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Abstract

We consider simply generated trees, like rooted plane trees, and
consider the problem of computing generating functions of so-called
bare functionals, like the tree factorial, using B-series from Butcher’s
theory. We exhibit a special class of functionals from probability the-
ory: the associated generating functions can be seen as limiting traces
of product of semi-circular elements.
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1 Introduction

Let Fn denote the set of rooted plane trees of size n. Simply generated
trees are families of trees obtained by assigning weights ω(t) to the elements
t ∈ F = ∪nFn using a degree function ψ(z) = 1 +

∑

k>1 ψkz
k (see [20]).

Basically, the weight ω(t) of some t ∈ F is obtained by multiplying the
factors ψd(v) over the nodes v of t, where d(v) denotes the outdegree of v.
Our main topic is the study of generating functions

Y (z) =
∑

t∈F

ω(t)B(t)z|t|,

associated with multiplicative functions B : F −→ R defined recursively by
using a sequence of real numbers {Bk}k∈N+ . We call such multiplicative
functions bare Green functions:

∑

t∈Fn
B(t)ω(t) represents the sum of the
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Feynman amptitudes associated to the relevant diagrams of size n in some
field theory, and the generating function is then a part of the perturbative
expansion of the solution of some equation describing the system (see [3, 6,
8, 15] ).

In Section 4, we give an equation satisfied by Y when the weights Bk

come from some master function L(z) =
∑

m>0 Lmz
m, with Bk ≡ L(k)/k,

∀k ∈ N
+. We use series indexed by trees, the so-called B-series, as defined

in [13, 14], to show in Theorem 1 that Y solves

Y ′ = L(1 + θ)Ψ(Y ),

where θ is the differential operator θ = zd/dz. [1] considers a similar prob-
lem for additive tree functionals s(t) defined on varieties of increasing trees,
like s(t) = ln(B(t)). Assuming some constraints on the degree function
Ψ(z), it is proven that the exponential generating function

S(z) =
∑

t∈F

ω(t)s(t)z|t|/|t|!,

is given by the formula

S(z) =W ′(z)

∫ z

0
(F ′(u)/W ′(u))du,

where F (u) =
∑

m>0 ln(Bm)Wmu
m/m! andW (z) =

∑

m>0Wmz
m/m! solves

W ′ = Ψ(W ). We also consider a central functional called the tree factorial,
denoted by t! in the sequel, which is relevant in various fields, like algorith-
mics [9, 18], stochastics [11, 21], numerical analysis (see for example [5, 14]),
and physics [6, 15]. We focus on its negative powers 1/(t!)l+1, l ∈ N, which
do not admit a master function when l > 1. [6] solved the case l = 1 by
using the so-called Butcher’s group (see for example [13, 14]). We provide
in Theorem 2 a differential equation for the associated generating function,
∀l ∈ N.

In Section 5, we define special multiplicative functionals for which the
weights Bk are related to the covariance function r of some gaussian pro-
cess, as Bk = β2r(2k − 1), for some positive constant β > 0. We show
that the generating function Y is related to the mean normalized trace of
products of large symmetric random matrices having independent and in-
dentically distributed versions of the process as entries. Theorem 3 gives
then a differential equation for the evolution of the trace of a stationary
Wigner processes. It follows that most of the examples given in [3, 15] can
be expressed in terms of traces of large random matrices. In Section 6, we
show how B-series can be useful for studying traces of triangular operators
appearing in free probability.
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2 Basic notions

A rooted tree t ∈ R is a triple t = (r, V,E) such that i) (V,E) is a non-empty
directed tree with node set V and edge set E, ii) all edges are directed away
from the root r ∈ V . The set of rooted trees of order n is denoted by Rn,
and the set of rooted trees is R = ∪nRn. A rooted plane tree t ∈ F is a
quadruple t = (r, V,E,L) satisfying i) and ii) and iii) L := {({w : vw ∈
E}, Lv) : v ∈ V } is a collection of |V | linear orders. Given v ∈ V , let
ch(v) := {w : vw ∈ E} be the set of children of v. d(v) := |ch(v)| is the
outdegree of v. A rooted planar tree can be seen in the plane with the root
in the lowest position, such that the orders Lv coincide with the left-right
order. Next consider the partial ordering (V,6) defined by u 6 v if and
only if u lies on the path linking r and v. Given v ∈ V and t ∈ R let
tv be the subtree of t rooted at v spanned by the subset {w; v 6 w}. A
rooted labelled tree is a quadruple t = (r, V,E, l) satisfying i) and ii), with
a labelling l : V \ {r} −→ [|V |] := {1, · · · , |V |} such that l(u) < l(v) when
u < v. The set of rooted labelled trees of order n is denoted by Ln. Let
L = ∪nLn. This family is a special variety of increasing trees, as defined in
[1, 12].

