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ABSTRACT: A non-crossing tree (NC-tree) is a tree drawn on the plane having as
vertices a set of points on the boundary of a circle, and whose edges are straight line seg-
ments that do not cross. In this paper, we show that NC-trees with size n are conditioned
Galton–Watson trees. As corollaries, we give the limit law of depth-first traversal processes
and the limit profile of NC-trees.

1 Preliminaries

A non-crossing tree (NC-tree) is a tree drawn on the plane having as vertices a set of points on
the boundary of a circle, and whose edges are straight line segments that do not cross. The points are
labeled, clockwise from 1 to n, so that two NC-trees are considered to be different even if they differ
by a rotation, or a symmetry. Consider Ωn the set of non-crossing trees of size n with node 1 as root.
The cardinality Dn of Ωn is well known (see e. g. [6, 11]) and following [6] it can be established under
using the following combinatorial decomposition of a NC-tree:
A NC-tree consists of a root, which is attached to a (possibly empty) sequence of butterflies, where a
butterfly is a (ordered) pair of NC-trees, that share a common root.
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Figure 1 : The combinatorial decomposition of a non-crossing tree.

This combinatorial decomposition can be translated via symbolic methods immediately to an
algebraic equation for the generating functions D(z), resp. B(z) of the numbers Dn and Bn of NC-
trees, resp. butterflies of size n:

D(z) =
z

1 − B(z)
, B(z) =

D2(z)

z
.

1This work was partially supported by the Austrian-French exchange program Amadée
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The coefficients Dn of the resulting algebraic equation for D(z) can be extracted via Lagrange inversion
formula and one obtains

Dn =

(

3n − 3

n − 1

)

/(2n − 1).

Here we endowed the space Ωn with the uniform law, each tree having then probability D−1
n .

Using above combinatorial decomposition of NC-trees, in Panholzer [13] the distribution of the
height h(j) of the node j was studied and appears to be related to the Brownian excursion. In the
present paper we give an explanation of this fact, proving that non-crossing trees behave almost like
conditioned Galton–Watson trees. The methods are mainly probabilistic. In section 2, we study the
shape of non-crossing trees and exhibit a Galton–Watson like tree, which has the same shape. In
section 3, we show that the results known on conditioned GW-trees apply for NC-trees. For example
we give the limit contour and the limit profile of NC-trees.
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Figure 2 : Two size 12 non-crossing trees and their non-circle representation.

2 A Galton–Watson description of non-crossing trees

Consider a tree τ in Ωn and consider its depth first traversal (see section 3.1). Note lab(i) the label
of the ith node visited during the depth first traversal and Ni the number of children of node lab(i)
(we have then lab(1) = 1). We call the sequence (Ni)i=1,...,n the shape of the tree τ . The shape gives
the number of neighbors of each vertex (the circle-representation will be here forgotten), and then
describes entirely the tree τ . An important (obvious) remark is that several NC-trees may have the
same shape. The number of NC-trees with a given shape is obtained in Lemma 2; this is an important
point of the proof of our main Theorem 1.

Consider the two following offspring distributions µ = (µk)k≥0 and λ = (λk)k≥1 defined by:

µk =
4(k + 1)

3k+2
, for k = 0, 1, 2, . . . , (1)

λk = 2 × 3−k, for k = 1, 2, 3, . . . . (2)

A Galton–Watson process (Zi)i≥0 (with respect to the distribution λ and µ) is defined as: Z0 = 1, Z1

is λ distributed, and, for any k > 1,

Zk =

Zk−1
∑

j=1

Y
(k−1)
j ,

where the Y
(k)
j are i.i.d. (and independent of Z1), µ distributed.

2



In terms of the tree, Zk represents the number of individuals at generation k (at level k in the tree).

Y
(k−1)
j is the number of children of the j-th individual of level k − 1. Consider now t the family tree

representation of this Galton–Watson process (that is simply the genealogical tree of the individuals
that compose the GW process); we note Ω′ the space of these GW trees and Ω′

n the space of trees of
size n with the law induced by the conditioning |t| = n on Ω′. As above, we consider the depth first
traversal of a tree t from Ω′

n; we note N ′
i the number of children of the i-th node visited during the

depth first procedure. The sequence (N ′
i)i=1,...,n is then the shape of t. We have:

Theorem 1 (The main result)

(N ′
1, . . . , N

′
n)

(d)
= (N1, . . . , Nn).

