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Abstract

We study a problem related to coin flipping, coding theory, and noise sensitivity. Consider
a source of truly random bits x ∈ {0, 1}n, and k parties, who have noisy versions of the source
bits yi ∈ {0, 1}n, where for all i and j, it holds that P[yij = xj ] = 1 − ǫ, independently for
all i and j. That is, each party sees each bit correctly with probability 1 − ǫ, and incorrectly
(flipped) with probability ǫ, independently for all bits and all parties. The parties, who cannot
communicate, wish to agree beforehand on balanced functions fi : {0, 1}n → {0, 1} such that
P[f1(y

1) = . . . = fk(y
k)] is maximized. In other words, each party wants to toss a fair coin so

that the probability that all parties have the same coin is maximized. The functions fi may be
thought of as an error correcting procedure for the source x.

When k = 2, 3 no error correction is possible, as the optimal protocol is given by fi(x
i) = yi

1
.

On the other hand, for large values of k, better protocols exist. We study general properties
of the optimal protocols and the asymptotic behavior of the problem with respect to k, n and
ǫ. Our analysis uses tools from probability, discrete Fourier analysis, convexity and discrete
symmetrization.

1 Introduction

Consider a source of truly random bits x ∈ {0, 1}n, which is accessible to k parties. If the k parties
want to use the source in order to obtain a common single random bit, they can easily do so by
deciding beforehand to let the common bit be x1. More generally, they can decide beforehand on
any balanced function f : {0, 1}n → {0, 1}, and let the common bit be f(x). We call a function f
balanced if Px[f(x) = 0] = Px[f(x) = 1] = 1/2.

In this setting, there is no real advantage in taking the function f to be anything other than
f(x) = x1. The problem becomes more interesting when the parties receive noisy versions of
the random bits. That is, party i receives yi, where the bits of yi satisfy P[yij = xj ] = 1 − ǫ,
independently for all i and j. We also assume that the parties cannot communicate. Yet, the
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parties want to toss the same fair coin given their noisy versions of the source. We will now allow
each party i to use a different balanced function fi : {0, 1}n → {0, 1} as a coin-tossing procedure.
We want to maximize P[f1(y

1) = . . . = fk(y
k)].

This problem is motivated naturally by several models in cryptography. Think of a long one-
time pad which is distributed to parties with a small probability of error. The parties still want to
use this one-time pad as their key to an encryption algorithm, by dividing the one-time pad into
blocks of length n, and applying some function on each block to obtain a shorter one-time pad
which has high probability of being the same for all parties. One setting in which such a procedure
should be useful is Ding and Rabin’s “everlasting security” [DR01], a strong encryption algorithm
in the bounded storage model. This model presupposes the existence of a satellite broadcasting
a continuous stream of a huge number of random bits. It is natural to expect some error in any
reception of this stream. A somewhat related cryptographic problem was studied by Maurer [M97];

Our problem is also of interest as a noncryptographic collective coin flipping problem. One
example of such a problem is the full information model, introduced by Ben-Or and Linial [BL90]
and studied extensively (see, e.g., the survey [D00]). In this problem, many parties try to agree on
a single random bit; each generates a random coin toss, and there is a single protocol (function)
taking all the coin tosses and producing a bit. The difficulty arises from the assumption that some
parties are corrupt and can choose their coins adversarially. In our problem, the major difference
is that the parties do not communicate any random bits, so they each must apply a protocol to a
shared random string. And, instead of arbitrary corruptions, we assume random ones.

The question presented in this paper is also a natural question regarding error correcting for
the broadcast channel (see e.g. [CT91]) with a truly random source. Naturally, when the source
is truly random, error correction is impossible. However, here instead of requiring that all parties
receive the information transmitted to them with high probability, we require that all parties attain
the same information with high probability, and that this mutual information has high entropy.

Finally, a basic motivation comes from the study of noise-sensitivity, see [KKL88] and [BKS99].
The functions fi that maximize the probability P[f1(y

1) = . . . = fk(y
k)] are in an intuitive sense

stable to noise, and it turns out that when the number of parties k is 2 or 3, this intuition can be
used in order to prove that the optimal functions are just the first-bit function. Our results for
larger values of k are part of an initial attempt for bounding high norms of the Bonami-Beckner
operators in the range where the results of [Bo70] and [Be75] do not apply.

1.1 Definitions and notation

Definition 1.1

• The model Let k ≥ 1 be the number of parties, and n ≥ 1 be the block length. Let ǫ ∈
(0, 1/2) be the corruption probability. Our space is the space of all sequences (x, y1, . . . , yk) ∈
{0, 1}n×(k+1), where x represents the source and is chosen uniformly at random from {0, 1}n.
For each i, yi represents the bits that party i holds and it is assumed that for all 1 ≤ i ≤ k
and 1 ≤ j ≤ n, it holds that P[yij = xj] = 1 − ǫ, independently for all i and j. This is our
probability space, and when we write P (or E) we mean the probability (expected value) in
this space.
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• Balanced and antisymmetric functions Let Bn denote the set of balanced functions f :
{0, 1}n → {0, 1}; i.e., those with |f−1(0)| = |f−1(1)|. Let An denote the set of antisymmetric
n-bit boolean functions; i.e., those satisfying f(x̄1x̄2 · · · x̄n) = f(x), where the bar denotes
flipping 0’s and 1’s, so x̄ = 1− x. Note that An ⊂ Bn.

• Protocols A protocol consists of k functions fi ∈ Bn. An antisymmetric protocol consists of
k functions fi ∈ An. For a protocol (f1, . . . , fk), we write P(f1, . . . , fk; ǫ) for the probability
that all functions agree, so

P(f1, . . . , fk; ǫ) = P[f1(y
1) = . . . = fk(y

k)].

We write Pk(f ; ǫ), in place of P(f1, . . . , fk; ǫ), if f1 = . . . = fk = f .

It turns out that restricting all fi to be balanced is neither necessary nor sufficient for ensuring
that the output bit, when agreed upon, is uniformly random — see Proposition 5.3 for a counterex-
ample to sufficiency. A sufficient condition is that every function be antisymmetric, since if all the
function are antisymmetric, then

P[f1(y
1) = . . . = fk(y

k) = 1] = P[f1(y1) = fk(yk) = 0] = P[f(y1) = . . . = f(yk) = 0],

where the first equality follows from the fact that fi are antisymmetric and the second since P

assigns the same probability to (x, y1, . . . , yk) as it does to (x̄, y1, . . . , yk). We are not aware of a
weaker condition than antisymmetry that ensures that the output bit when agreed upon is uni-
formly random.

We end this section with a few more definitions. For S ⊆ [n] and π a permutation of [n], let
πS : {0, 1}n → {0, 1}n be defined by πS(x)i = xπ(i) if i ∈ S, and πS(x)i = xπ(i) if i /∈ S. Any πS
merely permutes coordinates, and flips the roles and 0 and 1 on some coordinates. It’s therefore
easy to see that P(f1 ◦ πS , . . . , fk ◦ πS; ǫ) = P(f1, . . . , fk; ǫ) for any πS .

