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ABSTRACT: Let �0 be any fixed 3-uniform hypergraph. For a 3-uniform hypergraph � we define
��0

(�) to be the maximum size of a set of pairwise triple-disjoint copies of �0 in �. We say a
function � from the set of copies of �0 in � to [0, 1] is a fractional �0-packing of � if
¥��e �(�) � 1 for every triple e of �. Then �*

�0
(�) is defined to be the maximum value of

¥��� �
�0� ���� over all fractional �0-packings � of �. We show that �*

�0
(�) � ��0

(�) �

o(�V(�)�3) for all 3-uniform hypergraphs �. This extends the analogous result for graphs, proved
by Haxell and Rödl (2001), and requires a significant amount of new theory about regularity of
3-uniform hypergraphs. In particular, we prove a result that we call the Extension Theorem. This
states that if a k-partite 3-uniform hypergraph is regular [in the sense of the hypergraph regularity
lemma of Frankl and Rödl (2002)], then almost every triple is in about the same number of copies
of Kk

(3) (the complete 3-uniform hypergraph with k vertices). © 2003 Wiley Periodicals, Inc.
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1. INTRODUCTION

Let �0 be a fixed 3-uniform hypergraph. For a 3-uniform hypergraph �, we define the
(integer) packing number ��0

(�) to be the maximum size of a set of pairwise triple-
disjoint copies of �0 in �. A related parameter is the fractional packing number �*�0

(�),
which is defined as follows. We denote by (�0

� ) the set of all subhypergraphs of � that are
isomorphic to �0. A fractional �0-packing of � is a function �: (�0

� ) 3 [0, 1] with the
property that ¥��e �(�) � 1 for every triple e of �. The value of a fractional �0-packing
� is defined to be ��� � ¥��� �

�0� ����. The parameter �*�0
(�) is then defined to be

�*�0
(�) � max{��� : � is a fractional packing of �}. Note then that any set � of pairwise

triple-disjoint copies of �0 in � gives a fractional �0-packing �0 of � with ��0� � ��� such
that �0(�) � {0, 1} for every � � (�0

� ). This implies that ��0
(�) � �*�0

(�) for every �.
The aim of this paper is to show that for large dense hypergraphs �, the parameter

�*�0
(�) gives a close approximation to ��0

(�).

Theorem 1.1. Let �0 be a 3-uniform hypergraph and let � � 0 be a real number. Then
there exists N1 � N1(�0, �) such that for every 3-uniform hypergraph � with n � N1

vertices we have

�*�0��� � ��0��� � �n3.

Calculating �*�0
(�) is a linear programming problem, and hence can be solved in

polynomial time. However the problem of calculating ��0
(�) is NP-hard, in fact this is

true even for the analogous problem in graphs. It was proved by Dor and Tarsi in [3] that,
for any graph H0 that contains a connected component with at least three edges, the
problem of finding the maximum size of a set of pairwise edge-disjoint copies of H0 in
a general graph G is NP-hard. Therefore, Theorem 1.1 gives an efficient algorithm for
approximating ��0

(�) for those hypergraphs � for which ��0
(�) � �(�V(G)�3). Thus

the problem of finding ��0
(�) is another example of an NP-hard problem which has a

polynomial time approximation algorithm for an appropriately defined “dense case.”
Various other such problems have been identified and studied by, e.g., Frieze and Kannan
[7, 8] and Arora, Karger, and Karpinski [1] (see also [4] and [2]). The analogous result to
Theorem 1.1 for graphs was proved in [9]. In many of these problems, including [9], the
Regularity Lemma of Szemerédi [14] plays an important role.

The proof of Theorem 1.1 depends on a generalization of Szemerédi’s Lemma to
hypergraphs, which is due to Frankl and Rödl [6] (see Section 2). Our plan for proving that
��0

(�) is closely approximated by �*�0
(�) for a given hypergraph � will be as follows.

Using the hypergraph regularity lemma, we shall construct a special (finite) object called
an �-augmented weighted 3-graph � from �, for which there is a natural definition of
�*�0

(�), and then show that both ��0
(�) and �*�0

(�) are very close to a certain multiple of
�*�0

(�). A major step in this proof will be to show that if a k-partite 3-uniform hypergraph
is “regular,” in a very specific sense required by the regularity lemma, then almost every
triple is in about the same number of copies of Kk

(3), the complete 3-uniform hypergraph
with k vertices. We refer to this result as the Extension Theorem. To establish this requires
a foundation of structural theorems for hypergraphs that result from the use of the
hypergraph regularity lemma. This work may be of independent interest, and could be
useful for other problems in hypergraphs. We mention that the theory that would be
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required to extend our arguments to t-uniform graphs for any t � 4 is not currently
available.

This paper is organized as follows. In Section 2 we describe the regularity lemma for
hypergraphs. Section 3 describes how to construct the finite object � from a given
hypergraph �. Section 3 also contains a sketch of the proof of Theorem 1.1, the detailed
proof appears in Section 4. The next five sections contain proofs of some auxiliary
lemmas, and finally the structural theory related to the hypergraph regularity lemma is
given in Sections 10–13. This includes the precise statement of the Extension Theorem
which appears as Theorem 10.12.

2. THE REGULARITY LEMMA FOR HYPERGRAPHS

In this section we describe the regularity lemma for 3-uniform hypergraphs, due to Frankl
and Rödl [6]. In the original Regularity Lemma of Szemerédi for graphs, it was shown that
the vertex set of any large enough graph G can be partitioned into a bounded number of
classes, such that the following holds: For almost every pair of vertex classes Vi and Vj,
the bipartite subgraph of G induced by Vi and Vj is “very uniform,” that is, its edges are
distributed in much the same way as one would expect in a random bipartite graph. In the
Hypergraph Regularity Lemma, corresponding to the vertex partition in Szemerédi’s
lemma, we again have a partition V1 � . . . � Vt of the vertex set V of our hypergraph
�, but we also have a partition of the set of pairs of vertices {{vi, vj} : vi � Vi, vj �
Vj, i � j} into “bipartite graphs” that are themselves very highly regular. [See the
definition of (�, t, 	, 
)-partition below.] This partition is chosen in such a way that for
most choices of three of these bipartite graphs that form a tripartite graph (called a
“triad”), the subhypergraph of � induced by this triad is “very uniform,” i.e., behaves
much like a random 3-partite 3-uniform hypergraph. Therefore, in the Hypergraph
Regularity Lemma, it is these triads that take the place of the pairs of vertex classes in
Szemerédi’s lemma.

We begin with some introductory background definitions and notation.

Definition 2.1. Let G be a bipartite graph with vertex classes V and W, and let X � V
and Y � W be two nonempty vertex subsets. Then the density of the pair X, Y with respect
to G, denoted dG(X, Y), is defined by

dG�X, Y� �
���x, y	 � G : x � X, y � Y	�

�X��Y�
.

We say that the bipartite graph G is (�, 
)-regular if �(1 � 
) 
 dG(X, Y) 
 �(1 � 
)
for every pair of subsets X � V and Y � W with �X� � 
�V� and �Y� � 
�W�.

Definition 2.2. Let G be a k-partite graph with a fixed k-partition (V1, . . . , Vk). We shall
write G � �1�i
j�k Gij, where Gij � G[Vi, Vj] � {{vi, vj} � G : vi � Vi, vj � Vj}. Let
� � 0, 
 � 0 be given. We call G an (�, 
, k)-cylinder if each bipartite graph Gij, 1 � i 

j � k, is (1/�, 
)-regular. By a k-partite cylinder we simply mean a k-partite graph with
fixed k-partition.
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It will be useful for us to have a very precise estimate on the size of the set of triangles
contained in an (�, 
, 3)-cylinder G. For this purpose we have the following. We let
�3(G) � {{ x, y, z} : { x, y, z} is the vertex set of a triangle in G}.

Fact 2.3. For any positive integer � and positive real �, there exists 
1 � 
1(�, �) so that
whenever G is an (�, 
1, 3)-cylinder with vertex partition (V1, V2, V3), where �V1� � �V2�
� �V3� � n, then

�1 � ��
n3

�3 � ��3�G�� � �1 
 ��
n3

�3 .

The proof of this fact follows easily from the definition of an (�, 
, k)-cylinder.

Definition 2.4. Let V be a set. An (�, t, 	, 
)-partition � of V is an (auxiliary) partition
V � V0 � V1 � . . . � Vt of V, together with a system of edge-disjoint bipartite graphs �
� {P�

ij : 1 � i 
 j � t, 0 � � � �ij � �}, such that

(i) �V0� 
 t and �V1� � �V2� � . . . � �Vt� � n/t �
def

m,
(ii) ���0

�ij P�
ij � K(Vi , Vj) for all i, j, 1 � i 
 j � t.

(iii) For all but at most 	(2
t ) pairs i, j, 1 � i 
 j � t, we have that �P0

ij� � 	m2 and P�
ij is (1/�,


)-regular for all � � 1, . . . , �ij .

Definition 2.5. If � is an (�, t, 	, 
)-partition of V and the bipartite graphs P�
ij, P�

is, and
P	

js are all (1/�, 
)-regular, then a triad P � (P�
ij, P�

is, P	
js) of � is the 3-partite graph with

vertex set Vi � Vj � Vs formed from the union of these three bipartite graphs.

Note that a triad of � is an (�, 
, 3)-cylinder. In fact, more generally, it can be shown
that if k is fixed and 	 and 
 are sufficiently small, then the (�, t, 	, 
)-partition � has
the following property: If we choose k vertex classes of �, and one bipartite graph P�

ij

joining each pair of these classes, then the union of these bipartite graphs almost always
forms an (�, 
, k)-cylinder.

We now give definitions pertaining to 3-uniform hypergraphs.

Definition 2.6. We refer to any k-partite, 3-uniform hypergraph � with a fixed k-
partition (V1, . . . , Vk) as a k-partite 3-cylinder. If G is a k-partite cylinder with the same
vertex partition, then we say G underlies � if � � �3(G).

Usually we shall use this terminology in the following context: � is a 3-uniform
hypergraph, � is an (�, t, 	, 
)-partition of the vertex set V of �, and G is an (�, 
,
k)-cylinder formed by choosing k vertex classes of �, say Vi, i � K, �K� � k, and one
P�ij

ij joining each pair (Vi, Vj) of classes, where i, j � K, i � j. Then each triad P � (P�ij

ij ,
P�is

is , P�js

js ) underlies a subhypergraph of �, which we shall denote by �(P), consisting of
all triples in � that are triangles in P. We call �(P) the 3-partite 3-cylinder of � on P.

The Hypergraph Regularity Lemma will basically say that the vertex set of any large
enough 3-uniform hypergraph � has an (�, t, 	, 
)-partition � such that most 3-partite
3-cylinders �(P) of � will be “very regular.” To make this concept precise, we need the
following definitions.
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Definition 2.7. Let � be a 3-partite 3-cylinder with underlying 3-partite cylinder G �
G12 � G23 � G13. We define the density d�(G) of � with respect to G as

d��G� � � �� � �3�G��
��3�G��

if ��3�G�� � 0

0 otherwise.

In other words, the density counts the proportion of triangles of G which are triples of �.

More generally, let Q � G, where Q � Q12 � Q13 � Q23 and Qij � Gij. One can
define the density d�(Q) of � with respect to Q as

d��Q� � � �� � �3�Q��
��3�Q��

if ��3�Q�� � 0

0 otherwise.

A natural definition of regularity for a 3-partite 3-cylinder � would be that for every Q
as above that contains a positive proportion of �3(G), the density of � with respect to Q
is about the same. However it turns out that in many applications this is not a strong
enough notion. We therefore introduce a concept called (�, r)-regularity. Here we use the
notation [a] � {1, . . . , a}, and by [a]t we mean {S � [a] : �S� � t}.

Definition 2.8. Let � be a 3-partite 3-cylinder with underlying 3-partite cylinder G �
G12 � G23 � G13. Let Q� � (Q(1), . . . , Q(r)) be an r-tuple of 3-partite cylinders
Q�s� � ��i, j	��3
2 Qij�s� satisfying that for every s � [r], {i, j} � [3]2, Qij(s) � Gij. We
define the density d�(Q� ) of Q� as

d��Q� � � � �� � � s�1
r �3�Q�s���

��s�1
r �3�Q�s���

if ��s�1
r �3�Q�s��� � 0

0 otherwise.

(1)

Let a positive integer r and a real � � 0 be given. We say that the 3-cylinder � is (�,
�, r)-regular with respect to G if for any r-tuple of 3-partite cylinders Q� � (Q(1), . . . ,
Q(r)) as above, if

��
s�1

r

�3�Q�s��� � ���3�G��,

then

�d��Q� � � �� � �. (2)

We say � is (�, r)-regular with respect to G if it is (�, �, r)-regular for some �, and refer
to � as the density of �. If the regularity condition fails to be satisfied for any �, we say
that � is (�, r)-irregular with respect to G.
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Note that if � is (�, r)-regular with respect to G and �� � � and r� � r is an integer, then
� is also (��, r�)-regular with respect to G.

Definition 2.9. Let � be a 3-uniform hypergraph with vertex set V, where �V� � n. We
say that an (�, t, 	, 
)-partition � of V is (�, r)-regular for � if

� ���3�P�� : P is a triad of �, ��P� is ��, r�-irregular w.r.t. P	 � �n3.

This implies in particular that if � is a dense hypergraph, then most of the triples of
� belong to (�, r)-regular triads of the partition �. We now state the Regularity Lemma
of [6].

Theorem 2.10. For every � and 	 with 0 
 	 � 2�4, for all integers t0 and �0 and for
all integer-valued functions r(t, �) and all functions 
(�) � 0, there exist T0, L0, and N0

such that any 3-uniform hypergraph � � [n]3, n � N0, admits a (�, r(t, �))-regular, (�,
t, 	, 
(�))-partition for some t and � satisfying t0 � t 
 T0 and �0 � � 
 L0.

We shall apply a slight extension of this theorem. Let 	 be a partition of the vertex set
of a 3-uniform hypergraph �. We say that the partition � respects the partition 	 if every
vertex class of � is entirely contained in some vertex class of 	. Then the following can
be proved with a minor alteration of the proof of [6].

Theorem 2.11. For every � and 	 with 0 
 	 � 2�4, for all integers q, t0, and �0 and
for all integer-valued functions r(t, �) and all functions 
(�) � 0, there exist T0, L0, and
N0 such that the following holds. For any 3-uniform hypergraph � � [n]3 with n � N0,
and any partition 	 of the vertices of � into at most q classes, there exists a (�, r(t,
�))-regular, (�, t, 	, 
(�))-partition of � that respects 	, for some t and � satisfying t0 �
t 
 T0 and �0 � � 
 L0.

3. THE CONSTRUCTION

Before beginning the details of the construction of the finite object � mentioned in the
introduction, we first outline the idea behind the proof of Theorem 1.1. A more detailed
sketch of the proof will follow, and the full proof will be given in the next section. Our
aim is to find a large family of triple-disjoint copies of �0 in �, and the proof is based on
the following fact (see Lemma 3.4). Given a fixed 3-uniform hypergraph � with vertex set
[k], we consider a special type of k-partite 3-cylinder 
 � 
(�) related to �. Let the
vertex set of 
 be V1 � . . . � Vk, where the Vi are disjoint sets of equal size, and let the
underlying k-partite cylinder G of 
 be an (�, 
, k)-cylinder. For each triple {i, j, s} of
�, let 
 have an (�, �, r)-regular 3-partite 3-cylinder on the triad (Gij, Gis, Gjs). We can
think of 
 informally as a “blown-up copy of � of density �.” Then most triples in 
 are
in about the same number D of copies of �, and for any pair of distinct triples, the number
of copies of � that contain both is o(D). Then there is a packing theorem due to Frankl
and Rödl (actually we will apply a generalization due to Kahn) that says that in this
situation, there exists a nearly perfect packing of copies of � in 
, that is, a �-packing that
covers almost every triple in 
. In other words, 
 has as large a �-packing as is possible.
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(We remark that the structural theory that appears in Section 10 is required for the proof
of this fact.)

Now � is an arbitrary hypergraph, so in general it will not at all resemble a blown-up
copy of �0. However, the hypergraph regularity lemma will enable us to partition � into
a large but finite number of triple-disjoint 3-partite 3-cylinders (while the size of � may
tend to infinity), and then we will be able to reassemble these 3-partite 3-cylinders into
many triple-disjoint blown-up copies 
(�) of �0. Then, inside each 
(�), we will find a
nearly-perfect packing, and taking the union of all of these packings will result in a large
packing of �.

Many applications of Szemerédi’s Regularity Lemma for graphs follow a rather
standard format: We apply the lemma to our graph H to obtain a finite weighted “cluster
graph” H0, which has one vertex for each vertex class of the regular partition, and one
edge of weight � for every regular pair of vertex classes in H of density �. Then we find
some particular substructure in H0, and then prove that this corresponds to some desired
substructure in H. Our approach here will be the same, but when we apply the Hypergraph
Regularity Lemma to a hypergraph �, we obtain a finite “cluster” object which is slightly
more complicated than a weighted hypergraph. We call such an object an �-augmented
weighted 3-graph.

Definition 3.1. An �-augmented weighted 3-graph � consists of

(i) a set V of vertices,
(ii) a multiset C � �v�w�V �c1

vw, . . . c�vw

vw 	 of pairs of vertices, where c�
vw joins v and w and

�vw � �,
(iii) a set E of triples, where each triple e consists of three pairs c�

vw, c�
vx, and c	

wx (note then
that each triple also determines three vertices v, w, and x),

(iv) a weight function � : E3 [0, 1].

Notice that a 3-uniform hypergraph can be thought of as a 1-augmented weighted
3-graph in which every triple has weight 1.

Definition 3.2. Let � be an �-augmented weighted 3-graph, and let �0 be a hypergraph
with vertex set V(�0) � [k]. Let C(�0) � {{i, j} � ( 2

V(�0)) : {i, j} � e for some e � �0}.
Then a copy � of �0 in � consists of the following:

(i) a vertex set V(�) � {v1 . . . , vk} � V(�),
(ii) a pair set C(�) consisting of one pair c�i,j

vivj � C(�) joining vertices vi and vj for each {i,
j} � C(�0),

(iii) a triple set E(�), consisting of one triple of � with pairs c�i,j

vivj, c�i,s

vivs, and c�j,s
vjvs, for each

triple {i, j, s} of �0. For a triple e we sometimes write e � � for e � E(�).