We next assign weights to the elements of Fn, the set of rooted planar
trees of order n: the resulting family of trees is said to be simply generated
(see [21]). Given a sequence ψ = {ψk}k∈N of real numbers with ψ0 = 1,
define recursively the weight ω(t) of t ∈ F as

ω(t) = ψk

k
∏

i=1

ω(ti), k = d(r), ω(t) =
∏

v∈V

ψd(v).

where t1, · · · , tk are the d(r) subtrees of t rooted at ch(r). Let ψ(z) :=
1 +

∑∞
k=1 ψkz

k be the generating function of the weight sequence ψ. Our
favourite example is ψ(z) = 1/(1 − z), with ω(t) = 1, ∀t (see [1, 20] for
various interesting choices).

We will be concerned with functionals B : F −→ R, where F = ∪nFn,
called bare Green functions. This terminology is taken from quantum field
theory where bare Green functions occur during the action of the renormal-
ization group (see for example [3], § 4.2 or [6] , § 6.1). Let B denote the set
of bare Green functions. Any element B ∈ B is given through a sequence
of functions Bk : R −→ R, k ∈ N

+, which are usually Laurent series in
some variable x (see for example [8]). In what follows, we simply write the
sequence as {Bk}k∈N+ .

Definition 1 The bare Green function B ∈ B, B : F −→ R, associated
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with the sequence of functions {Bk}k∈N+
is defined recursively as

B(t) = B|t|

k
∏

i=1

B(ti),

where t1, · · · , tk are the d(r) subtrees of t rooted at ch(r), and where |t|
denotes the number of nodes of t.

Notice that the value of B at t ∈ F does not depend on the linear orders
and is independent of the labellings. When dealing with rooted trees, we
will adopt the notation t = B+(t1, · · · , tk) for the operation of grafting the
rooted trees t1, · · · , tk, that is by considering the tree t obtained by the
creation of a new node r (the root) and then joining the roots of t1, · · · , tk
to r. Bare Green functions appeared also in the probabilistic literature in
specific situations. The basic example, in algorithmics [9, 18], in numerical
analysis (see [4, 5, 14]), in stochastics [11, 20] and in physics (see for example
[6]) is the tree factorial, defined by

Definition 2 Let t ∈ R with t = B+(t1, · · · , tk). Then the tree factorial
t! is the functional B ∈ B defined by t! = |t|∏k

i=1 ti!, associated with the
sequence {Bk} given by Bk ≡ k.

Remark 3 It should be pointed out that the functional acting on trees, given
as s(t) = ln(B(t)), for B ∈ B with Bk > 0, ∀k > 1, is an inductive map or
an additive tree functional, as defined in [1]. Interestingly, B(t) = 1/t! is
used in [18] to define a probability measure on random search binary trees,
and [9, 11] provide precise asymptotics for ln(t!).

3 Generating functions

We first give some basic results on tree factorials, symmetry factors, and
generating functions associated with bare Green functions.

Definition 4 Let t ∈ R. Then α(t) is the number of rooted labelled trees
t′ ∈ L of shape t ∈ R, where the shape of a labelled tree (r, V,E, l) is (r, V,E),
κ(t) is the number of rooted plane trees of shape t, and σ(t) is the symmetry
factor of the tree, to be defined later. Moreover, let ωL be the weight function
associated with elements of L, with weights given by ψk ≡ 1/k!.

Notice that α(t) is the Connes-Moscovici weight in quantum field theory
(see [3, 7]). The symmetry factor satisfies the recursive definition:

σ({r}) = 1,

4



σ(B+(t
n1

1 , · · · , tnk

k )) = n1!σ(t1)
n1 · · · nk!σ(tk)nk ,

where the indices ni means that t is obtained by grafting n1 times the tree
t1, and so on, where we assume that the ti are all different as rooted trees.

Lemma 5 Let t ∈ R. Then

α(t)σ(t) =
|t|!
t!
, (1)

and
α(t)t! = |t|!ωL(t)κ(t). (2)

Proof: (1) is well known (see for example [5]). Suppose that t ∈ R is such
that t = B+(t

n1

1 , · · · , tnk

k ), the grafting of n1 times the tree t1, and so on,
where we set that the trees t1, · · · , tk are different as rooted trees. Then

κ(t) =
(n1 + · · · + nk)!

n1! · · ·nk!
κ(t1)

n1 · · · κ(tk)nk .

Using the recursive definition of ω(t) and the definition of ωL, we have

ωL(t) =
1

(n1 + · · ·+ nk)!
ωL(t1)

n1 · · ·ωL(tk)
nk .

