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Abstract

A de Bruijn covering code is a q-ary string S so that every q-

ary string is at most R symbol changes from some n-word appearing

consecutively in S. We introduce these codes and prove that they can

have length close to the smallest possible covering code. The proof

employs tools from field theory, probability, and linear algebra. We

also prove a number of “spectral” results on de Bruijn covering codes.

Included is a table of the best known bounds on the lengths of small

binary de Bruijn covering codes, up to R = 11 and n = 13, followed

by several open questions in this area.

1 Introduction

A covering code C of radius R and dimension n on q symbols is a subset of
the space [q]n such that every string in [q]n differs from some element of C
in at most R coordinates. It is common to require that R be as small as
possible in the definition of a covering code, but, for the sake of notational
convenience, we do not require this here.

Question: Given n, R, and q, what is the smallest M = M(n,R, q) so that
there exists an q-ary string S = (s0, . . . , sM−1) with the property that the
set of n-strings appearing as (si, . . . , si+n−1), with indices taken modulo M ,
form a covering code of radius R? Call such a string a (n,R, q)-de Bruijn
covering code.
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For example, 111000 is a (4, 1, 2)-de Bruijn covering code, because every
binary 4-string is at most one bit change from an element of

{1110, 1100, 1000, 0001, 0011, 0111}.
On the alphabet {A,G,T,C}, the string

AGATCGCAGATATGGTCTATG

is a (4, 2, 4)-de Bruijn covering code, by Proposition 6 below.
Clearly, M(n, 0, q) = qn, since any de Bruijn covering code of radius 0 is

actually a de Bruijn cycle, and de Bruijn cycles of all orders over an arbitrary
alphabet exist. (See, for example, [9].) If we fix R > 0 and q ≥ 2, how does
M(n,R, q) grow as n → ∞?

It is easy to see that the growth is at least Ω(qn/nR), by the so-called
“sphere-covering” bound. The set of strings which differ from any given S
in at most R places has the same cardinality,

∑R
k=0

(

n
k

)

(q − 1)k. Therefore,
if we are to cover all qn strings, we need at least

qn
∑R

k=0

(

n
k

)

(q − 1)k

codewords. On the other hand, it is well known that the size of the small-
est q-ary covering code of radius R actually achieves this bound, up to a
multiplicative constant which depends on R and q. (See [8] for the latest
results on the size of this constant.) We may concatenate all the codewords
of such a minimal code to yield a (n,R, q)-de Bruijn covering code of length
O(qn/nR−1). This construction is clearly very wasteful, however. Can we do
better, i.e., is the true order of magnitude of M(n,R, q) closer to the sphere-
covering bound? In particular, can we say something nontrivial in the case
of R = 1? In fact, in Section 3 we prove the following.

Theorem 1. For each n and q a prime power, there exists a (n,R, q)-de
Bruijn covering code of length ≤ (R + 1 + o(1))qn log n/(

(

n
R

)

(q − 1)R).

Section 2 states several definitions and preliminary results we will need
to prove this. The next section contains the proof itself, and Section 4 intro-
duces a “spectral” perspective on de Bruijn covering codes that holds some
independent interest. In Section 5 we present bounds for special values of n,
R, and q, and include a table of bounds on M(n,R, 2) for 2 ≤ n ≤ 13 and
1 ≤ R ≤ 11. We end with several remarks and questions for further work in
Section 6.
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2 Preliminaries

We fix a prime power q ≥ 2 throughout this section and the next, and take
our alphabet to be Fq. (If q is not a prime power, we take the alphabet to
be Z/qZ.) Write bR(v), for v an n-string drawn from Fq, to denote the set
of those strings differing from v in at most R coordinates. That is, bR(v) is
v’s radius R neighborhood in the Hamming metric. Also, write wt(v) for the
Hamming weight of the vector v, the number of nonzero symbols it contains.