In order to express uniqueness results cleanly, we abuse language in the following way: For
particular k, n, and ǫ, we say that (f1, . . . , fk) is the unique best protocol “up to πS” if the set of
best protocols is exactly {(f1 ◦ πS , . . . , fk ◦ πS) : S ⊆ [n], π ∈ Sn}.

Remark 1.2 Those familiar with the Bonami-Beckner operator (see Definition 3.1) will note that
Pk(f ; ǫ) = ‖Tǫf‖kk + ‖Tǫ(1 − f)‖kk. Therefore we are looking for balanced boolean functions having
large k’th norm for various values of k.

1.2 Main results

Methods of discrete Fourier analysis (see [KKL88, BKS99, MO02] for background) give an exact
solution to our problem in the cases k = 2, 3, and the best protocol, up to πS , is for all parties to
use the function f(x) = x1. We attribute the case k = 2 in the following theorem to folklore.

Theorem 1.3 For all k, n, ǫ, if we wish to maximize the expression

E[#(i, j) : fi(y
i) = fj(y

j)], (1)
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the unique best protocol up to πS is given by f1 = . . . = fk = f , where f(x) = x1. In particular, if
k = 2 or k = 3, then for all n and ǫ, the unique best protocol up to πS for maximizing P(f1, . . . , fk; ǫ)
is given by f1 = . . . = fk = f , where f(x) = x1.

In general we do not know how to find the optimal protocol. However, we can prove some general
properties of the protocols which maximize P(f1, . . . , fk; ǫ). Recall that a function f is monotone
if for all x, y ∈ {0, 1}n, we have f(x) ≤ f(y) whenever x � y (in the sense xi ≤ yi for all i). For
x, y ∈ {0, 1}n, we write x �L y if

∑m
i=1 xi ≤ ∑m

i=1 yi for every m = 1 . . . n. We call a function
f left-monotone if f(x) ≤ f(y) whenever x �L y. Note that the partial order induced by �L

is a refinement of the partial order induced by �; in particular, every left-monotone function is
monotone.

The following theorem is based on convexity and on the Steiner symmetrization principle (see
e.g. [T93] for background).

Theorem 1.4 For all k, n, and ǫ, any protocol which maximizes P(f1, . . . , fk; ǫ) among all proto-
cols satisfies f1 = . . . = fk = f , where f is left-monotone (up to πS). This theorem remains true if
the phrase “protocol” is everywhere replaced by “antisymmetric protocol”.

So far we haven’t ruled out the possibility that the optimal protocol always consists of taking
just one bit. For r an odd number, let MAJr denote the majority function on the first r bits; i.e.,
MAJr(x) is 1 if

∑r
i=1 xi > r/2 and MAJr(x) = 0 if

∑r
i=1 xi < r/2. Using a coupling argument, we

prove the following result:

Theorem 1.5 For all n odd, and all ǫ, there exists a K = K(n, ǫ) such that for k ≥ K, the unique
best protocol up to πS is given by f1 = . . . = fk = MAJn. Moreover, as k → ∞,

Pk(MAJn; ǫ) = Θ
(

(1−P[Bin(n, ǫ) > n/2])k
)

, (2)

where Bin(n, ǫ) is a binomial variable with parameters n and ǫ. (This should be compared to
Θ((1− ǫ)k) for the function f(x) = x1.) When n is even, a similar result is true; in place of MAJn,
one should take any balanced function f which has f(x) = 1 whenever |{i : xi = 1}| > |{i : xi = 0}|,
and f(x) = 0 whenever |{i : xi = 0}| > |{i : xi = 1}|.

A dual result is obtained by fixing n and k, and letting ǫ be either close to 0 or close to 1/2.

Theorem 1.6 For all k and n, there exist 0 < ǫ′ = ǫ′(n, k) < ǫ′′ = ǫ′′(n, k) < 1/2, such that for all
0 < ǫ < ǫ′, or ǫ′′ < ǫ < 1/2, the unique best protocol up to πS is given by f1 = . . . = fk = f , where
f(x) = x1; i.e., f = MAJ1.

It may now seem like the optimal protocol consists of either taking all functions to be MAJn or
all functions to be MAJ1. This is not the case however, as a computer-assisted proof shows that
sometimes MAJr is better than MAJ1 and MAJn for 1 < r < n. See Proposition 5.2.

Despite Theorem 1.5, it is not true that as k → ∞, the success probability of the best protocol
goes to 0 exponentially fast in k (treating ǫ as fixed). In fact, if we allow n to be an unbounded
function of k, then the best protocol’s success probability is at least inverse-polynomially large in
k.
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Theorem 1.7 Fix ǫ. Then there exists a sequence (nk) such that

Pk(MAJnk
; ǫ) ≥ Ω

(

1

k2.01/(1−2ǫ)2

)

.

It suffices to have nk = O(k4.01/(1−2ǫ)2).

Finally, it is natural to ask if the optimal function is always MAJr for some 1 ≤ r ≤ n (assuming,
say, n is odd).

Conjecture M: For a particular k, ǫ, and odd n, there is a function f ∈ An which is not a
majority function such that Pk(f ; ǫ) > Pk(MAJm; ǫ) for all odd m ≤ n.

Conjecture O: For any given k, ǫ, and odd n, there is an odd m ≤ n such that the best antisym-
metric function for the parties is MAJm.

In fact, we know of no counterexample to Conjecture O even if we allow the parties to use
any balanced function (which could allow for a biased output). Some evidence that resolving this
conjecture could possibly be hard: One, it is not true that for any non-majority function f , and any
fixed k, there is a majority function which dominates f over all ǫ — we have a computer-verified
counterexample. Two, for certain k, ǫ, Pk(MAJn, ǫ) is not even unimodal as a function of n. E.g.,
for k = 12, ǫ = 0.1, the success probability decreases between MAJ1 and MAJ3, increases up to
MAJ11, and then decreases again out to MAJ17 (and appears to continue decreasing from this point
on).

We conclude the introduction with a road map to the following sections. In Section 2 we
prove Theorem 1.3 using Fourier analysis. In Section 3 we prove the Theorem 1.4 using Steiner
symmetrization and convexity. In Section 4 we prove Theorems 1.5, 1.6, and 1.7 — the arguments
in this section are mostly probabilistic. Finally, in Section 5 we discuss the results of some computer
analysis, and pose two more open problems.

1.3 Results obtained subsequent to this work

Several new results have been proven about the cosmic coin problem subsequent to this work.
Perhaps the most interesting asymptotic setting of the parameters is that of Theorem 1.7: ǫ fixed
and k → ∞, with n being unbounded. It has since been shown that in this setting the optimal
success probability of the players is precisely Θ̃(k−ν), where ν = ν(ǫ) = 4ǫ(1−ǫ)

(1−2ǫ)2
, and Θ̃(·) denotes

asymptotics to within a subpolynomial (ko(1)) factor. The upper bound comes simply from a
more careful analysis of the success probability of the majority protocol. Much more interesting
is the lower bound, which is proved using a reverse hypercontractive property of the Bonami-
Beckner operator proven in [Bor82] (c.f. usual uses of the hypercontractive property in [KKL88]
and subsequent works).

