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ABSTRACT: Szemerédi’s Regularity Lemma is a well-known and powerful tool in modern graph
theory. This result led to a number of interesting applications, particularly in extremal graph theory.
A regularity lemma for 3-uniform hypergraphs developed by Frankl and Rödl [8] allows some of the
Szemerédi Regularity Lemma graph applications to be extended to hypergraphs. An important
development regarding Szemerédi’s Lemma showed the equivalence between the property of
�-regularity of a bipartite graph G and an easily verifiable property concerning the neighborhoods
of its vertices (Alon et al. [1]; cf. [6]). This characterization of �-regularity led to an algorithmic
version of Szemerédi’s lemma [1]. Similar problems were also considered for hypergraphs. In [2],
[9], [13], and [18], various descriptions of quasi-randomness of k-uniform hypergraphs were given.
As in [1], the goal of this paper is to find easily verifiable conditions for the hypergraph regularity
provided by [8]. The hypergraph regularity of [8] renders quasi-random “blocks of hyperedges”
which are very sparse. This situation leads to technical difficulties in its application. Moreover, as
we show in this paper, some easily verifiable conditions analogous to those considered in [2] and
[18] fail to be true in the setting of [8]. However, we are able to find some necessary and sufficient
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conditions for this hypergraph regularity. These conditions enable us to design an algorithmic
version of a hypergraph regularity lemma in [8]. This algorithmic version is presented by the authors
in [5]. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 293–335, 2002

1. INTRODUCTION

In 1975, E. Szemerédi proved a beautiful result concerning the coarse structure of every
graph [29]. His lemma helped in proving many theorems in extremal graph theory (see,
e.g. [20], [25], and [26]). The essential concept central to Szemerédi’s Lemma is that of
an �-regular pair.

1.1. Graphs and �-Regular Pairs

Let a graph G � (V, E) be given. For two nonempty disjoint sets X, Y � V, we denote
by E(X, Y) the set of edges between X and Y (i.e. E(X, Y) � {{ x, y} : x � X, y � Y}).
We set d(X, Y) � d(GXY) � �E(X, Y)��X��1�Y��1 as the density of the bipartite graph
GXY � (X � Y, E(X, Y)). We state the following definition.

Definition 1.1. Let positive constant � be fixed. We say that the pair X, Y is �-regular if
�d(X, Y) � d(X0, Y0)� � � holds whenever X0 � X, Y0 � Y satisfy �X0� � ��X�, �Y0� � ��Y�.

With G � (V, E) fixed, we call a partition V � V0 � V1 � . . . � Vt equitable if it
satisfies �V1� � �V2� � . . . � �Vt� and �V0� � t; we call an equitable partition �-regular
if all but �(2

t ) pairs Vi, Vj are �-regular. Szemerédi’s Regularity Lemma is stated precisely
as follows.

Theorem 1.2 (Szemerédi’s Regularity Lemma [29]). Let � � 0 be given and let k0 be
a positive integer. There exist positive integers N � N(�, k0) and K � K(�, k0) so that any
graph G � (V, E) with �V� � n � N vertices admits an �-regular equitable partition V �
V0 � V1 � . . . � Vk with k satisfying k0 � k � K.

For related topics, see [19].

1.1.1. A Local Characterization of an �-Regular Pair. In all that follows, we consider
a fixed bipartite graph G with bipartition X � Y. For fixed positive constants � and �, we
assume d(X, Y) �� �, where by a �� b, we mean (1 � �)�1 � a/b � 1 � �. We
denote by degG( x) the number of vertices that are neighbors of x in the graph G, and by
degG( x1, x2) the number of vertices that are neighbors of both x1 and x2 in G.

The property of �-regularity of G is a “global” property in the sense that it asserts a fact
about every pair of reasonably large subsets of its vertex classes X and Y. An important
development regarding Szemerédi’s Lemma showed the equivalence between this global
regularity property of G and a fairly simple “local” property concerning the neighborhoods of
the vertices in X. Given positive reals �, � and ��, consider the following two properties:

G1 � G1��	, G is �-regular with density d�X, Y	 �� �.

G2 � G2���	:
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(i) degG(x) ��� ��Y� for all but ���X� vertices x � X,
(ii) degG(x1, x2) ��� �2�Y� for all but ���X�2 pairs x1, x2 � X.

It was shown in [1] (cf. [6]) that properties G1 and G2 are equivalent in the following
sense.

Theorem 1.3 (Alon, Duke, Lefmann, Rödl, and Yuster [1]). For any �� � 0 there exists
� � 0 such that

G1��	f G2���	.

Similarly, for any � � 0, there exists �� � 0 such that

G2���	f G1��	.

The equivalence of Properties G1 and G2 tells us that the notion of �-regularity is
equivalent to a condition concerning uniformity of degrees and codegrees. Since degrees
and codegrees concern only vertices and pairs of vertices, and not large subsets as in the
definition of �-regularity, Property G2 is a “local” criterion for the regularity of graphs. For
related topics, see [10]. For a problem with related concepts but a different flavor, see [7].

1.1.2. An Algorithmic Version of Theorem 1.2. The original proof of Theorem 1.2
was nonconstructive. Theorem 1.3 played the crucial role in developing the algorithmic
version of Szemerédi’s Regularity Lemma [1]. We state the algorithmic version of
Theorem 1.2 precisely.

Theorem 1.4 (Constructive Regularity Lemma, [1]). For every � � 0 and every positive
integer k, there exists an integer Q � Q(�, k) such that every graph G with n � Q vertices
admits an �-regular partition into t � 1 classes for some k � t � Q and such a partition
can be found in O(M(n)) sequential time, where M(n) denotes the time needed for the
multiplication of two (0, 1) matrices of size n.

For related topics, see [3], [11], and [12]. For an additional problem using Szemerédi’s
Regularity Lemma, see [25] and [26].

1.2. Hypergraphs and (�, r)-Regular Triads

One of the main reasons for the wide applicability of Szemerédi’s Regularity Lemma is
that it enables one to find small subgraphs in “regular situations.” In [8], Frankl and Rödl
developed a regularity lemma for 3-uniform hypergraphs which admits the analogous
result that one can find small subsystems in “regular situations” (see [14], [17], [22–24],
[27], and [28]). We give a precise presentation of their hypergraph regularity lemma in the
Appendix. At this time, we focus on outlining the goals of this paper.

Just as the essential concept of Szemerédi’s Lemma is that of an �-regular pair, the
essential concept in the Frank-Rödl Regularity Lemma is that of a (�, r)-regular triad.
The definition of a (�, r)-regular triad is, unfortunately, rather technical. We therefore
defer precise discussion of it until the section to follow. (The need for this more technical
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concept, and additional parameter r describing the regularity, arises from the fact that
these regular triads obtained by the hypergraph regularity lemma of [8] are very sparse
hypergraphs).

In [2] and later in [18], equivalent conditions describing quasirandomness of hyper-
graphs were considered. These conditions were similar to G1 and G2 for graphs and
corresponded to a special case of (�, 1)-regularity. To cover the full case of (�, r)-
regularity, we consider analogous conditions to those studied in [2] and [18]. For general
r, we find, quite surprisingly, that these analogous conditions are no longer equivalent to
the concept of (�, r)-regularity. However, we are able to develop some implications
among these conditions, and these implications are used in [5] to develop an algorithmic
version of a special case of the hypergraph regularity lemma of [8]. We discuss these
implications as well as some open questions in detail in Section 3.

In the section to follow, we give definitions of necessary concepts. In Section 3, we
give a precise account of our theorems as well as some open questions. The remaining
sections contain details of proofs.

2. DEFINITIONS AND NOTATION

In this section, we give background definitions and notation that we use in this paper.

2.1. Graph Concepts

We begin with the following definitions.

Definition 2.1. We say that the bipartite graph G is (�, �)-regular if

��1 � �	 	 dG�X0, Y0	 	 ��1 
 �	

for every pair of subsets X0 � X and Y0 � Y with �X0� � ��X� and �Y0� � ��Y�. Here the
density dG(X0, Y0) is as defined in the Introduction.

Definition 2.2. A 3-partite graph G with a fixed 3-partition (V1, V2, V3) is referred to as
a 3-partite cylinder. We write G � �1�i�j�3 Gij, where Gij � G[Vi, Vj] � {{vi, vj} �
G : vi � Vi, vj � Vj}. Let � � 0, � � 0 be given. We call G an (�, �, 3)-cylinder if each
bipartite graph Gij, 1 � i � j � 3, is (1/�, �)-regular. We also sometimes refer to an (�,
�, 3)-cylinder as a triad.

We frequently use the following notation. For a graph G, let �3(G) � {{ x, y, z} : { x,
y, z} is the vertex set of a triangle in G}. While we will state it precisely in Section 4 (cf.
Fact 4.1), note that when G is an (�, �, 3)-cylinder with 3-partition satisfying �V1� � �V2�
� �V3� � n, ��3(G)� is about n3/�3.

2.2. Hypergraph Concepts

We begin with the following definitions.

Definition 2.3. We refer to any 3-partite, 3-uniform hypergraph � with a fixed 3-par-
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tition (V1, V2, V3) as a 3-partite 3-cylinder. If G is a 3-partite cylinder with the same vertex
partition, then we say G underlies � if � � �3(G).

Definition 2.4. Let � be a 3-partite 3-cylinder with underlying 3-partite cylinder G �
G12 � G23 � G13. Let Q� � (Q(1), . . . , Q(r)) be an r-tuple of 3-partite cylinders Q(s) �
Q12(s) � Q23(s) � Q13(s) satisfying that for every s � {1, 2, . . . , r}, for each {i, j}, 1 �
i � j � 3, Qij(s) � Gij. We define the density d�(Q� ) of Q� as

d��Q� 	 � � �� � �s�1
r �3�Q�s		�

��s�1
r �3�Q�s		�

if ��s�1
r �3�Q�s		� � 0,

0 otherwise.
(1)

Definition 2.5. Let a positive integer r and a real � � 0 be given. We say that a
3-cylinder � is (�, �, r)-regular with respect to G if for any r-tuple of 3-partite cylinders
Q� � (Q(1), . . . , Q(r)) as above, if

��
s�1

r

�3�Q�s		� � ���3�G	�, (2)

then

�d��Q� 	 � �� 	 �. (3)

We say � is (�, r)-regular with respect to G if it is (�, �, r)-regular for some �. If the
regularity condition fails to be satisfied for any �, we say that � is (�, r)-irregular with
respect to G.

2.3. Links, Colinks and More Graph Regularity

We make precise some final concepts and notation.