Let α be a generator of the multiplicative group of the finite field Fqn. De-
note by E the elementary basis for Fn

q over Fq. Given a basis B = {b1, . . . , bn}
of Fqn over Fq and an element γ ∈ Fqn, write fB(γ) for the element of Fn

q

whose jth coordinate is the coefficient of bj in the B-representation of γ. Then,
given a nonzero vector x ∈ F

n
q , define Λ(α,B,x) to be the string whose jth

coordinate (i.e., Λj(α,B,x), 1 ≤ j ≤ qn − 1) is x⊺fB(α
j). It is well known

that, when B = {αj : 0 ≤ j ≤ n−1} and wt(x) = 1, Λ(α,B,x) is a de Bruijn
cycle of order n if we insert a 0 at the beginning. (See, for example, [5].)
We generalize this result as follows. Define Λ∗(α,B,x) to be the sequence
Λ(α,B,x) with a zero inserted at the beginning of each occurrence of the
string 0 . . . 01. Then we have the following.

Proposition 2. Fix a basis B of Fn
q over Fq, a generator α ∈ F

×
qn, and a

vector x ∈ F
n
q , and write Φ(j) for the vector

(Λj(α,B,x), . . . ,Λj+n−1(α,B,x))⊺ ∈ F
n
q

The map Ψ which sends 0 to 0 and αj to Φ(j) is an isomorphism from the
additive group of Fqn to F

n
q .

Proof. First, we show that Ψ is linear. Write ej for the elementary n-vector
whose coordinates are all zero except for a 1 in the jth coordinate. We denote
by Mγ,B the matrix representing multiplication by γ ∈ Fqn in the B basis. It
is easy to see that

Λj(α,B,x) = x⊺fB(α
j)

and therefore that

Ψ(γ) =
n−1
∑

j=0

ej+1x
⊺fB(α

jγ) =
n−1
∑

j=0

ej+1x
⊺M j

α,BfB(γ), (1)

which is obviously linear.
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Now, suppose that Ψ(γ) = 0. We show that γ = 0. Indeed, suppose that
{j1, . . . , jn} are n distinct integers so that Λji(α,B,x) = 0 for each i. If we
denote by S the subspace of Fn

q orthogonal to x, then we have αji ∈ f−1
B (S)

for each i. However, fB is linear and has a trivial kernel, so all the αji lie in
a subspace of Fn

q of dimension n− 1 and are therefore linearly dependent. If
we take ji = j+ i for some j (i.e., Ψ(γ) = 0 with γ = αj), then we have that
{αi}j+n

i=j+1 is a dependent set. Since Mα,B is nonsingular, this implies that

{αi}n−1
i=0 is a dependent set. But then we have

n−1
∑

i=0

ciα
i = 0

for some nonzero (c1, . . . , cn), so α satisfies a polynomial identity of degree
less than n. Since α generates F

×
qn, this implies that {αj}dj=0 is a basis for

Fqn for some d < n−1, contradicting the fact that the dimension of Fqn over
Fq is n. We can therefore conclude that γ = 0.

Note that the map γ 7→ Mγ,B is actually an isomorphism of fields. The
image is a set of matrices which form a field, i.e., a matrix field. These
objects have been studied extensively and thoroughly characterized when
the matrices take their entries from a finite field ([2]).

Corollary 3. Λ∗(α,B,x) is a de Bruijn cycle.

Proof. By the above argument, Λ(α,B,x) contains all nonzero n-strings.
Clearly, the insertion of a 0 causes the occurrence of the all-zeroes string
without disrupting the presence of any other string.

Our approach is to find an α ∈ Fqn , a basis B, and a vector x so that the
first K ∼ qn logn/(

(

n
R

)

(q − 1)R) length n strings appearing in Λ(α,B,x) are
(almost) a covering code of radius R. Specifically, we wish to show that, for
only a small fraction of all v ∈ Fqn,

(v +BR(0
n)) ∩Ψ({αj}Kj=1) = ∅

where Ψ is the function defined in Proposition 2. Define Ψ′ = fB ◦ Ψ−1.
Setting w = Ψ−1(v), we may bound this quantity from above by asking the
number of w so that

Ψ′

((E
R

))

∩ fB(w + {αj}Kj=1) = ∅
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which, by (1), is the same as saying that







(

n−1
∑

j=0

ej+1x
⊺M j

α,B

)−1

v : wt(v) = R







∩ fB(w + {αj}Kj=1) = ∅.

We must determine which matrices may appear in the form of the left-hand
term. First, a result from linear algebra is needed. The following theorem
appears in [2]. A non-derogatory matrix is one whose eigenspaces are all one-
dimensional, and a matrix in rational canonical form is comprised of blocks
of the form

0 0 0 0 · · · a1

1 0 0 0 · · · ...