In addition, the same problem on different tree structures has been studied. The problem in
the present paper corresponds to a star graph with k leaves, with the initial random string at the
root distributed to the k players along the edges. The corresponding problem on the line graph
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has subsequently been studied, and it is shown that for n unbounded and fixed ǫ the agreement
probability decays exponentially in k. This is different from the star where the decay rate is
polynomial in k.

See [MORSS03] and also preliminary expositions from [O03].

2 Fourier methods

In this section, we make a usual notational switch; the bits 0 and 1 will be denoted by +1 and −1,
respectively. Note that f : {+1,−1}n → {+1,−1} is balanced iff E[f ] = 0. Given the functions
of the parties f1, . . . , fk : {+1,−1}n → {+1,−1}, we view these as functions in the larger space
{+1,−1}n×(k+1) in the natural way: fi(x, y

1, . . . , yk) = fi(y
i). Our probability space gives rise to

a natural inner product on functions f, g : {+1,−1}n×(k+1) → R:

〈f, g〉 = E
x,y1,...,yk

[f(x, y1, . . . , yk)g(x, y1, . . . , yk)]. (3)

Lemma 2.1
k
∑

i,j=1

〈fi, fj〉 = 2E[#(i, j) : fi(y
i) = fj(y

j)]− k2.

Proof: Since the fi are ±1 valued functions,

k
∑

i,j=1

〈fi, fj〉 =

k
∑

i,j=1

(

P[fi(y
i) = fj(y

j)]−P[fi(y
i) 6= fj(y

j)]
)

=
k
∑

i,j=1

(

2P[fi(y
i) = fj(y

j)]− 1
)

= 2E[#(i, j) : fi(y
i) = fj(y

j)]− k2.

✷

Now, in order to maximize the quantity in (1), we analyze the scalar products 〈fi, fj〉. In
order to analyze scalar products, it is useful to work with the Fourier basis. We refer the reader
to [KKL88, BKS99, MO02] for background. For a set S ⊂ [n], we let Ui,S : {+1,−1}n×(k+1) →
{+1,−1} be defined by:

Ui,S(x, y
1, . . . , yk) = Ui,S(y

i) =
∏

j∈S

yij.

Since the k yj ’s are independent, it follows that if S 6= S′ then for all i, i′,

〈Ui,S, Ui′,S′〉 = 0. (4)

Moreover, if i 6= i′ then

〈Ui,S , Ui′,S〉 = E[
∏

j∈S

yijy
i′
j ] =

∏

j∈S

E[yijy
i′
j ] = (1− 2ǫ)2|S|, (5)

and the functions Ui,S all have norm 1, so 〈Ui,S , Ui,S〉 = 1.
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Lemma 2.2 Let i 6= j. Then

max
fi,fj∈Bn

〈fi(yi), fj(yj)〉 = (1− 2ǫ)2,

and the maximum is obtained when fi = fj = f and f(x) = ±xr for some 1 ≤ r ≤ n.

Proof: Express fi and fj in terms of their Fourier expansion, fi =
∑

S⊆[n] f̂i(S)Ui,S and similarly
for fj. Since, both fi and fj are balanced, and E[Ui,S ] = E[Uj,S] = 0 for nonempty S, it follows

that f̂i(∅) = f̂j(∅) = 0. Now by (4) and (5) it follows that

〈fi, fj〉 =
∑

∅6=S⊆[n]

f̂i(S)f̂j(S)(1 − 2ǫ)2|S|. (6)

Hence we have:

〈fi, fj〉 =
∑

∅6=S⊆[n]

(1− 2ǫ)|S|f̂i(S)(1− 2ǫ)|S|f̂j(S)

≤
√

∑

∅6=S⊆[n]

(1− 2ǫ)2|S|f̂i(S)2
√

∑

∅6=S⊆[n]

(1− 2ǫ)2|S|f̂j(S)2 (Cauchy-Schwarz)

≤
√

∑

∅6=S⊆[n]

(1− 2ǫ)2f̂i(S)2
√

∑

∅6=S⊆[n]

(1− 2ǫ)2f̂j(S)2

= (1− 2ǫ)2,

as
∑

f̂i(S)
2 =

∑

f̂j(S)
2 = 1. The second inequality is tight only if fi and fj have Fourier degree

1. Note that if f(x) =
∑

|S|=1 f̂(S)uS(x) is a function which is ±1 valued, then for all S of size 1,

it holds that 2f̂(S) = f(x)− f(x⊕ eS) ∈ {−2, 0, 2}. It follows that f(x) = ±xr for some r.

In this case, the first inequality is tight only if fi and fj are the same one-bit function. Hence,
as claimed, fi = fj = f where f(x) = ±xr constitutes the only maximizing solution. ✷

We can now prove Theorem 1.3.

Proof: [of Theorem 1.3] By Lemma 2.1 it follows that maximizing E[#(i, j) : fi(y
i) = fj(y

j)] is
the same as maximizing,

k
∑

i,j=1

〈fi, fj〉 = k +
∑

i 6=j

〈fi, fj〉.

By Lemma 2.2, the above sum is maximized when f1 = . . . = fk = f , and f(x) = x1 up to πS. We
thus obtain the first assertion of the theorem.

For the second assertion, note that when k = 2,

E[#(i, j) : fi(y
i) = fj(y

j)] = 2 + 2P[f1(y
1) = f2(y

2)],

while when k = 3,

E[#(i, j) : fi(y
i) = fj(y

j)] = 5 + 4P[f1(y
1) = f2(y

2) = f3(y
3)],

so the second assertion follows. ✷
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3 Convexity and symmetrization

We now show that to maximize P(f1, . . . , fk; ǫ), it suffices to look at restricted sets of functions.
The methods in the section are related to convexity in general and the Steiner symmetrization in
particular, see e.g. [T93] for background.

We begin with a definition and a simple Fourier Lemma (The Bonami-Beckner operator Tǫ(f)
was first defined in [Be75, Bo70], see also [KKL88, BKS99])

Definition 3.1 For f : {0, 1}n → R, given by f(x) =
∑

S⊂[n] f̂(S)uS(x), let

Tǫ(f)(x) =
∑

S⊂[n]

f̂(S)(1 − 2ǫ)|S|uS(x).

Lemma 3.2 Given ǫ and f : {0, 1}n → {0, 1}, Tǫ(f)(x) equal the probability that a particular party
using f outputs 1, given that the source string is x. If f and g are different boolean functions on
{0, 1}n, then for every 0 < ǫ < 1/2, there exists some x ∈ {0, 1}n for which Tǫ(f)(x) 6= Tǫ(g)(x).