This Theorem is the core of our work: it implies (together with the description of the offspring distri-
bution law) all the new results on the properties of NC-trees given in the present paper.

Note: In [4], Deutsch and Noy have proved, that the mean number of nodes with out-degree d in

NC-trees are asymptotically given by
(

4(d+1)
3d+2

)

n. Using the law of large numbers, if non-crossing trees

would be GW-trees, µd = 4(d+1)
3d+2 would be the only choice for the offspring distribution. Unfortunately,

NC-trees are not GW trees with offspring µ, and so, they are not GW trees; but, Theorem 1 says that
NC-trees are almost GW trees: only the root distribution follows an other law than µ.
Note: The progeny distribution µ is the convolution of two geometrical laws with parameter 1/3. As a
referee pointed out, this can be explained in the following way: From the combinatorial decomposition,
as described in section 1, follows that NC-trees are sequences of butterflies, where butterflies have a
counting generating function B(z) = z

(1−B(z))2
. There is then the general fact, that a combinatorial

model of trees with counting generating function T = zϕ(T ) when conditioned upon size n is equivalent
to a Galton–Watson tree (also conditioned upon size n) with the probability generating function of
a progeny being ϕ(u) := ϕ(xu)/ϕ(x) with any x. This leads for butterflies to a progeny generating

function φ(u) := (1−x)2

(1−ux)2
, and with the condition ϕ′(1) = 1 (or xϕ′(x) = ϕ(x)) we obtain precisely the

probability generating function of the convolution of two geometrical laws with parameter 1/3.

Proof of Theorem 1

For the remaining of the paper, we note (x1, . . . , xn) a possible shape (obtained during the depth
first traversal) of a tree τ with n nodes. The sequence (x1, . . . , xn) must satisfy the set of conditions:

(A) =



























x1 − 1 ≥ 0
x1 + x2 − 2 ≥ 0

...
...

...
x1 + · · · + xn−1 − (n − 1) ≥ 0
x1 + · · · + xn − n = −1.

(3)

Lemma 2 On Ωn the number of non-crossing trees that satisfies (N1, . . . , Nn) = (x1, . . . , xn) is

∏

i≥2

(xi + 1).
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Proof : This result is a simple consequence of the work of Panholzer and Prodinger [14]. We copy the
main arguments there:
Consider τ a non crossing tree and v a node from τ . The sons of v that have smaller label than v
are called left sons, and the other ones, right sons. One can describe a non-crossing tree as a planted
plane tree (ordered tree), where each node vi apart from the root gets a mark from {0, . . . , |vi|} and
the root gets mark 0. The mark of a node counts the number of left sons of this node. So two different
NC-trees will be marked differently; conversely, if two marked trees differ by one (or several) mark,
they represent different non-crossing trees.
Now, consider a tree with shape (x1, . . . , xn). Each of the

∏

i≥2(xi + 1) ways to mark a planted tree
with shape (x1, . . . , xn) gives an existing non crossing tree. �

Hence, if (x1, . . . , xn) is a sequence of positive integers satisfying condition (A), we have:

PΩn
((N1, . . . , Nn) = (x1, . . . , xn)) = D−1

n

∏

i≥2

(xi + 1). (4)

Proposition 3 (Probability of a given shape on Ω′
n) Let (x1, . . . , xn) be a sequence of positive

integers satisfying condition (A); there exists a constant Cn (which does not depend on the xi’s), such
that:

PΩ′

n
((N ′

1, . . . , N
′
n) = (x1, . . . , xn)) = C−1

n

∏

i≥2

(xi + 1).

Proof of Theorem 1: Assume that Proposition 3 is proved. Proposition 3 and formula (4) say that, for
any fixed n, PΩ′

n
((N ′

1, . . . , N
′
n) = (x1, . . . , xn)) and PΩn

((N1, . . . , Nn) = (x1, . . . , xn)) are proportional;
since PΩn

and PΩ′

n
are both probabilities on the set of all rooted plane trees, these two probabilities

are equal. Hence, Proposition 3 and formula (4) imply Theorem 1. �

Proof of Proposition 3: First, we compute the probability for a tree in Ω′ to have shape (x1, . . . , xn).