0 1 0 0 · · · ...

0 0 1 0 · · · ...
...

...
...

...
. . .

...
0 · · · · · · · · · 1 an

along the diagonal.

Theorem 4. If A ∈ Kn×n is non-derogatory and in rational canonical form,
then the following are equivalent:

1. X commutes with A.

2. The successive columns of X are v, Av, . . . , An−1v for any v ∈ Kn.

3. There exists a polynomial g ∈ K[x] so that X = g(A).

Furthermore, g =
∑n−1

j=0 vj+1x
j.

The matrices Mα,B are non-derogatory when α is a generator of Fqn ,
because their eigenvalues are all distinct, as the next result states.

Proposition 5. A matrix M ∈ F
n×n
q is of the form Mα,B for some generator

α ∈ F
×
qn and basis B ⊂ Fqn over Fq if and only if its eigenvalues (over the

algebraic closure of Fq) are {αqj}n−1
j=0 .

5



Proof. For a given α, fix the basis A = {αj}n−1
j=0 . Clearly, if we write B for the

matrix whose columns are B written in the basis A, then Mα,B = B−1Mα,AB.
Therefore, a matrix M is one of the desired ones if and only if it has the
same eigenvalues as the matrix Mα,A. Let pα(λ) denote the characteristic
polynomial of this matrix. By the Cayley-Hamilton Theorem (which applies
to all commutative rings), pα(Mα,A) = 0. However, the map α 7→ Mα,B is
an isomorphism of fields for any basis B. Therefore, pα(α) = 0. Since the
Galois group of Fqn over Fq is cyclic and generated by the Frobenius map
x 7→ xq, and the rest of the roots of pα are the Galois conjugates of α, the
result follows.

Furthermore, if we let Θα denote the basis {αj}n−1
j=0 , then Mα,Θα

is in

rational canonical form. Its jth column is ej+1 for 1 ≤ j ≤ n− 1 and its nth

column is the vector of coefficients of the minimal polynomial of α (without
the leading term). Using this fact, we can prove the following from Theorem
4.

Lemma 6. Fix a generator α of Fqn. Choose x ∈ F
n
q \ {0n} randomly and

uniformly, and choose a basis B randomly and uniformly. Then

(

n−1
∑

j=0

ej+1x
⊺M j

α,B

)−1

is distributed uniformly over all invertible matrices.

Proof. Evidently, it suffices to show that D(B,x) =
∑n−1

j=0 ej+1x
⊺M j

α,B is
distributed uniformly. This matrix is one whose rows are x⊺, x⊺Mα,B, . . .,
x⊺Mn−1

α,B . Write A for the matrix Mα,Θα
and P for the matrix whose suc-

cessive columns are the elements of Θα written in the B basis, and write y
for P ⊺x. Then we may also say that D(B,x) is the matrix whose rows are
x⊺, x⊺PAP−1, . . ., x⊺PAn−1P−1, which we may rewrite as D(A, P ⊺x)P−1.
Therefore, by Theorem 4 and the fact that A is non-derogatory and in ratio-
nal canonical form, D(B,x) = gy(A)

⊺P−1 with gy denoting the polynomial
whose coefficients are the entries of y. Choosing x uniformly and randomly
from the nonzero vectors yields the same distribution on y, independent of
the choice of B. Since A is the image of α under the map α 7→ Mα,Θα

,
and gy(α) is uniformly distributed over Fqn \ {0} as y varies, we have gy(A)
uniformly distributed over all matrices of the form Mγ,Θα

for γ ∈ Fqn \ {0}.
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Choosing B uniformly is the same as choosing P−1 uniformly, so we may con-
clude that D(B,x) = gy(A)

⊺P−1 is uniformly distributed over all invertible
matrices.

3 The Main Result

It remains to show that the set of all sums of k columns of a randomly,
uniformly chosen invertible matrix are distributed more or less uniformly.
Before proceeding, we need to state Suen’s Inequality. We follow [1]. Let
{Ai}i∈I be a set of events, and define a symmetric relation (i.e, a graph) ∼
on I. We say that ∼ is a superdependency graph if, whenever J1, J2 ⊂ I have
no edges between them, any Boolean combination of {Ai}i∈J1 is independent
of any Boolean combination of {Ai}i∈J2. Write M =

∏

i∈I Pr[Ai].