Proof: Note that given a source x and an ǫ corrupted version of x, y, the expected value of uS(y)
is given by (1 − 2ǫ)|S|uS(x) (an easy calculation; see e.g. [BKS99] for a full proof). Therefore, by
linearity of expectation, it follows that for all f : {0, 1}n → R, Tǫ(f)(x) is the expected value of
f(y), where y is a corrupted version of x. In particular, if f : {0, 1}n → {0, 1}, then Tǫ(f)(x) =
E[f(y)] = P[f(y) = 1] and we proved the first assertion of the lemma.

For the second assertion note that for 0 < ǫ < 1/2, Tǫ is by definition a reversible linear
transformation on the space of all function from {0, 1}n → R. ✷

Now, using convexity, we prove that all parties should use the same function:

Proposition 3.3 Fix k, n, and 0 < ǫ < 1/2. Let C be any class of boolean functions on n bits.
Subject to the restriction that f1, . . . , fk ∈ C, every protocol which maximizes P(f1, . . . , fk; ǫ) has
f1 = · · · = fk.

Proof: Let C = {f1, f2, . . . , fM}, and assume M > 1 – else the proposition is trivial. Suppose that
among the k parties, exactly tj use the function fj. Then clearly,

tj ≥ 0,

M
∑

j=1

tj = k, tj ∈ Z. (7)

The probability that all parties agree is:

P =
∑

x∈{0,1}n

2−n





M
∏

j=1

(Tǫ(fj)(x))
tj +

M
∏

j=1

(1− Tǫ(fj)(x))
tj



 . (8)

Note that each Tǫ(fj)(x) ∈ (0, 1) and that for any c ∈ (0, 1), the function g(t) = ct, is log-
convex (since log ct = t log c is linear). Therefore the function g1 · · · gM : R

M → R given by
(t1, . . . , tM ) 7→∏M

j=1 gj(tj) is a log convex function, and therefore a convex function.
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Since the sum of convex functions is also convex, P is a convex function of the tj’s. We wish to
maximize P subject to the restrictions (7).

If we relax the assumption tj ∈ Z to tj ∈ R, we are simply maximizing a convex function
over a convex bounded polytope. The vertices of the polytope are simply the points of the form
(0, . . . , 0, k, 0, . . . , 0). The maximum must occur at a vertex, and so it follows that there is at least
one maximizing protocol in which all players use the same function.

It remains to show that P doesn’t obtain the maximum at any point which is not a vertex of
the polytope. Note that by convexity, if P has a maximum which is not a vertex of the polytope,
then there exists an interval I = {tv1 + (1 − t)v2 : t ∈ [0, 1]}, where v1 and v2 are vertices of the
polytope, such that f is a constant function on I. Therefore if we could show that f is strictly
convex on I (as a function of t), then it will follow that the maximum is obtained only at vertices
of the polytope.

note that when restricted to the edge I joining, e.g., v1 = (k, 0, . . . , 0) and v2 = (0, k, 0, . . . , 0),
P is given by:

P =
∑

x∈{0,1}n

2−n
(

(Tǫ(f1)(x))
λk (Tǫ(f2)(x))

(1−λ)k + (1− Tǫ(f1)(x))
λk (1− Tǫ(f2)(x))

(1−λ)k
)

.

By Lemma 3.2, we can find an x0 such that Tǫ(f1)(x0) and Tǫ(f2)(x0) differ. Therefore the function

(Tǫ(f1)(x0))
λk (Tǫ(f2)(x0))

(1−λ)k = (Tǫ(f2)(x0))
k

(

Tǫ(f1)(x0)

Tǫ(f2)(x0)

)λk

,

is strictly convex, and P is strictly convex on I as needed. ✷

Next we use Steiner symmetrization principle in order to obtain more information on functions
which optimize P(f1, . . . , fk; ǫ). Recall that for x, y ∈ {0, 1}n, we write x � y if for all i ∈ [n] it
holds that xi ≤ yi, and we say that f is monotone if f(x) ≤ f(y), whenever x � y. Similarly for
S ⊂ [n], we may write x �S y, if xi ≤ yi for i ∈ S, and yi ≤ xi for i /∈ S. We call a function f
which is monotone with respect to �S , S-monotone.

Proposition 3.4 Let C stand for either Bn or An. For any k, n, ǫ, if f is restricted to be in C,
and the maximum of Pk(g; ǫ) is obtained at g = f , then f is S-monotone for some set S. Moreover,
there exists f ∈ C which maximizes Pk(g; ǫ) and is monotone.

Proof: Let f ∈ C be any function which maximizes Pk(f ; ǫ) among functions in C. Let f ′ be
obtained from f by “shifting” up in the first coordinate: Given x ∈ {0, 1}n−1,

• if f(0x) = f(1x), then set f ′(0x) = f ′(1x) = f(0x) = f(1x);

• if f(0x) 6= f(1x) then set f ′(0x) = 0, f ′(1x) = 1.

It is easy to see that in the case C = Bn, f
′ remains in C; a little thought reveals that this is again

true in the case C = An.

9



For y ∈ {0, 1}n, let ỹ ∈ {0, 1}n−1 be the last n− 1 bits of y. We claim that Pk(f
′; ǫ) ≥ P(f ; ǫ).

To show this, it suffices to show that for all z1, . . . , zk ∈ {0, 1}n−1,

P[f ′(y1) = . . . = f ′(yk) | ỹ1 = z1, . . . , ỹk = zk] ≥ P[f(y1) = . . . = f(yk) | ỹ1 = z1, . . . , ỹk = zk].
(9)

So suppose each yi’s last n− 1 bits are fixed to be zi. Given zi, f(yi) is a function from {0, 1} to
{0, 1}, and is therefore either the constant function 0, the constant function 1, the identity function
id, or the function x → x̄, which we denote by id.

If f(yi) is already determined by zi, then so is f ′(yi) and the determined value is the same.
Otherwise, f(yi) is a function of the one remaining unknown bit, yi1, and is either the function id
or id. In either case, f ′(yi) is the identity function on yi1.

Assume that given (z1, . . . , zk), there are a + b undetermined functions f(yi1), with a of them
id, and b of them id. The probability that all of these functions agree on 0 (or 1) is

q =
1

2

(

(1− ǫ)aǫb + ǫa(1− ǫ)b
)

,

and the probability that all of the undetermined f ′’s agree on 0 (or 1) is

q′ =
1

2

(

(1− ǫ)a+b + ǫa+b
)

.

There are three cases to consider:

• If some of the determined functions are determined to be 0 and some to be 1, then both terms
in (9) are zero.

• If all of the determined functions are determined to be 0 (1), then the left side of (9) is q′ and
the right side of (9) is q.

• If there are no determined functions, then the left side of (9) is 2q′ and the right side of (9)
is 2q.

Therefore the claim will follow once we show that q′ ≥ q.