Definition 2.6. Let � be a 3-partite 3-cylinder with underlying 3-partite cylinder G �
G12 � G23 � G13 on 3-partition V1, V2, V3. Let x � V1. We define the link graph Lx

23 of
x to be the subgraph of G23 with vertex set NG12(x) � NG13(x) and edge set

Lx
23 � 

y, z� � G23 : 
x, y, z� � ��. (4)

For two vertices x, y � V1, we define the colink graph Lxy
23 of x and y to be the subgraph

of G23 with vertex set NG12(x, y) � NG13(x, y) and edge set

Lxy
23 � Lx

23 � Ly
23. (5)

We now define a concept of (�, r)-graph-regularity.

Definition 2.7. Let �, � be positive reals, let r be a positive integer, and let L be a
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bipartite graph with bipartition (U, V). We say that L is (�, �, r)-regular if for any r-tuple
of pairs of subsets ({Uj, Vj})j�1

r , Uj � U, Vj � V, 1 � j � r, satisfying

��
j�1

r

�Uj � Vj	� � ��U��V�, (6)

we have

��1 � �	 	
�L � �j�1

r �Uj � Vj	�
��j�1

r �Uj � Vj	�
	 ��1 
 �	. (7)

Note that (�, �, 1)-regularity of a bipartite graph is essentially the same concept as (�,
�)-regularity (see Definition 2.1).

3. MAIN RESULTS

In this section, we present the main results of this paper.

3.1. The Local-Global Conditions and Their Implications

We begin by considering the setup we use in this paper.

Setup. Let real number � � 0 and positive integers � and n be given, where we always
assume n � n0(�, �). Suppose

(i) � is a 3-partite 3-cylinder with 3-partition V1, V2, V3, where �V1� � �V2� � �V3� �
n,

(ii) G is an underlying (�, �, 3)-cylinder of �.

We consider the following two properties for a hypergraph � and graph G as in the
Setup. In what follows, H1 is the “global condition” similar to G1 (as in the Introduction)
and H2 is the “local condition” similar to G2. Let �, �A, �B � 0 be given and let rA, rB

be given positive integers.

H1 � H1��A, rA	, � is ��, �A, rA	-regular with respect to G.

H2 � H2��B, rB	:

(i) the link graph Lx
23 is (�/�, �B, rB)-regular for all but at most �Bn vertices x � V1,

(ii) the colink graph Lxy
23 is (�2/�, �B, rB)-regular for all but at most �Bn2 pairs x, y �

V1.

Remark 3.1. For the special case � � rA � rB � 1, conditions H1 and H2 were proved
to be equivalent in [2] (for � � 1/2) and in [18] (for arbitrary �). Schematically, this
equivalence may be stated as follows:
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1. @�, @�B, ?�A: for � � rA � rB � 1,

H1��A, 1	f H2��B, 1	. (8)

2. @�, @�A, ?�B: for � � rA � rB � 1,

H2��B, 1	f H1��A, 1	. (9)

Observe that in the case � � 1, the underlying graph G is the complete 3-partite graph
K(V1, V2, V3) (which, for any � � 0, is a (1, �, 3)-cylinder).

The object of this paper is to decide how (8) and (9) extend to the general setting of
Property H1(�A, rA).

For arbitrary � and rB, the following lemma was given in [8] and [22].

Lemma 3.2 (Regularity of Links). For all positive �, �B, there exists �A (viz. �A � �B
2/9)

so that for all positive integers � and rB, setting rA � rB, there exists � � 0 so that, in the
context of the Setup, H1(�A, rB) implies statement (i) of H2(�B, rB).

In Section 5, we prove the following accompaniment to Lemma 3.2.

Lemma 3.3 (Regularity of Colinks). For all positive � and �B there exists �A such that
for all positive integers � and rB, there exist positive integer rA and � � 0 so that, in the
context of the Setup, H1(�A, rA) implies statement (ii) of H2(�B, rB).

Note that in Lemma 3.3, unlike Lemma 3.2, we have that rA � rB (cf. Question 3.7).
Lemmas 3.2 and 3.3 immediately lead to the first main theorem of this paper.

Theorem 3.4. For all positive � and �B there exists �A such that for all positive integers
� and rB, there exist positive integer rA and � � 0 so that, in the context of the Setup,
H1(�A, rA) implies H2(�B, rB).

Partly due to the equivalence discussed in Remark 3.1, the authors initially thought that
Theorem 3.4 would be reversible. Schematically, observe that Theorem 3.4 says @�, @�B,
?�A: @�, @rB, ?rA, ?�:

H1��A, rA	f H2��B, rB	.

It seemed likely that @�, @�A, ?�B: @�, @rA, ?rB, ?�: H2(�B, rB) f H1(�A, rA). We
show in this paper that, surprisingly, this is indeed not the case. Schematically, we show
?�, ?�A: @�B: ?�, ?rA, @rB, @�,

H2��B, rB	f� H1��A, rA	.

In other words, H1 and H2 are not, in general, equivalent. A (technical) probabilistic
construction is given in Section 6 which proves the following theorem, the second main
result of this paper.
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Theorem 3.5. There exists � � 0 and �A � 0 so that for all �B � 0, there exist integers
� and rA so that for all integers rB, for all � � 0, in the context of the Setup, H2(�B, rB)
f� H1(�A, rA). In other words, with these constants, there exist � and G as in the Setup
which satisfy H2(�B, rB) but not H1(�A, rA).

We mention that Theorems 3.4 and 3.5 are the two main results of this paper. In what
follows, however, we will include discussion of some related results from [5].

Despite the inequivalence discussed above of properties H1 and H2, the following
theorem, proved in [5], gives at least a partial context in which property H2 may ensure
property H1.

Theorem 3.6 [5]. For all � � 0 and �B � 0 there exists �A � 0 such that for every
integer � there exists � � 0 such that, in the context of the Setup, H2(�B, 1) implies H1(�A,
1).

In [5], Lemmas 3.2 and 3.3, together with Theorem 3.6, are used to design an
algorithmic version of a special case of the hypergraph regularity lemma in [8].

3.2. Open Problems and Summary of Results

We emphasize the following open problems associated with the conditions H1 and H2

above.

Question 3.7. Is it true that for any �, �B � 0, there exists �A � 0 so that for any
integers � and rB, setting r � rA � rB, there exists � � 0 so that, in the context of the Setup,
H1(�A, r) f H2(�B, r)?

Observe from Lemma 3.2, to answer Question 3.7, it suffices to answer whether H1(�A,
r) implies statement (ii) of H2(�B, r). Recall from Remark 3.1, Question 3.7 has an
affirmative answer when � � r � rA � rB � 1.

As a special case of Question 3.7, the authors believe the following is true.

Conjecture 3.8. For any �, �B � 0, there exists �A � 0 so that for any integer �, for
rB � 1, setting rA � 1, there exists � � 0 so that, in the context of the Setup, H1(�A, 1)
f H2(�B, 1).

Observe that Conjecture 3.8, if true, together with Theorem 3.6, would provide an
equivalence between properties H1 and H2 in the case that rA � rB � 1. In other words,
a validation of Conjecture 3.8, together with Theorem 3.6, would provide a characteriza-
tion of (�, 1)-regularity in terms of purely local conditions.

We conclude this subsection with a summary of the theorems and questions concerning
implications among H1 and H2.

Summary 3.9 (Summary for H1 and H2). When r � 1, we have the following statements.

1. @�, @�A, ?�B: @�, for rA � rB � 1, ?�:

H2��B, 1	f H1��A, 1	 Theorem 3.6.
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2. @�, @�B, ?�A: @�, for rA � rB � 1, ?�:

H1��A, 1	f
?

H2��B, 1	 Conjecture 3.8.

For general r, we have the following statements.

3. @�, @�B, ?�A: @�, @rB, ?rA, ?�:

H1��A, rA	f H2��B, rB	 Theorem 3.4.

4. ?�, ?�A, @�B: ?�, ?rA, @rB, @�,

H2��B, rB	f� H1��A, rA	 Theorem 3.5.

5. @�, @�B, ?�A: @�, @rB, setting r � rA � rB, ?�:

H1��A, r	f
?

H2��B, r	 Question 3.7.

In Section 5, we prove Lemma 3.3. In Section 4, we supply some additional facts and
definitions we need in our proof of Lemma 3.3. In Section 6, we prove Theorem 3.5.

3.3. An Algorithmic Hypergraph Regularity Lemma

As mentioned in the Introduction, the equivalence G1N G2 was crucial in developing the
algorithmic version of Szemerédi’s Regularity Lemma [1]. Despite the inequivalence of
properties H1 and H2, in [5], we use Lemmas 3.2 and 3.3, together with Theorem 3.6, to
prove an algorithmic version of a special case of Frankl and Rödl’s Hypergraph Regularity
Lemma. A precise formulation of this hypergraph regularity lemma is given in the
Appendix. The following theorem is proved in [5].

Theorem 3.10. For every � and � with 0 � � � 2�4, for all integers t0 and �0 and all
functions �(�) � 0, there exist T0, L0, and N0 such that any 3-uniform hypergraph � �
[N]3, N � N0, admits a (�, 1)-regular, (�, t, �, �(�))-partition for some t and � satisfying
t0 � t � T0 and �0 � � � L0. Moreover, such a partition can be found in time polynomial
in N.

4. SUPPLEMENTAL FACTS AND CONCEPTS

We begin this section with facts which pertain to graphs.

4.1. Some Graph Facts

The following fact gives precise estimates on ��3(G)� when G is an (�, �, 3)-cylinder.

Fact 4.1. For any positive integer � and positive real 
, there exists � so that whenever
G is an (�, �, 3)-cylinder with vertex partition (V1, V2, V3), where �V1� � �V2� � �V3� � n,
then
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�1 � 
	
n3

�3 	 ��3�G	� 	 �1 
 
	
n3

�3 .

Fact 4.1 is easy to prove using Definition 2.2.
The following fact is a slight variation of a fact in [8]. Let positive reals �, � � 1 and

integers �, M be given. Let G be a 3-partite graph satisfying the following properties:

(a) G has 3-partition V(G) � W0 � W1 � W2, where �W0� � �M and �W1� � �W2� �
M.

(b) Both bipartite graphs Gi induced by W0 � Wi, i � 1, 2, have the property that the
density of any subgraph induced on W�0 � W�i, W�0 � W0, W�i � Wi, �W�0� � �M,
�W�i� � �M, is between (1/�)(1 � �) and (1/�)(1 � �).

(c) for each x � W0 and for each i � 1, 2, we have (1/�)(1 � �)M � �NGi(x)� �
(1/�)(1 � �)M.

The following fact holds for graphs with these properties.

Fact 4.2. For all � � 0, for all integers �, for all 0 � � � 1
2� , there exist M0 � M0(�,

�, �), so that whenever G is a graph satisfying properties (a), (b), and (c) above with
constants �, �, �, and M � M0, then there are at least b � �/4� vertices x1, x2, . . . , xb �
W0 such that

M

�2 �1 � �	2 � �NGi�xu, xv	� �
M

�2 �1 
 �	2 (10)

for all (2
b) pairs u, v, 1 � u � v � b, and for i � 1, 2.