Theorem 7 (Suen’s Inequality). Define

y(i, j) = (Pr[Ai ∧Ai] + Pr[Ai]Pr[Aj])
∏

l∼i or l∼j

(1− Pr[Al])
−1.

Then

Pr

[

∧

i∈I

Ai

]

≤ Me
∑

i∼j y(i,j).

The following is a routine application of this result.

Proposition 8. For R ∈ Z
+, if M is chosen randomly and uniformly from

GLn(Fq), then, for any set S ⊂ F
n
q with |S| = qnK/(

(

n
R

)

(q − 1)R),

Pr [{Mv : wt(v) = R} ∩ S = ∅] ≤ e−K(c−1
q + o(1)).

where cq =
∏∞

j=1(1− q−j) and K = o(
√
n).

Proof. The probability that a randomly, uniformly chosen invertible matrix
has all sums of k columns lying outside of a set S is given by

ρ = Pr[Mv ∈ S when wt(v) = R|M ∈ GLn(Fq)]

=
Pr[(Mv ∈ S when wt(v) = R) ∧ (M ∈ GLn(Fq))]

Pr[M ∈ GLn(Fq)]

7



≤ Pr[Mv ∈ S when wt(v) = R]

Pr[M ∈ GLn(Fq)]

where we are choosing M randomly and uniformly from all matrices. It
is well known that |GLn(Fq)| = qn

2

(cq + o(1)) with cq =
∏∞

j=1(1 − q−j).
Therefore,

ρ ≤ Pr[Mv ∈ S when wt(v) = R](c−1
q + o(1)).

Now, for a vector v of weight R, define Av to be the event that Mv ∈ S,
and let I(v) denote the set of indices at which v is nonzero. Then Pr[Mv ∈
S when wt(v) = R] = Pr[∧vAv]. The relation v ∼ w iff I(v) ∩ I(w) 6= ∅
clearly defines a superdependency graph on these events. Furthermore, any
pair Av and Aw, v 6= w, are independent, since, if we fix the ith columns
of M for i ∈ I(v) ∩ I(w), then

∑

i∈I(v)\I(w) Mei and
∑

i∈I(v)\I(w) Mei are
independent and uniformly distributed over Fn

q . Therefore,

y(v, w) = 2Pr[Av]Pr[Aw]
∏

z∼v or z∼w

(1− Pr[Az])
−1

≤ 2

(

K
(

n
R

)

(q − 1)R

)2(

1− K
(

n
R

)

(q − 1)R

)−2((nR)(q−1)R−(n−R

R )(q−1)R)

= 2

(

K
(

n
R

)

(q − 1)R

)2(

1− K
(

n
R

)

(q − 1)R

)( n

R−1
)(−2R2+o(1))(q−1)R

≤ 2

(

K
(

n
R

)

(q − 1)R

)2

e−K( n

R−1
)(−2R2+o(1))/(n

R)

= 2

(

K
(

n
R

)

(q − 1)R

)2

e−K(−2R3+o(1))/n.

Since there are
(

n
R

) ((

n
R

)

−
(

n−R
R

))

(q − 1)2R/2 = O(n2R−1) relations v ∼ w,
the quantity

∑

v∼w y(v, w) tends to 0 as n → ∞ so long as K = o(
√
n).

Therefore, Suen’s Inequality implies that

Pr





∧

wt(v)=R

Av



 ≤ (c−1
q + o(1))

∏

wt(v)=R

Pr[Av]

= (c−1
q + o(1))

(

1− K
(

n
R

)

(q − 1)R

)(nR)(q−1)R

8



≤ (c−1
q + o(1))e−K .

Taking an initial segment of a random Λ(α,B,x) and adding in all the
“uncovered” codewords yields an (n,R, q)-de Bruijn covering code.

Theorem 2. For each n, there exists an (n,R, q)-de Bruijn covering code of
length ≤ (R + 1 + o(1))qn log n/(

(

n
R

)

(q − 1)R).

