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Abstract. Let the random variable Zn,k denote the number of increasing subse-

quences of length k in a random permutation from Sn, the symmetric group of

permutations of {1, ..., n}. We show that V ar(Zn,kn
) = o((EZn,kn

)2) as n → ∞ if

and only if kn = o(n
2
5 ). In particular then, the weak law of large numbers holds for

Zn,kn
if kn = o(n

2
5 ); that is,

lim
n→∞

Zn,kn

EZn,kn

= 1, in probability.

We also show the following approximation result for the uniform measure Un on Sn.

Define the probability measure µn;kn
on Sn by

µn;kn
=

1
(

n

kn

)

∑

x1<x2<...<xkn

Un;x1,x2,...xkn
,

where Un;x1,x2,...,xkn
denotes the uniform measure on the subset of permutations

which contain the increasing subsequence {x1, x2, ..., xkn
}. Then the weak law of

large numbers holds for Zn,kn
if and only if

(*) lim
n→∞

||µn;kn
− Un|| = 0,

where || · || denotes the total variation norm. In particular then, (*) holds if kn =

o(n
2
5 ).
In order to evaluate the asymptotic behavior of the second moment, we need to

analyze occupation times of certain conditioned two-dimensional random walks.
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1. Introduction and Statement of Results. Let Sn denote the symmetric

group of permutations of {1, ..., n}. By introducing the uniform probability measure

Un on Sn, one can consider σ ∈ Sn as a random permutation. Probabilities and

expectations according to Un will frequently be denoted by the generic notation

P and E respectively. The problem of analyzing the distribution of the length,

Ln, of the longest increasing subsequence in a random permutation from Sn has

a long and distinguished history; see [1] and references therein. In particular, the

work of Logan and Shepp [6] together with that of Vershik and Kerov [8] show that

ELn ∼ 2n
1
2 and that σ2(Ln) = o(n), as n → ∞. Profound recent work by Baik,

Deift and Johansson [2] has shown that limn→∞ P (Ln−2n
1
2

n
1
6

≤ x) = F (x), where F

is an explicitly identifiable function.

There doesn’t seem to be any literature on the random variable Zn,k = Zn,k(σ),

which we define to be the number of increasing subsequences of length k in a

permutation σ ∈ Sn. Thus, for example, if σ =

(

1 2 3 4 5
1 3 4 5 2

)

, then Z5,3(σ) =

4 because there are four increasing subsequences of length three; namely, 134,

135, 145 and 345. It is useful to represent Zn,k as a sum of indicator random

variables. For positive integers {x1, ..., xk} satisfying 1 ≤ x1 < x2 < ... < xk ≤ n,

let Bn
x1,...xk

⊂ Sn denote the subset of permutations which contain the increasing

subsequence {x1, x2, ..., xk}. Then we have

Zn,k =
∑

x1<x2<...<xk

1Bn
x1,x2,...,xk

,

where the sum is over the
(

n
k

)

distinct increasing subsequences of length k. Since

the probability that a random permutation fixes any particular increasing sequence

of length k is 1
k! , it follows that the expected value of Zn,k is given by

(1.1) EZn,k =

(

n
k

)

k!
.

One can consider k to depend on n in which case we write kn. We are interested

in a law of large numbers of the form
Zn,kn

EZn,kn
→ 1 in probability, for appropriate

choices of kn. Of course, in light of the above cited works on the longest increasing
2



subsequence, such a result cannot hold for kn ≥ cn
1
2 with c > 2. A straightforward

calculation using Stirling’s formula shows that

(1.2)

EZn,cnl ∼ 1

2πcnl

[

(
e

c
)2n1−2l

]cnl

, as n → ∞, for l ∈ (0,
1

2
);

EZ
n,cn

1
2
∼ exp(− c2

2 )

2πcn
1
2

(
e

c
)2cn

1
2
.

(For the case kn = cn
1
2 , we have used the fact that limn→∞

∏cn
1
2 −1

j=0 (1 − j
n
) =

exp(− c2

2
), which is proved by taking the logarithm of the above product. Note that

the factor exp(− c2

2
) suddenly appears in the formula when l = 1

2
.) In particular

then, it follows from (1.2) that limn→∞ EZn,kn
= ∞, if kn ≤ cn

1
2 with c < e, and

limn→∞ EZn,kn
= 0, if kn ≥ en

1
2 .

The law of large numbers for Zn,kn
is in fact equivalent to a certain approximation

result for the uniform measure, which we now describe. Recall that for probability

measures P1 and P2 on Sn, the total variation norm is defined by

||P1 − P2|| ≡ max
A⊂Sn

(P1(A)− P2(A)) =
1

2

∑

σ∈Sn

|P1(σ)− P2(σ)|.

For x1 < x2 < ... < xkn
, let Un;x1,x2,...,xkn

denote the uniform measure on permuta-

tions which have {x1, x2, ..., xkn
} as an increasing sequence; that is Un;x1,x2,...,xkn

is

uniform on Bn
x1,x2,...,xkn

. Note that Un;x1,x2,...,xkn
is defined by Un;x1,x2,...,xkn

(σ) =

kn!
n! 1Bn

x1,x2,...,xkn

(σ). Now define the probability measure µn;kn
on Sn by

µn;kn
=

1
(

n
kn

)

∑

x1<x2<...<xkn

Un;x1,x2,...xkn
.

Equivalently,

(1.3) µn;kn
(σ) =

1
(

n
kn

)

kn!

n!
Zn,kn

(σ), σ ∈ Sn.

The measure µn;kn
can be realized concretely as follows. Consider n cards, num-

bered from 1 to n, and laid out on a table from left to right in increasing order.

Place a black mark on kn of the cards, chosen at random. Pick up all the cards

without black marks and then randomly insert them between the kn cards with

black marks that remain on the table. The resulting distribution is µn;kn
.

3



Proposition 1. The law of large numbers holds for Zn,kn
; that is

lim
n→∞

Zn,kn

EZn,kn

= 1 in probability,

if and only if

(1.4) lim
n→∞

||µn;kn
− Un|| = 0.

The proof of Proposition 1 appears at the end of this section.

The measure µn;kn
corresponds to ignoring a set of kn random cards and ran-

domizing the rest of the cards. How many random cards can one afford to ignore

like this and maintain asymptotic randomness? Corollary 2 below shows that one

can afford to ignore kn = o(n
2
5 ) cards, while the results cited above on the longest

increasing subsequence show that one certainly cannot afford to ignore cn
1
2 cards

for c > 2.