Therefore

1

ωL(t)κ(t)
= n1! · · ·nk!(

1

ωL(t1)κ(t1)
)n1 · · · ( 1

ωL(tk)κ(tk)
)nk ,

and the results follows from the recursive definition of the symmetry factor.

�

Then
∑

t∈Fn

B(t)ω(t) =
∑

t∈Rn

B(t)
ω

ωL
(t)α(t)

t!

|t|! (3)

where we have used (2) of Lemma 5.

Consider the generating function

Y (z) =
∑

n∈N+

zn

n!

∑

t∈Rn

α(t)B(t)t!ω(t)/ωL(t). (4)

Given t ∈ R, the ratio ω/ωL is associated with the weight sequence ψ̄k ≡
ψkk!; using the expansion ψ(z) = 1 +

∑

k>1 ψkz
k = 1 +

∑

k>1(ψ̄k/k!)z
k , we

see that ψ̄k ≡ ψ(k)(0). Consider the elementary differentials δ (see Section
4) defined by

5



Definition 6

δ{∗} = 1, δt = ψ(k)(0)

k
∏

i=1

δti ,
ω

ωL
= δ,

when t = B+(t1, · · · , tl), where * denotes the tree of a single node. For
a map a : R ∪ {∅} −→ R, a formal power series of the form Y (z) =
a(∅)y0 +

∑

t∈R z
|t|a(t)δtα(t)/|t|! is called a B-series [13, 14].

Remark 7 When B(t) = t!, the series Y is given by

Y (z) =
∑

t∈L

(ω(t)/ωL(t))z
|t|/|t|!.

Set φk = ψkk!, ∀k, and consider the degree function φ(z) = 1+
∑

k>1(φk/k!)z
k.

Following [1], Y solves Y ′ = φ(Y ) (see also [20]). We shall see in the next
section that it is a natural consequence of B-series expansions of solutions
of ordinary differential equations.

4 Runge-Kutta methods for functionals over trees

Consider a dynamical system on R

d

ds
X(s) = F (X(s)), X(s0) = X0,

for some smooth F : R −→ R. The solution of this dynamical system has a
B-series expansion of the form

X(s) = X0 +
∑

t∈R

(s− s0)
|t|

|t|! α(t)δt(s0),

where the elementary differentials δ is defined recursively by

δ{r} = f(s0), δt =
∂kF

∂ks
δt1 · · · δtk ,

when t = B+(t1, · · · , tk). These kinds of expansions have been treated in
great detail in [4] and [5] and developped independently in combinatorics
(see for example [16, 17]). Suppose that s0 = 0 for simplicity. Butcher con-
sidered what happens with numerical approximations of the exact solution,
the Runge-Kutta methods, which are themselves B-series [13, 14]; here we
focus on specific B-series, which are associated to bare Green functions. Let
B ∈ B be such that there exists a power series

L(z) =
∑

m>0

Lmz
m,
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with

Bk =
L(k)

k
, ∀k ∈ N

+. (5)

Bare Green functions satisfying (5) are used in practical situations in quan-
tum field theory (see [3], § 4 and [6] , § 6.1). Consider Euler’s operator
θ = z(d/dz), with P (θ)(zn) = P (n)zn, ∀n ∈ N, for any polynomial P , and
consider the formal operator L(θ + 1) acting on monomials as

L(θ + 1)(zn) =
∑

m>0

Lm(θ + 1)m(zn) =
∑

m>0

Lm(n+ 1)mzn

= L(n+ 1)zn.

Given a power series Y (z) =
∑

m>0 amz
m converging for |z| 6 1, we can

define L(θ + 1)(Y )(z) :=
∑

m>0 amL(m+ 1)zm, which converges for |z| 6 1
when the sequence (L(k))k>1 grows subexponentially. We will not focus
on convergence questions here, and work at the formal level. Let B be a
bare Green function with weights (Bk)k>1, such that (5) holds for some
power series L. It should be pointed out that [3, 6, 15] deal with the master
function L, but do not give explicitely an equation for Y . The next Theorem
provides an equation; its proof uses explicitely B-series.

Theorem 1 The formal power series

Y (z) =
∑

t∈R

z|t|

|t|!α(t)t!B(t)δt, (6)

solves Y ′ = L(1 + θ)ψ(Y ).

Proof:

ψ(Y (z)) =
∑

k>0

ψ(k)(0)

k!

∑

(t1···tk)∈Rk

z
∑

i
|ti|

|t1|! · · · |tk|!

k
∏

i=1

α(ti)B(ti)ti!δti .

For given (t1 · · · tk) ∈ Rk, set t = B+(t1, · · · , tk). Then
∑

i |ti| = |t| − 1,
ψ(k)(0)δt1 · · · δtk = δt, and B(t1) · · ·B(tk) = B(t)/B|t|. The associated term
becomes

z|t|−1B(t)

B|t|
δt
α(t1) · · ·α(tk)
|t1|! · · · |tk|!

t!

|t| .