We denote by (�0

� ) the set of copies of �0 in �. Note that the triples in a copy of �0 in �
may have various weights.

A fractional �0-packing of � is a function �� : (�0

� ) 3 [0, 1], which satisfies ¥��e

��(�) � �(e) for every e � E(�). We let ���� � ¥� � ��
�0� �����, and we say that

�� is a maximum fractional �0-packing of � if ���� is as large as possible. We denote by
�*�0

(�) the value ���� of a maximum fractional �0-packing �� of �.
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With these definitions established, we are now able to give an informal sketch of the
proof of Theorem 1.1. All details will be made precise in the rest of this section and in
Section 4. All constants referred to in this sketch depend only on the given hypergraph �0

and the error �.

Sketch of the proof

1. Given the fixed hypergraph �0 and the hypergraph �, let � be a maximum fractional
�0-packing of �. Find a partition 	 of the vertex set of � into a constant number
of classes, such that most of the value ��� comes from copies of �0 that have at most
one vertex in each class (cf. Lemma 3.3).

2. Apply the hypergraph regularity lemma (Theorem 2.11) to �, to find a (�, r)-
regular (�, t, 	, 
)-partition � of � that respects 	. Let m denote the size of the
vertex classes of �.

3. Construct an �-augmented weighted 3-graph � that has a vertex for each vertex
class of �, and such that each pair of vertices v and w is joined by �vw � � pairs
ci

vw, one for each 
-regular bipartite graph Pi
vw that joins the vertex classes

corresponding to v and w. We then let e � {ci
vw, cj

vx, ck
wx} form a triple of � if

and only if the corresponding triad Pe � (Pi
vw, Pj

vx, Pk
wx) is such that �(Pe) is (�,

r)-regular with respect to Pe, and we weight the triple e with the density of �(Pe).
(See Definition 3.9.) It can then be shown that Step 1 implies �*�0

(�)(m/�)3 is
nearly as large as ��� � �*�0

(�) (cf. Lemma 3.10).
4. Find a fractional �0-packing �� of � whose value is close to �*�0

(�), with the
additional property that there exists some constant � which is not too small, such that
��(�) � � whenever ��(�) � 0 (cf. Lemma 3.6).
Our aim is to “lift” the fractional �0-packing �� of � to an integer �0-packing of
�, of value approximately ����(m/�)3. To do this, we want to find for each � �
(�0

� ) a blown-up copy of �0 in � of density ��(�), such that all these blown-up
copies are triple-disjoint.

5. For each triple e of �, let �(e) � {� � (�0

� ) : e � �, ��(�) � 0}. We can think
of �� as placing a set of “demands” {��(�) : � � �(e)} on e, where the sum of
these demands is at most �(e). The triple e corresponds to a (�, r)-regular 3-partite
3-cylinder �(Pe) of density �(e). We “slice” �(Pe) into ��(e)� triple-disjoint (2�,
r)-regular 3-partite 3-cylinders on Pe, one for each � � �(e), of densities ��(�)
(cf. Lemma 3.5). The idea here is that each � � �(e) then receives a “share” from
�(Pe) that satisfies its demand, where a share is a (2�, r)-regular 3-partite
3-cylinder of density ��(�). [Step 4 guarantees that the densities ��(�) are larger
than � � 2�, and hence the regularity of these 3-partite 3-cylinders is nontrivial.]
After this is repeated for each triple e in �, each � � (�0

� ) for which ��(�) � 0 has
received its share of �(Pe) for every e � �. In other words, corresponding to each
such �, we have a (2�, r)-regular 3-partite 3-cylinder of density ��(�) in � for
every triple e of �. Then the union of these 3-partite 3-cylinders over all triples e
of � forms a blown-up copy of �0 in � of density ��(�). Moreover, these blown-up
copies are all triple-disjoint for different �. See Stage A of the proof of Theorem
3.11 (Section 4) for the precise description of this step.

6. Now by the fact mentioned at the beginning of this section, in each blown-up copy
of �0 we can find a nearly-perfect �0-packing (cf. Lemma 3.4). This is done in Stage
B of the proof.
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7. The union of all these packings over all � � (�0

� ) gives a �0-packing of size
approximately ����(m/�)3 in �. This shows that ��0

(�) is nearly as large as
�*�0

(�)(m/�)3. See Stage C of the proof.

To describe the construction of � we first need to establish four lemmas.
For a 3-uniform hypergraph � and a partition 	 � (Vi)i�1

k of the vertex set V(�) of
�, we say that a subhypergraph � of � is crossing in 	 if no two vertices of � are in the
same class Vi of 	. We write �(�, 	, �0) for the set of copies of �0 in � which are
crossing in 	. Corresponding to Step 1 in the Sketch of Proof, we have the following
lemma. Its proof can be found in Section 5.

Lemma 3.3. Let � � 0 and a hypergraph �0 be given. Then there exists K � K(�, �0)
such that the following holds.

Let � be a 3-uniform hypergraph with n vertices, and let �* be a fractional �0-packing
of �. Then there exists a partition 	 � (Vi)i�1

q of V(�), where q � K, such that

(i) n/q � �Vi� � n/q for 1 � i � q,
(ii) ¥� � ���,	,�0� �*��� � �1 � �� ¥� � ��

�0� �*���.

Let �0 be a 3-uniform hypergraph with vertices 1, . . . , k that are ordered by 1

 . . . 
 k. Let � be a k-partite 3-cylinder with vertex classes V1, . . . , Vk. Then we say
that a sub-hypergraph � of � with ordered vertex set v1 
 . . . 
 vk is partite-isomorphic
to �0 in � if vi � Vi for each i and the map vi 3 i, 1 � i � k, is an isomorphism from
� to �0. The following lemma is needed for Step 6, and is proved in Section 8.

Lemma 3.4. Let �0 be a 3-uniform hypergraph with vertices 1, . . . , k. Let real numbers
� � 0 and � � 0 be given. Then there exists � � �(�0, �, �) � 0 such that for all integers
� � 1/�, there exist r0(�0, �, �, �), 
0(�0, �, �, �), and m0 � m0(�0, �, �, �) such that
the following holds. Let � and G be such that

(i) � is a k-partite 3-cylinder with k-partition V1, . . . , Vk, �V1� � . . . � �Vk� � m0 ,
(ii) G � �1 � i � j � k Gij is an underlying (�, 
0, k)-cylinder,

(iii) for all triples {i, j, s} of �0, �(Gij, Gis, Gjs) is (�, �, r0)-regular with respect to
(Gij, Gis, Gjs).

Then � contains a family of triple-disjoint sub-hypergraphs of �, each of which is
partite-isomorphic to �0, which covers all but at most ���� triples of �.

The next lemma corresponds to Step 5 in the Sketch. Its proof appears in Section 6.

Lemma 3.5. Let real numbers � � 0, 0 
 � 
 �/4, 
 � 0 and positive integers j � 1/�,
� and r be given, where 
 
 
1(�, 1/2) (see Fact 2.3). Then there exists m1 � m1(�, �, �,
r) such that the following holds. Let � be a (�, �, r)-regular 3-partite 3-cylinder with
respect to an underlying (�, 
, 3)-cylinder G, where j� � � 
 (j � 1)�. Let the vertex
classes of � be V1, V2 and V3, where �V1� � �V2� � �V3� � m1. Then there exist j
triple-disjoint sub-hypergraphs �1, . . . , �j of �, such that each �i is (�, 2�, r)-regular
with respect to G.
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For an �-augmented weighted 3-graph � and a real number � � 0, we say a fractional
�0-packing �� of � is �-bounded if for each � � (�0

� ), either ��(�) � 0 or ��(�) � �.
The following lemma proves the existence of the fractional �0-packing used in Step 4, and
its proof is in Section 7.

Lemma 3.6. Let a 3-uniform hypergraph �0 and a real number � � 0 be given. Then
there exists � � �(�0, �) such that the following holds. For every �-augmented weighted
3-graph � with t vertices, there exists a �-bounded fractional �0-packing �� of � such
that ���� � �*�0

(�) � ��3t3.

We now define the constants we shall require for our application of the Hypergraph
Regularity Lemma. Recall that we are given an error term � � 0 and a fixed 3-uniform
hypergraph �0.

Definition 3.7.

(i) Let � � �(�/100, �0) (see Lemma 3.6).
(ii) Let � � ��/100.

(iii) Let � � min{�(�0, �/100, �)/4, ��/100} (see Lemma 3.4).
(iv) Let 	 � min{�/100, 2�4}.
(v) Let q � K(�/100, �0) (see Lemma 3.3).

(vi) Let t0 � 100/�.

We also define two functions:

(vii) Let r(�) � r0(�0, �/100, �, �) (see Lemma 3.4).
(viii) Let 
(�) � min{
0(�0, �/100, �, �), 
1(�, �/100)} (see Lemma 3.4 and Fact 2.3).

Let T0, L0 and N0 be the constants guaranteed by Lemma 2.11 with input constants �,
	, q, t0, and �0 � 1, and functions r(�) and 
(�) as in Definition 3.7. Finally we let N1 �
max{N0, 100T0/�, T0m0(�0, �/100, �, L0), T0m1(�, �, L0, r(L0))} (see Theorem
2.11 and Lemmas 3.4 and 3.5).

Then these constants satisfy the following hierarchy.

1

N1
� 
 �

1

r
,

1

T0
,

1

L0
� � � � � �, 	,

1

q
,

1

t0
� �.

We are now ready to describe how to construct the finite �-augmented weighted
3-graph � from a given 3-uniform hypergraph �. Here � will be at most L0. Recall that
� will be an analogue of the “cluster graph” that results from the application of
Szemerédi’s Regularity Lemma for graphs. We will obtain � by applying the hypergraph
regularity lemma (Theorem 2.11) to � together with a vertex partition 	 defined as
follows.

Definition 3.8. Let a 3-uniform hypergraph � be given, where the number of vertices of
� is at least N1. Let � be a maximum fractional �0-packing of �. Then by Lemma 3.3
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applied to � with � � �/100, there exists a vertex partition 	 of � with q � K(�/100,
�0) parts such that

�
�����,	,�0�

���� � �1 � �/100���� � �1 � �/100��*�0���. (3)

Now we apply Theorem 2.11 to our given hypergraph � with the partition 	 and with
constants and functions as above, to obtain an (�, t, 	, 
)-partition � as in Definition 2.4
that respects 	. We will concentrate on a subhypergraph �� of �, consisting of those
triples of � which “conform” to the regularity properties. The vertex set of �� will be V1

� . . . � Vt. Let �� � � be the subset consisting of those bipartite graphs P�
ij, � � 1,

that are 
-regular, and where the pair i, j satisfies Part (iii) of Definition 2.4. We then let
�� be the subhypergraph of � consisting of those triples which lie in (�, r)-regular
3-partite 3-cylinders of �, and whose underlying bipartite graphs in � are all elements of
��.

We may now define the �-augmented weighted 3-graph � � �(�).

Definition 3.9. With the above definitions, we define � as follows:

(i) Let the vertex set V(�) � {v1, . . . , vt}.
(ii) Let the pair multiset C(�) � {c�

vivs : P�
vivs � ��}, where c�

vivs joins vertices vi and vs.
(iii) Let the triple set E(�) contain one triple {c�1

vivs, c�2

vivh, c�3

vhvs} for each triad P � (P�1

vivs, P�2

vivh,
P�3

vhvs) with the property that ��(P) is (�, r)-regular with respect to P. We assign weight
�({c�1

vivs, c�2

vivh, c�3

vhvs}) � �, where � is the density of ��(P).

Then we have the following (see Step 3 of the Sketch of Proof).

Lemma 3.10. With the above definitions we have

(i) ��� � ���� 
 �n3/25,
(ii) �*�0

(�) � (m/�)3�*�0
(�) � 3�n3/50.

The proof of this lemma appears in Section 9.
To prove Theorem 1.1, we shall instead prove the following result, which immediately

implies Theorem 1.1.

Theorem 3.11. With the above definitions we have

(i) �*�0
(�) 
 (m/�)3�*�0

(�) � �n3/2,
(ii) ��0

(�) � ��0
(��) � (m/�)3�*�0

(�) � �n3/2.

The proof of Theorem 1.1 is immediate from Theorem 3.11, since ��0
(�) �

(m/�)3�*�0
(�) � �n3/ 2 � �*�0

(�) � �n3.
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4. PROOF OF THEOREM 3.11

Part (i) of Theorem 3.11 is immediate from (ii) of Lemma 3.10. Therefore, we consider
the proof of Part (ii). Recall that � is the �-augmented weighted 3-graph defined in
Definition 3.9, and the constants and integer-valued functions we refer to here are as
defined in Definition 3.7. Our aim is to find an �0-packing in �� of size approximately
�*�0

(�)(m/�)3. (See the paragraph before Definition 3.9 for the definition of ��.)
First we establish that since � � �(�0, �/100) [see Definition 3.7 (i)], by Lemma 3.6

there exists a �-bounded fractional �0-packing �� of � satisfying

�*�0��� � ��3t3/100 � ���� � �
����

�0�
�����. (4)

Then for every e � E(�) we have

�
��e

����� � ��e�, (5)

and for each � � (�0

� ) we have

����� � 0 or ����� � �. (6)

The rest of the proof will consist of three stages, corresponding to Steps 5, 6, and 7 of
the Sketch of Proof.

Stage A. The aim of Stage A is to execute Step 5 of the Sketch, that is, for each triple e
of � we “slice” ��(Pe) into 3-partite 3-cylinders of densities the various demands on e.
To do this, it will be convenient for us to first slice all ��(Pe) into 3-partite 3-cylinders
of the same small density �, which we call elementary. Then for each � � (�0

� ) that
contains e, we assign to � its share �����

�
 of the elementary 3-partite 3-cylinders of

��(Pe).
Let e � {c�1

vivs, c�2

vivh, c�3

vsvh} � E(�) be a triple of �. Then Pe � (P�1

vivs, P�2

vivh, P�3

vsvh)
is a triad of the partition �. Consider the 3-partite 3-cylinder ��(Pe) on Pe. By definition
of �, we know that ��(Pe) is (�(e), �, r)-regular, and has vertex classes Vi � Vh � Vs.
We wish to apply Lemma 3.5 to ��(Pe) with parameters �, �, 
, � and r as defined in
Definition 3.7, and with j � je � �(e)/�. Note that by definition of N1 (Definition 3.7)
we have �Vi� � �Vh� � �Vs� � n/t � N1/T0 � m1(�, �, 
, �). Therefore, we may apply
Lemma 3.5 to ��(Pe) to find je triple-disjoint 3-partite 3-cylinders ��(Pe)1, . . . ,
��(Pe)je

on the triad Pe such that each is (�, 2�, r)-regular. These subcylinders of
��(Pe) are what we call elementary 3-partite 3-cylinders of ��(Pe).

Now we assign to each � � (�0

� ) containing e the appropriate number 
�����

�
 of

elementary 3-partite 3-cylinders of ��(Pe). Let � be fixed. Then we assign to � a set
Se(�) of 

�����

�
 elementary 3-partite 3-cylinders of ��(Pe), such that the {Se(�)}��e are

all triple-disjoint. This is possible since by (5), ¥��e ��(�)/� � �(e)/� � je. We
repeat this for every triple e of �. This completes Stage A.
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Stage B. In this stage, we execute Step 6 of the Sketch by finding a nearly-perfect packing
inside the blown-up copy of �0 corresponding to each � � (�0

� ). In fact, we will treat
��(�)/� triple-disjoint blown-up copies of �0 separately.

Let � � (�0

� ) such that ��(�) � 0 be fixed. In Stage A, � was assigned the set Se(�)
of �����

�
 elementary 3-partite 3-cylinders of ��(Pe) with underlying cylinder Pe for each

triple e of �. We order each Se(�) arbitrarily, say Se(�) � (��(Pe)i�1
, . . . ,

��(Pe)i���(�)/�
).

Fix b with 1 � b � 
�����

�
. Let 
 � 
��, b� � �e�� ���Pe�i�b (so 
 is a k-partite

3-cylinder in �� formed by placing the bth elementary 3-partite 3-cylinder assigned to �
on each triad Pe for which e is a triple of � in �). Then 
 is a blown-up copy of �0 in
��, of density �. Since each vertex class Vi of 
 has size n/t � N1/T0 � m0(�0, �/100, �,
�) (see the definition of N1 in Definition 3.7) and 2� 
 �(�0, �/100, �), and by definition of
r and 
 [see Definition 3.7 (iii), (vii), (viii)], we may apply Lemma 3.4 to 
 with parameters
� � �/100 and � as in Definition 3.7 to find a family 
(�, b) of triple-disjoint copies of �0

in 
 that covers at least (1 � �/100)�
� triples of 
. By definition of 
 and of 
 (see Fact 2.3),
we find that �
� � (1 � �/100)��0�(� � 2�)(m/�)3 and hence �
(�, b)� � (1 � �/100)2(� �
2�)(m/�)3 � (1 � �/50)(� � 2�)(m/�)3.

Since all the elementary 3-partite 3-cylinders were triple-disjoint, we can construct a

set of 
�����

�
 triple-disjoint 3-cylinders {
(�,b),1 � b � 

�����

�
} of this type associated

with �. Therefore, we find altogether a �0-packing 
��� � �1�b������/� 
��, b� in
�� corresponding to �, where

�
���� � �1 �
�

50� �����

�
�� � 2���m

� �
3

. (7)

This completes Stage B.

Stage C. In this final stage we complete Step 7 of the Sketch by taking the union of all
�0-packings 
(�) found in Stage B, over all � � (�0

� ).

For � � (�0

� ), by (6) we have 
�����

�
 �

�����

�
(1 � �/�) �

�����

�
(1 � �/100), where we

use the definition of �. Therefore, summing over all � � (�0

� ) and using (7) we find a
�0-packing ���� �

�0� 
��� in �� where

� �
��� �

�0�

���� � �1 �

�

50� �
��� �

�0�
�����

�
�� � 2���m

��3

� �1 �
�

100��1 �
�

50��1 �
2�

� � �
����

�0�
������m

� �
3

� �1 �
3�

100
�

2�

� ��m

� �
3

����

� �1 �
3�

1000
�

2�

� ��m

� �
3���0

* ��� �
��3t3

100 � ,
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where the last line follows from (4). Then using the definition of � (Definition 3.7 (iii)) and
the fact that m3t3 � n3 and (trivially) �*�0

(�) 
 �3t3, we conclude that ��0
(�) �

(m/�)3�*�0
(�) � �(m�t)3/ 20�3 � �m3t3/100 � (m/�)3�*�0

(�) � �n3/ 2 as required.
This completes Stage C and hence the proof. ■

5. PROOF OF LEMMA 3.3

The proof of Lemma 3.3 will follow immediately from the following more general result,
proved in [9]. Here for a partition 	 � (Vi)i�1

q of a set V, we say that a subset S of V is
crossing in 	 if �S � Vi� � 1 for each i, and we write �(t, V, 	) for the set of subsets
of V of size t that are crossing in 	.