For the law of large numbers we will use Chebyshev’s inequality. The calcu-

lation of the second moment is nontrivial because it involves expectations of the

form E1Bn
x1,...,xkn

1Bn
y1,...,ykn

, and these expectations depend rather intimately on

the relative positions of {x1, x2, ...., xkn
} and {y1, y2, ...., ykn

}. We begin with the

explicit form of the second moment of Zn,k for any k ≤ n.

Proposition 2.

EZ2
n,k =

k
∑

j=0

(

n

2k − j

)

1

(2k − j)!
A(k − j, j),

where

(1.5) A(N, j) =
∑

∑

j

r=0
lr=N

∑

j

r=0
mr=N

j
∏

r=0

(

(lr +mr)!

lr!mr!

)2

.

In order to evaluate the asymptotic behavior of Var(Zn,kn
), one must be able

to adequately evaluate the asymptotic behavior of A(kn − j, j). In fact, it turns

out that we need a good lower bound for A(kn − 1, 1) and a good upper bound for
4



A(kn − j, j), for all j = 1, 2, ...kn. We were able to interpret A(N,j)

(2NN )2
as the sum of

certain expected occupation times of the horizontal axis for the standard, simple,

symmetric two-dimensional random walk starting from the origin and conditioned

on returning to the origin at the 2N -th step. This characterization was sufficient

to obtain the appropriate bounds to prove the following theorem.

Theorem 1.

i. If kn = o(n
2
5 ), then

V ar(Zn,kn
)

(EZn,kn
)2

= O(
k

5
2
n

n
), as n → ∞;

In particular then, V ar(Zn,kn
) = o((EZn,kn

)2), as n → ∞.

ii. If c1n
2
5 ≤ kn ≤ c2n

2
5 , for constants c1, c2 > 0, then

c3(EZn,kn
)2 ≤ V ar(Zn,kn

) ≤ c4(EZn,kn
)2,

for constants c3, c4 > 0.

iii. If limn→∞ n− 2
5 kn = ∞ and lim supn→∞ n− 1

2 kn < ∞, then

lim
n→∞

V ar(Zn,kn
)

(EZn,kn
)2

= ∞.

Corollary 1. i. If kn = o(n
2
5 ), then

lim
n→∞

Zn,kn

EZn,kn

= 1, in probability;

ii. If kn = O(n
2
5 ), then

lim inf
n→∞

P (
Zn,kn

EZn,kn

> δ) > 0, for some δ > 0.

Part (i) of Corollary 1 follows immediately from Chebyshev’s inequality and

Theorem 1-i. The proof of part (ii) of Corollary 1 appears below.

Corollary 1 and Proposition 1 yield immediately the following approximation

result.
5



Corollary 2. If kn = o(n
2
5 ), then

lim
n→∞

||µn;kn
− Un|| = 0.

In light of the above results, we pose the following question:

Open Question: Presumably there exists a critical exponent lc such that the law

of large numbers holds for Zn,nl with l < lc and does not hold for l > lc. What is

lc?

In section two we prove Proposition 2 and in section 3 we prove Theorem 1.

Lemmas 2 and 3, which appear in section 3 and give the key estimates on A(N, j)

used in the proof of Theorem 1, are proved in section four.

The literature on increasing subsequences in random permutations in a context

other than that of the largest such subsequence is very scarce. The random variable

Zn, defined as the total number of increasing subsequences of all possible lengths in

a random permutation, was studied in [5]. Both EZn and V ar(Zn) were calculated

explicitly and evaluated asymptotically. It turns out that V ar(Zn) is of a larger

order than (EZn)
2, so it is not possible to apply Chebyshev’s inequality and obtain a

law of large numbers. However, the authors were able to show that logZn

n
1
2

converges

in probability and in mean to a positive constant. In [3], the random variable Zn,k

actually appears in a different guise. Equation (1.1) appears there as well as an

upper bound for EZ
n,cn

1
2
; however, this random variable is not the object of study

in that paper. In [7], inversions–which are decreasing subsequences of length 2—are

studied, and a central limit theorem is proved.

We conclude this section with the proofs of Corollary 1-ii and Proposition 1.

Proof of Corollary 1-ii. Assume to the contrary that the result is not true. Then

there exists a subsequence {(ni, kni
)}∞i=1 of {(n, kn)}∞n=1, such that

Zni,kni

EZni,kni

goes

to 0 in probability. By taking a further subsequence if necessary, we may assume

that either kni
= o(n

2
5

i ) as i → ∞, or limi→∞ n
− 2

5

i kni
= c > 0. In light of part

(i), we obtain a contradiction in the former case. Thus, it remains to consider the

latter case. In this case, it follows from Theorem 1-ii that
(EZni,kni

)2

V ar(Zni,kni
) is bounded
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away from 0 and ∞. Using this along with the assumption that
Zni,kni

EZni,kni

→ 0 in

probability, we conclude that

(1.6) lim
n→∞

P (
Zni,kni

− EZni,kni
√

V ar(Zni,kni
)

≤ −ρ) = 1,

for some ρ > 0. However, since the second moments of the
Zni,kni

−EZni,kni√
V ar(Zni,kni

)
are

equal to 1, this quotient is uniformly bounded. The uniform boundedness along

with (1.6) contradict the fact that the first moment of
Zni,kni

−EZni,kni√
V ar(Zni,kni

)
is 0. �

Proof of Proposition 1. For ǫ ∈ (0, 1), define

Dn,ǫ,kn
= {σ ∈ Sn :

µn;kn
(σ)

Un(σ)
∈ [1− ǫ, 1 + ǫ]}.

We claim that (1.4) holds if and only if

(1.7) lim
n→∞

Un(D
c
n,ǫ,kn

) = 0, for all ǫ > 0.

We first show the sufficiency of (1.7). Since limn→∞ Un(Dn,ǫ,kn
) = 1, it follows

from the definition of Dn,ǫ,kn
that lim infn→∞ µn;kn

(Dn,ǫ,kn
) ≥ 1− ǫ, and thus

(1.8) lim sup
n→∞

µn;kn
(Dc

n,ǫ,kn
) ≤ ǫ.

Thus, for any An ⊂ Sn, we have

(1.9)
|Un(An)− µn;kn

(An)| ≤ |Un(An ∩Dn,ǫ,kn
)− µn;kn

(An ∩Dn,ǫ,kn
)|

+ |Un(An ∩Dc
n,ǫ,kn

)− µn;kn
(An ∩Dc

n,ǫ,kn
)|.

By the definition of Dn,ǫ,kn
, the first term on the right hand side of (1.9) is no

greater than ǫ. By (1.7) and (1.8), the lim sup of the second term on the right hand

side of (1.9) is no greater than ǫ. Since ǫ > 0 is arbitrary, we conclude that

lim
n→∞

|Un(An)− µn;kn
(An)| = 0.

Since the sets {An} are arbitrary, this proves (1.4).

