algorithm to a solution for an arbitrarily chosen ini-
tial guess. The algorithm has been used successfully in other fields where highly nonlinear,
large dimensional systems of equations need to be solved. Here was an example of the use

of homotopy algorithms in robotics.
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An extremal and a neighboring comparison curve.

Space robot and orbiting target.

Optimal robot trajectory: =45 (degrees), final time=2.183(s).
Optimal robot trajectory: §=-135 (degrees), final time=0.977(s).
Optimal robot trajectory (trivial case). final time=0.996(s).
Optimal robot trajectory (nontrivial case), final time=1.717(s).

A homotopy zero curve for a nontrivial case of Problem 2.
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Figure 1. An extremal and a neighboring comparison curve.
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Figure 2. Space robot and orbiting target.
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