Lemma 5.1. Let a positive integer t and a real number � � 0 be given. Then there exists
K � K(t, �) such that the following holds. For any set V and function f : (t

V )3 ��, there
exists a partition 	 � (Vi)i�1

q with q � K such that

(i) ��Vi� � �Vj�� � 1 for each i, j,
(ii) ¥S���t,V,	� f�S� � �1 � �� ¥S��V

t � f�S�.

Proof of Lemma 3.3. This follows immediately from Lemma 5.1 by taking V � V(�),
t � �V(�0)�, and f�S� � ¥��� �

�0� : V����S �*���. ■

6. PROOF OF LEMMA 3.5

We mention that this proof also appears in [12], and a similar result for graphs was given
in [6].

Proof of Lemma 3.5. Let � be as in the statement of the lemma, and let m � �V1� � �V2�
� �V3�. We may assume that j � 2. We set m1 � m1(�, �, �, r) to be large enough such
that for all m � m1 we have

2��123rm2
exp����3/4��3
m3� � 1.

For each { x, y, z} � �, let X{ x,y,z} be a random variable assuming values from {0,
1, . . . , j} defined by

Pr�X�x,y,z	 � i� � �1 �
j�

�
if i � 0

�

�
if 1 � i � j.

For each i � [ j], we define a subhypergraph �i by �i � {{ x, y, z} � � : X{ x,y,z} �

i}. Then � � �i�0
j �i is a partition. We will show that, for one such partition, each

�i, 1 � i � j, is (�, 2�, r)-regular with respect to G.
Let i � [ j] be fixed, and let Q� � (Q(s)), 1 � s � r, be an r-tuple of 3-partite graphs
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satisfying that for each s � [r], Q(s) � Q12(s) � Q13(s) � Q23(s), where for each { j,
k} � [3]2, Qjk(s) � Gjk. Suppose further that

��
s�1

r

�3�Q�s��� � 2���3�G��. (8)

By the (�, �, r)-regularity of � with respect to G, we have

�� � ����
s�1

r

�3�Q�s��� � �� � �
s�1

r

�3�Q�s��� � �� 
 ����
s�1

r

�3�Q�s���.
Thus, the expected number of triples of �i which coincide with �s�1

r �3�Q�s�� satisfies

�� � ��
�

� ��
s�1

r

�3�Q�s��� � exp��i � �
s�1

r

�3�Q�s��� � �� 
 ��
�

� ��
s�1

r

�3�Q�s���.
Set

M � exp��i � �
s�1

r

�3�Q�s���
and 	 � �

� , so that � � 2� � (1 � 	)(� � � �
�) and � � 2� � (1 � 	)(� � � �

�) . Thus,

Pr����i��
s�1

r

�3�Q�s�������
s�1

r

�3�Q�s�����2���
s�1

r

�3�Q�s���	
�Pr�� ��i��

s�1

r

�3�Q�s����M��	M	 .

Using the Chernoff inequality (see, e.g., [11]), we may further bound the quantity above
by 2 exp(�	2M/3) � 2 exp(��2M/3�2). Combining (8) with the fact that ��3(G)� �
(m3/ 2�3) (see Fact 2.3), we conclude that M � (� � �)��m3/��3 � 3��m3/4�3.
Therefore,

Pr����i � �
s�1

r

�3�Q�s��� � ���
s�1

r

�3�Q�s���� � 2���
s�1

r

�3�Q�s���	
� 2 exp����3/4��3
m3�.

As the number of r-tuples Q� � Q(s), 1 � s � r, does not exceed 23rm2

, we infer that
the probability that �i is (�, 2�, r)-regular tends to 1 as m 3 �. Moreover, since there
are j � ��1 subhypergraphs �i, we find that the probability that all are (�, 2�, r)-regular is
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positive, since m1 was chosen to be large enough such that 2��123rm2

exp([��3/4��3]m3)

 1 for m � m1. Therefore, there exists a choice of subhypergraphs �1, . . . , �j as re-
quired. ■

7. PROOF OF LEMMA 3.6

We shall deduce Lemma 3.6 from a more general result about fractional packings in
weighted hypergraphs, which was proved in [9]. For a vertex-weighted hypergraph � in
which every vertex v � V(�) receives a weight w(v), we say that a function � : � 3
[0, 1] is a fractional packing of � if ¥E�v �(E) � w(v) for every v � V(�). We say
that a fractional packing is �-bounded for some real number � if, for each E � �, either
�(E) � 0 or �(E) � �.

We shall use the following theorem from [9].

Theorem 7.1. Let � � 0 and b � � be given. Then there exists k0 � k0(b, �) such that
the following holds. Let � be any b-uniform vertex-weighted hypergraph, where the
weight w(v) of each vertex v satisfies 0 � w(v) � 1, and let � be any fractional packing
of � such that �(E) 
 1/k0 for every E � �. Then there exists a 1/k0-bounded fractional
packing �� of � such that ��� � � ��� � �n, where �V(�)� � n.

Proof of Lemma 3.6. Given �0 and �, we let b denote the number of triples in �0, and
we let � � 1/k0(b, �) where k0 is defined as in Theorem 7.1. Let � be an �-augmented
weighted 3-graph with t vertices, and let �*� be a maximum fractional �0-packing of �.
We define an auxiliary b-uniform vertex-weighted hypergraph � as follows. The vertex
set of � is V(�) � {ve : e � E(�)}, where the weight w(ve) of a vertex ve is the weight
in � of the corresponding triple e. Then note that m � �V(�)� � �E(�)� � �3t3. A set
of b vertices of � form an edge of � if and only if the corresponding b triples of � form
a copy of �0 in �. Then �*� corresponds to a fractional packing �* of �, such that ��*�
� �*�0

(�).
Since Theorem 7.1 applies only to fractional packings that are “uniformly small,” we

first modify � by removing edges E for which �*(E) � � (we will replace these edges
later). Let �0 � {E � � : �*(E) � �}. Then we define a new vertex-weighted
hypergraph ��, where

(i) V(��) � V(�),
(ii) w��(v) � w�(v) � ¥E�v,E��0

�*(E) for each v � V(��),
(iii) �� � ���0.

We also define a fractional packing �� on �� by ��(E) � �*(E) for each E � ��. Then

���� � ��*� � �
E��0

�*�E�. (9)

Note then that �� is in fact a fractional packing since for v � V(��) we have

�
E�v

���E� � �
E�v,E��

�*�E� � �
E�v,E��0

�*�E� � w��v� � �
E�v,E��0

�*�E� � w���v�.
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Also, for every E � �� we have ��(E) 
 �. Then since � � 1/k0(b, �), by Theorem
7.1 there exists a �-bounded fractional packing �� of �� such that ��� � � ���� � �m. We
therefore define a fractional packing � of � as follows: We let

��E� � 
�*�E� if E � �0

�� �E� if E � ��.

Then � is �-bounded by construction. Also, by (9),

��� � �
E��0

�*�E� 
 ��� � � �
E��0

�*�E� 
 ���� � �m � ��*� � �m � �*�0��� � ��3t3.

Since � corresponds to a fractional �0-packing �� of �, the result follows. ■

8. PROOF OF LEMMA 3.4

In order to prove Lemma 3.4, we shall make use of the following two theorems. The first
is a special case of a theorem of Kahn [11], which generalizes a theorem of Frankl and
Rödl [5] on packings in hypergraphs. By a packing of a hypergraph � we mean a set of
pairwise disjoint edges of �.

Theorem 8.1. Let an integer b and a real number � � 0 be given. Then there exist � �
�(b, �) � 0, D0 � D0(b, �) and n0 � n0(b, �) such that the following holds. Let � be a
b-uniform hypergraph with vertex set X, �X� � n0, such that for some D � D0

(i) deg�(x) � D for all vertices x � X,
(ii) deg�(x, y) 
 �D for all pairs of distinct vertices x, y � X.

Then � has a packing of size at least (1 � �)���/D.

Our approach to proving Lemma 3.4 will be as follows. We will focus on a subhy-
pergraph �� � �, and a special set ��0

(��) of copies of �0 in ��, each of which is
partite-isomorphic to �0 in �. The definitions of �� and ��0

(��) appear in Section 10. We
will apply Theorem 8.1 to the hypergraph whose vertex set is ��, and whose edges are the
sets of triples which form copies of �0 in ��0

(��), to show that �� contains a packing of
copies of �0 that covers all but at most ���� triples of �. We describe the properties of
�� in the following lemma, the proof of which depends on the Extension Theorem and is
found in Section 10.

Lemma 8.2. Let �0 be a 3-uniform hypergraph with vertex set [k] and with b triples. Let
real numbers � � 0 and � � 0 be given. Then there exists � � �(�0, �, �) such that, for
all integers � � 1/�, there exist r � r(�0, �, �, �), 
 � 
(�0, �, �, �), and n1 � n1(�0,
�, �, �) such that the following holds. Let � and G be such that

(i) � is a k-partite 3-cylinder with k-partition V1, . . . , Vk, �V1� � . . . ��Vk� � n, where
n � n1,
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(ii) G � �1�i
j�k Gij is an underlying (�, 
, k)-cylinder,
(iii) for all triples {i, j, s} � �0, �(Gij, Gis, Gjs) is (�, �, r)-regular with respect to

(Gij, Gis, Gjs).

Then there exists a subhypergraph �� of � and a set ��0
(��) of copies of �0 in ��, each

of which is partite-isomorphic to �0 in �, with the following properties:

(a) For every triple e of ��, the number q�0
(e) of elements of ��0

(��) that contain e satisfies

q�0�e� � �1 
 ��
�b�1

��k
2��3

nk�3.

(b) The set ��0
(��) satisfies

���0����� � �1 � ��
�b

��k
2�

nk.

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let �0, �, and � be given, and let b denote the number of triples
of �0. We then define � � min{�(�0, �/8, �), (1 � �/2)(1 � �)�1 � 1}. To define r0, 
0,
and m0, let � � 1/� be given. Let r0 � r(�0, �/8, �, �) and 
0 � 
(�0, �/8, �, �), where
the functions r and 
 are as defined in Lemma 8.2. We also set

m0 � max���b, �/8��1D0�b, �/8��� k
2��3/�b�1, n0�b, �/8�, n1��0, �/8, �, ��	,

where the functions �, n0, and D0 are as defined in Theorem 8.1, and n1 as in Lemma 8.2.
Suppose � and G satisfy the conditions (i)–(iii) in the statement of Lemma 3.4, where

�V1� � . . . � �Vk� � n � m0. Then, by definition of r0, 
0, and m0, � and G satisfy the
conditions (i)–(iii) of Lemma 8.2 with parameters �0, �/8, �, and �. Therefore, by Lemma
8.2, there exists a subhypergraph �� of � and a set ��0

(��) of copies of �0 in �� that
satisfy Properties (a) and (b).

Now we let the b-uniform hypergraph � be defined as follows. The vertex set V(�) �
��, and a set of b triples of �� forms an edge of � if and only if it is the triple set of a
subhypergraph of �� that is an element of ��0

(��). Then by Lemma 8.2(a) we have that
deg�(e) � q�0

(e) satisfies Condition (i) in Theorem 8.1 for every vertex e of �, where

D � (1 � �/8)
�b�1

�� k
2��3

nk�3. Moreover, we note that for any two distinct e1, e2 � V(�)

we have deg�(e1, e2) 
 nk�4, since two distinct triples fix at least 4 vertices in �. Now
m0 is large enough such that nk�4 
 �(b, �/8) D for all n � m0, and also such that D

� �b�1

�� k
2��3

nk�3 � D0(b,�/8), and certainly �V(�)� � ��� � n � n0(b, �/8). Therefore,

by Theorem 8.1 we have that � contains a packing 
 of size at least (1 � �/8)���/D.
Then using Lemma 8.2(b) we find

�
� � �1 � �/8����0�����/D �
�1 � �/8�2

�1 
 �/8�

�bnk

��k
2�

��k
2��3

�b�1nk�3 � �1 � �/2�
�n3

�3 .

PACKINGS IN DENSE 3-UNIFORM HYPERGRAPHS 265



In other words, the packing 
 gives a family of triple-disjoint sub-hypergraphs of �� (and

hence of �), each partite-isomorphic to �0 in �, of size at least (1 � �/2) �n3

�3 . But by
definition of (�, �, r)-regularity, each �(Gij, Gis, Gjs) has at most (1 � � )�n3/�3

triples. Since each copy of �0 in the packing 
 has precisely one triple in each �(Gij, Gis,
Gjs), we conclude that 
 covers at least a (1 � �/2)(1 � �)�1 � (1 � �) proportion of
the triples in each �(Gij, Gis, Gjs), and hence it covers all but ���� triples of �. ■

9. PROOF OF LEMMA 3.10

First we prove (i). We obtain �� from � by removing the following triples of �:

(a) the triples of � that have more than one vertex in some vertex class Vi of �,
(b) the triples that have a vertex in the vertex class V0,
(c) triples that contain a vertex of Vi and a vertex of Vj such that the pair i, j does not

satisfy Condition (iii) of Definition 2.4,
(d) triples on underlying bipartite graphs P0

ij, (where i, j satisfies Condition (iii) of
Definition 2.4)

(e) triples that lie in (�, r)-irregular 3-partite 3-cylinders of �.

For each of these cases, we estimate the number of triples of � that must be removed,
using the bounds given in Definition 2.4.

(a) For each i we have �Vi� � m � n/t so the total number of such triples is at most
t(n/t)2n � n3/t � n3/t0 � �n3/100, where we use the fact that n � N1 and the
definition of N1 and of t0 (see Definition 3.7).

(b) Since �V0� � t � T0, we have at most T0n2 � n3(T0/n) 
 �n3/100 such triples,
again using the definition of N1.

(c) Since there are at most 	(2
t ) pairs i, j that do not satisfy Condition (iii) of Definition

2.4, the number of such triples is at most 	(2
t )m2n 
 	(tm)2n/2 
 	n3/2 


�n3/200, where here we use the definition of 	 [see Definition 3.7 (iv)].
(d) For each such i, j we know that �P0

ij� � 	m2, so the total number of such triples is
at most (2

t )	m2n � 	n3/2 
 �n3/200, where again we use the definition of 	.
(e) The number of such triples is at most �n3 � ��n3/100 
 �n3/100.

Therefore, the total number of triples of � that are removed to form �� is at most
4�n3/100 as required.

Now we consider (ii). Given the maximum fractional packing � of �, we first define
a function �� : (�0

��) 3 [0, 1] by ��(�) � �(�) for each � � (�0

��). Then �� is a fractional
packing of ��, and ���� � ��� � (��� � ����), since each triple e of � satisfies
¥��� �

�0� : ��e ���� � 1. Therefore, by (i),

���� � �*�0��� � �n3/25. (10)

Now we use the fractional packing �� of �� to construct a fractional packing �� of �
with ���� � (�/m)3����. First, for � � �(��, �, �0) (i.e., copies of �0 that are crossing
in �) we define the projection �(�) � (�0

� ) as follows. Let the vertex set of � be {w1, . . . ,
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wk}, where k � �V(�0)� and wu � Viu
for 1 � u � k. Then by definition of ��, each

triple e of � lies in a 3-partite 3-cylinder ��(Pe) of �� which is (�, r)-regular with respect
to its underlying triad Pe. We then let �(�) be the copy �� of �0 in � with vertex set
�vi1, . . . ,vik	, and where �c�ux

viuvix, c�uy

viuvix, c�xy

viuvix	 is a triple of �� precisely when �P�ux

viuvix,
P�uy

viuvix, P�xy

viuvix) � Pe for some triple e of �0. [Note that this uniquely determines the pair set
C(��) also.]

Given ��, we define �� : (�0

� ) 3 [0, 1] as follows. Let �� � (�0

� ) be given as in
Definition 3.2. Then we let

������ � �1 
 �/100��1��/m�3 � ������ : � � ����, �, �0�, ���� � ��	.

To see that �� is a fractional packing, we fix a triple e � {c�1

vivs, c�2

vivh, c�3

vhvs} of �. Let
us denote by Pe � (P�1

vivs, P�2

vivh, P�3

vhvs) the corresponding triad. Then we have

�
���e

������ � �1 
 �/100��1��/m�3 �
���e

� ������ : � � ����, �, �0�, ���� � ��	

� �1 
 �/100��1��/m�3 �
T����Pe�

�
������,�,�0�,��T

�����

� �1 
 �/100��1��/m�3 �
T����Pe�

1 � ��e�,

where the last line follows from the definition of � (see Definition 3.9) and Fact 2.3.
Therefore, �� is a fractional packing of �. Moreover, we have

���� � �
�����

�0�
������

� �1 
 �/100��1��/m�3 �
�����

�0�
� ������ : � � ����, �, �0�, ���� � ��	

� �1 
 �/100��1��/m�3 � ������ : � � ����, �, �0�	.

Now since � respects the initial partition 	, by (3) we find

���� � �1 
 �/100��1��/m�3� ���� � � 
����� : � � ���
�0

� , � not crossing��
� �1 
 �/100��1��/m�3����� � ��*�0���/100�.

Now, using (10), we find

�m/��3���� � �1 � �/100������ � ��*�0���/100�

� �1 � �/100���*�0��� � �n3/25 � �n3/100�

� �*�0��� � 3�n3/50,

since �*�0
(�) 
 n3. Then since ���� � �*�0

(�), the result follows. ■
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10. THE EXTENSION THEOREM

In this section we present the already advertised Extension Theorem. Our proof of this
result is quite complicated, so we divide the proof across the next three sections. In this
section, our goal is to state and discuss the Extension Theorem and related results.