PΩ′((N ′
1, . . . , N

′
n) = (x1, . . . , xn)) = PΩ′(Z1 = x1, Y2 = x2, . . . , Yn = xn)

where the random variables Yk are i.i.d., µ distributed and independent from Z1. Using, formula
(1,2,3), we obtain:

PΩ′((N ′
1, . . . , N

′
n) = (x1, . . . , xn)) = 2( 4 / 33 )n−1

∏

i≥2

(xi + 1). (5)

Note that the law λ has been chosen to provide the simplification of x1 in the right hand term. Now,
since (x1, . . . , xn) is the shape of a tree from Ωn (and so from Ω′

n, since each size n tree is in Ω′
n), we

have:

PΩ′

n
((N ′

1, . . . , N
′
n) = (x1, . . . , xn)) =

PΩ′((N ′
1, . . . , N

′
n) = (x1, . . . , xn))

PΩ′(Ω′
n)

= C−1
n

∏

i≥2

(xi + 1),

where C−1
n =

2( 4 / 33 )n−1

PΩ′(Ω′
n)

. �

Note that these results entail that PΩ′(Ω′
n) = 2( 4 / 33 )n−1Dn which is equivalent to

√

3
4π n−3/2 when

n goes to +∞.
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3 Corollaries

Let us define classical processes associated to the trees.

3.1 Processes associated to non-crossing trees

The processes that we consider are defined on integer values; in order to prove convergence of these
processes, we will consider that they are interpolated between these values. The weak convergence
considered is the weak convergence in C([0, 1], ‖.‖∞) for the depth processes and the weak convergence
in C([0,+∞[, ‖.‖∞) for the profile.
The depth first search:

Let τ be an ordered tree with n nodes. We define a function (see Aldous [1]):

f̃ : {0, . . . , 2n − 2} −→ {nodes of τ},

which we regard as a walk around τ , as follows:

f̃(0) = root.

Given f̃(i) = v, choose, if possible, the most left child w of v which has not already been visited, and
let f̃(i + 1) = w. If not possible, let f̃(i + 1) be the parent of v.

The contour: For a tree τ ∈ Ωn, we call the contour of τ , the process Vn defined by:

Vn(i) = d(root, f̃(i)), 0 ≤ i ≤ 2n − 2,

where d is the usual distance between two nodes in a tree, that counts the number of edges on the
direct path between these two nodes (thus Vn(i) is also the height of the node f̃(i)). For i from 0 to
n − 1, set vi as the i-th new node visited by the depth first procedure on τ ∈ Ωn (v0 = root) and

ξi := the outdegree of vi = the number of children of vi.

The depth first queue process (DFQP): For a tree τ ∈ Ωn, the DFQP, Sn is defined by Sn(0) = 0
and:

Sn(j) =

j−1
∑

i=0

(ξi − 1) for any 1 ≤ j ≤ n. (6)

The profile: For a tree τ ∈ Ωn, the profile (Lk)k≥0 is defined by:

Lk = #{i | d(vi, root) = k}.

The profile is then the sequence of the numbers of individuals on each level of the tree.
These three processes give a better understanding of the behavior of the shape of the tree. The

contour is geometrically very close to the usual representation of trees. For example, the maximum
of the contour is also the height of the tree, the path length (as defined below) can be computed
via the area under the contour. The interest of the DFQP is that, in the case of GW trees, it is a
simple random walk conditioned to be an excursion. Usually, its study is then simpler that the one of
the contour. Using [12], one can express the contour via the DFQP, and the properties of these two
processes are very close. The profile of the tree contains the information about the repartition of the
individuals on the levels of the tree. Hence, the width of the tree (that is the maximum number of
nodes on a level of the tree) is simply the maximum of the profile. The first two processes realize a
one to one correspondence with the associated tree.
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3.2 Degree of the root

The process (Sn(i))i allows to compute the real law of the root degree (which is not λ since the
tree is size conditioned). Note Tk the hitting time of −k by a random walk with i.i.d. increment,
distributed as X-1 where X is µ distributed.