Proof. Fix any generator α ∈ F
×
qn. Choose the basis B = {bi}ni=1 and the

vector x ∈ F
n
q \ {0n} randomly and uniformly. Then define Λ(K) to be the

string of the first qnK/(
(

n
R

)

(q−1)R)+n symbols of Λ(α,B,x) (which we will
call Λ1(K)), followed by a concatenated list (which we will call Λ2(K)) of all
strings in

F
n
q \
⋃

c∈C

bR(c)

where C is the set of codewords appearing as n consecutive symbols (without
wrap-around) in Λ1(K). Then the resulting expected length of the string is
given by

E(|Λ1(K)|+ |Λ2(K)|) = qnK
(

n
R

)

(q − 1)R
+ n + nqn

∑

v∈Fn
q

Pr[bR(v) ∩ C = ∅] (2)

Furthermore, the constructed string is an (n,R, q)-de Bruijn covering code.
By the discussion preceding Theorem 4, Pr[bR(v) ∩ C = ∅] is bounded above
by

Pr











(

n−1
∑

j=0

ej+1x
⊺M j

α,B

)−1

w : wt(w) = R







∩ fB(v + {αj}Kj=1) = ∅



 .

The matrix in the left-hand term is uniformly distributed over all invertible
matrices, by Lemma 6. Therefore, by Proposition 8,

Pr[bR(v) ∩ C = ∅] ≤ e−K(c−1
q + o(1)).

Plugging this and K = (R + 1) logn into (2) yields

E(|Λ1(K)|+ |Λ2(K)|) ≤ qn log n
(

n
R

)

(q − 1)R
(R + 1 + o(1)),

so a (n,R, q)-de Bruijn covering code of the desired length exists.
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4 A Spectral Perspective

In this section, we describe a “spectral” test to see whether a given string is a
de Bruijn covering code, and apply it to a probabilistic construction. Define
eN(x) = e2πix/N , as is standard notation.

Proposition 3. Let S = (S(0), . . . , S(M − 1)) be a q-ary string, for any
q > 1. Then S is a de Bruijn covering code of radius R and dimension n if
and only if the quantity

qn−1
∏

ω=0

M−1
∑

j=0

∑

v:wt(v)≤R

qn−1
∑

m=0

eqn

[

m(ω −
n−1
∑

i=0

(S(i+ j) + vi mod q)qi)

]

(3)

is positive, where v varies over the set of q-ary sequences (v0, . . . , vn−1) and
the index of S is written modulo M . Otherwise, this expression is zero.

Proof. In what follows, all parameters vary over the ranges indicated in the
statement above. Note that

∑

m

eqn(m(ω − ω′))

is positive if ω = ω′ mod qn, and zero otherwise. If we represent a q-ary
word as an integer base q, then the jth word appearing in S is

∑

i S(i+ j)qi,
and, if wt(v) ≤ R, this quantity plus

∑

k vkq
k (digits added independently

modulo q) is the jth word with each symbol altered in at most R coordinates.
Therefore, the quantity

∑

v

∑

m

eqn(m(ω −
∑

i

(S(i+ j) + vi mod q)qi))

is positive if and only if the word S(i+ j) is at most a distance R from the
word which is ω written base q. Taking the sum over j and then the product
over ω, we get that (3) is positive if and only if S is an (n,R, q)-de Bruijn
covering code, and is zero otherwise.

Consider the expected value of the above expression when we take a
randomly, uniformly chosen binary string S ∈ {0, 1}M . Clearly, an (n,R, 2)-
de Bruijn covering code of length M exists if and only if this expected value
is positive, since (3) is always nonnegative.

10



Theorem 4. An (n,R, 2)-de Bruijn covering code of length M exists if and
only if

∑

j,v,m

e2n

[

2n−1
∑

ω=0

mω(ω − (2n − 1)/2)

]

M−1
∏

l=0

cos

(

π
∑

i,ω

mω(1− 2vω,i)2
i−n

)

> 0,

where i and ω range over all pairs so that 0 ≤ i ≤ n − 1, 0 ≤ ω ≤ 2n − 1,
and i+ jω = lmod M , and the ranges of the other parameters are given by

j ∈ {0, . . . ,M − 1}2n
m ∈ {0, . . . , 2n − 1}2n

v ∈ {v ∈ {0, 1}n : wt(v) ≤ R}2n .