In Section 10.1, we provide definitions and facts extending some notions given in
Section 2. In Section 10.2, we state the Extension Theorem and discuss how its proof is
given in later sections. In Section 10.3, we give the proof of Lemma 8.2, the application
for which the Extension Theorem is required. In Section 10.4, we give the proof of the
upcoming Corollary 10.10, a tool needed in our proof of Lemma 8.2.

10.1. Background Concepts

In this subsection, we provide introductory background definitions, notation and facts. We
begin with the following simple fact about (�, 
, k)-cylinders. In what follows, when
G � �1�i
j�k Gij is k-partite cylinder with k-partition (V1, . . . , Vk) and j � [k], we
write the j-neighbors of v as Nj(v) � {w � Vj : {v, w} � G}.

Fact 10.1. Suppose G � �1�i
j�k Gij is an (�, 
, k)-cylinder with k-partition
(V1, . . . , Vk), �V1� � . . . ��Vk� � n. Fix i � [k]. All but 2k
n vertices vi � Vi satisfy that
for all j � [k], j � i,

n

�
�1 � 
� � �Nj�vi�� �

n

�
�1 
 
�.

We remark here that sometimes we consider the situation when two k-partite cylinders G
and F are simultaneously defined on the same vertex set V with k-partition (V1, . . . , Vk).
In such situations, we will still want to denote the j-neighbors of each cylinder. We denote
by NG, j(v) the j-neighborhood of the vertex v in the cylinder G, that is,

NG, j �v� � �w � Vj : �v, w	 � G	. (11)

Similarly,

NF, j �v� � �w � Vj : �v, w	 � F	. (12)

To extend the notation in (11) and (12) from a vertex v to an edge e � {v1, v2}, we write
for an integer i � {3, . . . , k}

NG,i�e� � NG,i�v1� � NG,i�v2�. (13)

and

NF,i�e� � NF,i�v1� � NF,i�v2�. (14)
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We extend our definition of �3(G) by defining the following auxiliary set system
pertaining to a k-partite cylinder G. In what follows, by a clique in a graph G, we mean
a complete subgraph G� � G.

Definition 10.2. For a k-partite cylinder G, denote by �j(G), 1 � j � k, that j-uniform
hypergraph whose edges are precisely those j-element subsets of V(G) which span cliques
of order j in G.

Observe that the quantity ��j(G)� counts the total number of cliques in G of order j,
that is, ��j(G)� � �{X � V(G) : �X� � j, [X]2 � G}�. For an (�, 
, k)-cylinder G, the
quantity ��k(G)� is easy to estimate, as the following fact shows.

Fact 10.3. For any positive integers k, � and positive real �, there exists 
 so that
whenever G is an (�, 
, k)-cylinder with k-partition (V1, . . . , Vk), �V1� � . . . � �Vk� � n, then

�1 � ��
nk

��k
2�

� ��k�G�� � �1 
 ��
nk

��k
2�

.

Note that Fact 10.3 extends Fact 2.3. It can be proved using a standard argument from the
definition of an (�, 
, k)-cylinder. As Fact 10.3 includes Fact 2.3 as a special case (i.e.,
when k � 3), we from this point on only refer to Fact 10.3.

The following definition gives a slight variation on Definition 10.2. While we only
directly use this definition a bit later, we introduce it to motivate topics soon visited.

Definition 10.4. For a k-partite cylinder G and for {x, y, z} � �3(G), set

�
Kj

�2�
G

��x, y, z	� � �Y � �j�G� : �x, y, z	 � �Y
3	.

In other words, �
Kj

�2�
G

��x, y, z	� is the set of all cliques in G of order j which contain {x, y,

z} as a triangle.

Observe that ��
Kj

�2�
G

��x, y, z	�� counts the number of extensions of the triangle { x, y, z}

to j-cliques in G. For an (�, 
, k)-cylinder G, the quantity ��
Kk

�2�
G

��x, y, z	�� is easy to

estimate. The following fact is a simple variation on Fact 10.3.

Fact 10.5. For any positive integers k, � and positive real �, there exists 
 so that
whenever G � �1�i
j�k Gij is an (�, 
, k)-cylinder with k-partition (V1, . . . , Vk), �V1�
� . . . � �Vk� � n, then all but 6k
n3 triangles {x, y, z} � �3(G12 � G13 � G23) satisfy

�1 � ��
nk�3

��k
2��3

� ��
Kk

�2�
G

��x, y, z	�� � �1 
 ��
nk�3

��k
2��3

. (15)

As with Fact 10.3, the proof of Fact 10.5 follows along standard lines from the definition
of an (�, 
, k)-cylinder.

We now give definitions pertaining to 3-uniform hypergraphs. Recall that in Section 2
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we were interested in 3-partite 3-cylinders arising from an (�, t, 	, 
)-partition � of a
3-uniform hypergraph �. In this situation, each pair (Vi, Vj) of vertex classes of the
partition � was joined by many edge-disjoint bipartite graphs P�

ij, so to specify a 3-partite
3-cylinder of � we used the notation �(P�

ij, P�
is, P�

js) to denote the 3-partite 3-cylinder
of � on the triad P � (P�

ij, P�
is, P�

js) of �. However, in this section we will be
concentrating exclusively on 3-uniform hypergraphs whose underlying substructure is one
fixed (�, 
, k)-cylinder G with vertex partition V1, . . . , Vk, that is, each pair (Vi, Vj) of
vertex classes will be joined by precisely one bipartite graph Gij. Here then, to specify a
particular induced 3-partite 3-cylinder, we need only specify the vertex classes, so we will
write �({Vi, Vj, Vs}) instead of �(Gij, Gis, Gjs). In fact we make the following more
general definition.

Definition 10.6. Recall that any k-partite, 3-uniform hypergraph � with a fixed k-
partition (V1, . . . , Vk) is referred to as a k-partite 3-cylinder. For B � [k], we define the
B-3-cylinder of � as that subhypergraph �(B) of � induced on �i�B Vi.

As in Definition 10.2, we define an auxiliary set system pertaining to a 3-cylinder �. In
what follows, by a clique in a 3-uniform hypergraph �, we mean a complete 3-uniform
subhypergraph �� � �.

Definition 10.7. For a k-partite 3-cylinder �, denote by �j(�), 1 � j � k, that j-uniform
hypergraph whose edges are precisely those j-element subsets of V(�) which span a
clique of order j in �. Note that the quantity ��j(�)� counts the total number of cliques
in � of order j, that is, ��j(�)� � �{X � V(�) : �X� � j, [X]3 � �}�.

We remark that a formula for computing ��k(�)� in certain contexts, analogous to Fact
10.3, is given later in the upcoming Theorem 10.8 in the next subsection.

10.2. The Extension Theorem

We begin this subsection by formulating the following environment which will be the
setting for much of our work. Because we consider other environments later, we call the
following Setup 1. For a given integer k � 3, 3-uniform hypergraph �0 � [k]3, �, �
positive reals, �, r positive integers, 
 � 0 and n a positive integer, consider the following.

Setup 1:

(1) � is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), �V1� � . . . � �Vk� � n.
(2) G � �1�i
j�k Gij is an underlying (�, 
, k)-cylinder.
(3) For all B � �0, �(B) is (�, �, r)-regular with respect to G(B); otherwise, for

every B � [k]3��0, �(B) � A.

To help motivate our main result, The Extension Theorem, we first consider the following
related theorem proved in [12] and [13].

Theorem 10.8 (Counting Lemma). For all integers k � 4, for all �, � � 0, there exists
a constant � � 0 so that, for all integers � �

1
� , there exists an integer r and 
 � 0 so that

for n sufficiently large, whenever k-partite 3-cylinder � and G � �1�i
j�k Gij satisfy
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the conditions of Setup 1 with constants k, �, �, �, r, 
 and n, and 3-uniform hypergraph
�0 � Kk

(3), then

��k
3�

��k
2�

nk�1 � �� � ��k���� �
��k

3�

��k
2�

nk�1 
 ��. (16)

We also note the following more general theorem, a corollary of which we use in
Section 10.3. For arbitrary constants k, �, �, �, r, 
 and n and 3-uniform hypergraph �0

� [k]3, suppose � and G � �1�i
j�k Gij satisfy Setup 1. We define the following
special set ��0

(�) of copies of �0 in � as

��0��� � 
� � � �
�0
� : �V���
2 � G� . (17)

Note that by condition (2) of Setup 1, for any � � (�0

� ), for any u, v � V(�), u � v, the
pair {u, v} � G if there exists w � V(�) with {u, v, w} � �. However, the condition
in (17) guarantees that {u, v} � G for all u, v � V(�), u � v.

Then the following may be proved using Theorem 10.8 (see [13]).

Theorem 10.9. For all integers k � 4 and 3-uniform hypergraphs �0 � [k]3, for all �,
� � 0, there exists a constant � � 0 so that, for all integers � �

1
� , there exists an integer

r and 
 � 0 so that for n sufficiently large, whenever k-partite 3-cylinder � and G
� �1�i
j�k Gij satisfy the conditions of Setup 1 with constants k, �, �, �, r, 
, and n
and 3-uniform hypergraph �0, then

� ��0�

��k
2�

nk�1 � �� � ���0���� �
� ��0�

��k
2�

nk�1 
 ��.

We remark that in Theorem 10.9, if �0 � Kk
(3), then ���0

(�)� � ��k(�)�; thus,
Theorem 10.8 is an obvious corollary to Theorem 10.9. However, perhaps surprisingly,
using a rather straightforward argument, one may derive Theorem 10.9 from Theorem
10.8. In Section 11 we make similar arguments establishing the relationship between the
upcoming Theorem 10.12 and Lemma 10.13 of this paper.

The following corollary to Theorem 10.9 is needed for our proof of Theorem 8.2 given
in Section 10.3. The following corollary basically states that if �� � � is large enough,
then the formula in Theorem 10.9 accurately counts the number of cliques Kk

(3) in �� as
well.

Corollary 10.10. For all integers k � 4 and 3-uniform hypergraphs �0 � [k]3, for all
�, � � 0, there exists � � �(�0, �, �) � 0 so that, for all integers � �

1
� , there exist r �

r(�0, �, �, �), 
 � 
(�0, �, �, �) � 0, and integer n0 � n0(�0, �, �, �) so that, for all n �

n0, whenever k-partite 3-cylinder � and G � �1�i
j�k Gij satisfy the conditions of
Setup 1 with constants k, �, �, �, r, 
, and n and 3-uniform hypergraph �0, then, for any

subsystem �� � �, ���� � (1 � �)���, where �� �� k
3��

24k3 , �� satisfies
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� ��0�

��k
2�

nk�1 � �� � �
� � ���
�0

� : �V���
2 � G�� �
� ��0�

��k
2�

nk�1 
 ��.

The proof of Corollary 10.10 is easy and we give it in Section 10.4.
We now state an important definition which extends Definition 10.4.

Definition 10.11. As in Setup 1, for a triple h � �, set

��0�h� � �� � ��0��� : h � �	.

In other words, ��0
(h) is the set of all copies � � ��0

(�) which contain h as a triple.

The main result of this section and the remainder of this paper, the Extension Theorem,
provides a formula for ���0

(h)� in the setting of Theorem 10.8.

Theorem 10.12 (Extension Theorem). Let k � 4 be an integer and let �0 � [k]3, where
we assume, without loss of generality, that {1, 2, 3} � �0. For all reals �, �, � � 0, there
exists � � �(�0, �, �, �) � 0 so that, for all integers � � 1

� , there exist r � r(�0, �, �,
�, �), 
 � 
(�0, �, �, �, �), and n0 � n0(�0, �, �, �, �) so that whenever n � n0 and �

and G � �1�i
j�k Gij satisfy the hypothesis of Setup 1 with constants k, �, �, �, r, 
,
and n and 3-uniform hypergraph �0, then all but ���({1, 2, 3})� triples h � �({1, 2, 3})
satisfy

� ��0��1

��k
2��3

nk�3�1 � �� � ���0�h�� �
� ��0��1

��k
2��3

nk�3�1 
 ��.

We now discuss a partial schedule for how we prove Theorem 10.12. To that end, we
consider the following Lemma 10.13 which is a special case of Theorem 10.12 when �0 �
Kk

(3) and where we are concerned only with the lower bound for ��Kk
�3��h��.

Lemma 10.13 (Extension Lemma). Let k � 4 be an integer. For all reals �, �, � � 0,
there exists � � 0 so that, for all integers � � 1

� , there exists an integer r and 
 � 0 so
that whenever n is sufficiently large and � and G � �1�i
j�k Gij satisfy the hypothesis
of Setup 1 with constants k, �, �, �, r, 
, and n and 3-uniform hypergraph �0 � Kk

(3), then
all but ���({1, 2, 3})� triples h � �({1, 2, 3}) satisfy

��Kk
�3��h�� �

��k
3��1

��k
2��3

nk�3�1 � ��.

The schedule is then given as follows.

Remark 10.14 (Theorems 10.12 and 10.13 are equivalent). One readily observes that
Theorem 10.12 implies Lemma 10.13. On the other hand, perhaps surprisingly, it is also
true that Lemma 10.13 implies Theorem 10.12. This implication is the key to our proof
of Theorem 10.12. The schedule of our proof is as follows.

272 HAXELL, NAGLE, AND RÖDL



1. In Section 11, we show that Lemma 10.13 implies Theorem 10.12.
2. Our proof of Lemma 10.13 involves a rather complex argument. We give this

argument, in stages, in Sections 12 and 13. We postpone discussing how this
argument is divided across Sections 12 and 13 until we are in context.

We close this subsection with following technical comment.

Remark 10.15. We prove Lemma 10.13 for the case when k � 5 rather than in its fullest
generality when k � 4. We comment that the proof of Lemma 10.13 when k � 4 is in
fact easier than when k � 5, but its proof would require some of its own notation and
space to formalize. Because the details and strategy of the proof for k � 4 are subsumed
and indeed well surpassed by the proof we present for the case k � 5, we omit them here.
The reader is encouraged to see the paper [6] for the essential ingredients of the proof of
Lemma 10.13 in the case that k � 4.

We also mention that not only can our proof of Lemma 10.13 for k � 5 be altered,
indeed simplified, to give the proof for k � 4, it also true that Lemma 10.13 for k � 5
implies Lemma 10.13 for k � 4. A proof of this claim is along straightforward lines.
However, for the sake of a fluid exposition, we omit these details as well.

10.3. Proof of Lemma 8.2

In this subsection, we give the proof of our required application, Lemma 8.2, using
Corollary 10.10 and Theorem 10.12.

Proof of Lemma 8.2. Let �0, � and � be given. We define � � min

��10.10��0, �, ��, �10.12��0, �, �� k
3��/24k3, ��	. Given � � 1/�, let

n1 � max�n10.10��0, �, �, ��, n10.12��0, �, �� k
3��/24k3, �, ��	,

r � max�r10.10��0, �, �, ��, r10.12��0, �, �� k
3��/24k3, �, ��	,

and


 � min�
10.10��0, �, �, ��, 
10.12��0, �, �� k
3��/24k3, �, ��	.

Let � and G be as in the statement of the lemma, and let �0 be the subhypergraph of
� defined by

�0 � �
�i,j,s	��0

��Gij, Gis, Gjs�.

Then, by the hypotheses of the lemma, �0 and G satisfy the hypotheses of Setup 1 with
constants k, �, �, �, r, 
, and n (see the remark before Definition 10.6). Therefore by

Theorem 10.12, for each {i, j, k} � �0, all but a � � �� k
3��/24k3 proportion of the

triples in �0({i, j, k}) satisfy ���0�h�� � �1 
 ���b�1nk�3/�� k
2��3. For each {i, j,
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k} � �0, we remove those triples from �0({i, j, k}) which do not satisfy this. We call
the resulting subhypergraph ��, then ���� � (1 � �)��0�, and Property (a) holds for ��.

Now by Corollary 10.10, since ���� � (1 � �)��0� we have that ���0����� � �1

� ���bnk/�� k
2� , proving Property (b). ■

10.4. Proof of Corollary 10.10

In this subsection, we give the proof of Corollary 10.10. We begin by defining the
promised constants.

Definitions of the Constants. Let integer k � 4, 3-uniform hypergraph �0 � [k]3 and
positives �, �, � be given where

� �
��k

3��

12k3 . (18)

Define auxiliary constant �� so that

�� �
�

3
. (19)

Let

� � �10.9�k, �0, �, ���

be that constant guaranteed by Theorem 10.9.
Let � � 1

� be a given integer. Let

r � r10.9�k, �0, �, ��, �, ��,


� � 
10.9�k, �0, �, ��, �, ��

be those constants guaranteed by Theorem 10.9. With the constants k, �, and � � 1, let


� � 
10.5�k, �, ��

be that constant guaranteed by Fact 10.5. Let 
� � 0 satisfy


�k4��k
2�

��k
3�

�
�

3
.

Let


� � 
10.3�3, �, 1�

be that constant guaranteed by Fact 10.3. Set
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 � min�
�, 
�, 
�, 
�	. (20)

This concludes our definitions of the constants.

Proof of Corollary 10.10. Suppose k-partite 3-cylinder � and G � �1�i
j�k Gij

satisfy Setup 1 with constants k, �, �, �, r, 
, and n, where n is sufficiently large, and
3-uniform hypergraph �0 � [k]3. We show that, for any �� � �, ���� � (1 � �)���,

� ��0�

��k
2�

nk�1 � �� � �
� � ���
�0

� : �V���
2 � G�� �
� ��0�

��k
2�

nk�1 
 ��.

Let �� � �, ���� � (1 � �)���, be given. Define �1 � ���� to be the set of all h �
{ x, y, z} � ���� such that the triangle { x, y, z} violates the upper bound in (15) with
constant � � 1. By Fact 10.5,

��1� � 6
k� k
3�n3 � 
k4n3. (21)

Let �2 � (����)��1, and note that all triples h � �2 satisfy

��
Kk

�2�
G

�h�� � 2
nk�3

��k
2��3

. (22)

Define sets

� � �� � ��0��� : � � ������ � A	,

�1 � �� � � : � � �1 � A	,

�2 � �� � � : � � �2 � A	,

so that

� � �1 � �2.