Next, every rooted tree t ∈ R can be decomposed uniquely as t = B+

(tn1

1 , · · · , tnm

m ), meaning that t is obtained by grafting n1 times t1 and so on,
where the ti are different as rooted trees, with k = n1+ · · ·+nm. Collecting
the terms associated with t, we get the contribution

z|t|−1

k!

B(t)

B|t|
δt
t!

|t|

∗
∑

(t′
1
···t′

k
)∈Rk

α(t′1) · · ·α(t′k)
|t′1|! · · · |t′k|!

,

7



where * means that the sum is taken over all the collections (t′1 · · · t′k) ∈ Rk

such that t = B+(t
′
1, · · · , t′k). The above sum reduced then to

(n1 + · · · + nm)!

n1! · · ·nm!

α(t1)
n1 · · ·α(tm)nm

k!|t1|!n1 · · · |tm|!nm

=
1

n1!
(

1

σ(t1)t1!
)n1 · · · 1

nm!
(

1

σ(tm)tm!
)nm ,

where we use the first identity of Lemma 5. Using the recursive definition
of the symmetry factor σ, we obtain

∗
∑

(t′
1
···t′

k
)∈Rk

α(t′1) · · ·α(t′k)
k!|t′1|! · · · |t′k|!

=
1

t1!n1 · · · tm!nmσ(B+(t1,n1 · · · , tnm
m ))

=
|t|
t!

1

σ(t)
=

|t|α(t)
|t|! .

We thus get that the contribution associated with t ∈ R is given by

z|t|−1

k!

B(t)

B|t|
δt
t!

|t|
|t|α(t)
|t|! =

z|t|−1

|t|!
B(t)

B|t|
α(t)δtt!.

Therefore

L(θ + 1)ψ(Y ) =
∑

t∈R

B(t)

B|t|
α(t)t!δt

L(θ + 1)(z|t|−1)

|t|!

=
∑

t∈R

B(t)

B|t|
α(t)t!δt

L(|t|)z|t|−1

|t|!

=
∑

t∈R

B(t)

B|t|
α(t)t!δt

B|t||t|z|t|−1

|t|!

=
∑

t∈R

z|t|−1

(|t| − 1)!
B(t)t!δt =

dY

dz
.

�

Remark 8 As we have observed in Remark 3, s(t) = ln(B(t)) is an induc-
tive map when the weights Bk are positive. It turns out that the exponential
generating function associated with s can be given as an integral transform
for varieties of increasing trees (see for example Section 1). This is the topic
of [1].

Example 9

When L(z) = z, with Bk ≡ 1, and ψ(z) = 1/(1−z), one has ∑t∈Fn+1
B(t) =

Cn, the Catalan number of order n, with Cn =
(

2n
n

)

/(n + 1). Then Y (z) =

8



z
∑

n>0 z
nCn is solution of the differential equation Y ′(z) = L(1+ θ)(1/(1−

Y (z))), that is Y ′(z) = (z/(1− Y (z)))′. The unique solution with Y (0) = 0
satisfies Y (z) = z/(1− Y (z)), or Y (z) = (1−

√
1− 4z)/2, corresponding to

a well known result.

�

[6] , § 5.3, considers the case where B(t) = (1/t!)2, which is not of the form
given in (5): in this situation, Bk = 1/k2, with L(z) = 1/z. The solution is
obtained by using the stucture of the so-called Butcher’s group of B-series
(that is series of the form (6), where the group structure in given in [13, 14])
by tensoring known B-series:

Example 10

Consider the bare functional given by Bk ≡ 1/k2, with B(t) = 1/t!2. Fol-
lowing Brouder, the associated B-series, as given in (6), is solution of the
second order differential equation

zY ′′ + Y ′ = ψ(Y ).

When ψ(z) = exp(z), the solution is given by

Y (z) = −2 ln(1− z/2) =

∞
∑

n=1

zn

n

1

2n−1
,

giving
∑

t∈Rn

α(t)

t!
=

(n− 1)!

2n−1
.