Proof. First, rewrite (3) by moving the product inside and collecting terms
involving the same digits of S:

∑

j

∑

v

∑

m

e2n

[

2n−1
∑

ω=0

mωω

]

M−1
∏

l=0

e2n

[

−
∑

i,ω

mω(S(l) + vω,i mod 2)2i

]

. (4)

If X is a random variable with two equally probable values A and B, then
E[eM (X)] = eM((A+B)/2) cos(π(A−B)/M). Taking the expected value of
(4) therefore gives

∑

j,v,m

e2n

[

2n−1
∑

ω=0

mωω

]

M−1
∏

l=0

e2n

[

−
∑

i,ω

mω2
i−1

]

cos

(

π
∑

i,ω

mω(1− 2vω,i)2
i−n

)

since the digits of S are independent. We may simplify this expression to

∑

j,v,m

e2n

[

2n−1
∑

ω=0

mω(ω − (2n − 1)/2)

]

M−1
∏

l=0

cos

(

π
∑

i,ω

mω(1− 2vω,i)2
i−n

)

.

Unfortunately, this result does not yield a practical means of calculating
M(n,R, 2), due to the large number of terms. Furthermore, it is unlikely
that much cancellation can be identified in this sum, given the NP-hardness
of determining a code’s covering radius [4]. It may be possible, however, to
exploit approximation algorithms for vertex-coverings to find a much simpler
sum which yields a reasonable bound.

We also offer the following, in the spirit of the above results.
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Proposition 5. Let S = (S(0), . . . , S(M − 1)) be a q-ary string, for any
q > 1, and denote by X the union of the radius R balls about each codeword
appearing as an n-string in S. Then the number of points of [q]n not covered
by X is at most

qn−1
∑

ω=0

∞
∑

k=0

1

k!



−
M
∑

j=0

∑

wt(v)≤R

qn−1
∑

m=0

eqn

[

m(ω −
n−1
∑

i=0

(S(i+ j) + vt,i mod q)qi)

]





k

where v varies over the set of q-ary sequences (v0, . . . , vn−1) and the index of
S is written modulo M .

Proof. As above, the quantity

T (ω) = q−n
M
∑

j=0

∑

wt(v)≤R

qn−1
∑

m=0

eqn

[

m(ω −
n−1
∑

i=0

(S(i+ j) + vt,i mod q)qi)

]

counts the number of times that ω is covered. Therefore
∑

ω e
−qnT (ω) is at

least the number of uncovered points.

One might conjecture that a sufficiently long sequence S whose Fourier
coefficients Ŝ(k) are small, for k 6= 0, covers all but a small fraction of
Hamming space. To avoid trivial cases, we must restrict our attention to
sequences with approximately the same number of each symbol. However,
this statement is false even in the binary case, as illustrated by the following
simple example.

Define S = (S(0), . . . , S(M − 1)), M even, by (S(2j), S(2j + 1)) = (0, 1)
with probability 1/2 and (1, 0) with probability 1/2, each pair chosen inde-
pendently. Clearly, S has the same number of 1’s as 0’s. The kth Fourier
coefficient, k 6= 0, has square magnitude

|Ŝ(k)|2 =
M−1
∑

u,v=0

eM(k(u− v))S(u)S(v).

The values of S(u) and S(v) are independent if |u− v| > 1, so the expected
value of the above expression is

E[|Ŝ(k)|2] =
M−1
∑

u,v=0

eM(k(u− v))E[S(u)S(v)]
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=
M−1
∑

u=0

1

2
+
∑

|u−v|>1

eM(k(u− v))

4
+
∑

|u−v|=1

eM(k(u− v))E[S(u)S(v)]

≤M

2
+

M−1
∑

u,v=0

eM (k(u− v))

4
−

∑

|u−v|≤1

eM(k(u− v))

4
+ 2M

≤M

2
+

∣

∣

∣

∣

∣

M−1
∑

u=0

eM(ku)

2

∣

∣

∣

∣

∣

2

+
3M

4
+ 2M =

15M

4
.

Any n-word appearing in S has weight either ⌊n/2⌋ or ⌈n/2⌉. Therefore,
there exists a sequence S of length M with Fourier coefficients Ŝ(k) ≪

√
M

so that, for any fixed R, the number of codewords at most a distance R from
the resulting code is an O(n−1/2) fraction of the total.