Since any h � �1 satisfies ��
Kk

�2�
G

�h�� � nk�3, we see from (21) that

��1� � 
k4nk. (23)

Using (22), we see

��2� � 2������
nk�3

��k
2��3

,

and since ������ 
 ����, where ����¥B�[k]3��(B)�
2k3 n3

�3 [cf. (20)], we have
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��2� � 4�k3
nk

��k
2�

. (24)

We now bound �{� � (�0

��) : [V(�)]2 � G}�. Using Theorem 10.9,

� ��0�

��k
2�

nk�1 � ��� � ���0���� �
� ��0�

��k
2�

nk�1 
 ���, (25)

from which it trivially follows that

�
� � ���
�0

� : �V���
2 � G�� �
� ��0�

��k
2�

nk�1 
 ���. (26)

However, we easily see

�
� � ���
�0

� : �V���
2 � G�� � ���0���� � ��� � ���0���� � ��1� � ��2�.

We obtain from (23), (24) and (25) that

�
� � ���
�0

� : �V���
2 � G�� �
� ��0�

��k
2�

nk�1 � �� �

k4��k

2� 
 4�k3

��k
3� � .

However, by (18), (19) and (20), we see

�
� � ���
�0

� : �V���
2 � G�� �
� ��0�

��k
2�

nk�1 � ��.

Coupled with (26), the above inequality completes the proof of Corollary 10.10. ■

11. EXTENSION LEMMA IMPLIES EXTENSION THEOREM

In this section, we show that the Extension Lemma, Lemma 10.13, implies the Extension
Theorem, Theorem 10.12. This implication will be shown in steps. We first give a general
discussion of these steps before going into details.

The following setup is a slight variation of Setup 1. As a result, we refer it as Setup 1�.
Let an integer k � 4 be given. Unlike Setup 1, we only define Setup 1� in the case that
�0 � Kk

(3), thus, we from this point onward suppress the mention of the 3-uniform
hypergraph �0 in regard to Setup 1�. For a set of positive reals {�B : B � [k]3} and
positive real �, for given positive integers r and � and positive real 
, for a given positive
integer n, consider the following environment:
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Setup 1�.

1. � is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), �V1� � . . . � �Vk� � n.
2. G � �1�i
j�k Gij is an underlying (�, 
, k)-cylinder.
3. For all B � [k]3, �(B) is (�B, �, r)-regular with respect to G(B).

Note that an important difference between Setup 1 and Setup 1� is that, in the latter,
densities over distinct triads are allowed to differ.

The following lemma serves as a bridge between the Extension Lemma and the Extension
Theorem. For this reason, we refer to the following lemma as the “Intermediate Lemma.”

Lemma 11.1 (Intermediate Lemma). For k � 4, for all sets {�B : B � [k]3} of positive
reals, for all �, � � 0, there exists � � 0 so that for all integers � � 1

� , there exists r and

 so that whenever n is sufficiently large and � and G � �1�i
j�k Gij satisfy the
hypothesis of Setup 1� with parameters k, {�B : B � [k]3}, � � 0, �, r, 
, and n, then all
but ���({1, 2, 3})� triples h � �({1, 2, 3}) satisfy

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 � �� � ��Kk
�3��h�� �

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 
 ��.

Observe that Lemma 11.1 extends Theorem 10.12 from Setup 1 to Setup 1� in the
special case �0 � Kk

(3). It will be easy to show, however, that Lemma 11.1 quickly
implies Theorem 10.12 in its entirety. We give a proof that Lemma 11.1 implies Theorem
10.12 in Section 11.3. It remains, therefore, to discuss how the Extension Lemma, Lemma
10.13, implies the Intermediate Lemma, Lemma 11.1.

Lemma 11.1 is a trivial combination of the following two assertions. The first assertion
states the lower bound of Lemma 11.1.

Proposition 11.2 (Lower bound of Lemma 11.1). For k � 4, for all sets {�B : B � [k]3}
of positive reals, for all �, � � 0, there exists � � 0 so that for all integers � � 1

� , there
exists r and 
 so that whenever n is sufficiently large and � and G � �1�i
j�k Gij

satisfy the hypothesis of Setup 1� with parameters k, {�B : B � [k]3}, � � 0, �, r, 
, and
n, then all but ���({1, 2, 3})� triples h � �({1, 2, 3}) satisfy

��Kk
�3��h�� �

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 � ��.

The second assertion states the upper bound of Lemma 11.1.

Proposition 11.3 (Upper bound of Lemma 11.1). For k � 4, for all sets {�B : B � [k]3}
of positive reals, for all �, � � 0, there exists � � 0 so that for all integers � � 1

� , there
exists r and 
 so that whenever n is sufficiently large and � and G � �1�i
j�k Gij

satisfy the hypothesis of Setup 1� with parameters k, {�B : B � [k]3}, � � 0, �, r, 
, and
n, then all but ���({1, 2, 3})� triples h � �({1, 2, 3}) satisfy
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��Kk
�3��h�� �

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 
 ��.

To prove Lemma 11.1, it suffices to prove each of Propositions 11.2 and 11.3. In the
following remark, we state the strategy and schedule of Section 11.

Remark 11.4. The thesis of Section 11 is as follows: The Extension Lemma, Lemma
10.13, implies the Intermediate Lemma, Lemma 11.1, which in turn implies the Extension
Theorem, Theorem 10.12. Symbolically,

Extension Lemmaf Intermediate Lemmaf Extension Theorem.

1. In Section 11.1, we show the Extension Lemma implies Proposition 11.2.
2. In Section 11.2, we show Proposition 11.2 implies Proposition 11.3.
3. Clearly, Proposition 11.2 and Proposition 11.3 combine to assert the Intermediate

Lemma.
4. In Section 11.3, we show the Intermediate Lemma quickly implies the Extension

Theorem.

11.1. The Extension Lemma f Proposition 11.2

We show that using Lemma 3.5, Proposition 11.2 is just a straightforward corollary of
Lemma 10.13. In our proof, we employ Lemma 3.5. To that effect, we recall Lemma 3.5
in language slightly more suitable for our need here.

Lemma 11.5. Let �, �, 
 be given positive reals with � 
 �
4 and let � and r be given

positive integers. Let �� be a given positive real satisfying �� � �, and let 3-partite
3-cylinder � and underlying graph G satisfy the hypothesis of Set Up 1 with constants k �
3, �, �, �, r, and 
. Then there exists a family

�̃ � ��1, . . . , �p	

of 3-partite 3-cylinders with the following properties:

(i) p �  �
��.

(ii) �i � �j � A for all {i, j} � [p]2, and �i��p
 �i � �.
(iii) For each i � [p], �i is (��, 2�, r)-regular with respect to the underlying (�,


, 3)-cylinder G.

Proof of Proposition 11.2. Let k � 4 be a given positive integer and let {�B : B �
[k]3} be a given set of positive reals. Let �, � � 0 be given. Define auxiliary positive
constants �, �� to satisfy

�1 � ����B��k
3��1,2,3	�1 �
�

�B
� � 1 � �, (27)
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� �
�

8
. (28)

Define auxiliary positive constant �� to satisfy

2��

��k
3�

�
�

4
. (29)

Let

�10.13 � �10.13�k, �, ��, ���

be that constant guaranteed by Lemma 10.13. Set

� �
�10.13

2
. (30)

Let � � 1
� be a given positive integer. Set

r � r10.13 � r10.13�k, �, ��, ��, �, ��,


10.13 � 
10.13�k, �, ��, ��, �, �� (31)

to be those constants guaranteed by Lemma 10.13. For the constant � � 1/4, set


10.3 � 
10.3�3, �, 1/4�

to be that constant guaranteed by Fact 10.3. Set


 � min�
10.13, 
10.3	. (32)

For n sufficiently large, suppose � and G � �1�i
j�k Gij satisfy the hypothesis of
Setup 1� with the parameters k, {�B : B � [k]3}, � � 0, �, r, 
, and n. We show that
all but ���({1, 2, 3})� triples h � �({1, 2, 3}) satisfy

��Kk
�3��h�� �

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 � ��. (33)

For each B � [k]3, with the constants �B, � from (30), �, r from (31), 
 from (32) and
auxiliary constant � from (27) and (28), use Lemma 11.5 to decompose �(B) into a
family

��B �̃ � ��1�B�, . . . , �pB�B�	, (34)
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pB � �B

�
, of pairwise disjoint 3-partite 3-cylinders, each of which is (�, 2�, r)-regular with

respect to the (�, 
, 3)-cylinder G(B). Define

� � 
 �iB� : B � �k
3, 1 � iB �
�B

�
�

to be the set of all vectors of length (3
k) whose B-coordinate is an integer iB as given above.

For convenience of notation, we denote the B-coordinate of a vector ı� � � by ı�(B). For
1 � i{1,2,3} � p{1,2,3}, define �(i{1,2,3}) � {ı� � � : ı�({1, 2, 3}) � i{1,2,3}}. For each
ı� � �, let �ı� � �B��k
3 �ı��B��B�, where �ı�(B)(B) is given in (34). For h � �({1, 2,
3}), let

��h� � 
 i�1,2,3	 if h � �i�1,2,3	��1, 2, 3	�

0 if h � �1�i�1,2,3	�p�1,2,3	 �i�1,2,3	��1, 2, 3	�,�
where p�1,2,3	 � 

��1,2,3	

�
.

Fix ı� � �. For h � �ı�({1,2,3})({1, 2, 3}), define

�
Kk

�3�
�ı�

�h� � �Y � �k��ı�� : h � �Y
3	. (35)

Note that �
Kk

�3�
�ı�

�h� is just the set of copies of Kk
(3) in �ı� which contain the triple h.

We first show that for the fixed ı� � �, Lemma 10.13 implies that most triples h �

�ı�({1,2,3})({1, 2, 3}) are such that the set �
Kk

�3�
�ı�

�h� is large enough. Indeed, note that �ı�

satisfies the hypothesis of Setup 1 with constants k, �, 2� � �10.13 [cf. (30)], �, r �
r10.13 [cf. (31)], and 
 � 
10.13 [cf. (11.1)]. As a result of our constants k, �, 2� � �10.13,
�, r � r10.13, and 
 � 
10.13 appropriately given, we apply Lemma 10.13 to �ı� to
conclude that all but ����ı�({1,2,3})({1, 2, 3})� triples h � �ı�({1,2,3})({1, 2, 3}) satisfy

��
Kk

�3�
�ı�

�h�� �
��k

3��1

��k
2��3

nk�3�1 � ���. (36)

Our next step is to show that whenever h � �({1, 2, 3}) satisfies the inequality in
(36) for every ı� � �(�(h)), then h also satisfies (33). To that effect, note that for 1 �
i{1,2,3} � p{1,2,3},

���i�1,2,3	�� � �B��k
3��1,2,3	

�B

�
.

Define

�good��1, 2, 3	� � �h � ���1, 2, 3	� : ��h� � 0 and h satisfies �36� for all ı� � ����h��	.

Set
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�bad��1, 2, 3	� � ���1, 2, 3	���good��1, 2, 3	�.

As an immediate consequence of (36), for each h � �good({1, 2, 3}),

��Kk
�3��h�� � �

ı������h��

��
Kk

�3�
�ı�

�h��

�
��k

3��1

��k
2��3

nk�3�1 � ��������h���

�
��k

3��1

��k
2��3

nk�3�1 � ����B��k
3��1,2,3	

�B

�

�
�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 � ����B��k
3��1,2,3	�1 �
�

�B
� .

As a result of our choice of � in (27), we further conclude

��Kk
�3��h�� �

�B��k
3��1,2,3	�B

l�k
2��3

nk�3�1 � ��. (37)

With each h � �good({1, 2, 3}) satisfying (37), all we need to show to complete the
proof of Proposition 11.2 is that �bad({1, 2, 3}) satisfies ��bad({1, 2, 3})� 
 ���({1, 2,
3})�.

We begin by estimating the number of triples h � �({1, 2, 3}) for which �(h) � 0
and where there exists ı� � �(�(h)) for which h and ı� fail to satisfy (36). To that end,

recall that Lemma 10.13 ensures that for each 1 � i{1,2,3} � ��1,2,3	

�
, for each ı� �

�(i{1,2,3}), all but ����i{1,2,3}
({1, 2, 3})� triples h � �i{1,2,3}

({1, 2, 3}) satisfy (36). For
1 � i{1,2,3} � p{1,2,3}, define �bad,i{1,2,3}

({1, 2, 3}) to be the set of all h � �i{1,2,3}
({1,

2, 3}) such that there exists ı� � �(i{1,2,3}) for which h and ı� fail to satisfy (36). We wish
to bound

� �
1�i�1,2,3	�p�1,2,3	

�bad,i�1,2,3	��1, 2, 3	��.
We first note that by Lemma 10.13, for i{1,2,3} fixed,

��bad,i�1,2,3	��1, 2, 3	�� � ����i�1,2,3	��1, 2, 3	�����i�1,2,3	��.

Note that since �i{1,2,3}
({1, 2, 3}) is (�, 2�, r)-regular with respect to G12 � G13 � G23,

then

��i�1,2,3	��1, 2, 3	�� � �� 
 2����3�G12 � G13 � G23�� � 2�
n3

�3 ,

where the last inequality follows from Fact 10.3. Thus, we see that
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��bad,i�1,2,3	��1, 2, 3	�� � 2���
n3

�3 ���i�1,2,3	��,

� 2���
n3

�3 �B��k
3��1,2,3	

�B

�
.

Thus, with p{1,2,3}���1,2,3	

�
,

� �
1�i�p�1,2,3	

�bad,i�1,2,3	��1, 2, 3	�� � 2���
n3

�3 �B��k
3

�B

�
. (38)

Note that �bad��1, 2, 3	���1�i�p�1,2,3	 �bad,i�1,2,3	��1, 2, 3	� is just the set of all triples
h � �({1, 2, 3}) for which �(h) � 0. However, by Property (i) of Lemma 11.5, we
see that

��bad��1, 2, 3	�� �
1�i�p�1,2,3	

�bad,i�1,2,3	��1, 2, 3	�� � �����1, 2, 3	��. (39)

As a result of (38) and (39), we see

��bad��1, 2, 3	�� � � �
1�i�p�1,2,3	

�bad,i�1,2,3	��1, 2, 3	��
� ��bad��1, 2, 3	�� �

1�i�p�1,2,3	

�bad,i�1,2,3	��1, 2, 3	��,
� 2���

n3

�3 �B��k
3

�B

�

 2

n3

�3 ���1,2,3	,

� ��1,2,3	

n3

�3 � 2��

��k
3��1


 2�
 .

As a result of (28) and (29), we further conclude

��bad��1, 2, 3	�� � ��1,2,3	

n3

�3 ��

4



�

4
 �
�

2
��1,2,3	

n3

�3 . (40)

Since �({1, 2, 3}) is (�{1,2,3}, �, r)-regular with respect to G12 � G13 � G23, we see
that

����1, 2, 3	�� � ���1,2,3	 � ����3�G12 � G13 � G23�� �
��1,2,3	

2

n3

�3 , (41)

where the last inequality follows from Fact 10.3. Thus, comparing (40) with (41), we
conclude

282 HAXELL, NAGLE, AND RÖDL



��bad��1, 2, 3	�� � �����1, 2, 3	��,

and the proof of Proposition 11.2 is complete. ■

11.2. Proposition 11.2 f Proposition 11.3

We show Proposition 11.3 quickly follows from Proposition 11.2. We begin by defining
the promised constants.

Definitions of the Constants. Let k � 4 be a given integer, let {�B : B � [k]3} be a set
of positive reals, and let �, � � 0 be given. Define auxiliary positive constants ��, ��, and
� to satisfy

� 
 ��

�B��k
3�B
� �, (42)

�2�k
3� 
 1��� �

�

2
. (43)

Let � be the set of all binary sequences of length (3
k). For each û� � �, for each B �

[k]3, denote by û�(B) the B-coordinate of û� . For û� � �, define �(û�) � {�B(û�) : B �
[k]3}, where, for each B � [k]3,

�B�û�� � 
�B if û��B� � 1
1 � �B if û��B� � 0. (44)

For û� � �, for the parameters k, �(û�), ��, ��, let

�11.2
�û�� � �11.2

�û�� �k, ��û��, ��, ���

be the constant guaranteed by Proposition 11.2. Set

� � min
û���

�11.2
�û�� . (45)

Let � � 1
� be a given integer. For û� � �, for the parameters k, �(û�), ��, ��, �, and

�, let

r11.2
�û�� � r11.2

�û�� �k, ��û��, ��, ��, �, ��,


11.2
�û�� � 
11.2

�û�� �k, ��û��, ��, ��, �, ��

be those constants guaranteed by Proposition 11.2. Set
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r � max
û���

r11.2
�û�� ,


1 � min
û���


11.2
�û�� . (46)

For k, �, and � given above, let


� � 
10.5�k, �, ��

be that constant guaranteed by Fact 10.5. Let 
� � 0 satisfy

6k
��3 � ��
��1,2,3	

2
.

Let


� � 
10.3�3, �,
1

4�
be that constant guaranteed by Fact 10.3. Set


 � min�
1, 
�, 
�, 
�	. (47)

This concludes our definitions of the constants.

Proof of Proposition 11.3. Suppose that � and G � �1�i
j�k Gij satisfy the hypoth-
esis of Setup 1� with parameters k, {�B : B � [k]3}, � � 0, �, r, 
, and n sufficiently
large. We show that all but ���({1, 2, 3})� triples h � �({1, 2, 3}) satisfy

��Kk
�3��h�� �

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 
 ��.

To that end, recall we earlier defined � to be the set of all binary sequences of length
(3

k). For each û� � �, consider �û� � �B��k
3 �û��B�, where

�û��B� � 
��B� if û��B� � 1
�3�G�B�����B� if û��B� � 0.