PΩ′

n
(Z1 = k) = λk

P(T−k = n − 1)
∑

j≥1

λjP(T−j = n − 1)
= λk

k
n−1P(Sn−1 = k)

∑

j≥1

λj
j

n − 1
P(Sn−1 = j)

(7)

This formula comes from the decomposition of the DFQP in two parts before and after the first step
due to the root. Using the central local limit theorem (see [15], page 706), we find the asymptotic law
for the root degree when n goes to +∞:

PΩ′

n
(Z1 = k) −→

n

2

3
kλk = µk−1 for k ≥ 1,uniformly in k.

This translates the fact that the degree of the root (that is, its outdegree) has the same law as the
one of the other nodes (indegree + outdegree).

3.3 Differences with usual conditioned Galton–Watson trees

It is well known that the contour or other discrete excursions associated to Galton–Watson trees of
size n converge, suitably normalized, to the Brownian excursion. But the trees in Ω ′

n are not exactly
Galton–Watson trees, because the law of Z1 is different of the one of the other nodes. At the first
glance, one may think, that limit theorems valid in the case of pure Galton–Watson trees apply for
non-crossing trees, since the law of Z1 does not seem to be important; but one can easily find lattice
cases, where changing the law of the root degree (under the condition size=n) changes the fact whether
the trees exists or not.

Let us give in two points a formal argument that NC-trees behave like GW trees:
• In Ω′

n, the largest subtree has size n − o(n):
we note with Ω′′

n the set of Galton–Watson trees with offspring distribution µ (now valid also for the
root), conditioned to have size n. We note with a tilde, the random variables on Ω ′′

n (which are yet
defined on Ω′

n). Note L the size of the largest subtree of the root in Ω′
n (L̃ for the same object in Ω′′

n).
The limit law of Z̃1 is given by

lim PΩ′′

n
(Z̃1 = k)

def
= γk = kµk, for k ≥ 1 (8)

(this is obtained using the same computation as in (7)). Now, the contour of trees from Ω ′′
n converges

to the Brownian excursion (see Aldous [1] or Marckert and Mokkadem [12]). It follows that:

L̃/n
proba−−−→ 1;

one refers also to Gourdon [8] for combinatorial arguments (he proved that the largest subtree of the
root has size n − o(n)). Let us prove that this is also true under the condition Z̃1 = k (for any value
of k ≥ 1):
Suppose there exists a k ≥ 1 and an ε > 0 such that

lim inf PΩ′′

n

(

L̃/n ≥ 1 − ε|Z̃1 = k
)

< 1.
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Using (8) this implies, that

lim inf PΩ′′

n

(

(L̃/n ≥ 1 − ε) ∩ (Z̃1 = k)
)

< γk (9)

Since lim infn PΩ′′

n
(Z̃1 = k) = lim supn PΩ′′

n
(Z̃1 = k) = γk, relation (9) implies that

lim inf
n

PΩ′′

n

(

L̃/n ≥ 1 − ε
)

< 1

which is false. Hence, it is established that, for any k ≥ 1 and any ε > 0,

lim inf
n

PΩ′′

n

(

L̃/n ≥ 1 − ε|Z̃1 = k
)

= 1.

Now, let us prove that

L/n
proba−−−→ 1.

Let ε be a positive real number. Since, Ω′′
n and Ω′

n under the condition degree(root) = k have the
same law, we have:

PΩ′

n

(

L/n > 1 − ε
)

=
∑

k≥1

PΩ′

n

(

L/n > 1 − ε|Z1 = k
)

PΩ′

n
(Z1 = k)

=
∑

k≥1

PΩ′′

n

(

L̃/n > 1 − ε|Z̃1 = k
)

PΩ′

n
(Z1 = k).

The k-th term of the last sum converges to µk−1. Using (7) and the fact that the approximation given
by the local limit theorem is uniform in k, we have for n large enough, that

PΩ′′

n

(

L̃/n > 1 − ε|Z̃1 = k
)

PΩ′

n
(Z1 = k) ≤ 2kλk.