We now show the necessity of (1.7). Let

Cn,ǫ,kn
= {σ ∈ Sn :

µn;kn
(σ)

Un(σ)
< 1− ǫ}.

7



If (1.7) does not hold, then we may assume without loss of generality that there

exists a δ > 0 and an ǫ0 > 0 such that Un(Cn,ǫ0,kn
) ≥ δ, for all n. But then, from

the definition of Cn,ǫ0,kn
, it follows that µn;kn

(Cn,ǫ0,kn
) < (1− ǫ0)Un(Cn,ǫ0,kn

), and

thus |Un(Cn,ǫ0,kn
) − µn;kn

(Cn,ǫ0,kn
)| > ǫ0δ, for all n, which shows that (1.4) does

not hold.

To complete the proof of the proposition then, it remains to prove that (1.7)

holds if and only if the law of large numbers holds. Using (1.3) for the first equality

below, and using (1.1) for the second equality, we have

(1.10)

Un(D
c
n,ǫ,kn

) = P (
1
(

n
kn

)

kn!

n!
Zn,kn

6∈ [
1− ǫ

n!
,
1 + ǫ

n!
]) =

= P (| Zn,kn

EZn,kn

− 1| > ǫ).

From (1.10), it follows that (1.7) holds if and only if the law of large numbers holds

for Zn,kn
. �

2. Proof of Proposition 2. From the definition of Zn,k, it follows that

(2.1) EZ2
n,k =

∑

E1Bn
x1,x2,...,xk

1Bn
y1,y2,...,yk

,

where the sum is over the
(

n
k

)2
pairs Bn

x1,x2,...,xk
, Bn

y1,y2,...,yk
with x1 < x2 < ... < xk

and y1 < y2 < ... < yk. It turns out that E1Bn
x1,x2,...,xk

1Bn
y1,y2,...,yk

depends rather

intimately on the relative positions of {x1, x2, ..., xk} and {y1, y2, ..., yk}.

Let j ∈ {0, 1, ..., k}. For any particular subset A ⊂ {1, 2, ..., n} satisfying |A| =

2k−j, there are
(

2k−j
j

)(

2k−2j
k−j

)

ordered pairs of sets Bn
x1,x2,...,xk

, Bn
y1,y2,...,yk

for which

{x1, x2, ..., xk} ∪ {y1, y2, ..., yk} = A. Of course, it follows that |{x1, x2, ..., xk} ∩

{y1, y2, ..., yk}| = j. We will say that such a pair Bn
x1,x2,...,xk

, Bn
y1,y2,...,yk

corre-

sponds to A. For any pair Bn
x1,x2,...,xk

, Bn
y1,y2,...,yk

corresponding to A, there exist

numbers {lr}jr=0 and {mr}jr=0 such that exactly l0 elements of {x1, x2, ..., xk} and

m0 elements of {y1, y2, ..., yk} strictly precede the first element that is common to

{x1, x2, ..., xk} and {y1, y2, ..., yk}, exactly lr elements of {x1, x2, ..., xk} and mr ele-

ments of {y1, y2, ..., yk} fall strictly between the r-th and the (r+1)-th element that

is common to {x1, x2, ..., xk} and {y1, y2, ..., yk}, for r = 1, 2, ..., j − 1, and exactly
8



lj elements of {x1, x2, ..., xk} and mj elements of {y1, y2, ..., yk} strictly follow the

j-th and final element that is common to {x1, x2, ..., xk} and {y1, y2, ..., yk}. We

will refer to the numbers {lr}jr=0 and {mr}jr=0 as the “interlacing numbers” for the

pair Bn
x1,x2,...,xk

, Bn
y1,y2,...,yk

.

Lemma 1. Let the pair Bn
x1,x2,...,xk

, Bn
y1,y2,...,yk

satisfy

|{x1, x2, ..., xk} ∩ {y1, y2, ..., yk}| = j

and let {lr}jr=0, {mr}jr=0 be the corresponding interlacing numbers. Then

(2.2) E1Bn
x1,x2,...,xk

1Bn
y1,y2,...,yk

=
1

(2k − j)!

j
∏

r=0

(lr +mr)!

lr!mr!
.

Proof. Without loss of generality, we may assume that n = 2k − j, since only the

relative positions of the 2k− j distinct points in the set {x1, x2, ..., xk, y1, y2, ..., yk}

are relevant. Thus, we are considering permutations from S2k−j . For each r =

0, 1, ..., j, consider the lr +mr positions between common elements (of course, for

r = 0 and r = j, “between” is not the correct word). There are (lr + mr)! ways

to fill these positions. However, if we require that the lr positions reserved for the

x-chain and the mr positions reserved for the y-chain be in increasing order, this

reduces the number of ways to (lr+mr)!
lr!mr!

. Thus, there are
∏j

r=0
(lr+mr)!
lr!mr!

ways to

fill all the positions so that Bn
x1,x2,...,xk

∩ Bn
y1,y2,...,yk

will occur, and of course, all

together there are (2k − j)! ways to fill the positions with no restrictions. �

We now complete the proof of the proposition. Simple combinatorial considera-

tions show that out of the
(

2k−j
j

)(

2k−2j
k−j

)

pairs Bn
x1,x2,...,xk

, Bn
y1,y2,...,yk

corresponding

to a set A satisfying |A| = 2k− j, there are
∏j

r=0

(

lr+mr

lr

)

=
∏j

r=0
(lr+mr)!
lr !mr!

of them

with the interlacing numbers {lr}jr=0, {mr}jr=0. Using this fact along with (2.1),

(2.2) and the fact that there are
(

n
2k−j

)

distinct subsets A ⊂ {1, 2, ..., n} such that

|A| = 2k − j, we obtain the formula for EZ2
n,k in Proposition 2. �

3. Proof of Theorem 1. Similar to (2.1), we can write the variance of Zn,kn
in

the form

(3.1)

V ar(Zn,kn
) =

∑

E1Bn
x1,x2,...,xkn

1Bn
y1,y2,...,ykn

−
∑

E1Bn
x1,x2,...,xkn

E1Bn
y1,y2,...,ykn

,

9



where the sum is over the
(

n
kn

)2
pairs Bn

x1,x2,...,xkn
, Bn

y1,y2,...,ykn
. By (2.2),

(3.2)

E1Bn
x1,x2,...,xkn

1Bn
y1,y2,...,ykn

− E1Bn
x1,x2,...,xkn

E1Bn
y1,y2,...,ykn

= 0, if

{x1, x2, ..., xkn
} and {y1, y2, ..., ykn

} are disjoint.