Note that if û�(B) � 1, then d�û�
(G(B)) � �B, and otherwise, d�û�

(G(B)) � 1 � �B.
For convenience of notation, set �1 � {û� � � : û�({1, 2, 3}) � 1}. Fix û� � �1. For

a triple h � �({1, 2, 3}), define

�
Kk

�3�
�û�

�h� � �Y � �k��û�� : h � �Y
3	.
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Define �(good)({1, 2, 3}) � �({1, 2, 3}) to be the set of triples h � { x, y, z} � �({1,
2, 3}) which satisfy the conclusion of Fact 10.5 with constant � from (42) and such that
for every choice û� � �1, h satisfies

��
Kk

�3�
�û�

�h�� �
�B��k
3��1,2,3	�B�û��

��k
2��3

nk�3�1 � ���, (48)

where �B(û�) is given in (44). Then, for each h � �(good)({1, 2, 3}), observe

�
û���1

��
Kk

�3�
�û�

�h�� � ��
Kk

�3�
G

�h�� �
nk�3

��k
2��3

�1 
 ��,

where the last inequality follows from Fact 10.5 and our choice of 
 in (47). Denoting 1� �
(1, . . . , 1) � �1, the sequence of all 1’s, we see by Proposition 11.2 that for h �
�(good)({1, 2, 3}),

nk�3

��k
2��3

�1 
 �� � ��
Kk

�3�
� 1�

�h�� 
 �
û���1��1�	

��
Kk

�3�
�û�

�h��

� ��
Kk

�3�
� 1�

�h�� 
 �
û���1��1�	

�B��k
3��1,2,3	�B�û��

��k
2��3

nk�3�1 � ���. (49)

As �1� � �, note that �
Kk

�3�
� 1�

�h� � �Kk
�3��h�. It thus follows from (49) that

��Kk
�3��h�� �

nk�3

��k
2��3 �1 
 � � �1 � ��� �

û���1��1�	

�B��k
3��1,2,3	�B�û��
 . (50)

Note that with �B(û�) defined in (44), B � [k]3�{1, 2, 3}, we have

�
û���1

�B��k
3��1,2,3	�B�û�� � �B��k
3��1,2,3	��B 
 �1 � �B�� � 1. (51)

Thus, we conclude from (50) and (51) that

��Kk
�3��h�� �

nk�3

��k
2��3

�1 
 � � �1 � ����1 � �B��k
3��1,2,3	�B�1� ��
.

However, for each B � [k]3, �B(1� ) � �B; thus

��Kk
�3��h�� �

nk�3

��k
2��3

��B��k
3��1,2,3	�B 
 � 
 ��


� �B��k
3��1,2,3	�B

nk�3

��k
2��3

�1 

� 
 ��

�B��k
3��1,2,3	�B

 .
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With our choice of � and �� in (42), we see that, for each h � �(good)({1, 2, 3}),

��Kk
�3��h�� � �B��k
3��1,2,3	�B

nk�3

��k
2��3

�1 
 ��.

Thus, to prove Proposition 11.3, we need only show ��({1, 2, 3})��(good)({1, 2, 3})�

 ���({1, 2, 3})�. However, recall that �({1, 2, 3})��(good)({1, 2, 3}) is just the set of
triples h � { x, y, z} � �({1, 2, 3}) which for some û� � �1 fail to satisfy (48) or fail
to satisfy Fact 10.5 with the constant �.

However, for each û� � �1, due to our choices of � in (45), r in (46) and 
 in (47), it
follows that we may apply Proposition 11.2 to �û� and G � �1�i
j�k Gij to conclude
that all but ����({1, 2, 3})� triples h � �({1, 2, 3}) satisfy (48). Since all but 6k
n3
��
��1,2,3	

2
n3

l3

 ����({1,2,3})� [cf. (47)] triples h � �({1, 2, 3}) satisfy the conclusion of Fact

10.5 with the constant �, we conclude

����1, 2, 3	����good���1, 2, 3	�� � �2� k
3� 
 1�������1, 2, 3	�� � �����1, 2, 3	��,

where the last inequality follows from our choice of �� in (43). Thus, the proof of
Proposition 11.3 is complete. ■

11.3. Intermediate Lemma f Extension Theorem

We use Lemma 11.1 to prove Theorem 10.12.

Proof of Theorem 10.12. Let k � 4 be an integer and let �0 � [k]3 be a 3-uniform
hypergraph containing {1, 2, 3}. Let �, �, and � be given constants. Set

� � �11.1�k, ��	, �, ��

to be that constant guaranteed by Lemma 11.1. Let � � 1
� be a given integer. Set

r � r11.1�k, ��	, �, �, �, ��,


 � 
11.1�k, ��	, �, �, �, ��,

to be those constants guaranteed by Lemma 11.1. Suppose � and G � �1�i
j�k Gij

satisfy the hypothesis of Setup 1 with parameters k, �, � � 0, �, r, 
, and n, where n
is sufficiently large, and 3-uniform hypergraph �0. We show that all but ���({1, 2, 3})�
triples h � �({1, 2, 3}) satisfy

� ��0��1

��k
2��3

nk�3�1 � �� � ���0�h�� �
� ��0��1

��k
2��3

nk�3�1 
 ��.

To that effect, we construct the following auxiliary 3-cylinder ��0

� �B��k
3 ��0�B�, where
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��0�B� � 
��B� if B � �0

�3�G�B�� if B � �0.

Note that ��0
({1, 2, 3}) � �({1, 2, 3}) (by the hypothesis of Theorem 10.12). Note that,

for every triple h � �({1, 2, 3}),

��0�h� � �
Kk

�3�

��0
�h�.

Note that ��0
and G � �1�i
j�k Gij satisfy the hypothesis of Lemma 11.1 with the

following parameters: k, set {�B : B � [k]3}, where

�B � 
� if B � �0

1 if B � �0,

�, �, � � �11.1(k, {�B : B � [k]3}, �, �), �, r � r11.1(k, {�B : B � [k]3}, �, �,
�, �), and 
 � 
11.1(k, {�B : B � [k]3}, �, �, �, �). Thus, by Lemma 11.1, all but
����0

({1, 2, 3})� triples h � ��({1, 2, 3}) � �({1, 2, 3}) satisfy

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 � �� � ��
Kk

�3�

��0
�h�� �

�B��k
3��1,2,3	�B

��k
2��3

nk�3�1 
 ��.

With �B � 1 for all B � �0, Theorem 10.12 is proved. ■

12. THE EXTENSION LEMMA AND THE SPARSE-LINKS LEMMA

In this section, we give a slight restatement of the Extension Lemma in terms of the
upcoming so-called “Sparse-Links Lemma,” Lemma 12.10. In this section, we develop the
Sparse-Links Lemma and show that the Extension Lemma follows rather quickly from it.
The Sparse-Links Lemma is difficult to prove and follows from some nontrivial tools
developed in [13]. It is for this reason we choose to work in the upcoming technical
language of [13].

The following remark gives the schedule and a partial strategy for the remaining parts
of this paper.

Remark 12.1. The rest of this paper is organized as follows.

1. In Section 12.1, we present definitions needed to present the upcoming Sparse-Links
Lemma, Lemma 12.10. We also present Lemma 12.10.

2. In Section 12.2, we confirm that the Sparse-Links Lemma easily implies the
Extension Lemma.

3. In Section 13, we prove the Sparse-Links Lemma. This section involves a complex
argument.
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12.1. Definitions, Facts and the Sparse-Links Lemma

We begin this section by defining an extended notion of regularity for cylinders. In the
following, we abuse the Cartesian product notation for sets A and B by writing A � B �
{{a, b} : a � A, b � B}.

Definition 12.2. Let 	, � be positive reals, let r be a positive integer and let F be a
bipartite graph with bipartition (U, V ). We say that F is (	, �, r)-regular if for any r-tuple
of pairs of subsets ({Uj, Vj})j�1

r , Uj � U, Vj � V, 1 � j � r, satisfying

��
j�1

r

�Uj � Vj�� � ��U��V�,

the following holds

�F � �
j�1

r

�Uj � Vj��
��

j�1

r

�Uj � Vj�� � 	. (52)

Note that it follows directly from the definition that if F is (	, �, r)-regular, then F is also
(	, ��, r�)-regular for any �� � � and positive integer r� � r. We will use this fact
repeatedly. Also, note that in (52), only a lower bound is considered. However, in
application, Definition 12.2 is closely tied with the upcoming Definition 12.5, where we
will be concerned only with lower bounds of the quantity given in (52).

The following fact about (	, �, r) graphs is an easy consequence of Definition 12.2.

Fact 12.3. Let 	, �, and r be given, and suppose F is a bipartite graph with bipartition
(U, V). If F is (	, �, r)-regular, then all but ��U� vertices u � U satisfy

�N�u�� � 	�V�.

Typically, when we encounter (	, �, r)-regular bipartite graphs, they will be sub-
graphs of other highly regular bipartite graphs. This situation prompts the following
definition.

Definition 12.4. Let 	, �, 
 be given positive reals, let r, � be given positive integers, and
let F, G be two given bipartite graphs, each with bipartition (U, V). We call the ordered
pair of graphs (F, G) a (	, �, r, �, 
)-regular couple provided

(i) F � G,
(ii) F is (	, �, r)-regular,
(iii) G is an (�, 
, 2)-cylinder (i.e., a (1

� , 
)-regular pair).

Note that in the definition above, F being (	, �, r)-regular only ensures a lower bound
of 	 on the density described in (52). With G being an (�, 
, 2)-cylinder, Definition 2.1
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ensures that the density of a bipartite subgraph of G on subsets U� � U, �U�� � 
�U�,
V� � V, �V�� � 
�V�, is roughly 1

� .
Related to Definition 12.4, the following environment is used pervasively throughout

this section. Since we considered other environments earlier, we call the following Setup
2. For constants k, �, �, �, r, 
 and n, we consider the following situation for pairs of
graphs G and F.

Setup 2.

(a) G � �1�i
j�k Gij is an (�, 
, k)-cylinder on k-partition (V1, . . . , Vk), �V1�
� . . . � �Vk� � m.

(b) F � �1�i
j�k Fij is a k-partite cylinder defined on the same k-partition (V1, . . . ,
Vk).

(c) For each {i, j} � [k]2, (Fij, Gij) is an (� � 2�

�
, �, r, �, 
)-regular couple.

The following definition relates to Setup 2. That following definition relates to Setup
2 will not be apparent until the upcoming Fact 12.6.

Definition 12.5. Let � be a k-partite 3-cylinder with k-partition (V1, . . . , Vk), and let
G � �1�i
j�k Gij be an underlying k-partite cylinder. Let i, j, 1 
 i 
 j � k, be integers
and let x � V1. We define the {i, j}-link graph of x, Lx

ij, as

Lx
ij � ��y, z	 � Gij�NG,i �v�, NG, j �v�
 : �x, y, z	 � �	. (53)

We further define the link graph of x, Lx, as

Lx � �
1
i
j�k

Lx
ij.

The following fact, given in Fact 4.9 of [12], connects Definition 12.5 to Setup 2. One
can view this fact as partly projecting Setup 1 onto Setup 2 (cf. Remark 12.7).

Fact 12.6. For all �, � � 0, � � 2�, and for all positive integers k � 3, �, and r, there
exists 
 � 0 so that whenever n is sufficiently large and � and �1�i
j�k Gij satisfy the
conditions of Setup 1 with the constants k, �, �, �, r, 
 and n, then

(a) all but 4(k � 1)
n vertices v � V1 satisfy that, for each i � {2, . . . , k},
n

�
�1 � 
� � �NG,i�v�� �

n

�
�1 
 
�,

(b) all but 2( 2
k�1)��n vertices v � V1 satisfy that, for each i, j, 1 
 i 
 j � k,

(Lv
ij, Gij[NG,i(v), NG,j(v)]) is an (� � 2��

�
,��, �, r, 2� 
)-regular couple.

Remark 12.7. Observe in Fact 12.6 that the graph Lv � �1
i
j�k Lv
ij plays the role of

“F” in Setup 2 and the graph �1
i
j�k Gij�NG,i�v�, NG, j�v�
 plays the role of “G” in
Setup 2. Note, as well, the “asymptotic” quantity “n/�” plays the role of m in Setup 2.
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Thus, Fact 12.6 asserts that in the context of Setup 1, with appropriate constants, most
vertices v � V1 give rise to graphs Lv and �1
i
j�k Gij�NG,i�v�, NG, j�v�
 satisfying the
conditions of Setup 2.

Fact 12.6 prompts the following definition.

Definition 12.8. A vertex v � V1 is said to be a good vertex if it satisfies

(a) for each i � {2, . . . , k},
n

�
�1 � 
� � �NG,i�v�� �

n

�
�1 
 
�,

(b) for all i, j, 1 
 i 
 j � k, (Lv
ij, Gij[NG,i(v), NG, j(v)]) is an (� � 2��

�
,

��, �, r, 2� 
)-regular couple.

By Fact 12.6, we see almost all vertices v � V1 are good vertices.
The following definition addresses the thesis of the Sparse-Links Lemma, Lemma

12.10.

Definition 12.9. For positive � and a good vertex v � V1, a link edge e � {x, y} � Lv
23

is said to be �-sparse with respect to v if the triple {v, x, y} � � satisfies

��Kk
�3���v, x, y	�� �

��k
3��1

��k
2��3

nk�3�1 � ��

(cf. Definition 10.11). In other words, if {v, x, y} � � is contained in no more than
�� k

3� � 1

�� k
2��3

nk�3(1��) copies of Kk
(3).

We now present the Sparse-Links Lemma.

Lemma 12.10 (Sparse-Links Lemma). Let k � 5 be an integer. For all positive reals �,
�, �, and 	, there exists � � 0 such that, for all � � 1

� , there exists r and 
 so that
whenever n is sufficiently large and � and G � �1�i
j�k Gij satisfy the hypothesis of
Setup 1 with the constants k, �, �, �, r, 
, and n and 3-uniform hypergraph �0 � Kk

(3), then,
for all but fewer than �n good vertices v � V1, the number of link edges of v in Lv

23 which
are �-sparse with respect to v is less than 	 �

� (n
� (1 � 
))2.

12.2. Proof of Lemma 10.13

In this section, we use Lemma 12.10 to prove Lemma 10.13. We begin by defining the
promised constants.

Definitions of the Constants. Let k � 5 be a given integer, and let �, �, � be given
positive reals. Define auxiliary positive constants �, 	, �1 so that
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2� 
 2	 �
�1�

2
�

��

8
. (54)

Let

�12.10 � �12.10��, �, �, 	� (55)

be that constant guaranteed by Lemma 12.10. Set � � 0 to satisfy

� � �12.10, (56)

2k2�� �
�1�

4
. (57)

Let � � 1
� be a given integer. Let

r � r12.10��, �, �, 	, �12.10, �� (58)

be that constant guaranteed by Lemma 12.10.
Let


12.10 � 
12.10��, �, �, 	, �12.10, �, r12.10� (59)

be that constant guaranteed by Lemma 12.10. Let


12.6 � 
12.6��, �, �, r� (60)

be that constant guaranteed by Fact 12.6. Set 
 � 0 to satisfy


 � min
�1�

4k�3 , 
12.10, 
12.6�. (61)

This ends our definitions of the constants.

Proof of Lemma 10.13. Suppose k � 5 is a given integer, and let �, �, �, be given
positive reals. Let � � 0 be given by (56) and (57). Let � � 1

� be a given integer, and let
r and 
 be given in (58) and (61) respectively. Let � be a k-partite 3-cylinder and G
� �1�i
j�k Gij an underlying cylinder of � which together satisfy the conditions of
Setup 1 with constants k, �, �, �, r, 
, and n, where n is sufficiently large, and triple
system �0 � Kk

(3). We show that all but ���({1, 2, 3})� triples h � �({1, 2, 3}) belong
to at least

��k
3��1

��k
2��3

nk�3�1 � ��

copies of Kk
(3).
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We define a set �� � �({1, 2, 3}) so that ���� 
 ���({1, 2, 3})� and so that every triple
h � �({1, 2, 3})��� belongs to at least

��k
3��1

��k
2��3

nk�3�1 � ��

copies of Kk
(3). Consider the following sets:

(i) Let S0 � V1 be the set of all good vertices (cf. Definition 12.8). We determine the
number of triples h � �({1, 2, 3}) which are incident to vertices in V1�S0 by using
Fact 12.6. Indeed, by our choice of 
 in (61), 
 � 
12.6(�, �, �, r), thus, we may
apply Fact 12.6 to � and G � �1�i
j�k Gij with the constants k, �, �, �, r, 
, and
n.
(a) Let S1 � V1 be the set of all vertices v � V1 such that

n

�
�1 � 
� � �NG,i�v�� �

n

�
�1 
 
� (62)

for all i � 2, . . . , k. Note that by statement (a) of Fact 12.6, �S1� � (1 � 4k
)n.
Let �1 be the set of all triples h � �({1, 2, 3}) such that there exists a vertex
v � V1�S1 with v � h. Note that

��1� � 4k
n3. (63)

(b) Let S2 � S1 be the set of all vertices v � S1 such that for all i, j, 1 
 i 
 j �

k, (Lv
ij, Gij(v, G)) is an (� � 2��

�
,��, �, r, 2� 
)-regular couple. We conclude from

statement (b) of Fact 12.6 that �S2� � (1 � k2��)n. Let �2 be the set of all
triples h � �({1, 2, 3}) such that there exists a vertex v � S1�S2 with v � h.
Note that since each v � S1�S2 satisfies (62), each such vertex could be contained
in at most 1

� (1 � 
)(n
� (1 � 
))2 triples h � �({1, 2, 3}). Thus,

��2� � k2��n�n

�
�1 
 
�� 2�1

�
�1 
 
�� � 2k2��

n3

�3 . (64)

Note that, by (63) and (64), the number of triples h � �({1, 2, 3}) which are

incident to vertices in V1�S0 is no more than (4k
�3 � 2k2��) n3

�3 .
(ii) Let �3 be the set of all triples h � {v, x, y} � �({1, 2, 3}) such that v � S2 and

{x, y} � Lv
23 is �-sparse with respect to v (cf. Definition 12.9). By our choice of

constants � � �12.10(�, �, �, 	) in (55), r � r12.10(�, �, �, 	, �12.10, �) in (58) and

 � 
12.10(�, �, �, 	, �12.10, �, r12.10) in (59), we may apply Lemma 12.10 to infer
that, for all but �n vertices v � S2, no more than 	 �

� (n
� (1 � 
))2 of the links of v

are �-sparse with respect to v. Note that since each v � S2 satisfies (62), the number
of triples which are incident to any fixed vertex v of the exceptional �n vertices is at

most 1
� (1�
)(n3

�
(1�
))2
472 n2

�3 . Thus, we conclude

��3� � 2�
n3

�3 
 �S2�	
�

� �n

�
�1 
 
�� 2

� 2�
n3

�3 
 2�	
n3

�3 . (65)
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Set �� � �1 � �2 � �3. Then due to (63)–(65), we conclude

���� � k
n3 
 2k2��
n3

�3 
 2�
n3

�3 
 2	
n3

�3 � �k
�3 
 2k2�� 
 2� 
 2	�
n3

�3 .