1

2

(

(1− ǫ)a+b + ǫa+b
)

≥ 1

2

(

(1− ǫ)aǫb + ǫa(1− ǫ)b
)

(10)

⇔ 1 +

(

ǫ

1− ǫ

)a+b

≥
(

ǫ

1− ǫ

)b

+

(

ǫ

1− ǫ

)a

, (11)

which follows by the convexity of the function t →
(

ǫ
1−ǫ

)t
.

Thus we’ve established Pk(f
′; ǫ) ≥ P(f ; ǫ). We further claim that this inequality is strict unless

f was already monotone or anti-monotone on the first coordinate. If f is neither monotone nor
anti-monotone on the first coordinate, then there exist z1 and z2 such that f , when the last n− 1
coordinates are restricted to z1, becomes id, and when the last n− 1 coordinates are restricted to
z2, becomes id. Picking z3, . . . , zk so that all the other restricted functions are either id or id, we
obtain a, b ≥ 1, so (11) is strict inequality and therefore q′ > q.
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Repeating the above argument for all other coordinates, it follows that any maximizing function
f must be S monotone and that there exists a maximizing function which is monotone. ✷

Recall that for x, y ∈ {0, 1}n, we write x �L y if
∑m

i=1 xi ≤
∑m

i=1 yi for every m = 1 . . . n, and
that we call f : {0, 1}n → {0, 1} left-monotone, if f(x) ≤ f(y) whenever x �L y.

Proposition 3.5 Let C stand for either Bn or An. Let k, n, and 0 < ǫ < 1/2. Suppose that f
maximizes Pk(f ; ǫ) in C, then up to πS, f is left-monotone.

Proof: The proof is similar to the proof of Proposition 3.4, so we will be more brief. By Proposi-
tion 3.4, we may assume that f is monotone.

Now apply a new sort of shift to f . Suppose we fix all but two input bits to f . Since f is
monotone, there are only 6 possibilities for what the restricted function is; its support may be ∅,
{11}, {11, 10}, {11, 01}, {11, 10, 01} or {11, 10, 01, 00}. Define f ′ to be the same function in all
cases except when the support is {11, 01}; in this case, switch it to {11, 10}. This rule preserves
balance and asymmetry.

We want to show that Pk(f
′; ǫ) ≥ Pk(f ; ǫ). As before, we condition on all but two bits of each

of y1, . . . , yk, and show that f ′ is better. Say that under this conditioning, a of the f(yi)’s restrict
to the function with support {11, 10}, and b of the f(yi)’s restrict to the function with support
{11, 01}. Since all other possible restricted functions have the same value for 01 as they do for
10, it suffices again to compare the probability with which the a+ b functions agree on 1 with the
probability that the corresponding shifted functions agree on 1. Further, by symmetry, we need
only consider the cases when the two source bits from x are different (otherwise f and f ′ do equally
well).

So considering the two cases — the source bits are 10 or the source bits are 01 — we get
that the contribution from the f -restricted functions will be (1/2)((1− ǫ)aǫb)+ ǫb(1− ǫ)a), and the
contribution from their shifted versions will be (1/2)((1−ǫ)a+b+ǫa+b). As we saw in Proposition 3.4,
this latter quantity is always at least the former quantity. Hence the shift can only improve the
probability of agreement.

Hence we indeed have Pk(f
′; ǫ) ≥ Pk(f ; ǫ). If we repeatedly apply this shift to all pairs of

coordinates, we end up with a left-monotone function.

Note that if none of the shifting operations strictly increased the probability of agreement for
f , then for every pair of coordinates (i, j) which were shifted, either all the balanced restrictions of
f to coordinates (i, j) have support {11, 10}, or all the balanced restrictions have support {11, 01}.
In either case, all the shifting did is to replace the functions f by a function f ◦π∅, where π∅ is the
transposition of coordinates (i, j). It thus follows that the original function was left monotone up
to some π∅, as needed. ✷

Proof: [of Theorem 1.4] The proof follows from Propositions 3.3, 3.4, and 3.5. ✷

4 Majorities

In this section we study majority functions and show that these function are optimal for some
limiting values of k and ǫ.
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4.1 Fixed ǫ, n; k → ∞

We start by proving Theorem 1.5. Given a function f : {0, 1}n → {0, 1}, let p1(f, x, ǫ) denote the
probability that f(y) = 1, given that y is an ǫ-corrupted version of the string x ∈ {0, 1}n. Let p0
be defined similarly for the probability that f(y) = 0.

Proposition 4.1 Fix ǫ, and let f be monotone. Then as a function of x, p1(f, x, ǫ) is maximized
at x = ~1 = 1 · · · 1, and p0(f, x, ǫ) is maximized at x = ~0 = 0 · · · 0.

Proof: We prove the claim for p1, the proof for p0 being the same. Note that flipping each bit of
a string with probability ǫ is the same as updating each bit with probability 2ǫ, where an update
consists of replacing the bit with a random choice from {0, 1}.

Let x ∈ {0, 1}n be any sequence. Let x′ be an ǫ corrupted version of x, and ~1′ be an ǫ corrupted
version of ~1. We claim that we can couple the random variable x′ and ~1′ in such a way that x′ � ~1′.

The coupling is achieved in the following simple way: update the same bits of x and ~1 with the
same values. Clearly, we have x′ � ~1′. Hence by monotonicity if f(x′) = 1, then f(~1′) = 1. The
result follows, as

p1(f, x, ǫ) = P[f(x′) = 1] ≤ P[f(~1′) = 1] = p1(f,~1, ǫ).

✷

Proposition 4.2 For fixed ǫ, p1(f,~1, ǫ) and p0(f,~0, ǫ) are maximized among f ∈ Bn by any func-
tion which is 0 on all strings with fewer than n/2 1’s. In particular, if n is odd, f = MAJn is the
unique maximizing function.

Proof: We prove the assertion about p1.

p1(f,~1, ǫ) =
∑

x∈f−1(1)

(1− ǫ)n−∆(x,~1)ǫ∆(x,~1),

where ∆ denotes Hamming distance. The quantity being summed is a strictly decreasing function
of ∆(x,~1). The result follows. ✷

Proof: [of Theorem 1.5] We prove the theorem for n odd. The proof for n even is essentially the
same. By Theorem 1.4, we may assume without loss of generality that all parties use the same
monotone function f ∈ Bn. Now:

P(MAJn, k, ǫ) = 2−n
∑

x∈{0,1}n

(

p1(MAJn, x, ǫ)
k + (p0(MAJn, x, ǫ))

k
)

(12)

≥ 2−n
(

p1(MAJn,~1, ǫ)
k + p0(MAJn,~0, ǫ)

k
)

.

By Proposition 4.1, if f is monotone, then

P(f, k, ǫ) = 2−n
∑

x∈{0,1}n

(

p1(f, x, ǫ)
k + (p0(f, x, ǫ))

k
)

(13)

≤ 2−n
∑

x∈{0,1}n

(

p1(f,~1, ǫ)
k + p0(f,~0, ǫ)

k
)

= p1(f,~1, ǫ)
k + p0(f,~0, ǫ)

k.