Remark 4.3. We mention the following algorithmic version of Fact 4.2. Under the
hypothesis of Fact 4.2, one may construct the promised set x1, . . . , xb � W0 satisfying
(10) for i � 1, 2 in time O(M3).

Indeed, under the hypothesis above, define graph � to be the set of all pairs { x, y} from
W0 satisfying that, for some i � 1, 2, �NGi( x, y)� does not satisfy (10). Observe that we
may construct � in time O(M3). It is easy to see that the maximum degree in �, 
(�),
satisfies


��	 	 4�M.

Indeed, fix vertex x � W0. For i � 1, 2, by property (c),

�NGi�x	� �
M

�
�1 � �	 �

M

2�
� �M.

Using property (b), the inequalities above imply that for each i � 1, 2, less than 2�M
vertices y � W0 fail to satisfy

1

�
�1 � �	�NGi�x	� � �NGi�y	 � NGi�x	� �

1

�
�1 
 �	�NGi�x	�. (11)
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Using property (c) to bound �NGi( x)�, over both i � 1, 2, we see from (11) that less than
4�M vertices y � W0 are neighbors of x in �.

Observe that the promised set x1, . . . , xb � W0 guaranteed by Fact 4.2 is just an
independent set in �.

For a given graph F having maximum degree 
, it is easy to see that one may construct
in time O(�V(F)�2) an independent set in F of size �V(F)�/(
 � 1). Indeed, applying the
greedy coloring algorithm to F yields a decomposition of V(F) into at most 
 � 1
independent sets. Consequently, one such set must be at least as large as promised.

Applying these observations to given �, we see that in time O(M2) we may construct
an independent set of size

�W0�

��	 
 1

�
�M

4�M
�

�

4�
.

Since we may construct the graph � in time O(M3), we conclude the promised set
x1, . . . , xb � W0 guaranteed by Fact 4.2 may be found in time O(M3).

4.2. Some Hypergraph Comments

We begin with the following definition.

Definition 4.4. Let �, �, � � 0 and let r, �, n be given positive integers. Let � and G
be as in the Setup. Define a vertex x � V1 to be a good vertex if it satisfies the following
two properties:

(a) n
� (1 � �) � �NG12(x)� �

n
� (1 � �) and n

� (1 � �) � �NG13(x)� �
n
� (1 � �),

(b) Lx
23 is (�/�, �, r)-regular.

Set V1
good(�, �, �, r, �, n) to be the set of good vertices.

With parameters �, �, �, r, � and n, suppose � and G as in the Setup satisfy H1(�,
r). We may conclude from Lemma 3.2 that for � � �(�, �, r, �) sufficiently small, the
set of good vertices V1

good(�, 3��, �, r, �, n) satisfies �V1
good(�, 3��, �, r, �, n)� �

(1 � 3��)n. We use the notation V1
good for V1

good(�, 3��, �, r, �, n).
One crucial step in the proof of Lemma 3.3 will be to establish the regularity of mixed

links. For two vertices x, y � V1, we define the mixed link graph M( x,y)
23 of x and y to be

the subgraph of Lx
23 induced by the vertex set NG12( y) � NG13( y). Note that, unlike Lxy

23,
the mixed link graph M( x,y)

23 is not the same as M( y, x)
23 , and we emphasize this using the

ordered pair subscript notation. The proof of the following lemma can be found in [4].

Lemma 4.5 (Regularity of Mixed Links). For all positive reals �, �, and for all positive
integers � and r, there exists � � 0 so that whenever � and G are as in the Setup, for each
good vertex x � V1

good(�, �, �, r, �, n), all but at most ��n vertices y � V1
good satisfy that

M(x,y)
23 is (�/�, �1/3, r)-regular.

We make the following comment.
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Remark 4.6. We make the following comment concerning both Definitions 2.5 and 2.7.
For a hypergraph � (bipartite graph L), note that, to show the (�, �, r)-regularity of �
((�, �, r)-regularity of L), one must show that any appropriately given r-tuple of 3-partite
cylinders Q� (pairs of subsets (Ui, Vi)i�1

r ) satisfies (3) ((7)). In both (3) and (7), one must
show the corresponding density satisfies both a lower and an upper bound. In this paper,
when we assert a hypergraph � (bipartite graph L) satisfies Definition 2.5 (Definition 2.7),
we often only verify that the lower bound of (3) ((7)) is satisfied. The corresponding proof
that the upper bound is also satisfied is entirely symmetric to the lower bound confirma-
tion. We therefore often omit these details.

We state the following definition related to Definitions 2.5 and 2.7.

Definition 4.7. If hypergraph � is not (�, �, r)-regular with respect to graph G, then any
r-tuple Q� � (Q(1), . . . , Q(r)) satisfying (2) but failing (3) is said to be a witness of the
(�, �, r)-irregularity of � with respect to G. Similarly, if bipartite graph L is not (�, �,
r)-regular, then any r-tuple ({Uj, Vj})j�1

r satisfying (6) but failing (7) is said to be a
witness of the (�, �, r)-irregularity of L.

5. REGULARITY OF COLINKS

We prove the following version of Lemma 3.3.

Lemma 5.1. For all positive �, ��, � there exists � such that for all positive integers �
and r�, there exist positive integer r, real � � 0 and n0 so that with these constants,
whenever � and G as in the Setup satisfy property H1(�, r), then for all but ��n vertices
x � V1

good there are at most �n vertices y � V1
good such that Lxy

23 is not (�2/�, ��, r�)-regular.

In what follows the constants we define always satisfy the following hierarchy:

�, ��, � � � � 1/�, 1/r� � 1/r � � � 1/n. (12)

Proof of Lemma 5.1. We begin by first defining the constants involved.

Definitions of the Constants. Let �, ��, � be given. Let � be such that

�1 � �1/6	 � 1/2, (13)

16��

�2�2���	2 	
1

2
, (14)

and

� � 2� � �� 1 � ��

1 � 31/3�1/6� 1

1 �
16��

�2�2���	2

. (15)
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Observe that the last inequality is satisfied for sufficiently small �.
Let � be a given integer, let r� be given. Set1

f �
2�1/2�2

����
, (16)

and define

r � fr�. (17)

Set 
 � 1/2. Let �4.1 � �4.1(
, �) be that constant guaranteed by Fact 4.1. Let �4.5 �
�4.5(�, �, �, r) be that constant guaranteed by Lemma 4.5. Let � � 0 satisfy

� 	 min
�4.1, �4.5�, (18)

and

f �
1

4�1/2 , �1/4 � �/2, � �
1

8�7 , �1 
 �	10 � 1.1. (19)

With the constant � given above, � given in (13), (15), and (14), integers �, r� given
above, r and � given in (17), (18), and (19) respectively, and n � n0 for a sufficiently large
n0(�, ��, �, �, �, r�, r, �), let � and G as in the Setup satisfy the property H1. We show
that for all but �1/ 2n vertices x � V1

good there are at most �n vertices y � V1
good such that

Lxy
23 is not (�2/�, ��, r�)-regular.

On the contrary, assume X � V1
good, �X� � �1/ 2n, satisfies that for each x � X there

exists Y � Yx � V1
good, �Y� � �n, such that for each y � Y, Lxy

23 is not (�2/�, ��,
r�)-regular. We show that as a consequence of our assumption, there exists an r-tuple of
triads Q� � (Q1, Q2, . . . , Qr) such that

��
s�1

r

�3�Qs	� � ���3�G
12 � G23 � G13	�, (20)

but

�� � �
s�1

r

�3�Qs	�
��

s�1

r

�3�Qs	� � � � �. (21)

Thus, the proof of Lemma 5.1 will be complete since the existence of Q� satisfying (20)
and (21) contradicts the (�, �, r)-regularity of � with respect to G.

1More precisely, in the proof of Lemma 5.1, we take f � 2�1/ 2�2/(����) so that f will be an integer. However,
for simplicity of calculations which follow, we drop the ceiling notation  .
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We make the following remark.

Remark 5.2. We actually show the following slightly stronger algorithmic assertion with
regard to (20) and (21) which is needed in [5]. We assume that we are given a set X �
V1

good, �X� � �1/ 2n, satisfying that for each x � X, we are given a set Yx � V1
good, �Yx�

� �n, such that for each y � Yx, Lxy
23 is not (�2/�, ��, r�)-regular. Assume, moreover,

that for each x � X, y � Yx, we are given a witness ({Uj
xy, Vj

xy})j�1
r� of the (�2/�, ��,

r�)-irregularity of Lxy
23 (cf. Definition 4.7). We show there exists an algorithm A which

converts {({Uj
xy, Vj

xy})j�1
r� : x � X, y � Yx} into a witness Q� � (Q1, Q2, . . . , Qr) of

the (�, �, r)-irregularity of � with respect to G (cf. Definition 4.7). Moreover, we show
A converts {({Uj

xy, Vj
xy})j�1

r� : x � X, y � Yx} into Q� � (Q1, Q2, . . . , Qr) in time
O(n4). For future reference, we display our algorithmic assertion.

Algorithm A.
Given: Sets X � V1

good and {Yx : x � X} and witnesses

� � 
�
Uj
xy, Vj

xy�	j�1
r� : x � X, y � Yx�. (22)

Output:
In time O(n4), a witness

Q� � �Q1, Q2, . . . , Qr	 (23)

of the (�, �, r)-irregularity of � with respect to G is produced.
We further comment on this algorithm in Remarks 5.6 and 5.7 and in Lemma 5.8. �

In what follows, we first produce the promised r-tuple Q� . In Claim 5.4, we prove that
Q� satisfies (20). In Claim 5.5, we prove that Q� satisfies (21). This concludes our proof of
Lemma 5.1.

We begin by defining r-tuple Q� . To that end, we use the following claim.