The number of pairs {x1, x2, ..., xkn
}, {y1, y2, ..., ykn

} which are not disjoint is equal

to
(

n
kn

)2 −
(

n
kn

)(

n−kn

kn

)

. If kn = o(n
1
2 ), then a simple calculation reveals that

(

n
kn

)2 −
(

n
kn

)(

n−kn

kn

)

= o(
(

n
kn

)2
). Thus,

(3.3)

∑

{x1,x2,...,xkn}∩{y1,y2,...,ykn}6=∅
E1Bn

x1,x2,...,xkn

E1Bn
y1,y2,...,ykn

=

(

(

n

kn

)2

−
(

n

kn

)(

n− kn

kn

)

)

1

(kn!)2
= o(

(

n
kn

)2

(kn!)2
) = o((EZn,kn

)2),

where the final equality follows from (1.1). On the other hand, if it is not true that

kn = o(n
1
2 ), then the left hand side of (3.3) will be O((EZn,kn

)2). In light of this

last remark along with (3.1)-(3.3), the theorem will be proved once we show that

(3.4-a)

∑

{x1,x2,...,xkn}∩{y1,y2,...,ykn}6=∅ E1Bn
x1,x2,...,xkn

1Bn
y1,y2,...,ykn

(EZn,kn
)2

= O(
k

5
2
n

n
),

if kn is as in part (i);

(3.4-b)

∑

{x1,x2,...,xkn}∩{y1,y2,...,ykn}6=∅ E1Bn
x1,x2,...,xkn

1Bn
y1,y2,...,ykn

(EZn,kn
)2

is bounded from 0 and ∞ if kn is as in part (ii);

(3.4-c)
lim

n→∞

∑

{x1,x2,...,xkn}∩{y1,y2,...,ykn}6=∅ E1Bn
x1,x2,...,xkn

1Bn
y1,y2,...,ykn

(EZn,kn
)2

= ∞,

if kn is as in part (iii).

By Proposition 2 and its proof, it follows that
∑

{x1,x2,...,xkn}∩{y1,y2,...,ykn}6=∅
E1Bn

x1,x2,...,xkn

1Bn
y1,y2,...,ykn

=

kn
∑

j=1

(

n

2kn − j

)

1

(2kn − j)!
A(kn − j, j), where A(N, j) is as in (1.5).

Using this with (3.4) and the fact that EZn,kn
=

( n

kn
)

kn!
, the proof will be complete

if we show that

(3.5-a)

(kn!)
2

(

n
kn

)2

kn
∑

j=1

(

n

2kn − j

)

1

(2kn − j)!
A(kn − j, j) = O(

k
5
2
n

n
), if kn is as in part (i);

10



(3.5-b)

(kn!)
2

(

n
kn

)2

kn
∑

j=1

(

n

2kn − j

)

1

(2kn − j)!
A(kn − j, j) is bounded from 0 and ∞

if kn is as in part (ii) ;

(3.5-c)

lim
n→∞

(kn!)
2

(

n
kn

)2

kn
∑

j=1

(

n

2kn − j

)

1

(2kn − j)!
A(kn − j, j) = ∞, if kn is as in part (iii).

It remains therefore to analyze the left hand side of (3.5). In the next section

we will prove the following key estimates:

Lemma 2. For each ρ ∈ (0,∞), there exists a constant Cρ > 0 such that

A(N, j) ≤ Cj
ρ

j
1
2

Γ( j+1
2 )

(2N)
j

2

(

2N

N

)2

, for j, N ≥ 1 and
j

N
≤ ρ.

In particular, since A(N, j) is increasing in N , one has

A(k − j, j) ≤ A(k, j) ≤ C
j
1

j
1
2

Γ( j+1
2

)
(2k)

j

2

(

2k

k

)2

, for j, k ≥ 1 and j ≤ k.

Lemma 3. There exists a constant C > 0 such that

A(k − 1, 1) ≥ C(2k − 2)
1
2

(

2k − 2

k − 1

)2

.

We now use Lemma 2 to show that (3.5-a) and the part of (3.5-b) concerning

boundedness from ∞ hold. Afterwards, we will use Lemma 3 to show that (3.5-c)

and the part of (3.5-b) concerning boundedness from 0 hold.

In light of Lemma 2, it suffices to show that (3.5-a) and the part of (3.5-b) con-

cerning boundedness from∞ hold withA(kn−j, j) replaced by C
j
1

j
1
2

Γ( j+1

2
)
(2kn)

j

2

(

2kn

kn

)2
.

Letting

B(n, kn, j) =
(kn!)

2

(

n
kn

)2

(

n

2kn − j

)

1

(2kn − j)!

(

2kn
kn

)2

(2kn)
j

2 ,

it follows that (3.5-a) (respectively the part of (3.5-b) concerning boundedness from

∞) will hold if we show that

kn
∑

j=1

B(n, kn, j)
C

j
1j

1
2

Γ( j+1
2

)

11



is O(k
5
2
n

n
), if kn is as in part (i) (respectively, bounded if kn is as in part (ii)).

Simplifying and making some cancellations, we have

(3.6) B(n, kn, j) =
((n− kn)!)

2

n!(n− 2kn + j)!

(

(2kn)!

(2kn − j)!

)2

(2kn)
j

2 .

We have

(3.7) b1n
−j ≤ ((n− kn)!)

2

n!(n− 2kn + j)!
≤ b2n

−j , j = 1, ..., kn,

for positive constants b1, b2. (For the lower bound, we have used the fact that kn

is of an order not larger than n
1
2 . The upper bound holds as long as kn ≤ cn for

some c < 1.) We also have

(3.8) kjn ≤ (2kn)!

(2kn − j)!
≤ (2kn)

j, j = 1, ..., kn.

From (3.6)-(3.8) we have

(3.9) B(n, kn, j)
C

j
1j

1
2

Γ( j+1
2 )

≤ b2n
−j(2kn)

2j (2kn)
j

2
C

j
1j

1
2

Γ( j+1
2 )

≤ j
1
2Cj

Γ( j+1
2 )

(n−1k
5
2
n )

j ,

for some C > 0. Since
∑∞

j=1
j
1
2 Cj

Γ( j+1

2
)
< ∞, it follows from (3.9) that

kn
∑

j=1

B(n, kn, j)
C

j
1j

1
2

Γ( j+1
2 )

is O(k
5
2
n

n
) as n → ∞, if kn is as in part (i), and is bounded if kn is as in part (ii).

This proves (3.5-a) and the part of (3.5-b) concerning boundedness from ∞.