12



By Proposition 4.2, if f ∈ Bn is monotone, and f 6= MAJn, then p1(f,~1, ǫ) < p1(MAJn,~1, ǫ) and
p0(f,~0, ǫ) < p0(MAJn,~0, ǫ). Hence for sufficiently large k, we will have

2−np1(MAJn,~1, ǫ)
k > p1(f,~1, ǫ)

k, 2−np0(MAJn,~0, ǫ)
k > p0(f,~0, ǫ)

k. (14)

Combining (12), (13) and (14) we obtain that Pk(MAJn; ǫ) ≥ Pk(f ; ǫ) for all monotone f ∈ Bn as
needed.

Bound (2) follows from (12), (13), and (14) once we note that

p0(MAJn,~0, ǫ) = p1(MAJn,~1, ǫ) = 1−P[Bin(n, ǫ) > n/2].

✷

4.2 Fixed k, n; ǫ → 0 or 1/2

Proposition 4.3 For all k and n, there exists ǫ′(k, n) > 0, such that for all 0 < ǫ < ǫ′(k, n), the
unique best protocol up to πS for maximizing P(f1, . . . , fk; ǫ) is given by f1 = . . . = fk = f , where
f(x) = x1.

Proof: From Proposition 3.3, it follows that the maximum can only be obtained if f1 = . . . = fk =
f . Note that the probability that there is more than one corrupted bit is O(ǫ2) (the constant in
the O(·) does depend on k and n). Suppose that only the ith bit for party j was corrupted. Then
all the parties will agree if and only if f(x) = f(x⊕ ei), where x ⊕ ei is the vector x with the ith
bit flipped. We therefore obtain,

Pk(f ; ǫ) = (1− ǫ)kn + kǫ(1− ǫ)nk−1
n
∑

i=1

Px[f(x) = f(x⊕ ei)] +O(ǫ2). (15)

Writing A for the set {x : f(x) = 1}, and ∂E(A) for the edge-boundary of the set A,

∂E(A) = ∪n
i=1{(x, x⊕ ei) : x ∈ A, x⊕ ei /∈ A},

we see that
n
∑

i=1

Px[f(x) = f(x⊕ ei))] = n− 2−n+1∂E(A).

So for small ǫ (compared to k and n), in order to maximize Pk(f ; ǫ), we should minimize ∂E(A) for
sets such that |A| = 2n−1. By the isoperimetric inequality for the cube, the sets A which minimize
∂E(A) among all sets of size 2n−1 are exactly the sets A = {x : xi = 0}, or A = {x : xi = 1}. Thus
f must be f(x) = x1 up to πS, as claimed. ✷

Proposition 4.4 For all k and n, there exists ǫ′(k, n) < 1/2, such that for all eps′(k, n) < ǫ < 1/2,
the unique best protocol up to πS for maximizing P(f1, . . . , fk; ǫ) is given by f1 = . . . = fk = f ,
where f(x) = x1.
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Proof: Again, Proposition 3.3 implies that we need only consider the case f1 = . . . = fk = f . In
this proof it will be helpful again to assume that the bit values are ±1, so we want to show that
the maximizing functions are f(x) = xi, or f(x) = −xi.

It will be useful to work with the “updating representation”. Let X(i, j) for 1 ≤ i ≤ k and
1 ≤ j ≤ n be a sequence of i.i.d {0, 1} variables s.t. P[X(i, j) = 1] = δ = 1 − 2ǫ. Note that we
may produce the yi’s from x in the following manner. If X(i, j) = 1, then yij = xj, otherwise yij is
chosen uniformly at random from {+1,−1} independently from everything else.

Note that if all the X(i, j) are 0, the inputs to the functions are independent, so for all balanced
f ’s,

P[f(y1) = . . . = f(yk) |
∑

i,j

Xi,j = 0] = 2−k+1.

Similarly for all balanced f ,

P[f(y1) = . . . = f(yk) |
∑

i,j

Xi,j = 1] = 2−k+1,

and for all i, i′ and j 6= j′,

P[f(y1) = . . . = f(yk) | Xi,j = Xi′,j′ = 1,
∑

s,t

Xs,t = 2] = 2−k+1.

Moreover,

P





∑

i,j

Xi,j > 2



 = O(δ3)

(the constant in the O(·) depending on k and n).

We therefore conclude that

Pk(f ; ǫ) = ck + δ2(1− δ)nk−2
∑

i 6=i′

n
∑

j=1

P[f(y1) = . . . = f(yk) | Xi,j = Xi′,j = 1] +O(δ3), (16)

where ck is independent of f . Writing z for a uniformly chosen element of {+1,−1}n, and z′ for an
element which is chosen by picking 1 ≤ i ≤ n uniformly at random, and then choosing z′ ∈ {0, 1}
uniformly among all z′ s.t. z′i = zi, we obtain,

∑

i 6=i′

n
∑

j=1

P[f(y1) = . . . = f(yk) | Xi,j = Xi′,j = 1] = nk(k − 1)P[f(z) = f(z′)]. (17)

Therefore, if we could show that P[f(z) = f(z′)] is maximized among all balanced functions f
when f(x) = x1 up to πS, then the proof will follow from (16).

In order to prove this claim, we note that

P[f(z) = f(z′)] = (1 +E[f(z)f(z′)])/2.
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It therefore suffices to maximize E[f(z)f(z′)] over all balanced functions f , i.e., functions with
f̂(∅) = E[f ] = 0. We pass to the Fourier representation as in the proof of Theorem 1.3. It is easy
to see that if uS(x) =

∏

i∈S xi, then

E[uS(z
′)|z] =







uS(z) if S = ∅,
uS(z)/n if |S| = 1,
0 otherwise.

So,

E[f(z)f(z′)] =
1

n

∑

|S|=1

f̂2(S) ≤ 1/n,

and equality is achieved iff f(x) = xi, or f(x) = −xi as needed (see proof of Lemma 2.2). ✷

Proof: [of Theorem 1.6] Follows immediately from Propositions 4.3 and 4.4. ✷

4.3 Fixed ǫ; k → ∞ with n unbounded

Finally, we prove Theorem 1.7.

Proof: [of Theorem 1.7] Fix ǫ and k. We consider Pk(MAJn; ǫ) as a function of n, as n → ∞
through the odd numbers. Our proof will go by showing that there is at least a Ω(1/k2.01/(1−2ǫ)2 )
chance that the source string x has significantly more 1’s than 0’s. Then we show that in this case,
the probability any particular party says 1 is at least 1 − 1/k, and hence the probability that all
parties say 1 is at least a constant.

Let X be the random variable given by (# 1’s in x) − (# 0’s in x). By the Central Limit
Theorem, as n → ∞, the distribution of X approaches a normal distribution with mean 0 and
variance n. Let c = 2

1−2ǫ . The probability that an N(0, n) normal variable exceeds c
√
log k

√
n is:

1− Φ(c
√

log k) ≥ 1

2

1

c
√
log k

1√
2π

exp
(

−c2 log k/2
)

≥ Ω(1/k2.01/(1−2ǫ)2).