�

We study the general moment problem B(t) = (1/t!)l+1, l ∈ N, by
working directly on a suitable differential equation as follows: the operator
L(θ + 1) takes the form L(θ + 1) = 1/(θ + 1)l. Assume that the differential
operator L(θ + 1) is invertible. Then the formal systems becomes

L(θ + 1)−1 d

dz
Y = ψ(Y ). (7)

Consider again the second moment problem for the tree factorial, with Bk ≡
1/k2 and L(k) ≡ 1/k. Choose L such that L(z) = 1/z; the inverse operator
might be equal to L(θ + 1)−1 = θ + 1, and, if this is the case,

(θ + 1)
d

dz
Y = ψ(Y ),

with (θ + 1)(d/dz) = z(d2/dz2) + (d/dz), see Example 10.
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More generally, if one considers the moment of order l + 1 ∈ N of the
inverse tree factorial, the choice L(k) = 1/kl should give (θ + 1)l d

dzY (z) =
ψ(Y ). Our result, Theorem 2 below shows that the formalism of inversion
is correct in term of power series. This result sheds some light and extends
the computations done in [6] for the second moment, and its proof avoids
computations in the Butcher’s group.

Theorem 2 The B-series Y (z) associated with the moment of order (l+1)
of the inverse tree factorial satisfies the differential equation

(θ + 1)l
d

dz
Y = ψ(Y ). (8)

Proof: Let

Y (z) =
∑

t∈R

z|t|

|t|!α(t)
1

t!l+1
t!δt.

Then

ψ(Y (z)) =
∑

k>0

ψ(k)(0)

k!

∑

(t1···tk)∈Rk

z
∑

i
|ti|

|t1|! · · · |tk|!
α(t1) · · ·α(tk)
(t1! · · · tk!)l

δt1 · · · δtk .

For given (t1 · · · tk) ∈ Rk, set t = B+(t1, · · · , tk). Then
∑

i |ti| = |t| −
1, ψ(k)(0)δt1 · · · δtk = δt, and (t1! · · · tk!)l = t!l/|t|l. The associated term
becomes

z|t|−1|t|l
t!l

δt
α(t1) · · ·α(tk)
|t1|! · · · |tk|!

.

Proceeding as in the proof of Theorem 1, we get that the contribution asso-
ciated with t ∈ R is given by

z|t|−1|t|l
t!l

δt
|t|α(t)
|t|! =

z|t|−1

(|t| − 1)!

|t|l
t!l
α(t)δt.

On the other hand,

(θ + 1)l
d

dz
Y (z) = (θ + 1)l

∑

t∈R

z|t|−1

(|t| − 1)!
α(t)

1

t!l
δt

=
∑

t∈R

|t|lz|t|−1

(|t| − 1)!
α(t)

1

t!l
δt.

�

In the next section, we show that traces of certain products of Wigner
matrices (see for example [24]) provide natural examples of bare Green func-
tions.
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5 Wigner processes

Definition 11 The N -dimensional random matrices ΓN := (γi,j)16i,j6N

are called Wigner matrices of variance β2 if the following holds.

• Each ΓN is symmetric, that is, γi,j = γj,i.

• For i 6 j, the random variables γi,j are independent and centered.

• For i 6= j, E(γ2i,j) = β2.

• For any k > 2, E(|γi,j |k) 6 ck, where ck is independent of i 6 j.

Definition 12 The sequence ΓN (k) := (γi,j(k))16i,j6N of N -dimensional
random matrices, indexed by k > 1, is called a Wigner process of variance β2

and correlation function r, r(k, k) = 1, |r(k,m)| 6 1 and r(k,m) = r(m,k)
if the following holds.

• Each ΓN (k) is a Wigner matrix of variance β2 in the sense of defini-
tion 11.

• For i 6 j, each process (γi,j(k))k is independent of the others.

• For i 6= j, the process (γi,j(k))k is r-correlated, that is, for any k > m,

E(γi,j(k)γi,j(m)) := β2 r(k,m). (9)

A Wigner process is stationary when r is such that r(k,m) = r(|k −m|).

Let DN be a sequence of random diagonal matrices, with independent and
identically distributed entries of law µ, having finite moment µk = µ(Xk),
k > 1, with µ1 = 1. Let

QN
k := N−k/2DN

k
∏

m=1

(ΓN (m)DN ),

and set
BN

k (r) = N−1
E(tr(QN

k )).

Involutions, Dyck paths and rooted plane trees

For k > 1, [k] := {1, 2, . . . , k}, I(k) is the set of the involutions of [k]
with no fixed point, J (k) is the subset of I(k) of the involutions σ with