We now turn to (3.5-c) and the part of (3.5-b) concerning boundedness from

0. The term in (3.5-b,c) corresponding to j = 1 is (kn!)
2

( n

kn
)
2

(

n
2kn−1

)

1
(2kn−1)!A(kn −

1, 1). Define C(n, kn) =
(kn!)2

( n

kn
)2
(

n
2kn−1

)

1
(2kn−1)!(2kn − 2)

1
2

(

2kn−2
kn−1

)2
. Using the bound

on A(kn − 1, 1) from Lemma 3, it follows that for the part of (3.5-b) concerning

boundedness from 0, it is enough to show that lim infn→∞ C(n, kn) > 0, when kn

is as in part (ii), and for (3.5-c) it is enough to show that limn→∞ C(n, kn) = ∞,

when kn is as in part (iii). Simplifying and making some cancellations, we have

C(n, kn) =
((n− kn)!)

2

n!(n− 2kn + 1)!
k4n(2kn − 1)−2(2kn − 2)

1
2 .

12



Using this with (3.7) gives

C(n, kn) ≥ b1n
−1k4n(2kn − 1)−2(2kn − 2)

1
2 .

Thus, the above stated inequalities indeed hold. �

4. Proofs of Lemmas 2 and 3.

Proof of Lemma 2. The first step of the proof is to develop a probabilistic repre-

sentation for A(N, j). Fix j ≥ 1 and N ≥ 1. Consider two rows each containing 2N

spaces. Randomly fill each of the two rows with N blue balls and N white balls.

Define X0 = 0, and then for m = 1, 2, ..., 2N , use the balls in the first row to define

Xm as the number of blue balls in the first m spaces minus the number of white balls

in the first m spaces. Define Ym the same way using the balls in the second row.

Then {Xm} and {Ym} are independent, and as is well known, each one has the

distribution of the simple, symmetric one-dimensional random walk, conditioned

to return to 0 at the 2N -th step. Let Um = Xm+Ym

2 and Vm = Xm−Ym

2 . Then

(Um, Vm) has the distribution of the standard, simple, symmetric two-dimensional

random walk (jumping one unit in each of the four possible directions with probabil-

ity 1
4 ), starting from the origin and conditioned to return to the origin at the 2N -th

step. To see this, let {Xm} and {Ym} be independent copies of the unconditioned,

simple, symmetric one-dimensional random walk starting from the origin, and let

Um = Xm+Ym

2
and Vm = Xm−Ym

2
. Then clearly, {Um,Vm} is the unconditioned,

simple, symmetric two-dimensional random walk starting from the origin. Now

{Um, Vm} is equal to {Um,Vm} conditioned on X2N = Y2N = 0, or equivalently,

conditioned on U2N = V2N = 0.

The total number of possible ways of placing N blue balls and N white balls in

the first row, and the same number of such balls in the second row is
(

2N
N

)2
. For the

moment, fix a set {sr}jr=0 of j + 1 nonnegative integers satisfying
∑j

r=0 sr = 2N .

Let tr =
∑r

i=0 si. Let Ds0,s1,...,sj denote the event {Vt0 = Vt1 = ... = Vtj = 0} =

{Xt0 = Yt0 , Xt1 = Yt1 , ..., Xtj = Ytj}. Now for any sequence {lr}jr=0 satisfying

lr ≤ sr and
∑j

r=0 lr = N , the probability of the event {Xtr =
∑r

i=0(li − (si −
13



li)), r = 0, 1, ..., j} = {Xtr =
∑r

i=0(2li − si), r = 0, 1, ..., j} is
(

2N
N

)−1∏j
r=0

(

sr
lr

)

,

and thus the probability of the event {Xtr = Ytr =
∑r

i=0(2li − si), r = 0, 1, ..., j}

is
(

2N
N

)−2
(
∏j

r=0

(

sr
lr

)

)2. Summing now over all possible {lr}jr=0 as above, it follows

that

(4.1) P (Ds0,s1,...,sj) =
1

(

2N
N

)2

∑

∑

j

r=0
lr=N

lr≤sr

j
∏

r=0

(

sr

lr

)2

.

Letting mr = sr − lr ≥ 0, one sees that the term involving the summation on the

right hand side of (4.1) can be written as
∑∏j

r=0

(

(lr+mr)!
lr!mr!

)2

, where the sum is

over all {lr}jr=0 and {mr}jr=0 satisfying
∑j

r=0 lr =
∑j

r=0 mr = N , and lr+mr = sr,

for r = 0, 1, ..., j. Thus, summing (4.1) over all the possible choices of {sr}jr=0, we

obtain

(4.2)
∑

∑

j

r=0
sr=2N

P (Ds0,s1,...,sj) =
A(N, j)
(

2N
N

)2 .

The next step of the proof is to estimate P (Ds0,s1,...,sj). For this we will need

several lemmas.

Lemma 4. Let {Zn}∞n=0 be a one-dimensional random walk which takes jumps of

±1 with probability 1
4 each, and remains in its place with probability 1

2 . Then there

exit constants C1, C2 > 0 such that

C1

n
1
2

≤ P (Zn = 0|Z0 = 0) ≤ C2

n
1
2

, for n ≥ 1.

Proof. A direct calculation gives

P (Zn = 0|Z0 = 0) =

[n
2
]

∑

i=0

(
1

2
)n−2i(

1

4
)2i
(

n

i

)(

n− i

i

)

.

We rewrite this as

(4.3)

P (Zn = 0|Z0 = 0) = (
1

2
)n

[n
2
]

∑

i=0

(
1

2
)2i
(

2i

i

)

(

n
i

)(

n−i
i

)

(

2i
i

) = (
1

2
)n

[n
2
]

∑

i=0

(
1

2
)2i
(

2i

i

)(

n

2i

)

.
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By Stirling’s approximation, there exist positive constants c1, c2 such that

(4.4)
c1√
i+ 1

≤ (
1

2
)2i
(

2i

i

)

≤ c2√
i+ 1

, i = 0, 1, ....

Thus, from (4.3) and (4.4) we have

(4.5) c1

[n
2
]

∑

i=0

1√
i+ 1

(

n

2i

)

(
1

2
)n ≤ P (Zn = 0|Z0 = 0) ≤ c2

[n
2
]

∑

i=0

1√
i+ 1

(

n

2i

)

(
1

2
)n.

Now let Sn be a random variable distributed according to Binom(n, 12 ). Then we

have

(4.6)

[n
2
]

∑

i=0

1√
i+ 1

(

n

2i

)

(
1

2
)n = E(

1

2
Sn + 1)−

1
2 1{Sn is even}.

By standard large deviations estimates, P (|Sn

n
− 1

2
| > ǫ) decays exponentially in

n for each ǫ > 0. Using this along with (4.5) and (4.6) and leaving to the reader

the little argument to accommodate the requirement in (4.6) that Sn be even, we

conclude that there exist constants C1, C2 > 0 such that

C1√
n+ 1

≤ P (Zn = 0|Z0 = 0) ≤ C2√
n+ 1

.