Here Φ denotes the cumulative distribution function of a standard normal variable, and the first
inequality follows from the fact that 1 − Φ(x) ≥ (1/x − 1/x3)φ(x) (see [F68]), where φ(x) is the
density function of a standard normal variable .

Given that this happens, pessimistically assume that x contains just c
√
log k

√
n more 1’s than

0’s; i.e., x contains exactly n/2 + (c/2)
√
log k

√
n 1’s. We now show that the probability that a

particular party using MAJn outputs 1 given x is at least 1− 1/k.

Consider the ǫ-corrupted version of x the party sees; call it y. The number of 1’s in y is
distributed as the sum of n Bernoulli trials, n/2+(c/2)

√
log k

√
n of which have success probability

1− ǫ, and n/2− (c/2)
√
log k

√
n of which have success probability ǫ. We can use a single Chernoff

bound to upper-bound the probability of getting fewer than n/2 1’s in y. The expected number of
1’s is n/2 + (1 − 2ǫ)c

√
log k

√
n = n/2 + 2

√
log k

√
n. Since n/2 = (1 − δ)(n/2 + 2

√
log k

√
n) when

δ = 2
√
log k

√
n/(n/2 + 2

√
log k

√
n) > 2

√
log k/

√
n, Chernoff tells us that the probability that y

has fewer than n/2 1’s is at most exp(−4 log k (n/2)
2n ) = 1/k.
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Thus as claimed, given a source string with at least c
√
log k

√
n more 1’s than 0’s, the probability

a particular party outputs 1 is at least 1− 1/k. Hence the probability that all parties output 1 is
at least (1− 1/k)k = Ω(1).

Hence by taking n sufficiently large, we can make Pk(MAJn; ǫ) ≥ Ω(1/k2.01/(1−2ǫ)2). By applying
the Berry-Esséen bounds on the rate of convergence in the Central Limit Theorem (see [F68]), one
can show that it suffices for n to be O(k4.01/(1−2ǫ)2). ✷

In the limit as n → ∞, all distributions involved in the calculation of Pk(MAJn; ǫ) become
normal, and it is possible to get some more or less closed forms for the limit:

Proposition 4.5

lim
n→∞
n odd

Pk(MAJn; ǫ) = 2E



Φ

(

X
√

c(ǫ)

)k


 (18)

=
2
√

c(ǫ)

(2π)
1
2
(c(ǫ)−1)

∫ 1

0
xkI(x)c(ǫ)−1 dx, (19)

where c(ǫ) := 4ǫ(1−ǫ)
(1−2ǫ)2

∈ (0,∞), X is a standard normal random variable, and I(x) := φ(Φ−1(x)).

(We thank Nati Srebro for his help in calculating (18).) The second formula (19) can be used to get
tighter bounds than in Theorem 1.7. For example, from (19) we get that limn→∞Pk(MAJn; 1/2 −√
2/4) = 2/(k + 1).

5 Computer-assisted results and open problems

The problem well avails itself to analysis by computer. In particular, given any explicit function
f : {0, 1}n → {0, 1}, a computer mathematics package can easily calculate Pk(f ; ǫ) exactly, as a
function of k and ǫ. Furthermore, if n is very small, a computer program can enumerate all anti-
symmetric left-monotone functions on n bits. We determined there are “only” 135 such functions
for n = 7 and 2470 such functions for n = 8. (The number jumps to 319124 for n = 9.) Thus for
particular small values of n and k, we can completely solve the problem by comparing an explicit
set of polynomials in ǫ on the range (0, 1/2).

As an example, we give a nearly complete analysis of the case n = 5. There are exactly 7
antisymmetric left-monotone functions on n bits; they are MAJ1, MAJ3, MAJ5, and four functions
expressible as thresholds: T1 = Th(3, 1, 1, 1, 1; 4), T2 = Th(2, 1, 1, 1, 0; 3), T3 = Th(3, 2, 2, 1, 1; 5),
and T4 = Th(4, 3, 2, 2, 2; 7), where Th(a1, . . . , a5; θ) is 1 iff

∑5
i=1 aixi ≥ θ. Table 5 shows Pk(f ; ǫ)

for each of the functions.

For small values of k, we plotted these polynomials for ǫ ∈ (0, 1/2). This led to the following
facts, which in principle could be proved by elementary analysis:

Fact 5.1

• For n = 5, 2 ≤ k ≤ 9, and any ǫ, the best antisymmetric protocol is MAJ1.

16



f Pk(f ; ǫ)

MAJ1 ǫk + (1 − ǫ)k

T1 1/16 (−6 ǫ3 + 5 ǫ4 − 2 ǫ5 + 4 ǫ2)k + 1/16 (1 + 6 ǫ3 − 5 ǫ4 + 2 ǫ5 − 4 ǫ2)k + 1/16 (4 ǫ − 10 ǫ2 + 10 ǫ3 − 5 ǫ4 + 2 ǫ5)k + 1/16 (1 − 4 ǫ + 10 ǫ2 −

10 ǫ3 + 5 ǫ4 − 2 ǫ5)k + 1/4 (ǫ − ǫ2 + 4 ǫ3 − 5 ǫ4 + 2 ǫ5)k + 1/4 (1 − ǫ + ǫ2 − 4 ǫ3 + 5 ǫ4 − 2 ǫ5)k + 1/4 (1 − 2 ǫ + 4 ǫ2 − 6 ǫ3 + 5 ǫ4 − 2 ǫ5)k +

1/4 (2 ǫ − 4 ǫ2 + 6 ǫ3 − 5 ǫ4 + 2 ǫ5)k + 3/8 (ǫ + ǫ2 − 4 ǫ3 + 5 ǫ4 − 2 ǫ5)k + 3/8 (1 − ǫ − ǫ2 + 4 ǫ3 − 5 ǫ4 + 2 ǫ5)k

T2 1/8 (−2 ǫ3 + 3 ǫ2)k + 1/8 (1 + 2 ǫ3 − 3 ǫ2)k + 1/8 (3 ǫ − 6 ǫ2 + 4 ǫ3)k + 1/8 (1 − 3 ǫ + 6 ǫ2 − 4 ǫ3)k + 3/8 ǫk + 3/8 (1 − ǫ)k + 3/8 (1 − 2 ǫ +

3 ǫ2 − 2 ǫ3)k + 3/8 (2 ǫ − 3 ǫ2 + 2 ǫ3)k

MAJ3 1/4 (−2 ǫ3 + 3 ǫ2)k + 1/4 (1 + 2 ǫ3 − 3 ǫ2)k + 3/4 (2 ǫ − 3 ǫ2 + 2 ǫ3)k + 3/4 (1 − 2 ǫ + 3 ǫ2 − 2 ǫ3)k