11



no crossing. This means that the configurations i < j < σ(i) < σ(j) do
not appear in σ ∈ J (k). Let i ∈ cr(σ) denote the fact that i < σ(i). Let
D(2k) be the set of the Dyck paths of length 2k, that is, of the sequences
c := (cn)06n62k of nonnegative integers such that c0 = c2k = 0, cn − cn−1 =
±1, n ∈ [2k]. Thus, exactly k indices n ∈ [2k] correspond to ascending
steps (cn−1, cn), that is, to steps when cn = cn−1 + 1. We denote this by
n ∈ asc(c). The k others indices correspond to descending steps, that is, to
steps when cn = cn−1 − 1, and we denote this by n ∈ desc(c). We make use
of bijections between D(2k) and J (2k) [2]. If c ∈ D(2k), φ(c) := σ ∈ J (2k)
is an involution which maps each element of desc(c) to a smaller element
of asc(c). Thus, cr(σ) = asc(c). More specifically, if n ∈ desc(c), σ(n)
is the greatest m 6 n such that (cm−1, cm) = (cn, cn−1). Finally, the set
D(2k) is in bijection with Fk+1, the set of rooted plane trees on k+1 nodes,
where the bijection is given by the walk on the tree from the right to the
left (see for example [25]). Let σt denote the involution of J (2(|t| − 1))
corresponding to t ∈ F . Given t ∈ Fk+1, consider the walk on t from the
right to the left: every edge (v,w) with w ∈ ch(v), is crossed at some instant
sv ∈ [2k] as (v → w) and at a later time sw ∈ [2k] as (w → v). Clearly,
sw = sv +2(|tw|− 1)+1, where tw is the subtree of t rooted at node w, that
is the subgraph of t induced by the nodes u with u > w. σt is such that
σt(sv) = sw and vice versa.

2 4 6 8 10 120

v

w

2 4 6 8 100 12

Fig 1. Bijections between Fk+1, D(2k) and J (2k) (sv = 2 and sw = 5).

Proposition 13 Assume that the covariance r is such that r(l,m) = r(|l−
m|). Then, the functional Br ∈ B given by the weights

Br
k = β2r(2k − 1), ∀k > 1,

is such that
Br(t)

Br
|t|

=
∏

i∈cr(σt)

(β2r(i, σt(i))).

12



Proof: Let t ∈ F . Let sv < sw be the instants where the oriented edges
(v → w) and (w → v), w ∈ ch(v), are crossed during the walk on the tree.
r(sv, σt(sv)) = r(sw − sv) = r(2|tw| − 1), and thus β2r(sv, σt(sv)) = Br

|tw|.

Finally,
∏

i∈cr(σt)
β2r(i, σt(i)) =

∏

w 6=rootB
r
|tw| = Br(t)/Br

|t|, as required.

�

As we have just seen, every Wigner process with covariance r such that
r(l,m) = r(|l−m|) produces a bare Green function Br ∈ B. The converse is
not true, that is, there exists B ∈ B such thatB is not of the formB = Br for
some covariance function r. Set Bw = {B ∈ B; ∃ a covariance r with B =
Br}.

Let ψµ be the generating function of the weight sequence ψk = µk+1,
and let ωµ(t), t ∈ F be the associated weight function.

Theorem 3 Let (ΓN (k))k>1 be a stationary Wigner process of covariance
function r and variance β2, and let DN be a sequence of random diagonal
matrices, independent of the Wigner process, with i.i.d. entries λj of law µ,
with µ1 = µ(λ) = 1 and finite moments µk = µ(λk), ∀k. Then

BN
2k(r) −→ B2k(r) =

1

Br
k+1

∑

t∈Fk+1

Br(t)ωµ(t),

and BN
2k+1(r) −→ 0, N → ∞. Assume that the covariance is such that there

exists a power series Lr(z) with Br
k = Lr(k)/k, ∀k. Then the formal power

series
Y (z) =

∑

k>1

zkBr
kB2(k−1)(r),

solves
Y ′ = Lr(θ + 1)ψµ(Y ).

Moreover
∑

k>1

zkB2(k−1)(r) = zψµ(Y ). (10)

Example 14

Let B(t) = 1/t!. If a tree t has n nodes and n − 1 edges, then the re-
quirement Bn = 1/n is satisfied iff β2r(2n − 1) = 1/n, that is r must be
such that β2r(k) = 2/(k + 1), k ∈ 2N + 1. By construction, r(0) = 1
and therefore β2 = 2. 1/(x + 1) is positive definite, which implies that
B(t) = 1/t! is element ofBw. Next, from Theorem 2, the generating function
Y (z) =

∑

t∈F z
|t|Br(t)ωµ(t) is solution of the system (d/dz)Y (z) = ψµ(Y ).

13



Assume that µ is the point mass δ1, that is each matrix DN is the iden-
tity matrix of size N , with ψµ(z) = 1/(1 − z). The solution of the sys-
tem is Y (z) = 1 −

√
1− 2z = 2Ỹ (z/2), where Ỹ is the series given in

Example 9. On the other hand, Proposition 13 and Theorem 3 show that
Y (z) =

∑

k>1 z
kBr

kB2(k−1)(r). Therefore the limiting mean normalized trace

B2k(r) of the product of correlated random matrices
∏2k

m=1 ΓN (m) is such
that B2k(r) = E(Z2k)/k!, where Z denotes a normal N(0,1) random variable.