Claim 5.3. For f given in (16), there exists X0 � {x1, x2, . . . , xf} � X, �X0� � f, satisfying
that, for each xi, xj � X0,

n

�2 �1 � �	2 	 �NG12�xi	 � NG12�xj	� 	
n

�2 �1 
 �	2 (24)

and

n

�2 �1 � �	2 	 �NG13�xi	 � NG13�xj	� 	
n

�2 �1 
 �	2. (25)

Proof of Claim 5.3. We verify that Fact 4.2 applies to G induced on X, V2, and V3. In
the context of Fact 4.2, set W0 � X, W1 � V2, W2 � V3, and set � � �1/2. As G is an
(�, �, 3)-cylinder, the density of the subgraph induced on X� � V�i, X� � X, V�i � Vi, �X��
� �n, �V�i� � �n, i � 2, 3, is between (1/�)(1 � �) and (1/�)(1 � �). As X is a set of
good vertices (cf. Definition 4.4), for each i � 2, 3 we have (n/�)(1 � �) � �NG1i( x)�
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� (n/�)(1 � �) for each x � X. As we assume n is sufficiently large and � � 1/(8�7) �
1/(2�) [cf. (19)], Fact 4.2 applies to produce a set of vertices { x1, x2, . . . , xb} � X, b �
�1/ 2/4� satisfying (24) and (25). Since f � 1/(4�1/ 2) [cf. (19)], we may extract the subset
{ x1, x2, . . . , xf}. �

Fix xi � X0. Fix yk
xi � Yxi

. By our assumption that Lxiyk
xi

23 is not (�2/�, ��, r�)-regular,

there exist sets Uj
(i,k) � NG12( xi, yk

xi), Vj
(i,k) � NG13( xi, yk

xi), 1 � j � r� such that

��
j�1

r�

�Uj
�i,k	 � Vj

�i,k		� � ���NG12�xi, yk
xi	��NG13�xi, yk

xi	�,

� ��� n

�2� 2

�1 � �	4, (26)

but without loss of generality (see Remark 4.6)

�Lxiyk
xi

23
� �

j�1

r�

�Uj
�i,k	 � Vj

�i,k		� �
�2

�
�1 � ��	��

j�1

r�

�Uj
�i,k	 � Vj

�i,k		�. (27)

Fix xi � X0. We invoke Lemma 4.5 to infer that with xi � X0 fixed, all but �1/ 2n
vertices yk

xi � Yxi
satisfy that M� xi,yk

xi	

23 is (�/�, 31/3�1/6, r)-regular. In particular, as r� �

r [cf. (17)], we see that all but �1/ 2n vertices yk
xi � Yxi

satisfy that M� xi,yk
xi	

23 is (�/�, 31/3�1/6,

r�)-regular. Set Zxi
to be the set of all vertices yk

xi for which M� xi,yk
xi	

23 is not (�/�, 31/3�1/6,

r�)-regular. Observe from (18) that � � �4.5, and Lemma 4.5 applies. We then conclude
from Lemma 4.5 that

�Zxi
� 	 ��n. (28)

Let Yxi

˜ � Yxi
�Zxi

� 
y1
xi, y2

xi, . . . , yt
xi� be the set of t � �Yxi

� � �1/ 2n � (� � �1/ 2)n �
�
2 n vertices guaranteed by Lemma 4.5.

Now, fix yk
xi � Yxi

˜ . Note that by the definition of Yxi
˜ , every yk

xi � Yxi
˜ satisfies

�M�xi,yk
xi	

23
� �

j�1

r�

�Uj
�i,k	 � Vj

�i,k		� �
�

�
�1 � 31/3�1/6	��

j�1

r�

�Uj
�i,k	 � Vj

�i,k		�. (29)

As

M�xi,yk
xi	

23
� �

j�1

r�

�Uj
�i,k	 � Vj

�i,k		 � Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		, (30)

we further infer from (27) and (29) that

�Lxiyk
xi

23
� �

j�1

r�

�Uj
�i,k	 � Vj

�i,k		� � �
1 � ��

1 � 31/3�1/6 �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		�. (31)
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With xi � X0, yk
xi � Yxi

, fix j � {1, 2, . . . , r�}. Define

Q12�i, k, j	 � 

yk
xi, u� : u � Uj

�i,k	�,

Q13�i, k, j	 � 

yk
xi, v� : v � Vj

�i,k	�,

For i � {1, 2, . . . , f}, j � {1, 2, . . . , r�} we set

Q12�i, j	 � �
k�1

t

Q12�i, k, j	, (32)

Q13�i, j	 � �
k�1

t

Q13�i, k, j	, (33)

and

Q23�i, j	 � Lxi

23. (34)

Note, in particular, that in both (32) and (33), we are only taking the union over yk
xi � Yxi

˜

(cf. Remark 5.6).
Set

Q�i, j	 � Q12�i, j	 � Q13�i, j	 � Q23�i, j	.

Observe from (17) that fr� � r. Define the r-tuple of triads

Q� � �Q1, Q2, . . . , Qr	 � �Q�i, j	 : 1 � i � f, 1 � j � r�	. (35)

Note that if

Q�i, k, j	 �
def

Q12�i, k, j	 � Q13�i, k, j	 � Lxi

23,

then

Q�i, j	 � �
k�1

t

Q�i, k, j	.

Observe also that

�3�Q�i, j		 � �
k�1

t

�3�Q�i, k, j		. (36)

We now prove the following two claims.
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Claim 5.4.

��
i�1

f

�
j�1

r�

�3�Q�i, j		� � ���3�G
12 � G23 � G13	�.

Claim 5.5.

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		�
��

i�1

f

�
j�1

r�

�3�Q�i, j		� � � � �.

Note that these two claims prove Lemma 5.1.
We make the following remark.

Remark 5.6. Recall in (20) and (21) that we promised to produce a witness of the (�, �,
r)-irregularity of � with respect to G (cf. Definition 4.7). Claims 5.4 and 5.5 show that
Q� � (Q(1), . . . , Q(r)) defined in (35) is such a witness.

In order to show the existence of the algorithm A promised in Remark 5.2, we will
construct in time O(n4) a witness (Q̂(1), . . . , Q̂(r)) of the (�, �, r)-irregularity of �
with respect to G.

In order to avoid the discussion of how to construct the bipartite graphs Q1p(i, j), p �
2, 3, 1 � i � f, 1 � j � r�, from (32) and (33) [recall that Q(i, j) � Q12(i, j) � Q13(i,
j) � Q23(i, j)], we will consider “easily constructible” graphs Q̂(i, j) � Q̂12(i, j) �
Q̂13(i, j) � Q̂23(i, j). The new graphs Q̂(i, j), 1 � i � f, 1 � j � r�, differ from the
earlier graphs Q(i, j), 1 � i � f, 1 � j � r�, very slightly. Consequently, Q̂(i, j), 1 �
i � f, 1 � j � r�, will serve the same purpose as Q(i, j), 1 � i � f, 1 � j � r�,
concerning Claims 5.4 and 5.5.

More precisely, recall from (22) in Remark 5.2 that we assume we are given a set X �
V1

good, �X� � ��n, so that for each x � X, we are given a set Yx � V1
good, �Yx� � �n,

so that, for each y � Yx, we are given a witness ({Uj
xy, Vj

xy})j�1
r� of the (�2/�, ��,

r�)-irregularity of Lxy
23. Using Claim 4.2, from the given set X we extracted X0 � { x1,

x2, . . . , xf} � X, where f is given in (16). We then extracted the set Yxi
˜ � Yxi

�Zxi

� 
y1
xi, y2

xi, . . . , yt
xi� guaranteed by Lemma 4.5. Recall from (28) that �Zxi

� � ��n.
For p � 2, 3, 1 � i � f, 1 � j � r�, we defined in (32) and (33)

Q1p�i, j	 � �
k�1

t

Q1p�i, k, j	.

Note that Q1p(i, j) can also be written as

Q1p�i, j	 � �

k:yk

xi�Yxi

˜
�

Q1p�i, k, j	.

We now define
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Q̂1p�i, j	 � �

k:yk

xi�Yxi�

Q1p�i, k, j	 � Q1p�i, j	 � �

k:yk

xi�Zxi�

Q1p�i, k, j	. (37)

Since �Zxi
� � ��n, we only slightly extend Q1p(i, j) to Q̂1p(i, j).

We set

Q̂�i, j	 � Q̂12�i, j	 � Q̂13�i, j	 � Q̂23�i, j	.

We consider the r-tuple

�Q̂�i, j	 : 1 � i � f, 1 � j � r�	. (38)

The r-tuple (Q̂(i, j) : 1 � i � f, 1 � j � r�) also satisfies Claims 5.4 and 5.5. Indeed,
Claim 5.4 is easily seen to hold for (Q̂(i, j) : 1 � i � f, 1 � j � r�) since

��
i�1

f

�
j�1

r�

�3�Q̂�i, j		� � ��
i�1

f

�
j�1

r�

�3�Q�i, j		�.
It is not too hard to see that Claim 5.5 holds for (Q̂(i, j) : 1 � i � f, 1 � j � r�). Since
�Zxi

� � ��n, it easily follows that

��
i�1

f

�
j�1

r�

�3�Q̂�i, j		� � �1 
 �1/4	��
i�1

f

�
j�1

r�

�3�Q�i, j		�.
Consequently,

�� � �
i�1

f

�
j�1

r�

�3�Q̂�i, j		�
��

i�1

f

�
j�1

r�

�3�Q̂�i, j		� � �1 
 �1/4	

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		�
��

i�1

f

�
j�1

r�

�3�Q�i, j		� . (39)

As we will easily show in the upcoming inequality (52) of the upcoming Remark 5.7, the
right-hand side of (39) may be bounded from above by � � �. Consequently, (Q̂(i,
j) : 1 � i � f, 1 � j � r�) is also a witness of the (�, �, r)-irregularity of �.

It remains to show that the witness (Q̂(i, j) : 1 � i � f, 1 � j � r�) is easily
constructible. We first discuss why the new graphs Q̂(i, j), 1 � i � f, 1 � j � r�, are
easily constructible. Observe from (37) that, for fixed xi � X0, 1 � j � r�, all that is
needed to construct Q̂(i, j) is the set Yxi

and the witness {Uj
(i,k), Vj

(i,k)}. However, as
discussed in Remark 5.2 and (22), with x � xi, we assume that both

Yx � Yxi

and



Uj
xy, Vj

xy� : y � Yx� � 

Uj
�i,k	, Vj

�i,k	� : yk
xi � Yxi

�
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are given to us.2 Consequently, all that is needed to construct the witness (Q̂(i, j) : 1 �
i � f, 1 � j � r�) is a construction of the set X0 � { x1, x2, . . . , xf} � X that we
extracted from X. However, according to Remark 4.3, X0 may be found in time O(n3).

Since (Q̂(i, j) : 1 � i � f, 1 � j � r�) given in (38) may be constructed in time
O(n3) and since (Q̂(i, j) : 1 � i � f, 1 � j � r�) satisfies Claims 5.4 and 5.5, our
algorithmic assertion of Remark 5.2 is proved.

We begin by proving Claim 5.5.

Proof of Claim 5.5. We now produce an upper bound for the quantity

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		�
��

i�1

f

�
j�1

r�

�3�Q�i, j		� . (40)

We first consider the numerator of (40). Observe

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		� � ��
i�1

f

�
j�1

r�

� � �3�Q�i, j		�
� ��

i�1

f

�
j�1

r�

� � �3��
k�1

t

Q�i, k, j	��
� �

i�1

f ��
j�1

r�

� � �3��
k�1

t

Q�i, k, j	��. (41)

From (36), we infer that for each 1 � i � f, 1 � j � r�

� � �3��
k�1

t

Q�i, k, j	� � �
k�1

t

� � �3�Q�i, k, j		.