�

Lemma 5. Let {Ẑn}∞n=0 be a simple, symmetric one-dimensional random walk.

i. There exists a constant C0 > 0 such that

P (Ẑn = 0|Ẑ0 = a) ≤ C0√
n
exp(− a2

2n
), for all a ∈ Z and all n ≥ 1.

ii. Let L > 0. There exists a constant cL > 0 such that for all sufficiently large n,

P (Ẑ2n = 0|Ẑ0 = 2a) ≥ cL√
n
exp(−a2

n
), for all a ∈ Z satisfying |a| ≤ Ln

1
2 .

Proof. The lemma follows from the local central limit theorem. It can be proved

via a direct calculation, using Stirling’s approximation. (See, for example, [4, page

65].) �

Lemma 6. Let {X̂n, Ŷn}∞n=0 be a simple, symmetric two-dimensional random walk.

15



i. There exist constants c1, c2 > 0 such that

P ((X̂n, Ŷn) = (0, 0)|(X̂0, Ŷ0) = (a, 0)) ≤ c1

n
exp(−c2a

2

n
), for all a ∈ Z and all n ≥ 1.

ii. There exists a constant c3 > 0 such that

P ((X̂2n, Ŷ2n) = (0, 0)|(X̂0, Ŷ0) = (0, 0)) ≥ c3

n
, for all n ≥ 1.

Proof. LetHn and Vn denote respectively the number of horizontal and the number

of vertical steps made by the random walk {(X̂·, Ŷ·)} during its first n steps. Then

we have

(4.7)

P ((X̂n, Ŷn) = (0, 0)|(X̂0, Ŷ0) = (a, 0)) =

∑

j+k=n

P (Ẑj = 0|Ẑ0 = a)P (Ẑk = 0|Ẑ0 = 0)× P (Hn = j, Vn = k),

where {Ẑn} is as in Lemma 5. SinceHn and Vn are each distributed like Binom(n, 12),

a standard large deviations estimate gives

(4.8) P (Hn ≥ 1

4
n, Vn ≥ 1

4
n) ≥ 1− 1

C
exp(−Cn),

for some C > 0. Since 1√
j
exp(−a2

2j ) ≤ 2√
n
exp(− a2

2n ), for
1
4n ≤ j ≤ n, it follows

from (4.7), (4.8) and Lemma 5-i that

(4.9) P ((X̂n, Ŷn) = (0, 0)|(X̂0, Ŷ0) = (a, 0)) ≤ 4C2
0

n
exp(−a2

n
) +

1

C
exp(−Cn).

Choosing c1 sufficiently large and c2 > 0 sufficiently small, part (i) follows from

(4.9) along with the fact that we need only consider |a| ≤ n.

For part (ii), note that

P ((X̂2n, Ŷ2n) = (0, 0)|(X̂0, Ŷ0) = (0, 0)) =

∑

2j+2k=2n

P (Ẑ2j = 0|Ẑ0 = 0)P (Ẑ2k = 0|Ẑ0 = 0)× P (Hn = 2j, Vn = 2k).

Also, we have P (Hn and Vn are even, Hn ≥ 1
4n, Vn ≥ 1

4n) ≥ C, for some C > 0

independent of n. Finally, P (Ẑ2j = 0|Ẑ0 = 0) can be bounded from below as in

Lemma 5-ii. Part (ii) follows from these observations. �
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We can now estimate P (Ds0,s1,...,sj).

Lemma 7. Let ŝr = sr + 1. There exists a constant c > 0 such that

(4.10) P (Ds0,s1,...,sj) ≤ (2N + 1)
1
2 cj+1(ŝ0ŝ1...ŝj)

− 1
2 .

Proof. Let {X̂n, Ŷn}∞n=0 be a simple, symmetric two-dimensional random walk.

Recalling that tj = 2N , it follows by definition that

(4.11)

P (Ds0,s1,...,sj) = P (Ŷt0 = Ŷt1 = · · · = Ŷtj−1
= 0|X̂0 = Ŷ0 = X̂2N = Ŷ2N = 0).

By the Markov property, we have

(4.12)

P (Ŷt0 = Ŷt1 = · · · = Ŷtj−1
= 0|X̂0 = Ŷ0 = X̂2N = Ŷ2N = 0) =

P (Ŷt0 = 0|X̂0 = Ŷ0 = 0) · P (Ŷt1 = 0|Ŷt0 = X̂0 = Ŷ0 = 0)× · · ·×

P (Ŷtj−1
= 0|Ŷt0 = · · · = Ŷtj−2

= X̂0 = Ŷ0 = 0)×
P (X̂2N = Ŷ2N = 0|Ŷt0 = · · ·Ŷtj−1

= X̂0 = Ŷ0 = 0)

P (X̂2N = Ŷ2N = 0|X̂0 = Ŷ0 = 0)
.

Note that the process {Ŷn} in isolation is a one-dimensional random walk dis-

tributed according to the distribution of {Zn} in Lemma 4. Thus, letting t−1 = 0,

we have from (4.12)

(4.13)

P (Ŷt0 = Ŷt1 = · · · = Ŷtj−1
= 0|X̂0 = Ŷ0 = X̂2N = Ŷ2N = 0) =

P (X̂2N = Ŷ2N = 0|Ŷt0 = · · ·Ŷtj−1
= X̂0 = Ŷ0 = 0)

P (X̂2N = Ŷ2N = 0|X̂0 = Ŷ0 = 0)
×

j−1
∏

k=0

P (Ztk = 0|Ztk−1
= 0).

Recall that tk − tk−1 = sk and sj = 2N − tj−1. Let s
′
k = sk, if sk ≥ 1, and s′k = 1,

if sk = 0. Since P (Ztk = 0|Ztk−1
= 0) = P (Ztk−tk−1

= 0|Z0 = 0) it follows from

Lemma 4 that P (Ztk = 0|Ztk−1
= 0) ≤ C2√

s′
k

. From Lemma 6-ii, it follows that

P (X̂2N = Ŷ2N = 0|X̂0 = Ŷ0 = 0) ≥ c3
N
. Using these facts along with (4.11) and

(4.13), it follows that if we show that

(4.14) P (X̂2N = Ŷ2N = 0|Ŷt0 = · · ·Ŷtj−1
= X̂0 = Ŷ0 = 0) ≤ Cj

N
1
2 (2N − tj−1)

1
2

,
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for some C > 0 and sj = 2N− tj−1 ≥ 1, then we will obtain (4.10) with ŝr replaced

by s′r. By increasing the constant c in (4.10), one can always replace s′r by ŝr.

Thus, it remains to prove (4.14).