�

Example 15

Consider as in Example 9 the special case where L(z) = z. The associated
inductive parameter (see Remark 8) is the tree size. The covariance r is
constant with r(k) ≡ 1, and Br

k ≡ 1. Then the generating function Y is
solution of the fixed point equation Y (z) = zψµ(Y (z)) (either by Theorem
1 or by (10)). Notice that in this situation, ΓN (m) ≡ ΓN (1), and thus
BN

k (r) describes the mean normalized moment of the spectral measure of
the random matrix DN (ΓN (1)DN )k. This example can be extended by
considering L(z) = zρz, for some 0 < ρ 6 1. When DN is the identity
matrix, Y (z) is related to the Rogers-Ramanujan continued fraction [19],
and corresponds to the generating function associated with path length, see
[1, 25].

�

Proof of Theorem 3: The first part is a generalization of Theorem 1 of
[19]. Set γ̃ij(m) = γij(m)λj , and Γ̃N (m) = ΓN (m)DN . The mean nor-
malized trace adds the contributions E(i) = E(λi0 γ̃i0i1 · · · γ̃ik−1ik), for paths
i = (il)06l6k, with il ∈ [N ] and i0 = ik. The γ̃ij are centered, so that any
edge (i, j) appearing once appears at least twice. Given i, define ε1 = 1 and
εl = +1 when il 6∈ {i0, · · · , il−1}, and εl = −1 otherwise, and consider the
walk c = (cl) defined by cl =

∑l
j=1 εj , with ck 6 0. The support of i is

s(i) = {il; 0 6 l 6 k}, of size s = |s(i)|, with s 6 1 + k/2. The contribu-
tion E(i) is independent of the labels il; they are N(N − 1) · · · (N − s+ 1)
labellings giving the same walk c, with the same contribution. Thus, the
normalization N−(1+k/2) shows that the only walks surviving in the large
N limit are those with s = 1 + k/2. This shows that BN

k (r) → 0 when
k is odd. Concerning BN

2k(r), s = 1 + k means that every edge occur-
ing in the path occurs exactly twice, in opposite directions. c is a Dyck
path of D(2k); let t ∈ F be the associated rooted plane tree, with in-
volution σt. Using the right to left walk on t and the independence of
the random variables, the contribution E(i) of any path leading to c or t

is E(i) =
∏

m∈cr(σt)
E(γ(m)γ(σt(m)))E(

∏

v λ
d(v)+1
v ) where d(v) = |ch(v)|.

14



From Proposition 13, one obtains E(i) = (Br(t)/Br
k+1)

∏

v µd(v)+1, with
B2k(r) =

∑

t∈Fk+1
(Br(t)/Br

k+1)
∏

v µd(v)+1, as required. (10) is a conse-
quence of the multiplicative form of bare Green functions and of Lemma
1.9, chap. III.1 of [14].

�

These results show that the elements of Bw appear naturally in the
computation of normalized traces of products of large random matrices (see
for example [23]). In the next Section we illustrate B-series by considering
triangular operators from free probability.

6 On Dykema-Haagerup triangular operator

Let B be an algebra and A be a B bi-module. Let κ : A x A −→ B be a
bilinear map. We follow [22] by defining the product a1 •κ a2 = κ(a1, a2),
a1, a2 ∈ A, and setting

i) (ba1) •κ a2 = b(a1 •κ a2),
ii) (a1b) •κ a2 = a1 •κ (ba2),

iii) a1 •κ (a2b) = (a1 •κ a2)b.
Let σ ∈ J (2n) be an involution of [2n] without fixed point and without
crossing. Given a word a = a1 · · · a2n in A, σ induces parentheses on a,
and the preceedings rules permit the evaluation of this parenthized word.
This extends to a map κσ on A2n. Sniady defines such maps to prove a
conjecture of Dykema and Haagerup on generalized circular elements. Let
(B ⊂ A,E) be an operator valued probability space, that is A is a unital
*-algebra, B ⊂ A an unital *-subalgebra and E : A −→ B be a conditional
expectation (linear, E(1) = 1, and E(b1ab2) = b1E(a)b2, ∀b1, b2 ∈ B, a ∈ A).

Definition 16 T ∈ A is a generalized circular element if there is a bilinear
map κ satisfying the rules i), ii) and iii) such that

E(b1T
s1b2T

s2 · · · b2nT s2n) =
∑

σ∈J (2n)

κσ(b1T
s1 , · · · , b2nT s2n),

E(b1T
s1b2T

s2 · · · b2n+1T
s2n+1) = 0,

∀b1, · · · , b2n+1 ∈ B and ∀s1, · · · , s2n+1 ∈ {1, ∗}.