Observe from (34) that for 1 � i � f,

��
j�1

r�

�
k�1

t

� � �3�Q�i, k, j		� � �
k�1

t ��
j�1

r�

Lyk
xi

23
� Q23�i, j	 � �Uj

�i,k	 � Vj
�i,k		�

� �
k�1

t ��
j�1

r�

Lyk
xi

23
� Lxi

23 � �Uj
�i,k	 � Vj

�i,k		�
� �

k�1

t �Lxiyk
xi

23
� �

j�1

r�

�Uj
�i,k	 � Vj

�i,k		�. (42)

2Observe that we are not given the set Yxi

˜ that is used in the original graphs Q(i, j), 1 � i � f, 1 � j � r�.
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Thus, from (41) and (42), we infer

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		� � �
i�1

f �
k�1

t �Lxiyk
xi

23
� �

j�1

r�

�Uj
�i,k	 � Vj

�i,k		�.
From (31), we further conclude

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		� � �
1 � ��

1 � �1/6 �
i�1

f �
k�1

t �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		�. (43)

We now consider the denominator of (40). Observe

��
i�1

f

�
j�1

r�

�3�Q�i, j		� � �
i�1

f ��
j�1

r�

�3�Q�i, j		�
� �

1�i,i��f

��
j�1

r�

�3�Q�i, j		 � �
j�1

r�

�3�Q�i�, j		�. (44)

To bound the second term in (44), we first consider the quantity

��
j�1

r�

�3�Q�i, j		 � �
j�1

r�

�3�Q�i�, j		�
for a fixed choice of 1 � i � i� � f. Observe

��
j�1

r�

�3�Q�i, j		 � �
j�1

r�

�3�Q�i�, j		� � �
y�Yxi
˜�Yxi�

˜

�G23�NG12�xi, xi�, y	, NG13�xi, xi�, y	��. (45)

Indeed, for xi, xi�, 1 � i � i� � f, 
y, u, v� � �j�1
r� �3�Q�i, j		 � �j�1

r� �3�Q�i�, j		
implies that u � NG12( xi, xi�, y), v � NG13( xi, xi�, y), and {u, v} � Lxi

23 � Lxi�

23 � G23.
Continuing, as xi, xi� satisfy (24) and (25), we see from (19) that

�NG12�xi	 � NG12�xi�	� � �n,

�NG13�xi	 � NG13�xi�	� � �n.

Consequently, as G is an (�, �, 3)-cylinder, all but 4�n vertices y � Yxi

˜ � Yxi�

˜ satisfy

n

�3 �1 � �	3 	 �NG12�xi, xi�, y	� 	
n

�3 �1 
 �	3,

n

�3 �1 � �	3 	 �NG13�xi, xi�, y	� 	
n

�3 �1 
 �	3.
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From (19), we see that both quantities above are larger than �n. We therefore conclude
that, for all but 4�n vertices y � Yxi

˜ � Yxi�
˜ ,

�G�NG12�xi, xi�, y	, NG13�xi, xi�, y	�� 	 � n

�3� 2 1

�
�1 
 �	7.

Consequently, we further infer from (45) that

��
j�1

r�

�3�Q�i, j		 � �
j�1

r�

�3�Q�i�, j		� � 4�n3 
 �Yxi

˜ � Yxi�

˜ �
n2

�7 �1 
 �	7

� 4�n3 

n3

�7 �1 
 �	7

� 2
n3

�7 , (46)

where the last inequality follows from our choice of � in (19).
Using the bound in (46), we further infer from (44) that

��
i�1

f

�
j�1

r�

�3�Q�i, j		� � �
i�1

f ��
j�1

r�

�3�Q�i, j		� � f 2
n3

�7 . (47)

To bound the first order term above, consider ��j�1
r� �3(Q(i, j))� for a fixed choice 1 �

i � f. We infer from (34) that

��
j�1

r�

�3�Q�i, j		� � ��
k�1

t

�
j�1

r�

�3�Q�i, k, j		� � �
k�1

t �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		�.

Consequently, we see from (47) that

��
i�1

f

�
j�1

r�

�3�Q�i, j		� � �
i�1

f �
k�1

t �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		� � f 2
n3

�7 . (48)

Returning to (40), we infer from (43) and (48) that
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�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		�
��

i�1

f

�
j�1

r�

�3�Q�i, j		� � �� 1 � ��

1 � 31/3�1/6�
�
i�1

f �
k�1

t �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		�
�
i�1

f �
k�1

t �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		� � f 2
n3

�7

� �� 1 � ��

1 � 31/3�1/6� 1

1 �

f 2
n3

�7

�
i�1

f �
k�1

t �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		�

.

(49)

To further bound (49) from above, we infer from (29), (30), and (26) that for fixed 1 �
i � f, 1 � k � t,

�Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		� �
�

�
�1 � �1/6	��

n2

�4 �1 � �	4 �
�

4�5 ��n2, (50)

where the last inequality follows from (13) and (19). Consequently, we further infer from
(49) that, with t �

�
2 n,

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		�
��

i�1

f

�
j�1

r�

�3�Q�i, j		� � �� 1 � ��

1 � 31/3�1/6� 1

1 � 8f/�����2 .

Using (16), we see

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		�
��

i�1

f

�
j�1

r�

�3�Q�i, j		� � �� 1 � ��

1 � 31/3�1/6� 1

1 � 16�1/2/�2�2���	2 .

As our choice of � in (15) guarantees

�� 1 � ��

1 � 31/3�1/6� 1

1 � 16�1/2/�2�2���	2 � � � 2� � � � �, (51)

the inequality (21) holds. Thus our proof of Claim 5.5 is complete. �

We note the following remark.
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Remark 5.7. Recall the definition of (Q̂(i, j) : 1 � i � f, 1 � j � r�) from (38)
discussed in Remark 5.6. Recall from (39) that

�� � �
i�1

f

�
j�1

r�

�3�Q̂�i, j		�
��

i�1

f

�
j�1

r�

�3�Q̂�i, j		� � �1 
 �1/4	

�� � �
i�1

f

�
j�1

r�

�3�Q�i, j		�
��

i�1

f

�
j�1

r�

�3�Q�i, j		� .

Consequently, from (51), we see

�� � �
i�1

f

�
j�1

r�

�3�Q̂�i, j		�
��

i�1

f

�
j�1

r�

�3�Q̂�i, j		� � �� � 2�	�1 
 �1/4	 � � � �. (52)

This concludes the proof of our algorithmic assertion in Remark 5.6. �

We now prove Claim 5.4.

Proof of Claim 5.4. We show that

��
i�1

f

�
j�1

r�

�3�Q�i, j		� � ���3�G
12 � G23 � G13	�.

Using (48), we see

��
i�1

f

�
j�1

r�

�3�Q�i, j		� � �
i�1

f �
k�1

t �Lxi

23 � �
j�1

r�

�Uj
�i,k	 � Vj

�i,k		� � f 2
n3

�7 .

Using (50), we further conclude from t � �n/ 2 that

��
i�1

f

�
j�1

r�

�3�Q�i, j		� � f
�

8
���

n3

�5 � f 2
n3

�7 ,

�
n3

�3 	 f
�

8
���

1

�2 � f 2
1

�4
 .

From (16), we infer

��
i�1

f

�
j�1

r�

�3�Q�i, j		� �
n3

�3 	1/4�� �
4�

�2�2���	2
 � 1/4��
n3

�3 	1 �
16��

�2�2���	2
 � 2�
n3

�3 ,

where the last inequality follows from our choice of � in (14). We further conclude
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��
i�1

f

�
j�1

r�

�3�Q�i, j		� � �
n3

�3 �1 
 
	 � ���3�G
12 � G23 � G13	�,

where the last inequality follows from Fact 4.1 and our choice of � in (18). Thus, Claim
5.4 is proved. �

For future reference in [5], we state that the following variant of Lemma 3.3 discussed
in Remarks 5.2 and 5.6.

Lemma 5.8 (Regularity of Colinks—Constructive Version). For all positive reals � and
�B there exists �A such that, for all positive integers � and rB, there exist positive integer
rA and real � � 0 so that, in the context of the Setup, the following holds: Suppose
statement (ii) of H2(�B, rB) fails to hold. Moreover, suppose for each x, y � V1, x � y,
where Lxy

23 is not (�2/l, �B, rB)-regular, a witness ({Uj
xy, Vj

xy})j�1
rB of the (�2/�, �B,

rB)-irregularity of Lxy
23 is given (cf. Definition 4.7). Then there exists an algorithm A which

in time O(n3) converts the witnesses {({Uj
xy, Vj

xy})j�1
rB : x � y, where Lxy

23 is not (�2/l, �B,
rB)-regular}, into a witness Q� � (Q(1), . . . , Q(rA)) of the (�, �A, rA)-irregularity of �
with respect to G (cf. Definition 4.7).

6. COUNTEREXAMPLE

In this section, we prove Theorem 3.5, showing that the implication H2f H1 is not true
in general. Our goal is to construct a 3-partite 3-cylinder � with an underlying cylinder
G, as in the Setup, such that all links and co-links of � are regular but � is not.

In order to define the promised constants and construct the counterexample, we need
some auxiliary lemmas. In the next subsection, we provide these lemmas.

6.1. Some Auxiliary Lemmas

Our first two lemmas are straightforward applications of the Chernoff inequality [16]. We
omit their details here and refer the reader to [4] for the complete details.

Lemma 6.1. For any positive reals � and �B there exists an integer r6.1 so that for all
r � r6.1, there exists a 3-uniform 3-partite hypergraph � satisfying the following prop-
erties:

(0) � has 3-partition

W � W1 � W2 � W3, �W1� � �W2� � �W3� � r.

(i)

�r3�1 � �B
3	 � ��� � �r3�1 
 �B

3	.

(ii) For any i � W1 and j � W2, �r(1 � �B
3 ) � �N�(i, j)� � �r(1 � �B

3 ).
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(iii) For all i, j � W1 and k, l � W2 such that (i, k) � (j, l),

�2r�1 � �B
3	 � �N��i, k	 � N��j, l	� � �2r�1 
 �B

3	.

Lemma 6.2. For all positive reals �B and � and positive integers � and r there exist n
and a 3-partite graph G � G12 � G23 � G13, together with edge partitions

Gij � G1
ij � · · · � Gr

ij,

1 � i � j � 3, satisfying the following properties:

(0) G is an (�, �, 3)-cylinder.
(i) For any vertex x � V1 and for any i � {1, 2, . . . , r},

n

r�
�1 � �B

3	 � �NGi
12�x	� �

n

r�
�1 
 �B

3	

and
n

r�
�1 � �B

3	 � �NGi
13�x	� �

n

r�
�1 
 �B

3	.

(ii) For any two vertices x, y � V1, x � y and for any i, j � {1, 2, . . . , r},

n

r2�2 �1 � �B
3	 � �NGi

12�x	 � NGj
12�y	� �

n

r2�2 �1 
 �B
3	

and
n

r2�2 �1 � �B
3	 � �NGi

13�x	 � NGj
13�y	� �

n

r2�2 �1 
 �B
3	.