By the Markov property, we have

(4.15)

P (X̂2N = Ŷ2N = 0|Ŷt0 = · · ·Ŷtj−1
= X̂0 = Ŷ0 = 0) =

∑

a∈R

P (X̂2N−tj−1
= Ŷ2N−tj−1

= 0|X̂0 = a, Ŷ0 = 0)× ν(a),

where

ν(a) = P (X̂tj−1
= a|Ŷt0 = · · ·Ŷtj−1

= X̂0 = Ŷ0 = 0).

As in the proof of Lemma 6, let Hn denote the number of horizontal steps taken

by the random walk {X̂(·), Ŷ (·)} during its first n steps. Let

µ(m) = P (Htj−1
= m|Ŷt0 = · · ·Ŷtj−1

= X̂0 = Ŷ0 = 0),

and let W be distributed like µ. Then ν is distributed like ẐW , where {Ẑn} is a

simple, symmetric one-dimensional random walk, starting from 0 and independent

of W . We will show later that for some γ, C > 0,

(4.16)

µ([0, γtj−1]) = P (Htj−1
≤ γtj−1|Ŷt0 = · · ·Ŷtj−1

= X̂0 = Ŷ0 = 0) =

P (W ≤ γtj−1) ≤
Cj

γ
exp(−γtj−1).

By Lemma 5-i, it follows that

(4.17) P (Ẑn = a|Ẑ0 = 0) ≤ C0√
γtj−1

exp(− a2

2tj−1
), for γtj−1 ≤ n ≤ tj−1.

From (4.16) and (4.17) we conclude that

(4.18) ν(a) = P (ẐW = a) ≤ C0√
γtj−1

exp(− a2

2tj−1
) +

Cj

γ
exp(−γtj−1).

Since ν(a) = 0, if a > tj−1, it follows from (4.18) that

(4.19) ν(a) ≤ k
j
1√

tj−1
exp(−k2a

2

tj−1
),

for some k1, k2 > 0. From (4.15), (4.19) and Lemma 6-i, we obtain

(4.20)

P (X̂2N = Ŷ2N = 0|Ŷt0 = · · ·Ŷtj−1
= X̂0 = Ŷ0 = 0) ≤

∑

a∈R

c1

2N − tj−1
exp(− c2a

2

2N − tj−1
)

k
j
1√

tj−1
exp(−k2a

2

tj−1
).
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For an appropriate Ĉ > 0, the right hand side of (4.20) can be bounded from above

by Ĉj
∫∞
−∞

1

(2N−tj−1)
√

tj−1

exp(− c2x
2

2N−tj−1
) exp(−k2x

2

tj−1
)dx. Evaluating this integral

gives the estimate in (4.14). Thus, to complete the proof of the lemma, it remains

to prove (4.16).

We mention that it is intuitive that P (Htj−1
≤ γtj−1|Ŷt0 = ···Ŷtj−1

= X̂0 = Ŷ0 =

0) ≤ P (Htj−1
≤ γtj−1), and this would then give (4.16). The intuition comes from

the fact that the smaller Htj−1
is, the more moves {Ŷn} makes, and the more moves

{Ŷn} makes, the more difficult it is for it to have the prescribed zeroes. However,

a proof of this is rather complicated and quite tedious. It turns out that a rather

crude estimate will suffice in order to obtain (4.16). We have

(4.21)

µ([0, γtj−1]) = P (Htj−1
≤ γtj−1|Ŷt0 = · · ·Ŷtj−1

= X̂0 = Ŷ0 = 0) =

P (Htj−1
≤ γtj−1, Ŷt0 = · · ·Ŷtj−1

= X̂0 = Ŷ0 = 0)

P (Ŷt0 = · · ·Ŷtj−1
= X̂0 = Ŷ0 = 0)

≤ P (Htj−1
≤ γtj−1)

P (Ŷt0 = · · ·Ŷtj−1
= 0|Ŷ0 = 0)

.

By a standard large deviations estimate,

(4.22) P (Htj−1
≤ γtj−1) ≤ c exp(−lγtj−1), where lim

γ→0
lγ = log 2.

(To see this, note that P (Htj−1
= 0) = ( 1

2
)tj−1 = exp(−(log 2)tj−1).) By Lemma

4, we have

P (Ŷt0 = · · ·Ŷtj−1
= 0|Ŷ0 = 0) =

j−1
∏

k=0

P (Ŷtk = 0|Ŷtk−1
= 0) ≥ C

j
1

(s′0s
′
1 · · · s′j−1)

1
2

.

Since the {s′k} satisfy
∑j−1

k=0 s
′
k ≤ tj−1 + j, it follows that sup{s′

k
} s

′
0s

′
1 · · · s′j−1 ≤

(
tj−1+j

j
)j ≤ exp(tj−1). Thus,

(4.23) P (Ŷt0 = · · ·Ŷtj−1
= 0|Ŷ0 = 0) ≥ C

j
1 exp(−

1

2
tj−1).

Now (4.16) follows from (4.21)-(4.23) along with the fact that log 2 > 1
2
. �

We can now complete the proof of Lemma 2. From (4.2) and (4.10), we have

A(N, j)
(

2N
N

)2 ≤ (2N + 1)
1
2 cj+1

∑

∑

j

r=0
sr=2N

(ŝ0ŝ1...ŝj)
− 1

2 .
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Let Ŝj = ŝj + j − 1. Then (ŝj)
− 1

2 = (Ŝj)
− 1

2 (
Ŝj

ŝj
)

1
2 ≤ j

1
2

(Ŝj)
1
2

. Thus it follows from

the above inequality that

(4.24)
A(N, j)
(

2N
N

)2 ≤ (2N + 1)
1
2 cj+1j

1
2

∑

∑

j

r=0
sr=2N

(ŝ0ŝ1...ŝj−1Ŝj)
− 1

2 .

The replacement of ŝj by Ŝj was made for technical reasons which will become

clear below. Making the substitutions xr = sr
2N and x̂r = ŝr

2N , for r = 0, ..., j, and

X̂j =
Ŝj

2N , we rewrite the right hand side of (4.24) as

(4.25)

(2N + 1)
1
2 cj+1j

1
2 (2N)

j−1

2

∑

∑

j

r=0
xr=1

(2N)xr is a nonnegative integer

(x̂0x̂1...x̂j−1X̂j)
− 1

2 (2N)−j .