It would be interesting to know whether the characteristic function of
quadratic residues mod p are a (near?) de Bruijn covering code whenever
p = Ω(2n/nR). Other possibilities for random-like constructions include the
image of [0, (p + 1)/2] under the map s 7→ sk with (k, p − 1) = 1, and
the image of [0, (p − 1)/2] under the map s 7→ τ s, for some primitive root
τ . Unfortunately, because of the above example, the Fourier coefficients of
these sets (which are known to be small) tell us nothing about how well they
cover Hamming space.

5 Numerical Bounds

It is of interest to know M(n,R, q) for small values of its parameters – in
particular, for q = 2, i.e., the binary case. First, we collect a few simple
observations.

1. M(n,R, q) ≤ M(n + k, R − l, q + m) for any k, l,m ≥ 0. If a de
Bruijn covering code C exists for parameters (n+ k, R− l, q+m), then
certainly decreasing the dimension, increasing the radius, or decreasing
the number of symbols will leave C covering everything. (In the case
of decreasing the number of symbols, we can replace all occurrences of
the excluded symbols to “0”. It is easy to check that this operation
can only decrease distances from n-strings to the code.)

2. M(n, 0, q) = qn, as noted in the introduction.

13



3. M(n,R, q) = 1 if R ≥ n, by taking the string “0”.

4. M(n,R, 2) = 2 if ⌊n/2⌋ ≤ R < n, by taking the string “01”. The
two resulting codewords are complements in the n-cube, and therefore
every string is within ⌊n/2⌋ of one of them. Furthermore, it is clear
that at least 2 codewords are necessary.

5. M(n,R, q) ≥ Kq(n,R), the smallest number of codewords in a q-ary
covering code of dimension n and radius R.

6. M(n,R, q) 6= M if min{|n mod M |, |(−n) mod M |} ≤ n − 2R − 1,
where |x mod y| means the least nonnegative representative of x mod-
ulo y. Indeed, if a (n,R, q)-de Bruijn covering code S = (s0, . . . , sM)
exists, then every string of n consecutive symbols has weight

⌊ n

M

⌋

wt(S) + wt(si, . . . , si+A−1)

for some i, where the indices are taken moduloM and A = |n mod M |.
Similarly, each such string has weight

(⌊ n

M

⌋

+ 1
)

wt(S)− wt(si, . . . , si+B−1)

for some i, where B = |(−n) mod M |. Therefore, any two codewords
appearing in S can differ by at most C = min{A,B} in weight. If
C ≤ n− 2R− 1, then either the string 0n or the string 1n is at least a
distance R + 1 from any codeword.

7. Every (n,R, 2)-de Bruijn covering code has a run of ⌊n/(R + 1)⌋ con-
secutive 0’s and a run of ⌊n/(R + 1)⌋ consecutive 1’s. Suppose a code
did not contain 0k with k = ⌊n/(R + 1)⌋. Then every element of the
code has weight at least ⌊n/k⌋ ≥ R+ 1, so the word 0n is not covered,
a contradiction. An identical argument applies to the case of a run of
1’s.

8. If there exists an (n,R, q)-de Bruijn covering code of length M , then
there exists one of length M+n+k−1 for all k ≥ 0. If S is the shorter
string, append a copy of the first (n−1) symbols and k arbitrary q-ary
symbols to the end.
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9. If there exists an (n,R, q)-de Bruijn covering code of length M(n,R, q)
that somewhere contains the string an−1, then there exists an (n,R, q)-
de Bruijn covering code of all lengths longer than M(n,R, q). We may
simply insert more copies of a into the string to generate longer ones.

10. There are at leastM(n,R, q) (n,R, q)-de Bruijn covering codes of length
M(n,R, q). Since M(n,R, q) is minimal, no such string has period less
than M(n,R, q), since otherwise we could truncate after a single period
and achieve a smaller de Briujn covering code with the same parame-
ters. Therefore, all cyclic translations of any de Bruijn covering code –
which are each themselves de Bruijn covering codes – are distinct.

Below, we include a table of the best known bounds on the sizes of bi-
nary de Bruijn covering codes with various parameters. A single number in
an entry indicates that the exact value of M(n,R, 2) is known; two numbers
indicate an upper and lower bound. Bounds were achieved using the obser-
vations above, the table in [10], as well as software that searched the string
space randomly (for upper bounds), and one which searched it exhaustively
(for lower bounds). A few hundred hours of computing time on a 1.8 GHz
Intel-based PC were used to construct this table.