(iii) For any s � {1, 2, . . . , r} and for any X � Vi and any Y � Vj, 1 � i � j �
3, such that �X� � �n, �Y� � �n, we have

� 1

r�
� dGs

ij�X, Y	� 	
�B

3

r�
.

For future purposes, we state the following fact related to Fact 4.1.

Fact 6.3. Suppose Gs1

12 � Gs2

13 � Gs3

23 is a 3-partite graph such that each Gsk

ij , 1 � i �
j � 3, 1 � k � 3 satisfies the property in (iii) from Lemma 6.2. Then

1

2 � n

r��
3

� ��3�Gs1

12 � Gs2

13 � Gs3

23	� � 2� n

r��
3

.

For our final lemma, we need the following definition.

Definition 6.4. Let �, �, and � be positive reals, and let F be a bipartite graph with
bipartition (U, V). We say that F is (�, (�, �))-regular if for any U� � U, �U�� � ��U� and
for any V� � V, �V�� � ��V�, we have
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��1 � �	 � dF�U�, V�	 � ��1 
 �	.

Although in a slightly different language, the following lemma essentially appeared as
Claim 4.10 in [21].

Lemma 6.5. Let �, � be positive reals and let r be a positive integer. There exists � �
0 so that whenever F is an (�, (�, �))-regular bipartite graph with bipartition (U, V), then
F is (�, 2�, r)-regular.

We omit the proof of Lemma 6.5 and encourage the reader to see [4] and [21].

6.2. Construction of �

6.2.1. Definitions of the Constants. Let � � 1/2 and �A � 1/16, and let �B � 0 be
given. Without loss of generality, we may assume that �B satisfies

�B 	
1

20
, (53)

�1 � �B
3	2 � 1 � 3�B

2, (54)

�1 
 �B
3	2 	 1 
 3�B

2. (55)

For our promised value �, we choose any integer � � 1/�. Let

r6.1 � r6.1��, �B	

be that constant guaranteed by Lemma 6.1. Let integer r� � � satisfy

20�1 �
1

5�B
2r�� � 6, (56)

�1 

16

6�B
2r��

�1

� 1 � �B
2, (57)

1 

64

6�2�B
2r�

� 1 
 �B
2. (58)

Let

r � max
r6.1, r��, (59)

and set

rA � 2�r3. (60)
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Let rB, � and n0 be given. Let

�6.5 � �6.5��, 3�B
2, rB	

be that constant guaranteed to exist by Lemma 6.5. Let

�4.1 � �4.1��, 1/2	

be that constant guaranteed to exist by Fact 4.1. Let �� � 0 satisfy

�1 � �B
3	2�1 � 16��	 � 1 � 3�B

2, (61)

�1 
 �B
3	2�1 
 32���	 � 1 
 3�B

2, (62)

�1 
 �B
3	2�1 


64��

� � � 1 
 3�B
2, (63)

�� 	
1

2r�2 . (64)

[Note that (61), (62) and (63) are possible due to (54) and (55).] Note that we may assume,
without loss of generality, that

� � min
�6.5, �4.1, ���. (65)

Let

n6.2 � n6.2��B, �, r	

be that constant guaranteed by Lemma 6.2. Take

n � n6.2 (66)

to be sufficiently large (wherever needed).

6.2.2. Construction of �. We define hypergraph � with underlying cylinder G as
promised by Theorem 3.5. To that end, with � � 1/2 and �B given above and r given in
(59), we first define an auxiliary structure. Let � be a 3-uniform hypergraph guaranteed by
Lemma 6.1 satisfying:

(0) � has 3-partition

W � W1 � W2 � W3, �W1� � �W2� � �W3� � r. (67)

(i)
�r3�1 � �B

3	 � ��� � �r3�1 
 �B
3	. (68)
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(ii) For any i � W1 and j � W2,

�r�1 � �B
3	 � �N��i, j	� � �r�1 
 �B

3	. (69)

(iii) For all i, j � W1 and k, l � W2 such that (i, k) � (j, l),

�2r�1 � �B
3	 � �N��i, k	 � N��j, l	� � �2r�1 
 �B

3	. (70)

Continuing, we now define the promised underlying cylinder G. With �B given, �
given, and r given in (59), � satisfying (65) and n given in (66), let 3-partite graph G �
G12 � G23 � G13, together with edge partitions

Gij � G1
ij � · · · � Gr

ij, (71)

1 � i � j � 3, be guaranteed by Lemma 6.2 satisfying the following properties:

(0) G is an (�, �, 3)-cylinder.
(i) For any vertex x � V1 and for any i � {1, 2, . . . , r},

n

r�
�1 � �B

3	 � �NGi
12�x	� �

n

r�
�1 
 �B

3	 (72)

and
n

r�
�1 � �B

3	 � �NGi
13�x	� �

n

r�
�1 
 �B

3	. (73)

(ii) For any two vertices x, y � V1 and for any i, j � {1, 2, . . . , r},

n

r2�2 �1 � �B
3	 � �NGi

12�x	 � NGj
12�y	� �

n

r2�2 �1 
 �B
3	 (74)

and
n

r2�2 �1 � �B
3	 � �NGi

13�x	 � NGj
13�y	� �

n

r2�2 �1 
 �B
3	. (75)

(iii) For any s � {1, 2, . . . , r} and for any X � Vi and any Y � Vj, 1 � i � j � 3,
such that �X� � �n, �Y� � �n we have

� 1

r�
� dGs

ij�X, Y	� 	
�B

3

r�
. (76)

We now define the promised hypergraph � having underlying cylinder G defined
above. For convenience in what follows, we use the following notation concerning the
graph G defined above. For x, y, z � V1 � V2 � V3 and 1 � i, j, k � r, we use { x,
y, z} � { x, y, z}ijk to denote that { x, y, z} satisfies x � V1, y � V2 and z � V3 and
{ x, y} � Gi

12, { x, z} � Gj
13 and { y, z} � Gk

23. Then we define the hypergraph � as

� � 

x, y, z� : 
x, y, z� � 
x, y, z�ijk where �i, j, k	 � ��. (77)

This completes our definition of � and G.
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We note the following remark. Observe from (77) that d�(G) � ���/r3. Then by (68),
we see

��1 � �B
3	 � d��G	 � ��1 
 �B

3	. (78)

6.3. Proof of Theorem 3.5

Figure 1 illustrates a flow chart of proving Theorem 3.5. The letter T represents “Theo-
rem,” the letter L represents “Lemma,” the letter C represents “Claim,” and the letter F
represents “Fact.”

We break our proof of Theorem 3.5 into three parts according to the following
propositions. Note that each of the following propositions refers to the hypergraph � and
graph G constructed above:

Proposition 6.6. For each x � V1, Lx
23 is (�/�, �B, rB)-regular.

Proposition 6.7. For each x, y � V1, x � y, Lxy
23 is (�2/�, �B, rB)-regular.

Proposition 6.8. � is not (�, �A, rA)-regular.

Then Propositions 6.6, 6.7, and 6.8 together immediately imply Theorem 3.5.
The proof of Proposition 6.8 is easy so we present it immediately. We then comment

on our strategy for proving Propositions 6.6 and 6.7.

Fig. 1. A flow chart of proving Theorem 3.5.
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Proof of Proposition 6.8. Define

Q� � �Gi
12 � Gj

13 � Gk
23 : �i, j, k	 � �	.

Observe from (77) that all triangles of Q� coincide with triples of �. Consequently,
d�(Q� ) � 1.

We prove that Q� is an rA-tuple of triads which satisfies

� �
�i,j,k	��

�3�Gi
12 � Gj

13 � Gk
23	� � �A��3�G	�, (79)

but

�d��Q� 	 � d��G	� � �A. (80)

Observe by (68) and (60) and the fact that �B � 1 that

��� � �r3�1 
 �B
3	 � 2�r3 � rA. (81)

Therefore, Q� is an rA-tuple of triads.
To prove (79), observe that

� �
�i,j,k	��

�3�Gi
12 � Gj

13 � Gk
23	� � �

�i,j,k	��

��3�Gi
12 � Gj

13 � Gk
23	�. (82)

Applying Fact 6.3 to each Gi
12 � Gj

13 � Gk
23, (i, j, k) � �, we see

��3�Gi
12 � Gj

13 � Gk
23	� �

1

2 � n

r��
3

. (83)

Additionally, we see from (68) that

��� �
�r3

2
. (84)

We then infer from (82), (83), and (84) that

� �
�i,j,k	��

�3�Gi
12 � Gj

13 � Gk
23	� �

�

4

n3

�3 . (85)

On the other hand, we see from (65) and Fact 4.1 that

��3�G	� 	 2�n

��
3

. (86)
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From (85) and (86) we infer that

� �
�i,j,k	��

�3�Gi
12 � Gj

13 � Gk
23	� �

�

8
��3�G	�.

Then (79) follows from the facts that � � 1/2 and �A � 1/16.
We see (80) follows immediately by the construction of Q� . Recall d�(Q� ) � 1. On the

other hand, from (78), we see �(1 � �B) � d�(G) � �(1 � �B). Consequently, with
� � 1/ 2, �A � 1/16 and �B � 1/4, �d�(Q� ) � d�(G)� � �A follows. �

We now return to proving Propositions 6.6 and 6.7. To prove Proposition 6.6, we use
the following claim, proved below.

Claim 6.9. For each x � V1, Lx
23 is (�/�, (�, 3�B

2))-regular.

We then see that Proposition 6.6 follows immediately from Claim 6.9, Lemma 6.5, and
our choice of � in (65). Indeed, by Claim 6.9, Lemma 6.5, and our choice of � in (65), we
see that for each x � V1, Lx

23 is (�/�, 6�B
2 , rB)-regular. As 6�B

2 � �B from (53),
Proposition 6.6 follows.

Proof of Claim 6.9. Fix x � V1 and let A � NG12( x), �A� � ��NG12( x)� and B �
NG13( x), �B� � ��NG13( x)� be given. We show

�

�
�1 � 3�B

2	�A��B� � �Lx
23�A, B	� �

�

�
�1 
 3�B

2	�A��B�. (87)

The upcoming Facts 6.10 and 6.11 essentially prove (87). Before presenting these facts,
we prepare the following notation and terminology. For 1 � i, j � r, set

Ai � A � NGi
12�x	,

Bj � B � NGj
13�x	,

where graphs Gi
12, Gj

13 are given in (71). Since �i�1
r NGi

12�x	 � NG12�x	, we see �i�1
r

Ai � A. Similarly, �i�1
r Bi � B. For 1 � i � r, we call Ai big if

�Ai� � �3�NGi
12�x	� (88)

and small otherwise. Similarly, for 1 � j � r, we call Bj big if

�Bj� � �3�NGj
13�x	� (89)

and small otherwise. Set

TB � 
�i, j	 : Ai and Bj are big�,

TS � 
�i, j	 : Ai or Bj is small�.
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Observe that in the language above,

�Lx
23�A, B	� � �

�i,j	�TB

�Lx
23�Ai, Bj	� 
 �

�i,j	�TS

�Lx
23�Ai, Bj	�. (90)

Facts 6.10 and 6.11 may be given as follows.