The triangular operator T of Dykema and Haagerup is obtained from B =
C[x], the *-algebra of complex polynomials of one variable by setting

[κ(T, bT ∗)](x) =

∫ 1

x
b(s)ds,
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[κ(T ∗, bT )](x) =

∫ x

0
b(s)ds,

[κ(T, bT )](x) = [κ(T ∗, bT ∗)](x) = 0.

T is the limit for the convegence of *-moments of large upper triangular
random matrices TN ([10]). Define a trace τ as (see [22])

τ(a) = τ(E(a)), τ(b) =

∫ 1

0
b(s)ds.

In what follows, we use P-series (where P stands for partitioned dif-
ferential systems, see [13]). We follow [6], and adapt his notations to
P-series. Given some function ψ, and two kernels (ax(u, v))u,v∈[0,1] and
(ay(u, v))u,v∈[0,1], consider the iterated integrals φxu and φyu which are func-
tionals over R defined by φxu(∗) = φyu(∗) = 1, and, for t = B+(t1, · · · , tk),

φxu(t) =
k
∏

i=1

∫ 1

0
ax(u, v)φyv(ti)dv,

φyu(t) =

k
∏

i=1

∫ 1

0
ay(u, v)φxv (ti)dv.

Lemma 17 Let ax(u, v) = I[0,u](v) and ay(u, v) = I[u,1](v). Then

τ(TT ∗)n =
∑

t∈Fn+1

∫ 1

0
φxv(t)dv =

∑

t∈Fn+1

∫ 1

0
φyv(t)dv.

Proof: The word W = (TT ∗) · · · (TT ∗) is of the generic form with b1 =
· · · b2n = 1 (Definition 16). Let t ∈ Fn+1 with associated involution σt (see
Section 5). Let sv and sw be the instants where the walk on t crosses the
oriented edges (v → w) and (w → v), with w ∈ ch(v). We colour these edges
by giving colour ’1’ to (v → w) when the symbol in W located at position
sv is T , and give the colour ’*’ otherwise. Clearly, both edges have different
colours, and the elements of the set of edges {(v → w); w ∈ ch(v)} (the
children of v in t) have the same colour. The result is then a consequence
of the definition of the product with the rules i), ii) and iii).

�

Remark 18 Iterated integrals are naturel objects to consider in the setting
of Butcher’s Theory. For example, in the framework of Theorem 1, the
iterated integrals φu(t) defined by φu(t) =

∏k
i=1

∫ u
0 L(θ+1)(φv(ti))dv, when

t = B+(t1, · · · , tk), are such that φ1(t) = B(t), ∀t ∈ F .
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Proposition 19 The P-series

Xu(s) = X0 +
∑

t∈R

s|t|

|t|!α(t)t!δt
∫ 1

0
ax(u, v)φyv(t)dv,

and

Yu(s) = Y1 +
∑

t∈R

s|t|

|t|!α(t)t!δt
∫ 1

0
ay(u, v)φxv (t)dv,

are solutions of the integral system

Xu(s) = X0 + s

∫ 1

0
ax(u, v)ψ(Yv(s))dv,

Yu(s) = Y1 + s

∫ 1

0
ay(u, v)ψ(Xv(s))dv.

Proof: This is consequence of Butcher’s general theory (see [4]). To prove it
more directly, proceed as in the proof of Theorem 1

�

Corollary 20 Let X0 = Y1 = 0. Assume that ax(u, v) = I[0,u](v) and
ay(u, v) = I[u,1](v). Suppose that ψ(z) = 1/(1 − z). Then

Y0(s) =
∑

t∈R

s|t|

|t|!α(t)t!δt
∫ 1

0
φxv (t)dv =

∑

t∈F

s|t|τ(TT ∗)|t|−1.

This result shows that the generating function of the *-moments of the
operator TT ∗ can be obtained by solving the system given in Proposition
19. We recover in this way a result of [10], Lemmas 8.5 and 8.8.

Lemma 21 In the setting of Corollary 20, the generating function Y0(s)
solves

G(
s

1− Y0(s)
) = s, (11)

where G(z) = z exp(−z), that is, L(s) = s/(1 − Y0(s)) and G are inverse
with respect to composition. Moreover τ(TT ∗)n = nn/(n+ 1)!.

Proof: We solve the integral system by looking for solutions of the form
Xu(s) = 1 − exp(λu) and Yu(s) = 1 − exp(λ′(u − 1)), with (d/du)Xu(s) =
s/(1− Yu(s)) and (d/du)Yu(s) = −s/(1−Xu(s)). We deduce that λ′ = −λ
is solution of the equation λ+ s exp(−λ) = 0. The formula for the moments
of TT ∗ is a consequence of Lagrange’s inversion formula.

�
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