Hence, the terms of the sum are dominated independently of n; using Lebesgue theorem with the
same name, it follows that

lim
n

PΩ′

n

(

L/n > 1 − ε
)

= 1.

• The largest subtree is a simple Galton–Watson tree:
Consider τ1 the largest subtree of τ in Ω′

n. τ1 is a simple Galton–Watson tree. Its depth first processes
converge to the Brownian excursion (with the usual normalization, since its size is n − o(n)). Since
the other subtrees have cumulative size o(n), their contributions to the limit are null. It follows that
the limit depth processes of τ and the one of τ1 are equal. Using the same argument, the profile of
the trees τ and τ1 have the same limit.

3.4 Limit of the processes

The propositions given in this section are consequences of Section 3.3.

Under µ, the mean is 1 and the variance is σ2 = 3/2. The following results concerning conditioned
Galton–Watson trees apply for NC-trees:

Proposition 4 (Contour of non-crossing trees) Set (Vn(k))k=0,...,2n−2 the contour of the tree of
Ωn. We have

(Vn(2nt)√
n

)

t∈[0,1]

weakly−−−−→
n

(

2

√

2

3
e(t)

)

t∈[0,1]

where (e(t)
)

t∈[0,1]
is a standard normalized Brownian excursion.
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Note Hn (resp. PLn) the height of a tree τ in Ωn (resp. the path length, that is the sum of the level
of each node in τ): Proposition 4 implies that

Corollary 5

Hn√
n

law−→
n

√

8

3
max{e(t), 0 ≤ t ≤ 1}

and
PLn

n3/2

law−→
n

√

8

3

∫ 1

0
e(t) dt.

The law of these functionals of the Brownian excursion are known (see Kennedy [9] and Louchard
[10]). The distribution of max{e(t), 0 ≤ t ≤ 1} is the classical theta distribution arising as a limit
of a lot of functional of random walks and trees (see [3] for a list of examples) and

∫ 1
0 e(t) dt is the

Brownian excursion area (Airy distributed). The result of Panholzer [13] about the limit height of a
given node, in NC-trees appears also to be a corollary of the present Proposition.
The limit mean of Hn and PLn have been computed by Deutsch and Noy [4]; they find:

lim
n

E(Hn)√
n

=
2

3

√
3π, lim

n

E(PLn)

n3/2
=

√

π/3.

This is coherent with our results (even if our results do not imply them, since law convergence does
not imply moments convergence).

Proposition 6 (The limit DFQP )The DFQP converges to the Brownian excursion:

(Sn(nt)√
n

)

t∈[0,1]

weakly−−−−→
n

(

√

3

2
e(t)

)

t∈[0,1]
.

Proposition 7 (The limit profile of NC-trees)The limit profile converges to the local time of
Brownian excursion:

(Z√
nx√
n

)

x≥0

weakly−−−−→
n

(

√

3

8
l(

√

3

8
x)

)

x≥0
,

where
(

l(x)
)

x≥0
is the local time (at time 1 and level x) of a normalized Brownian excursion (see e. g.

[7] for such results for Galton–Watson trees).

As a simple corollary of Proposition 7, we have for the width of a tree, being the maximum number
of nodes on a level of the tree:

Corollary 8 (The limit width)

max
k≥0

Zk

√
n

(law)−−−→
n

√

3

8
max{e(t), 0 ≤ t ≤ 1},

since the local time of the Brownian excursion is a normalized excursion changed of time.
The following proposition contains as a by-product Propositions 4 and 7.

Proposition 9 (Joint convergence)

(Vn(2n.)√
n

,
Z√

n.√
n

)

weakly−−−−→
n

(

2

√

2

3
e(.),

√

3

8
l(

√

3

8
.)
)
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Proof : See Aldous [2], Th.3 p.86.�

Note: In fact, one can also prove that the five processes given in Marckert and Mokkadem [12] (the
contour, the DFQP, the height process, the process of the height of nodes with a given out-degree,
the process of the height of nodes being the root of a subtree of given type) converge all to the same
Brownian excursion.
Note: We want to thank an anonymous referee for his insightful comments to improve the presentation
of this paper.
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