T3 1/8 (−6 ǫ3 + 5 ǫ4 − 2 ǫ5 + 4 ǫ2)k + 1/8 (1 + 6 ǫ3 − 5 ǫ4 + 2 ǫ5 − 4 ǫ2)k + 1/16 (ǫ − ǫ2 + 4 ǫ3 − 5 ǫ4 + 2 ǫ5)k + 1/16 (1 − ǫ + ǫ2 − 4 ǫ3 + 5 ǫ4 −

2 ǫ5)k + 1/4 (1 − 2 ǫ + 4 ǫ2 − 6 ǫ3 + 5 ǫ4 − 2 ǫ5)k + 1/4 (2 ǫ − 4 ǫ2 + 6 ǫ3 − 5 ǫ4 + 2 ǫ5)k + 1/8 (1 − ǫ − ǫ2 + 4 ǫ3 − 5 ǫ4 + 2 ǫ5)k + 1/8 (ǫ + ǫ2 −

4 ǫ3 + 5 ǫ4 − 2 ǫ5)k + 3/16 (8 ǫ3 − 5 ǫ4 + 2 ǫ5 + 3 ǫ − 7 ǫ2)k + 3/16 (1 − 8 ǫ3 + 5 ǫ4 − 2 ǫ5 − 3 ǫ + 7 ǫ2)k + 3/16 (2 ǫ3 − 5 ǫ4 + 2 ǫ5 + 2 ǫ2 + 1 −

2 ǫ)k + 3/16 (−2 ǫ3 + 5 ǫ4 − 2 ǫ5 − 2 ǫ2 + 2 ǫ)k + 1/16 (2 ǫ3 − 5 ǫ4 + 2 ǫ5 + 2 ǫ2)k + 1/16 (1 − 2 ǫ3 + 5 ǫ4 − 2 ǫ5 − 2 ǫ2)k

T4 1/16 (ǫ2+6 ǫ3−10 ǫ4+4 ǫ5)k+1/16 (1−ǫ2−6 ǫ3+10 ǫ4−4 ǫ5)k+1/8 (ǫ+2 ǫ2−8 ǫ3+10 ǫ4−4 ǫ5)k+1/8 (1−ǫ−2 ǫ2+8 ǫ3−10 ǫ4+4 ǫ5)k+1/16 (1−

2 ǫ+ǫ2+6 ǫ3−10 ǫ4+4 ǫ5)k+1/16 (2 ǫ−ǫ2−6 ǫ3+10 ǫ4−4 ǫ5)k+3/16 (5 ǫ2−10 ǫ3+10 ǫ4−4 ǫ5)k+3/16 (1−5 ǫ2+10 ǫ3−10 ǫ4+4 ǫ5)k+3/8 (3 ǫ−

8 ǫ2+12 ǫ3−10 ǫ4+4 ǫ5)k+3/8 (1−3 ǫ+8 ǫ2−12 ǫ3+10 ǫ4−4 ǫ5)k+3/16 (1−2 ǫ+5 ǫ2−10 ǫ3+10 ǫ4−4 ǫ5)k+3/16 (2 ǫ−5 ǫ2+10 ǫ3−10 ǫ4+4 ǫ5)k

MAJ5 1/16 (10 ǫ3 − 15 ǫ4 + 6 ǫ5)k + 1/16 (1 − 10 ǫ3 + 15 ǫ4 − 6 ǫ5)k + 5/16 (6 ǫ2 − 14 ǫ3 + 15 ǫ4 − 6 ǫ5)k + 5/16 (1 − 6 ǫ2 + 14 ǫ3 − 15 ǫ4 + 6 ǫ5)k +

5/8 (3 ǫ − 9 ǫ2 + 16 ǫ3 − 15 ǫ4 + 6 ǫ5)k + 5/8 (1 − 3 ǫ + 9 ǫ2 − 16 ǫ3 + 15 ǫ4 − 6 ǫ5)k

• For n = 5, k = 10, 11, there exist 0 < ǫ′k < ǫ′′k < 1/2 such that MAJ3 is the best antisymmetric
protocol for ǫ ∈ [ǫ′k, ǫ

′′
k], and MAJ1 is the best antisymmetric protocol for all other ǫ.

• For n = 5, k = 12, there exist 0 < ǫ′k < ǫ′′k < ǫ′′′k < 1/2 such that MAJ5 is the best
antisymmetric protocol for ǫ ∈ [ǫ′k, ǫ

′′
k], MAJ3 is the best antisymmetric protocol for ǫ ∈ [ǫ′′k, ǫ

′′′
k ],

and MAJ1 is the best antisymmetric protocol for all other ǫ.

The pattern for k = 12 appears to hold for all higher k, with MAJ5 dominating more and more
of the interval, as expected from Theorem 1.5.

At this point we can prove two facts mentioned earlier:

Proposition 5.2 There exist k, ǫ, odd n, and odd 1 < r < n such that MAJr is a superior protocol
to both MAJ1 and MAJn.

Proof: Substitute k = 10, ǫ = .26 into Table 5. By explicit calculation, P10(MAJ1; .26) ≤ .0493,
p10(MAJ5; .26) ≤ .0488, p10(MAJ3; .26) ≥ .0496. ✷

Proposition 5.3 There exist n, k, and f ∈ Bk such that the probability all parties agree on 1
differs from the probability all parties agree on 0.

Proof: With n = 5, k = 3, and f the left-monotone function with minterms 10010 and 01101,
explicit calculation gives 1

2
− 39

16
ǫ+9 ǫ2− 459

16
ǫ3 + 297

4
ǫ4− 2331

16
ǫ5 + 3465

16
ǫ6−234 ǫ7+171 ǫ8−75 ǫ9 +15 ǫ10 and 1

2
− 39

16
ǫ+ 69

8
ǫ2−

381

16
ǫ3 + 93

2
ǫ4 − 885

16
ǫ5 + 519

16
ǫ6 +6 ǫ7 −24 ǫ8 +15 ǫ9 −3 ǫ10 for the probabilities of agreement on 1 and 0, respectively.

✷

We end with two open problems we’ve been led to consider:

Open Problem 1 Prove or disprove: For fixed n, ǫ, and 2 ≤ k ≤ 9, the best antisymmetric
protocol is for all parties to use MAJ1.
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Open Problem 2 Prove or disprove: There is a universal constant C < ∞ such that for every
k, ǫ,

Pk(MAJn∗ ; ǫ) ≤ C lim
n→∞
n odd

P(MAJn, k, ǫ),

where n∗ is any odd number (presumably maximizing Pk(MAJn∗ ; ǫ)). I.e., the limiting value of
Pk(MAJn; ǫ) is no worse than the success probability of the best majority, up to a constant factor.

The worst constant C we know to be necessary in Open Problem 2 is π/2, from the case k = 2,
ǫ → 1/2.

If Conjecture O and Open Problem 2 are both verified, then we can get tight (up to a constant)
upper and lower bounds for the optimal value of P(f1, . . . , fk; ǫ) under antisymmetric protocols,
for any k, ǫ, and unrestricted n, by using Proposition 4.5.
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discussions.
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