6 Remarks and Further Questions

Statement 8 in the previous section highlights a frustrating property of de
Bruijn covering codes that stands in stark contrast to ordinary covering codes:
it is possible for one to exist of length M but for none to exist of lengthM+1.
For example, a (10, 4, 2) code exists of lengths 4 (“1100”), 6 (“011100”), 8
(“00111100”), and 12 (“000011111100”), but none of lengths 5, 7, 9, 10, or
11 exist. However, by the above, a (10, 4, 2) code of all lengths at least 13
must exist. Therefore, in addition to finding the smallest possible de Bruijn
covering code, we would like to know when de Bruijn covering codes with
lengths between M(n,R, q) and M(n,R, q) + n− 1 exist.

Another difference between de Bruijn covering codes and ordinary ones is
that there is no easy way to use known efficient codes to build efficient codes
for larger n, smaller R, or larger q. It would be desirable to define a “prod-
uct” analogous to direct sums for ordinary covering codes. Unfortunately,
interlacing, the obvious candidate for such a product, appears to be very
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R\n 2 3 4 5 6 7

1 2 2 6 8 12 22
2 1 2 2 2 8 10
3 1 1 2 2 2 2
4 1 1 1 2 2 2
5 1 1 1 1 2 2
6 1 1 1 1 1 2

R\n 8 9 10 11 12 13

1 32 57-130 105-322 180-694 342-1454 598-2937
2 14 20 38 38-117 62-244 97-529
3 6 12 16 20 34-40 34-119
4 2 2 4 8 16 24
5 2 2 2 2 8 8
6 2 2 2 2 2 2
7 2 2 2 2 2 2
8 1 2 2 2 2 2
9 1 1 2 2 2 2
10 1 1 1 2 2 2
11 1 1 1 1 2 2

Table 1: Best known bounds for M(n,R, 2)

inefficient. We offer a different, though related construction which allows us
to increase q when the desired number of symbols is a perfect power of the
number of symbols in the original code.

Proposition 6. If as = b for any positive integers a, b, and s, then for all
n,R > 0,

M(n,R, b) ≤ s2
⌈

M(sn,R, a) + sn

s

⌉

− s.

Proof. Let t = M(sn,R, a) and m = s2⌈(t + sn)/s⌉ − s, and let C =
(c0, . . . , ct−1) be a minimum-length (sn,R, a)-de Bruijn covering code. We
construct an (n,R, as)-de Bruijn covering code C ′ = (c′0, . . . , c

′
m−1) of length

m. Choose some bijection σ between (Z/aZ)s and Z/asZ, and define

c′j = σ(c|sj mod (m/s)|, . . . , c|s(j+1)−1 mod (m/s)|)
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with indices on the left hand side taken modulo m and indices on the right
hand side taken modulo t. Evidently, C ′ is well defined, since s|m. Now,
suppose X = (x0, . . . , xn−1) is an n-string over as symbols. We claim that
there is some codeword in the set of consecutive n-strings of C ′ which is
within R symbols of x.

Indeed, let x′
j = σ−1(xj) for 0 ≤ j < n and define X ′ = x′

0 · · ·x′
sn−1, a

string of length sn. Then some string X ′′ which differs from X ′ in at most
R symbols occurs somewhere in C, say, beginning at coordinate k. X ′′ must
occur at least s times in C ′, at coordinates k + jm/s for 0 ≤ j < s. (If X ′′

“wraps around” in C, the extra ≥ sn−1 symbols at the end of each block of
length m/s guarantee X ′′ appears in C ′.) Furthermore, since (m/s, s) = 1,
the numbers k + jm/s, 0 ≤ j < s, represent all residue classes modulo s, so
there is some r so that k + rm/s ≡ 0 mod s. Then the string

σ−1(c′k+rm/s, . . . , c
′
k+rm/s+s−1) . . . σ

−1(c′k+rm/s+(n−1)s, . . . , c
′
k+rm/s+ns−1)

appears in C and at most R of its coordinates differ from those of X .

The most obvious question arising from the subject of the present work
is the issue of whether the bound stated in Theorem 1 is best possible, i.e.,
whether the log factor can be dropped or the result can be extended to q’s
which are not prime powers. We also would like to explain why so many of
the entries in Table 1 are even.
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