Fact 6.10. For each (i, j) � TB,

�

�
�1 � �B

3	2�Ai��Bj� � �Lx
23�Ai, Bj	� �

�

�
�1 
 �B

3	2�Ai��Bj�.

Fact 6.11.

�
�i,j	�TS

�Ai��Bj� � 4�3
n2

�2 .

We prove Fact 6.10 momentarily. Fact 6.11 follows trivially from the definition of TS;
thus, we omit it.

We now use Facts 6.10 and 6.11 to conclude our proof of Claim 6.9. We begin with
the lower bound in (87).

Observe

�Lx
23�A, B	� � �

�i,j	�TB

�Lx
23�Ai, Bj	� 
 �

�i,j	�TS

�Lx
23�Ai, Bj	� � �

�i,j	�TB

�Lx
23�Ai, Bj	�.

By Fact 6.10,

�Lx
23�A, B	� �

�

�
�1 � �B

3	2 �
�i,j	�TB

�Ai��Bj�.

As �A��B� � ¥(i, j)�TB
�Ai��Bj� � ¥(i, j)�TS

�Ai��Bj�, Fact 6.11 implies

�Lx
23�A, B	� �

�

�
�1 � �B

3	2	 �A��B� � 4�3
n2

�2
 ,

�
�

�
�1 � �B

3	2�A��B�	1 �
4�3n2/�2

�A��B� 
 .

Since �A� � ��NG12( x)� � � n
2� and �B� � ��NG13( x)� � � n

2� were given, we see

�Lx
23�A, B	� �

�

�
�1 � �B

3	2�A��B��1 � 16�	 �
�

�
�1 � 3�B

2	�A��B�,

where the last inequality follows from (61).
In a way similar to above, one may show
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�Lx
23�A, B	� �

�

�
�1 
 �B

3	2�1 
 32��	�A��B�.

Then the upper bound of (87) follows immediately from (62). This concludes our proof
of Claim 6.9. �

Proof of Fact 6.10. Fix (i, j) � TB. Observe

Lx
23�Ai, Bj	 � Lx

23 � �
k�1

r

Gk
23�Ai, Bj	,

and thus

�Lx
23�Ai, Bj	� � �

k�1

r

�Lx
23 � Gk

23�Ai, Bj	�. (91)

Observe from (77) that, for 1 � k � r,

Lx
23 � Gk

23�Ai, Bj	 � �Gk
23�Ai, Bj	 if k � N��i, j	,

A else.

Then we may rewrite (91) as

�Lx
23�Ai, Bj	� � �

k�N��i,j	

�Gk
23�Ai, Bj	�. (92)

Fix k � N�(i, j). Since (i, j) � TB, we see from (88), (89), (72), and (73) that

�Ai� � �3�NGi
12�x	� � �3

n

2r�
� �n, (93)

and

�Bj� � �3�NGj
13�x	� � �3

n

2r�
� �n. (94)

Using (93), (94), and (76), we infer

�Ai��Bj�
r�

�1 � �B
3	 � �Gk

23�Ai, Bj	� �
�Ai��Bj�

r�
�1 
 �B

3	. (95)

Combining (92) and (95), we see

�N��i, j	�
�Ai��Bj�

r�
�1 � �B

3	 � �Lx
23�Ai, Bj	� � �N��i, j	�

�Ai��Bj�
r�

�1 
 �B
3	.
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Then Fact 6.10 follows immediately from (69). �

Consequently, Claim 6.9 and then Proposition 6.6 are proved.
To prove Proposition 6.7, we take a similar approach to that suggested above for links

in Claim 6.9. Unfortunately, technical reasons prohibit us from merely copying Claim 6.9
for co-links (these reasons will be seen in context). To prove Proposition 6.7, we therefore
must develop the following extended strategy below. We begin with the following
definition.

Definition 6.12. For a pair of distinct vertices x, y � V1, define the 2-diagonal of x and
y as

DIAG2�x, y	 � �
i�1

r

�NGi
12�x	 � NGi

12�y		,

where graphs Gi
12, 1 � i � r are given in (71).

For future purposes, we give the following easy estimation that follows immediately
from (74).

Fact 6.13. For a pair of distinct vertices x, y � V1,

1

2

n

r�2 	 �DIAG2�x, y	� 	 2
n

r�2 .

We proceed with the following definition.

Definition 6.14. For a pair of distinct vertices x, y � V1, define

Lxy
23̃ � Lxy

23�NG12�x, y	�DIAG2�x, y	, NG13�x, y	�.

We remark that only later in context will it be clear why we removed the 2-diagonal.

To prove Proposition 6.7, we prove the following claims.

Claim 6.15. For each pair x, y � V1, Lxy
23̃ is (�2/�, (�, 3�B

2))-regular.

Claim 6.16. For a pair x, y � V1, if Lxy
23̃ is (�2/�, 6�B

2, rB)-regular, then Lxy
23 is (�2/�,

20�B
2, rB)-regular.

We then see that Proposition 6.7 follows from Claim 6.15, Lemma 6.5 [and our choice of
� in (65)], and Claim 6.16. Indeed, by Claim 6.15 and Lemma 6.5 [and our choice of � in
(65)], we see that for each pair x, y � V1, Lxy

23̃ is (�2/�, 6�B
2 , rB)-regular. By Claim 6.16,

we then conclude that each Lxy
23 is (�2/�, 20�B

2 , rB)-regular. As 20�B
2 � �B from (53),

Proposition 6.7 follows.
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The proofs of Claims 6.9 and 6.15 are essentially identical. We sketch an outline for
the proof of Claim 6.15 (indicating precisely why we removed the 2-diagonal). We then
conclude this section with a proof of Claim 6.16.

Proof of Claim 6.15 (Outline). Fix x, y � V1 and let A � NG12( x, y)�DIAG2( x, y), �A�
� ��NG12( x, y)�DIAG2( x, y)�, B � NG13( x, y), �B� � ��NG13( x, y)� be given. We must
show

�2

�
�1 � 3�B

2	�A��B� � � Lxy
23̃�A, B	� �

�2

�
�1 
 3�B

2	�A��B�. (96)

We proceed similarly to before. For 1 � i, i� � r, 1 � j, j� � r, set

Ai,i� � A � NGi
12�x	 � NGi�

12�y	,

Bj,j� � B � NGj
13�x	 � NGj�

13�y	.

For 1 � i, i� � r, define Ai,i� to be big if �Ai,i�� � �3�NGi
12�x	 � NGi�

12�y	� and small
otherwise. For 1 � j, j� � r, define Bj, j� to be big if �Bj, j�� � �3�NGj

13�x	 � NGj�
13�y	� and

small otherwise. Set

TB
˜� 
�i, i�, j, j�	 : Ai,i� and Bj,j� are big�,

TS
˜� 
�i, i�, j, j�	 : Ai,i� or Bj,j� is small�.

We proceed with the following facts.

Fact 6.17. Suppose �i, i�, j, j�	 � TB
˜ . Then i � i�.

Proof of Fact 6.17. Fix �i, i�, j, j�	 � TB
˜ . We show i � i�. Recall that by Definition 6.12,

DIAG2�x, y	 � �
i�1

r

�NGi
12�x	 � NGi

12�y		.

where graphs Gi
12, 1 � i � r are given in (71). Recall A � NG12( x, y)�DIAG2( x, y).

Consequently, Ai,i � A � NGi
12�x	 � NGi

12�y	 � A. As �i, i�, j, j�	 � TB̃, �Ai,i�� � 0, thus,
i � i�. �

Fact 6.18. For each �i, i�, j, j�	 � TB
˜ ,

�2

�
�1 � �B

3	2�Ai,i���Bj,j�� � � Lxy
23̃�Ai,i�, Bj,j�	� �

�2

�
�1 
 �B

3	2�Ai,i���Bj,j��.

The proof of Fact 6.18 is similar to the proof of Fact 6.10, and we sketch it at the end
of the proof of Claim 6.15.
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Fact 6.19.

�
�i,i�,j,j�	�TS

˜
�Ai,i���Bj,j�� � 4�3

n2

�4 .

Similar to Fact 6.11, Fact 6.19 is trivial, and we omit its proof here.
We proceed with our outline of the proof of Claim 6.15. Note that, similar to (90),

� Lxy
23̃�A, B	� � �

�i,i�,j,j�	�TB
˜

� Lxy
23̃�Ai,i�, Bj,j�	� 
 �

�i,i�,j,j�	�TS
˜

� Lxy
23̃�Ai,i�, Bj,j�	�.

Using Facts 6.18 and 6.19, we conclude

� Lxy
23̃�A, B	� �

�2

�
�1 � �B

3	2�A��B� 
 4�3
n2

�4 .

Then the upper bound of (96) follows from (61). In a similar way, one can show the lower
bound of (96).

In order to conclude the proof of Claim 6.15, it remains to give (a sketch of) the proof
of Fact 6.18.

Proof of Fact 6.18 (Sketch). Fix �i, i�, j, j�	 � TB
˜ . As with (91), observe

� Lxy
23̃�Ai,i�, Bj,j�	� � �

k�1

r

� Lxy
23̃ � Gk

23�Ai,i�, Bj,j�	�. (97)

Observe from (77) that, for 1 � k � r,

Lxy
23̃ � Gk

23�Ai,i�, Bj,j�	 � �Gk
23�Ai,i�, Bj,j�	 if k � N��i, j	 � N��i�, j�	,

A else.

Then we may rewrite (97) as

� Lxy
23̃�Ai,i�, Bj,j�	� � �

k�N��i,j	�N��i�,j�	

�Gk
23�Ai,i�, Bj,j�	�. (98)

Fix k � N�(i, j) � N�(i�, j�). In precisely the same way as before, we may conclude

�Ai,i�� � �3�NGi
12�x	 � NGi�

12�y	� � �3
n

2r2�2 � �n,

and

�Bj,j�� � �3�NGj
13�x	 � NGj�

13�y	� � �3
n

2r2�2 � �n.
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Consequently, we infer

�Ai,i���Bj,j��
r�

�1 � �B
3	 � �Gk

23�Ai,i�, Bj,j�	� �
�Ai,i���Bj,j��

r�
�1 
 �B

3	. (99)

Combining (98) and (99), we see

�Ai,i���Bj,j��
r�

�1 � �B
3	 �

� Lxy
23̃�Ai,i�, Bj,j�	�

�N��i, j	 � N��i�, j�	� �
�Ai,i���Bj,j��

r�
�1 
 �B

3	.