By the inequalities in (54), (57), and (61), we infer

���� � �1�
n3

�3 � �
�

4

n3

�3 . (66)

As �({1, 2, 3}) is an (�, �, r)-regular triad, we conclude that ��({1, 2, 3})� � (� �
�)��3(G({1, 2, 3})�. Using Fact 10.3, we further conclude that

����1, 2, 3	�� � �� � ��
1

2

n3

�3 �
�

4

n3

�3 .

Thus, from (66), we conclude

���� � �
�

4

n3

�3 � �����1, 2, 3	��.

Any triple h � {v, x, y} � ���� must be such that v � S2 and { x, y} � Lv
23 is

not �-sparse with respect to v. Thus, by Definition 12.9 the number of copies of Kk
(3)

containing h � ���� is at least

��k
3��1

��k
2��3

nk�3�1 � ��.

■

13. PROOF OF THE SPARSE-LINKS LEMMA

We begin with the following elementary definitions and facts we need for our proof of the
Sparse-Links Lemma.

13.1. Elementary Definitions and Facts

We return to the context of Setup 2 and establish some helpful notation. For a pair of
k-partite graphs F � �1�i
j�k Fij and G � �1�i
j�k Gij with common k-partition
(V1, . . . , Vk), suppose that Fij � Gij for all i, j, 1 � i 
 j � k. For v � V1, H � {F,
G}, define

Fij�v, H� � ��x, y	 � Fij : x � NH,i�v�, y � NH,j�v�	 � Fij�NH,i�v�, NH,j�v�


and

PACKINGS IN DENSE 3-UNIFORM HYPERGRAPHS 293



Gij�v, H� � ��x, y	 � Gij : x � NH,i�v�, y � NH, j�v�	 � Gij�NH,i�v�, NH, j�v�
.

(67)

Similarly, for e � {v1, v2} � F12, for a fixed pair i, j, 2 
 i 
 j � k, define the graphs
Fij(e, F) and Gij(e, F) as

Fij�e, F� � Fij�v1, F� � Fij�v2, F� (68)

and

Gij�e, F� � Gij�v1, F� � Gij�v2, F�,

respectively.
Our first fact essentially states that when a pair of graphs F, G satisfies the conditions

of Setup 2, then so will the graphs induced by the neighborhoods of almost all of their
vertices. More precisely, we have the following fact.

Fact 13.1. For all integers k � 3 and �, �0 � 0, there exists � � 0, so that, for all
integers � � 1

� and positive integers r0, there exists an integer r so that for all 
0 � 0 there
exists 
 � 0 so that whenever m is sufficiently large and a pair of graphs F and G satisfy
the conditions of Setup 2 with parameters k, �, �, �, r, 
, and m, then all but

( 2
k�1)(2
 � 2� � 4��2


�0�� � 2��2)m vertices v � V1 satisfy

(a) for each 1 
 i � k,�NF,i(v)� � � � 2�
�

m and m
�

(1 � 
) � �NG,i(v)� � m
�

(1 � 
),
(b) for all 1 
 i 
 j � k, (Fij(v, F), Gij(v, F)) is an (� � 2�0

�
, �0, �, r0, 
0)-regular

couple.

We mention that Fact 13.1 was given in Fact 4.6 in [12].
The following statement complements Fact 13.1. While according to Fact 13.1, (Fij(v,

F), Gij(v, F)), 1 
 i 
 j � k, is a regular couple for a typical vertex v � V1,
Proposition 13.2 asserts that (Fij(e, F), Gij(e, F)), 2 
 i 
 j � k, is a regular couple
for a “typical edge” e � F12. Moreover, the sizes �NF,i(e)� and �NG,i(e)� are “correct.”
More precisely, our proposition states the following.

Proposition 13.2. Let k � 4 be an integer. For all reals �, �0, � � 0, there exists � �
0 so that for all integers � � 1

� and all positive integers r0, there exists an integer r so that
for all 
0 � 0, there exists 
 � 0 so that whenever m is sufficiently large and F and G
satisfy Setup 2 with constants k, �, �, �, r, 
, and m, then all but ��F12� edges e � F12

satisfy

(a) for each i � {3, . . . , k},

�NF,i�e�� � �� � 2�

� � 2

m
and

m

�2 �1 � 
�2 � �NG,i�e�� �
m

�2 �1 
 
�2,
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(b) for all i, j, 2 
 i 
 j � k, (Fij(e, F), Gij(e, F)) is an �� � 2�0

�
, �0, �, r0, 
0�-

regular couple.

Unlike Fact 13.1, Proposition 13.2 did not appear in any earlier papers, and thus we state
it as a proposition. However, Proposition 13.2 can be proved by a double application of
Fact 13.1. We therefore omit the standard argument.

In the upcoming Remark 13.4, we explain how the following definition is motivated by
Fact 12.6, Definition 12.8 and Proposition 13.2.

Definition 13.3. For a good vertex v � V1, and constants �0, r0 and 
0, a link edge e �
Lv

23 is said to be a good link edge with respect to �0, r0, and 
0 provided

(a) for each i � {4, . . . , k},

�NLv,i�e�� � �� � 2��

�
� 2 n

�
�1 � 
�,

(b) for all i, j, 3 
 i 
 j � k, (Lv
ij(e, Lv), Gv

ij(e, Lv)) is an �� � 2�0

�
, �0, �,

r0, 
0)-regular couple.

Remark 13.4. While we prove it precisely later in context (cf. Claim 13.11), we mention
that for each fixed good vertex v � V1, nearly all link edges e � Lv

23 are good link edges.
Indeed, by Definition 12.8, part (a) all �NG,i(v)� � n/�, 1 
 i � k. As in Remark 12.7,

we set m � n/� (as in Setup 2). Similarly we set Lv � �1
i
j�k Lv
ij to play the role of

“F” and �1
i
j�k Gij�v, G� to play the role of “G.” In view of Proposition 13.2, part (a),
most edges e � Lv

23 � F12 satisfy

�NLv,i�e�� � �� � 2�

� � 2

m � �� � 2�

� � 2 n

�
.

Thus, part (a) in Definition 13.3 is satisfied.
By Definition 12.8, part (b) all (Lv

ij, Gij(v, G)), 1 
 i 
 j � k, are “regular” couples.
In view of Proposition 13.2, part (b), most edges e � L23 satisfy (b) of Definition 13.3.

Our next fact was given in Fact 4.7 of [12] and is related to Fact 10.3.

Fact 13.5. For all integers k � 3 and all �, � � 0, there exists � � 0 so that, for all
integers � �

1
� , there exist an integer r and 
 � 0 so that whenever m is sufficiently large

and graphs F and G satisfy Setup 2 with constants k, �, �, �, r, 
, and n, then

��k�F�� � ��

��
�k

2�
mk�1 � ��.

The following fact appeared as Fact 4.2 in [12]. This fact is more basic than the
previous facts of this subsection.
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Fact 13.6. Let k, r, � be given integers, and let 
 � 0 and � � 0 be given real numbers.
Suppose G � �0�i
j�k Gij is a k-partite cylinder with k-partition (W0, W1, . . . , Wk�1),
�W1� � . . . � �Wk�1� � n, and �W0� � �n, where n is assumed to be sufficiently large.
Suppose G satisfies that for all j � [k � 1],

(i) the subgraph G0j of G induced by W0 � Wj satisfies that whenever W�0 � W0

and W�j � Wj, �W�0� � 
n and �W�j� � 
n, then
1

�
�1 � 
� � dG 0 j�W�0, W�j� �

1

�
�1 
 
�,

(ii) for all x � W0, �Nj(x)� �
n
� (1 � 
).

Then there exist pairwise disjoint r-element subsets D1, . . . , Dq, q � �n
r (1 � rk
/�),

satisfying

(a) for each i � [q], Di � {x1
(i), . . . , xr

(i)} � W0,
(b) for each i � [q], for all {u, v} � [r]2, and for all j � [k � 1],

�Nj�xu
�i�� � Nj�xv

�i��� �
n

�2 �1 
 
�2.

13.2. Advanced Definitions and a Technical Lemma from [13]

In this subsection, we present a lemma proved in [13] which will help us prove the
Sparse-Links Lemma. This auxiliary lemma, Lemma 13.10, is difficult and has a highly
nontrivial proof. For more about the proof of Lemma 13.10, see [13].

Before we may state Lemma 13.10, we state some definitions. We begin by extending
our notion of density in a hypergraph to a type of clique-density.

Definition 13.7. Let � be a k-partite 3-cylinder with underlying k-partite cylinder G
� �1�i
j�k Gij, and let B � [k], �B� � b. For the B-cylinder G(B), we define the density
d�(G(B)) of � with respect to the B-cylinder G(B) as

d��G�B�� � � ��b���B�� � �b�G�B���
��b�G�B���

if ��b�G�B��� � 0

0 otherwise.

In other words, this density counts the proportion of copies of Kb
(2) in G(B) which underlie

copies of Kb
(3) in �(B).

More generally, let QB � G(B), B � [k], �B� � b, where QB � ��i, j	��B
2 QB
ij. One

can define the density d�(QB) of � with respect to QB as

d��QB� � � ��b��� � �b�QB��
��b�QB��

if ��b�QB�� � 0

0 otherwise.

For our purposes, we will need an extension of the definition above, and will consider a

296 HAXELL, NAGLE, AND RÖDL



simultaneous density of � with respect to a fixed r-tuple of b-partite cylinders
(QB(1), . . . , QB(r)).

Definition 13.8. Let � be a k-partite 3-cylinder with underlying k-partite cylinder G
� �1�i
j�k Gij, and let B � [k], �B� � b. Let Q� � Q� B � (QB(1), . . . , QB(r)) be an

r-tuple of B-cylinders QB�s� � ��i, j	��B
2 QB
ij�s� satisfying that for every s � [r], {i, j} �

[B]2, QB
ij(s) � Gij. We define the density d�(Q� ) of Q� as

d��Q� � � �
��b��� � � s�1

r �b�QB�s���

��s�1
r �b�QB�s���

if ��s�1
r �b�QB�s��� � 0

0 otherwise.

We now give a definition which provides an extended notion of regularity for 3-cylinders.
The reader is advised that the following concepts may be the most complicated notions in
this paper.

Definition 13.9. Let � be a k-partite 3-cylinder, and suppose G � �1�i
j�k Gij is an
underlying cylinder of �. Let B � [k], �B� � b, r and � � 0 be given. We say that the
B-3-cylinder �(B) is (�, r)-regular with respect to G(B) if the following regularity
condition is satisfied: Suppose Q� � Q� B � (QB(1), . . . , QB(r)) is an r-tuple of B-cylinders
QB�s� � ��i, j	��B
2 QB

ij�s� satisfying that for all s � [r], and all {i, j} � [B]2, QB
ij(s) �

Gij. Then ��s�1
r �b�QB�s��� � ���b�G�B��� implies

d��Q� � � d��G�B�� � �. (69)

If, moreover, it is specified that �(B) is (�, r)-regular with respect to G(B) with density
d�(G(B)) � � � � for some �, then we say that the B-3-cylinder �(B) is (�, �, r)-regular
with respect to G(B).

Note that, for k � 3, the above definition reduces to the concept of (�, r)-regularity in
Definition 2.8. In that case, this definition roughly asserts that graph triangles formed by
the edges of G are matched by triples of � in at least an � � � portion. For k � 3 and
B � [k], this definition roughly states that instead of graph triangles, graph cliques Kk

(2)

underlie hypergraph cliques Kk
(3) in � in at least a “correct” portion.

The following nontrivial technical lemma was proved in [12] (cf. Statement 3.5) and
[13]. It states that the seemingly weaker concept of (�, r)-regularity for k � 3 ensures the
validity of the stronger concept above for k � 3 with adapted constants.

Lemma 13.10. Let k � 3 be an integer. For all positive � and �k, there exists � � 0 so
that, for all integers � �

1
� , for all positive integers rk, there exist r, 
 so that whenever

n is sufficiently large and k-partite 3-cylinder � and graph G satisfy Setup 1 with
constants �, �, �, r, 
, and n and 3-uniform hypergraph �0 � Kk

(3), then � � �([k]) is

��� k
3� , �k, rk�-regular with respect to G � G([k]).
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13.3. Proof of Lemma 12.10

Before giving the proof of Lemma 12.10, we give the definitions of the constants involved.
We remark that the definitions of the constants guaranteed by Lemma 12.10 are quite
technical. For the reader not interested in these details, we cite the following hierarchy
governing the sizes of these constants:

�, �, �, 	 � � �
1

�
,

1

r
� 
.

Definitions of the Constants. Let k � 5 be a given integer, and let �, �, �, and 	 be given
positive constants. Without loss of generality, assume � 
 1

4 .

Definition of �. We first choose auxiliary constants � � 0 and �� � 0 such that

�1 � ��7 � 1 � �2 �
1

2
, (70)

1 �
2��

�	
� 1 � �. (71)

Let

�13.5 � �13.5��, �� (72)

be that constant guaranteed by Fact 13.5. Let

�13.2 � �13.2��, �13.5, ��� (73)

be that constant guaranteed by Proposition 13.2.
Choose �k�1 � 0 to satisfy

8�k�1

��k�1
2 �	

� min
	

8
�� k�1

2 � , ��, (74)

1 �
2�k�1

��k�1
3 �

� 1 � �, (75)

and such that by setting

� �
def 8�k�1

�� k�1
2 �	

,

the following holds
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1 �
2�

	��k�1
2 ��1 � ��4

� 1 � �. (76)

Let

�13.10 � �13.10��, �k�1� (77)

be that constant guaranteed by Lemma 13.10. Set � � 0 to satisfy

� � min��13.2
2 , �13.10	, (78)

�1 �
2��

�
� 2�k�3��1

� 1 � �. (79)

This concludes our definition of �.
Let � � 1

� be a given integer. We now define the promised constants r and 
.

Definitions of r and �. Let

r13.5 � r13.5��, �, �13.5, �� (80)

be that constant guaranteed by Fact 13.5. Let

r13.2 � r13.2��, �13.5, ��, �13.2, �, r13.5� (81)

be that constant guaranteed by Proposition 13.2. For � given in (74), set

rk�1 � ��k�1. (82)

Let

r13.10 � r13.10��, �k�1, �13.10, �, rk�1� (83)

be that constant guaranteed by Lemma 13.10. Set

r � max�r13.5, r13.2, r13.10	. (84)

Let


13.5 � 
13.5��, �, �13.5, �, r13.5� (85)

be that constant guaranteed by Fact 13.5. Let


13.2 � 
13.2��, �13.5, ��, �13.2, �, r13.5, r13.2, 
13.5� (86)
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be that constant guaranteed by Proposition 13.2. Let


13.10 � 
13.10��, �k�1, �13.10, �, rk�1, r13.10� (87)

be that constant guaranteed by Lemma 13.10. For the constant � � 1, let


10.3 � 
10.3�k � 1, 1, �� (88)

be that constant guaranteed by Fact 10.3. Let 
� � 0 satisfy

�1 
 
���k�1
2 � � 2, (89)

1 �
rk�1k
�

�
� 1 � �, (90)

�1 � 
��k�3 � 1 � �, (91)

�1 
 
��2 � 1 
 �. (92)

Set


 � min

13.5,

13.2

2�
, 
13.10,


10.3

4�2 , 
��. (93)

This concludes the definitions of the constants.

Proof of Lemma 12.10. Let k � 5 be a given integer. Let �, �, �, 	 be given positive
reals. Let � be given in (78)–(79). Let � � 1

� be a given integer. Let r and 
 be given in
(84) and (93) respectively. Let n be sufficiently large, and suppose � is a k-partite
3-cylinder and G � �1�i
j�k Gij is an underlying cylinder which together satisfy the
conditions of Setup 1 with constants �, �, �, r, 
, and n and 3-uniform hypergraph �0 �
Kk

(3). We show that, for all but less than �n good vertices v � V1, the number of link
edges of v which are �-sparse with respect to v is less than 	 �

� (n
� (1 � 
))2.

On the contrary, let D be a set of good vertices v � V1 (cf. Definition 12.8), where �D�
� �n, such that, for each v � D, there exists a set Ev of link edges e � Lv

23, each of
which is �-sparse with respect to v (cf. Definition 12.9), where �Ev� � 	 �

� (n
� (1 � 
))2

(here for simplicity we omit integer part notation). We produce a contradiction under this
assumption, hence proving Lemma 12.10.

To that effect, we begin by defining the following set � � �k(�) as

� � �Y � �k��� : for some v � D and link edge e � �x, y	 � Ev, �v, x, y	 � �Y
3	.

(94)

We estimate ��� from above and below. To see the upper bound, it follows from our
assumptions on the sizes �D�, and for each v � D, �Ev�, and the definition of a link edge
of v which is �-sparse with respect to v, that
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��� � �
v�D

�Ev�
��k

3��1

��k
2��3

nk�3�1 � ��,

� �n	
�

� �n

�
�1 
 
�� 2 ��k

3��1

��k
2��3

nk�3�1 � ��,

� �	�1 � ���1 
 
�2
��k

3�

��k
2�

nk,

� �	�1 � ���1 
 ��
��k

3�

��k
2�

nk, (95)

where the inequality in (95) follows from our choice of 
 in (92).
On the other hand, we now show that

��� � �	�1 � �2�
��k

3�

��k
2�

nk, (96)

thus producing a contradiction with (95). The proof of (96) will be more complicated and
its proof will only be completed after a series of claims.

To obtain the lower bound in (96), we begin our work by fixing v � D. We first recall
that D is a set of good vertices, so according to Definition 12.8, the fixed vertex v � D

satisfies that, for all i, j, 1 
 i 
 j � k, (Lv
ij, Gij(v, G)) is an (� � 2��

�
, ��, �, r, 2� 
)-

regular couple. Consider the (k � 1)-partite graphs �1
i
j�k Lv
ij and �1
i
j�kGij(v, G).

It follows that these graphs satisfy the conditions of Setup 2 with the constants k � 1, �,
��, �, r, and 2
�, where again due to Definition 12.8, for each t, 1 
 t � k, the size
of each partite set Vt � V��1
i
j�k Gij�v, G�� � NG,t�v� is at least n

� (1 � 
). [In
general, we use V( J) to denote the vertex set of a graph J.] We intend to use Proposition
13.2 to conclude that as a result of v � D being a good vertex, almost all of the edges e �
Ev are good edges (with respect to suitable constants) (cf. Definition 13.3). We prove this
fact precisely in the following claim. For what follows, recall that for �, �, � and 	 given
in Proposition 12.10, we defined auxiliary constants � and �� in (70) and (71).