Let Cx0,x1,...,xj−1
denote the hyper-cube

∏j−1
r=0[xr, xr+

1
2N

] =
∏j−1

r=0[xr, x̂r]. Con-

sider ∪Cx0,x1,...,xj−1
, where the union is over all {x0, ..., xj−1} for which (2N)xr is

a nonnegative integer and
∑j−1

r=0 xr ≤ 1. This union is contained in V1+ j

2N

≡

{(y0, y1, ..., yj−1) : yr ≥ 0,
∑j−1

r=0 yr ≤ 1 + j
2N }. We have

(4.26)

(x̂0x̂1...x̂j−1X̂j)
− 1

2 ≤ (y0y1...yj−1yj)
− 1

2 , for all (y0, y1, ..., yj−1) ∈ Cx0,x1,...,xj−1
,

where yj = 1 +
j

2N
− y0 − y1 − ...− yj−1.

To see that (4.26) holds, note that x̂r ≥ yr, r = 0, ..., j − 1, for (y0, y1, ..., yj−1) ∈

Cx0,x1,...,xj−1
. Also,

X̂j =
Ŝj

2N
=

ŝj + j − 1

2N
=

sj + j

2N
=

2N + j − s0 − s1 − ...− sj−1

2N

= 1 +
j

2N
− x0 − x1 − ...− xj−1 ≥ 1 +

j

2N
− y0 − y1 − ...− yj−1,

for (y0, y1, ..., yj−1) ∈ Cx0,x1,...,xj−1
.

In light of these facts it follows that the sum on the right hand side of (4.25) is

dominated by a certain lower Riemann sum for
∫

S
1+

j

2N

(
∏j

r=0 yr)
− 1

2 dy0dy1...dyj−1,

where Sλ = {(y0, y1, ..., yj−1) : yr ≥ 0,
∑j−1

r=0 yr ≤ λ}. Replacing the sum in (4.25)

with this integral, and substituting the resulting expression into the right hand side

of (4.24) gives

(4.27)
A(N, j)
(

2N
N

)2 ≤ (2N + 1)
1
2 cj+1j

1
2 (2N)

j−1

2

∫

S
1+

j

2N

(

j
∏

r=0

yr)
− 1

2 dy0dy1...dyj−1.
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A change of variables shows that

(4.28)
∫

S
1+

j

2N

(

j
∏

r=0

yr)
− 1

2 dy0dy1...dyj−1 = (1 +
j

2N
)

j−1

2

∫

S1

(

j
∏

r=0

yr)
− 1

2 dy0dy1...dyj−1.

As is well-known from the theory of Dirichlet distributions,

(4.29)

∫

S1

(

j
∏

r=0

yr)
− 1

2 dy0dy1...dyj−1 =
π

j+1

2

Γ( j+1
2

)
.

From (4.27)-(4.29) we conclude that

(4.30)
A(N, j)
(

2N
N

)2 ≤ (2N + 1)
1
2 cj+1j

1
2 (2N)

j−1

2 (1 +
j

2N
)

j−1

2
π

j+1

2

Γ( j+1
2 )

.

The inequality for A(N, j) in Lemma 2 follows from (4.30). It is trivial to check

that A(N, j) is increasing in N ; thus, the inequality for A(k − j, j) in Lemma 2

holds as stated. �

Proof of Lemma 3. To prove the lemma we will need the following lemma, which

complements Lemma 6.

Lemma 8. Let {X̂n, Ŷn}∞n=0 be a simple, symmetric two-dimensional random walk.

Let L > 0. There exist constants cL,1, cL,2 > 0 such that for all sufficiently large n

P ((X̂2n, Ŷ2n) = (0, 0)|(X̂0, Ŷ0) = (2a, 0)) ≥ cL,1

n
exp(−cL,2a

2

n
),

for a ∈ Z satisfying |a| ≤ L
√
n.

Proof. Let Hn, Vn be as in the proof of Lemma 6, and let {Ẑn} be as in Lemma 5.

We have

(4.31)

P ((X̂2n, Ŷ2n) = (0, 0)|(X̂0, Ŷ0) = (2a, 0)) =

∑

j+k=n

P (Ẑ2j = 0|Ẑ0 = 2a)P (Ẑ2k = 0|Ẑ0 = 0)× P (Hn = j, Vn = k).

The proof of the lemma follows easily from (4.31), (4.8) and Lemma 5-ii. �

We can now prove Lemma 3. Let {(X̂n, Ŷn)} denote a simple, symmetric two-

dimensional random walk. Using the notation in the proof of Lemma 2, but with

k − 1 in place of N , recall that for j = 1,

P (Ds0,s1) = P (Ŷs0 = 0|X̂0 = Ŷ0 = X̂2k−2 = Ŷ2k−2 = 0),
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and thus from (4.2),

(4.32)
A(k − 1, 1)
(

2k−2
k−1

)2 =
2k−2
∑

l=0

P (Ŷl = 0|X̂0 = Ŷ0 = X̂2k−2 = Ŷ2k−2 = 0).

For m satisfying [ 1
4
k] ≤ m ≤ [ 3

4
k], we have

(4.33)

P (Ŷ2m = 0|X̂0 = Ŷ0 = X̂2k−2 = Ŷ2k−2 = 0) ≥
[
√
k]

∑

r=−[
√
k]

P (Ŷ2m = 0, X̂2m = 2r|X̂0 = Ŷ0 = 0)×

P (X̂2k−2 = Ŷ2k−2 = 0|X̂0 = Ŷ0 = Ŷ2m = 0, X̂2m = 2r)

P (X̂2k−2 = Ŷ2k−2 = 0|X̂0 = Ŷ0 = 0)
.

We have P (X̂2k−2 = Ŷ2k−2 = 0|X̂0 = Ŷ0 = Ŷ2m = 0, X̂2m = 2r) = P (X̂2k−2−2m =

Ŷ2k−2−2m = 0|X̂0 = 2r, Ŷ0 = 0). Thus, in light of the above-specified range of

m and of r, it follows from Lemma 8 and Lemma 6-i that for sufficiently large k,

P (X̂2k−2=Ŷ2k−2=0|X̂0=Ŷ0=Ŷ2m=0,X̂2m=2r)

P (X̂2k−2=Ŷ2k−2=0|X̂0=Ŷ0=0)
is bounded from below by a positive con-

stant. By Lemma 8 and the above-specified bound on m, it also follows that

P (Ŷ2m = 0, X̂2m = 2r|X̂0 = Ŷ0 = 0) is bounded from below by C
k
, for some C > 0.

Thus, we conclude from (4.33) that for sufficiently large k,

(4.34)
P (Ŷ2m = 0|X̂0 = Ŷ0 = X̂2k−2 = Ŷ2k−2 = 0) ≥ C1k

− 1
2 ,

for some C1 > 0 and for m satisfying [
1

4
k] ≤ m ≤ [

3

4
k].

Now (4.32) and (4.34) give

A(k − 1, 1)
(

2k−2
k−1

)2 ≥ C2k
1
2 ,

for some C2 > 0 and k sufficiently large. This is clearly equivalent to the lemma.

�
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