As �i, i�, j, j�	 � TB
˜ , Fact 6.17 implies i � i�. Consequently, (i, j) � (i�, j�). Therefore,

Fact 6.18 follows immediately from (70). �

We proved that, for each pair x, y � V1, Lxy
23̃ is (�2/�, (�, 3�B

2 ))-regular. Recall that by

Lemma 6.5 and our choice of � in (65), we see that for each pair x, y � V1, Lxy
23̃ is (�2/�,

6�B
2 , rB)-regular. To finish the proof of Proposition 6.7, we need to show that for each pair

x, y � V1, if Lxy
23̃ is (�2/�, 6�B

2 , rB)-regular, then Lxy
23 is (�2/�, 20�B

2 , rB)-regular, that

is to prove Claim 6.16.

Proof of Claim 6.16. Let x, y � V1 be fixed. Let V2, j, V3, j, V2, j � NG12( x, y), V3, j �
NG13( x, y), 1 � j � rB, be an rB-tuple of pairs of subsets satisfying

��
j�1

rB

�V2,j � V3,j	� � 20�B
2 �NG12�x, y	��NG13�x, y	�. (100)

We are going to show

�2

�
�1 � 20�B

2	 �
�Lxy

23 � �j�1
rB �V2,j � V3,j	�

��j�1
rB �V2,j � V3,j	�

�
�2

�
�1 
 20�B

2	. (101)

For 1 � j � rB, set

V�2,j � V2,j�DIAG2�x, y	.

Observe from Fact 6.13 that

�V�2,j� � �V2,j� � 2
n

r�2 .

We prove the following two facts.

Fact 6.20.

��
j�1

rB

�V�2,j � V3,j	� � 6�B
2 �NG12�x, y	�DIAG2�x, y	��NG13�x, y	�.
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Fact 6.21.

�1 � �B
2	

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	�
��j�1

rB �V�2,j � V3,j	�
�

�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�

� �1 
 �B
2	

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	�
��j�1

rB �V�2,j � V3,j	�
.

Before proving Facts 6.20 and 6.21, we show how they imply (101).
Indeed, by Fact 6.20 and the (�2/�, 6�B

2 , r)-regularity of Lxy
23̃, we see

�2

�
�1 � 6�B

2	 �
� Lxy

23̃ � �j�1
rB �V�2,j � V3,j	�

��j�1
rB �V�2,j � V3,j	�

�
�2

�
�1 
 6�B

2	. (102)

By Fact 6.21, we thus conclude

�2

�
�1 � 6�B

2	�1 � �B
2	 �

�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�
�

�2

�
�1 
 6�B

2	�1 
 �B
2	.

Then (101) follows from (53).
Thus, to complete the proof of Claim 6.16, we prove Facts 6.20 and 6.21.

Proof of Fact 6.20. Observe

��
j�1

rB

�V�2,j � V3,j	� � ��
j�1

rB

�V2,j � V3,j	� � �NG13�x, y	��DIAG2�x, y	�.

Using Fact 6.13, we thus conclude

��
j�1

rB

�V�2,j � V3,j	� � ��
j�1

rB

�V2,j � V3,j	� � 2
n

r�2 �NG13�x, y	�.

From (100), we conclude that

��
j�1

rB

�V�2,j � V3,j	� � 20�B
2 �NG12�x, y	��NG13�x, y	� � 2

n

r�2 �NG13�x, y	�

� 20�B
2 �NG13�x, y	��NG13�x, y	��1 �

n

10�B
2r�2

1

�NG12�x, y	��.

Since �NG12(x,y)� � n
2�2

, we see
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��
j�1

rB

�V�2,j � V3,j	� � 20�B
2�1 �

1

5�B
2r��NG12�x, y	��NG13�x, y	�

� 20�B
2�1 �

1

5�B
2r��NG12�x, y	�DIAG2�x, y	��NG13�x, y	�. (103)

Fact 6.20 then follows from (56). �

Proof of Fact 6.21. Observe that

�Lxy
23 � �

j�1

rB

�V2,j � V3,j	� � � Lxy
23̃ � �

j�1

rB

�V�2,j � V3,j	� (104)

and

�Lxy
23 � �

j�1

rB

�V2,j � V3,j	� � � Lxy
23̃ � �

j�1

rB

�V�2,j � V3,j	� 
 �G�DIAG2�x, y	, NG13�x, y	��.

(105)

We first bound (105) from above, and begin by estimating �G[DIAG2( x, y), NG13( x, y)]�.
From �NG13(x,y)� � n

2�2
and (64), we infer �NG13( x, y)� � �n. From Fact 6.13 and (64),

we infer �DIAG2( x, y)� � �n. Since G23 is (1/�, �)-regular, � � 1/2, we infer

�G�DIAG2�x, y	, NG13�x, y	�� 	 2
�DIAG2�x, y	��NG13�x, y	�

�
. (106)

Using (106) in (105), we conclude that

�Lxy
23 � �

j�1

rB

�V2,j � V3,j	� � � Lxy
23̃ � �

j�1

rB

�V�2,j � V3,j	� 
 2
�DIAG2�x, y	��NG13�x, y	�

�
.

(107)

We further bound (107). Observe from �NG13(x,y)� 	 2 n
�2

and Fact 6.13 that

�DIAG2�x, y	��NG13�x, y	� 	 4
n2

r�4 . (108)

We may therefore conclude from (107) that

�Lxy
23 � �

j�1

rB

�V2,j � V3,j	� � � Lxy
23̃ � �

j�1

rB

�V�2,j � V3,j	� 
 8
n2

r�5 . (109)

Observe
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��
j�1

rB

�V2,j � V3,j	� � ��
j�1

rB

�V�2,j � V3,j	� (110)

and

��
j�1

rB

�V2,j � V3,j	� � ��
j�1

rB

�V�2,j � V3,j	� 
 �DIAG2�x, y	��NG13�x, y	�. (111)

Using (108), we infer from (111) that

��
j�1

rB

�V2,j � V3,j	� � ��
j�1

rB

�V�2,j � V3,j	� 
 4
n2

r�4 . (112)

We now prove Fact 6.21. We infer from (104) and (112) that

�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�
�

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	�

��j�1
rB �V�2,j � V3,j	� 
 4

n2

r�4

�
� Lxy

23̃ � �j�1
rB �V�2,j � V3,j	�

��j�1
rB �V�2,j � V3,j	� �1 


4n2/r�4

��j�1
rB �V�2,j � V3,j	��

�1

.

From (103) we see

�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�
�

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	�
��j�1

rB �V�2,j � V3,j	�

� �1 

16n2/r�4

20�B
2�1 �

1

5�B
2r��NG12�x, y	��NG13�x, y	��

�1

.

Since �NG12(x,y)�,�NG13(x,y)� � n

2�2 and by (56), we further conclude

�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�
�

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	�
��j�1

rB �V�2,j � V3,j	�
�1 


16

6�B
2r�

�1

.

The lower bound of Fact 6.21 then follows from (57).
Using (109) and (110), we see

�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�
�

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	� 
 8n2/r�5

��j�1
rB �V�2,j � V3,j	�

.

Using (103) and (56), we infer
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�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�
�

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	�
��j�1

rB �V�2,j � V3,j	�



32n2/r�5

20�B
2�1 �

1

5�B
2r��NG12�x, y	��NG13�x, y	�

�
� Lxy

23̃ � �j�1
rB �V�2,j � V3,j	�

��j�1
rB �V�2,j � V3,j	�



32

6�B
2r�

. (113)

Rewriting (113) and using (102), we obtain

�Lxy
23 � �j�1

rB �V2,j � V3,j	�
��j�1

rB �V2,j � V3,j	�
�

� Lxy
23̃ � �j�1

rB �V�2,j � V3,j	�
��j�1

rB �V�2,j � V3,j	�
�1 


64

6�2�B
2r�.

The upper bound of Fact 6.21 then follows from (58). �

APPENDIX

A.1. The Frankl-Rödl Hypergraph Regularity Lemma

In this section, we state the Frankl-Rödl Hypergraph Regularity Lemma. First, we state a
number of supporting definitions. By K(U, V) we denote the complete bipartite graph on
bipartition (U, V).

Definition 7.1. Let V be a set with �V� � N. An (�, t, �, �)-partition � of [V]2 is an
(auxiliary) partition V � V0 � V1 � . . . � Vt of V, together with a system of edge-disjoint
bipartite graphs � � {P�

ij: 1 � i � j � t, 0 � � � �ij � �}, such that:

(i) �V0� � t and �V1� � � V2� � · · · � � Vt� � N
t  �def n.

(ii) ���0
�ij P�

ij � K(Vi, Vj) for all i, j, 1 � i � j � t.
(iii) All but �(2

t )m2 pairs {vi, vj}, vi � Vi, vj � Vj, 1 � i � j � t, are edges of
�-regular bipartite graphs P�

ij.
(iv) For all but at most �(2

t ) pairs i, j, 1 � i � j � t, we have that �P0
ij� � �n2

and P�
ij is (1/�, �)-regular for all � � 1, . . . , �ij.

Definition 7.2. If � is an (�, t, �, �)-partition of V and the bipartite graphs P�
ij, P�

is, and
P�

js are all (1/�, �)-regular, then a triad P � (P�
ij, P�

is, P�
js) of � is the 3-partite graph with

vertex set Vi � Vj � Vs formed by the union of these three bipartite graphs.

Note that a triad of � is an (�, �, 3)-cylinder. Also, each triad P underlies a
subhypergraph of �, which we denote by �(P), consisting of all triples in � that are
triangles in P. We call �(P) the 3-partite 3-cylinder of � on P.

The Hypergraph Regularity Lemma will basically say that the vertex set of any large
enough 3-uniform hypergraph � has an (�, t, �, �)-partition � such that most 3-partite

CHARACTERIZING HYPERGRAPH REGULARITY 333



3-cylinders �(P) of � will be “very regular.” To make this concept precise, we need the
following definition.

Definition 7.3. Let � be a 3-uniform hypergraph with vertex set V, where �V� � N. We
say that an (�, t, �, �)-partition � of V is (�, r)-regular for � if

� 
��3�P	� : P is a triad of �, ��P	 is ��, r	-irregular w.r.t. P� 	 �N3.

This implies, in particular, that if � is a dense hypergraph [that is, ��� � �(N3)], then
most of the triples of � belong to (�, r)-regular triads of the partition �. We may now
state the Regularity Lemma of [8].

Theorem 7.4. For every � and � with 0 � � � 2�4, for all integers t0 and �0 and for
all integer-valued functions r(t, �) and all functions �(�) � 0, there exist T0, L0, and N0

such that any 3-uniform hypergraph � � [N]3, N � N0, admits a (�, r(t, �))-regular, (�,
t, �, �(�))-partition for some t and � satisfying t0 � t � T0 and �0 � � � L0.
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