Claim 13.11. For the fixed vertex v � D and for the constants �13.5 � �13.5(�, �), r13.5 �
r13.5(�, �, �13.5, �), and 
13.5 � 
13.5(�, �, �13.5, �, r13.5) in (72), (80) and (85) respectively,
at least �1 � 2��

�	� �Ev� edges e � Ev are good link edges for the constants �13.5, r13.5, and

13.5 (cf. Definition 13.3).

Proof of Claim 13.11. Claim 13.11 follows from the fact that since v is a good vertex and
due to our choices of �, r and 
 in (78), (84), and (93), we may apply Proposition 13.2
to the graphs �1
i
j�k Lv

ij and �1
i
j�k Gij�v, G�. Note that, in (78), �� � �13.2,
where �13.2 � �13.2(�, �13.5, ��) is given in (73). Note that, in (84), r � r13.2, where
r13.2 � r13.2(�, �13.5, ��, �13.2, �, r13.5) is given in (81). Note that in (93), 2�
 � 
13.2,
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where 
13.2 � 
13.2(�, �13.5, ��, �13.2, �, r13.5, r13.2, 
13.5) is given in (86). Thus, by
our choice of constants �, r and 
, we may apply Proposition 13.2 to the graphs
�1
i
j�k Lv

ij and �1
i
j�k Gij�v, G�. Since the pair of graphs �1
i
j�k Lv
ij and

�1
i
j�k Gij�v, G� satisfies the hypothesis of Setup 2 with the constants k � 1, �, ��,
�, r, and 2
�, we conclude from Proposition 13.2 that all but ���Lv

23� edges e � Lv
23

satisfy the conclusion of Claim 13.11. Note that �Lv
23� �

1
� (1 � 
)(n

� (1 � 
))2 � 2 n2

�3 .

Also, recall it was our assumption that �Ev� � 	 �
� (n

� (1 � 
))2 � �	 n2

�3 . Consequently,

�Lv
23� �

2
�	 �Ev�, and we thus conclude that all but 2��

�	 �Ev� edges e � Ev are good link
edges with respect to the constants �13.5, r13.5 and 
13.5. ■

For v � D fixed, set E�v � Ev to be the set of all link edges of v which are good link
edges with respect to the constants �13.5, r13.5 and 
13.5. Note that, by Claim 13.11,

�E�v� � �1 �
2��

�	 � �Ev�. (97)

Fix e � E�v. We are interested in counting how many copies of Kk�3
(2) are contained within

the (k � 3)-partite graph �3
i
j�k Lv
ij�e, Lv� (cf. (68)) (later, we will see that some of

these underlie special copies of Kk�3
(3) ). The following claim gives an estimate on this

count.

Claim 13.12.

��k�3� �
3
i
j�k

Lv
ij�e, Lv��� � ��

���
k�3

2 ���� � 2��

� �2 n

�
�1 � 
��k�3

�1 � ��.

Proof of Claim 13.12. We note that Claim 13.12 essentially follows from the fact that
due to our choice of constants, we may apply Fact 13.5 to the graph �3
i
j�k Lv

ij�e, Lv�

together with the graph �3
i
j�k Gv
ij�e, Lv�. Indeed, e � E�v is a good link edge with

respect to the constants �13.5, r13.5, 
13.5, so, for each i, j, 3 
 i 
 j � k, (Lv
ij(e, Lv),

Gv
ij(e, Lv)) is an �� � 2�13.5

�
, �13.5, r13.5, �,
13.5� -regular couple, where the constants

�13.5 � �13.5(�, �), r13.5 � r13.5(�, �, �13.5, �), and 
13.5 � 
13.5(�, �, �13.5, �, r13.5)
[cf. (72), (80), and (85)]. Thus, the pair of (k � 3)-partite graphs �3
i
j�k Lv

ij�e, Lv� and

�3
i
j�k Gv
ij�e, Lv� satisfy the conditions of Setup 2 with the constants k � 3, �, �13.5,

�, r13.5, and 
13.5. With �13.5, r13.5, and 
13.5 appropriately given, it thus follows that Fact
13.5 applies to the pair of graphs �3
i
j�k Lv

ij�e, Lv� and �3
i
j�k Gv
ij�e, Lv� with the

constants �, �, �13.5, �, r13.5, and 
13.5. It is essentially this application that renders the
statement of Claim 13.12. However, to complete the application, we also need to know the
sizes �V��3
i
j�k Lv

ij�e, Lv�� � Vt� � � NLv,t�e��, 3 � t � k, of each partite set of
�3
i
j�k Lv

ij�e, Lv�. However, according to Definition 13.3, for each t, 3 
 t � k,

�V� �
3
i
j�k

Lv
ij�e, Lv�� � Vt� � �NLv,t�e�� � �� � 2��

� �2 n

�
�1 � 
�.
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We therefore see from Fact 13.5 that

��k�3� �
3
i
j�k

Lv
ij�e, Lv��� � ��

���
k�3

2 ���� � 2��

� �2 n

�
�1 � 
��k�3

�1 � ��.

Thus, our proof of Claim 13.12 is complete. ■

We now prepare to use Claim 13.12. For v � D and e � E�v fixed above, let e � { x,
y}. Define

Ax
�v� � 
 �x, a	 � Lv : a � V� �

3
i
j�k
Lv

ij�e, Lv���,

By
�v� � 
 �y, b	 � Lv : b � V� �

3
i
j�k
Lv

ij�e, Lv���.

Define

Ce
�v� � C�x,y	

�v� � �x, y	 � Ax
�v� � By

�v� � �
3
i
j�k

Lv
ij�e, Lv�.

Note that Ce
(v) is a (k � 1)-partite graph on vertex sets NG,2(v), . . . , NG,k(v). Note also

that

��k�1�Ce
�v��� � ��k�3� �

3
i
j�k
Lv

ij�e, Lv���. (98)

and that

�
e�E�v

�k�1�Ce
�v�� � �k�1��

e�E�v

Ce
�v��. (99)

For v � D fixed, we use Claim 13.12 to compute a lower bound on
��e�E�v �k�1�Ce

�v���, and after providing this lower bound, we pause to reveal our strategy
for proving (96).

As �e�E�v �k�1�Ce
�v�� is a disjoint union, we see by Claim 13.12, (98), and the fact that

�E�v� � (1� 2��
�	 )	 �

� (n
� (1 � 
))2 from (97) that ��e�E�v �k�1�Ce

�v��� has lower bound

��

�
��

k�1
2 ��1�n

�
� k�3�1 �

2��

�
� 2�k�3�

�1 � 
�k�3�1 � ���1 �
2��

�	
�	

�

�
�n

�
�1 
 
�� 2

.

(100)

As a result of (71), (79), and (91), we conclude that (100) can be estimated from below
to yield
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� �
e�E�v

�k�1�Ce
�v��� � 	��

���
k�1

2 ��n

��k�1

�1 � ��4. (101)

We use (101) to prove (96). Our goal is to take a set of rk�1 [cf. (82)] vertices v � D,
and use their graphs �e�E�v Ce

�v� to build an rk�1-tuple of (k � 1)-partite cylinders [an
rk�1-tuple of (k � 1)-partite cylinders in the sense of Definition 13.9]. We then wish to
invoke Lemma 13.10 to infer that many of the copies of Kk�1

(2) in �e�E�v Ce
�v�, over all

rk�1 vertices v � D specially chosen, must underlie copies of Kk�1
(3) in �. We make our

plan precise in what follows, and begin by using Fact 13.6 given earlier to select the
special set of rk�1 vertices v � D.

We define the following graph GD to which we apply Fact 13.6. For 1 � i 
 j � k,
set GD

ij � GD
1j to be the subgraph of G1j induced on the sets D and Vj, that is,

GD
ij � GD

1j � G�D, Vj
.

For 1 
 i 
 j � k, set

GD
ij � Gij

and

GD � �
1�i
j�k

GD
ij .

Recalling the notation from Fact 13.6, set W0 � D, and for 1 � i � k � 1, Wi � Vi�1,
and set r from the hypothesis of Fact 13.6 to be equal to rk�1 [cf. (82)]. Note that the fact
that G is an (�, 
, k)-cylinder implies that Condition (i) in the hypothesis of Fact 13.6 is
satisfied. Since every vertex v � D satisfies �NGD,i(v)� � �NG,i(v)� �

n
� (1 � 
),

Condition (ii) in the hypothesis of Fact 13.6 is satisfied. Therefore, applying Fact 13.6 to
the graph GD with the constants k, rk�1, �, 
, and � implies that there exists a collection
� � {D1, . . . , Dq} of pairwise disjoint rk�1-element subsets of D satisfying the

conclusion of Fact 13.6. We recall here that q� �n
rk�1

(1�rk�1k
/�). We use the notation
that the set D1 � � is formally written D1 � {vs

(1)}1�s�rk�1
, but for the sake of

convenience, we often use the notation that the elements of D1 are simply written as vs,
1 � s � rk�1.

Define the rk�1-tuple Q� 1 by

Q� 1�� �
e�E�vs

Ce
�vs��

vs�D1

. (102)

We proceed with the following claim.

Claim 13.13. With Q� 1 defined in (102) and �k�1 given in (74) and (76),

� �
vs�D1

�k�1� �
e�E�vs

Ce
�vs��� � �k�1��k�1�G��2, . . . , k	���.
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Proof of Claim 13.13. We obtain through Inclusion–Exclusion that

� �
vs�D1

�k�1� �
e�E�vs

Ce
�vs��� � �

vs�D1

��k�1� �
e�E�vs

Ce
�vs���

� �
�vs,v�s	��D1
2

��k�1� �
e�E�vs

Ce
�vs�� � �k�1� �

e�E �v�s

Ce
�v�s���.

To bound the second-order term, note that it follows that, for each {vs, v�s} � [D1]2,

��k�1� �
e�E�vs

Ce
�vs�� � �k�1� �

e�E �v �s

Ce
�v �s��� � ��k�1� �

1
i
j�k
�Gij�vs, G� � �Gij�v�s, G�����.

It follows from property (b) of Fact 13.6 and Fact 10.3 [cf. 
 given in (93)] that

��k�1� �
1
i
j�k

�Gij�vs, G� � �Gij�v�s, G����� � 2�1

�
�1 
 
���

k�1
2 �� n

�2 �1 
 
�2
k�1

.

Combining our bounds on the second-order term with the equality in (99) and the fact that
�D1� � rk�1, we conclude that

� �
vs�D1

�k�1� �
e�E�vs

C e
�vs��� � �

vs�D1

��
e�E�vs

�k�1�C e
�vs���

��rk�1

2 �2�1

�
�1 
 
���

k�1
2 �� n

�2 �1 
 
�2
k�1

.

Using (101) and again that �D1� � rk�1, we further conclude that the quantity above has
lower bound

rk�1	��

��
�k�1

2 �
�1 � ��4�n

��
k�1

� �rk�1

2 �2�1

�
�1 
 
���

k�1
2 �� n

�2 �1 
 
�2
 k�1

,

which in turn has lower bound

��

���
k�1

2 �
nk�1�rk�1

	�1 � ��4

�k�1 � rk�1
2 �1 
 
��k�1

2 ��1

��k�1
2 ��2�k�1� 
 . (103)

Substituting the value rk�1 � ��k�1 [cf. (82)] into (103) yields

PACKINGS IN DENSE 3-UNIFORM HYPERGRAPHS 305



��

���
k�1

2 �
nk�1��	�1 � ��4 �

�

��k�1
2 �

�1 
 
��k�1
2 ��1


� ��

���
k�1

2 �
nk�1��	

2
�

2�

��k�1
2 �
 , (104)

where the last inequality follows from (70) and (89). Since � �
	
8 �� k�1

2 � in (74), we see
that

	

2
�

2�

��k�1
2 � �

	

4
.

Since ��
8�k�1

�� k�1
2 �	

, we have that (104) is bounded from below by

2�k�1

nk�1

��k�1
2 � � �k�1��k�1�G��2, . . . , k	���, (105)

where the last inequality follows from Fact 10.3 [cf. 
 given in (93)]. We therefore
conclude that

� �
vs�D1

�k�1� �
e�E�vs

Ce
�vs��� � �k�1��k�1�G��2, . . . , k	���, (106)

and hence the proof of Claim 13.13 is complete. ■

We now prepare to use Claim 13.13. Not that since � and G � �1�i
j�k Gij satisfy
the conditions of Setup 1 with the constants k, �, �, �, r, 
, and n and 3-uniform
hypergraph �0 � Kk

(3), it trivially follows that �({2, . . . , k}) and G({2, . . . , k})
satisfy the conditions of Setup 1 with the constants k � 1, �, �, �, r, 
, and n and
3-uniform hypergraph �0 � Kk�1

(3) . We wish to invoke Lemma 13.10 to conclude that

�({2, . . . , k}) is ��� k�1
3 � , �k�1, rk�1�-regular with respect to G({2, . . . , k}). How-

ever, the ��� k�1
3 � , �k�1, rk�1�-regularity of �({2, . . . , k}) with respect to G({2, . . . ,

k}) is guaranteed by our choice of constants �, r, and 
. Indeed, recall that our choice of
constants �, r, and 
 satisfied � � �13.10(�, �k�1) in (77), r � r13.10(�, �k�1, �13.10,
�, rk�1) in (83), and 
 � 
13.10(�, �k�1, �13.10, �, rk�1, r13.10) in (87), respectively.
Since �({2, . . . , k}) and G({2, . . . , k}) satisfy the hypothesis of Setup 1 with
constants k � 1, �, �, �, r, 
, and 3-uniform hypergraph �0 � Kk�1

(3) , it follows from
Lemma 13.10 that the (k � 1)-partite 3-cylinder �({2, . . . , k}) is

��� k�1
3 � , �k�1, rk�1�-regular with respect to G({2, . . . , k}).

Now we may infer that an ��k�1
3 � portion of the cliques Kk�1

(2) counted in Claim 13.13
underlie cliques Kk�1

(3) in �({2, . . . , k}). More precisely, we conclude from Claim 13.13 and

the ���k�1
3 �, �k�1, rk�1�-regularity of �({2, . . . , k}) with respect to G({2, . . . , k}) that
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��k�1����2, . . . , k	�� � �vs�D1 �k�1��e�E�vs
Ce

�vs���

��vs�D1 �k�1��e�E�vs
Ce

�vs���
� �� k�1

3 � � 2�k�1.

By the left-hand side lower estimate of ��vs�D1 �k�1��e�E�vs
Ce

�vs��� in (104), we infer
from the inequality above that

��k�1����2, . . . , k	�� � �
vs�D1

�k�1� �
e�E�vs

Ce
�vs���

� ���k�1
3 � � 2�k�1���

���
k�1

2 �
nk�1��	�1 � ��4 �

�

��k�1
2 �

�1 
 
��k�1
2 ��1
 .

(107)

We now use (107) to prove (96), and prepare its use below. First, recall the set �
defined in (94). For v � D fixed, define

�v � �Y � � : v � Y	. (108)

Note that, for each v, v� � D, v � v�, �v � �v� � A. Also note that

� � �
v�D

�v. (109)

Now recall the collection � � {D1, . . . , Dq} of pairwise disjoint subsets of D obtained

by the application of Fact 13.6, where we recall q� �n

rk�1

�1 � rk�1k
/��. With

�t�1
q Dt � D, we conclude that from (109) that

� 	 �
t�1

q

�
v�Dt

�v.

By the pairwise disjointness of the �v’s, we further conclude

��� � �
t�1

q � �
v�Dt

�v�. (110)

We now fix t � [q] and consider the quantity ��v�Dt �v�. To that end, for v � Dt

fixed, define the following set �v
� related to (108) as

�v
� � �Y ��v	 : � � �v	,

and note that

��v� � ��v
��.

It follows that
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� �
v�Dt

�v� � ��
v�Dt

�v
��. (111)

Now, for v � Dt fixed, it is not hard to see that

�v
� � �k�1����2, . . . , k	�� � �k�1� �

e�Ev

Ce
�v��. (112)

With E�v � Ev, where �E�v� � (1 � 2��
�	 )�Ev� from (97), it follows from (112) that

�v
� 	 �k�1����2, . . . , k	�� � �k�1� �

e�E�v

Ce
�v��.

It follows that

�
v�Dt

�v
� 	 �

v�Dt
��k�1����2, . . . , k	�� � �k�1��

e�E�v

Ce
�v���,

� �k�1����2, . . . , k	�� � �
v�Dt

�k�1��
e�E�v

Ce
�v��,

and so

� �
v�Dt

�v
�� � ��k�1����2, . . . , k	�� � �

v�Dt

�k�1��
e�E�v

Ce
�v���. (113)

Now by (107), we infer from (113) that

� �
v�Dt

�v
�� � ��� k�1

3 � � 2�k�1���

���
k�1

2 �
nk�1��	�1 � ��4 �

�

�� k�1
2 � �1 
 
�� k�1

2 ��1
.

Set

� � �	�1 � ��4 �
�

��k�1
2 �

�1 
 
��k�1
2 ��1
 .

Thus, from (110) and the fact that q �  �n
rk�1

1�rk�1k
/�), we obtain

��� �
�n

rk�1
�1 �

rk�1k


� � ���k�1
3 � � 2�k�1���

��
�k�1

2 �
nk�1��.

With rk�1 � ��k�1 from (82), we see the above quantity is equal to
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�	
��k

3�

��k
2�

nk�1 �
rk�1k


� ��1 �
2�k�1

��k�1
3 ��� �1 � ��4 �

�

	��k�1
2 �

�1 
 
��k�1
2 ��1� .

With the inequalities in (75), (89), and (90), we see the above quantity has lower bound

�	
��k

3�

��k
2�

nk�1 � ��2� �1 � ��4 �
2�

	��k�1
2 �� .

Note that as a result of (76), (1��)4� 2�

	�� k�1
2 ��(1��)5. Thus together with (70), the

quantity above may be bounded from below by

�	
��k

3�

��k
2�

nk�1 � ��7 � �	
��k

3�

��k
2�

nk�1 � �2�,

and we thus conclude

��� � �	
��k

3�

��k
2�

nk�1 � �2�.

Hence, (96) is established and Lemma 12.10 is proved. ■
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