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THE COUNTING LEMMA FOR REGULAR k-UNIFORM HYPERGRAPHS

BRENDAN NAGLE, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

Abstract. Szemerédi’s Regularity Lemma proved to be a powerful tool in the area of extremal graph
theory. Many of its applications are based on its accompanying Counting Lemma: If G is an `-partite graph

with V (G) = V1 ∪ · · · ∪ V` and |Vi| = n for all i ∈ [`], and all pairs (Vi, Vj) are ε-regular of density d for

1 ≤ i < j ≤ `, then G contains (1± f`(ε))d

“

`
2

”

× n` cliques K`, where f`(ε) → 0 as ε → 0.

Recently, V. Rödl and J. Skokan generalized Szemerédi’s Regularity Lemma from graphs to k-uniform
hypergraphs for arbitrary k ≥ 2. In this paper we prove a Counting Lemma accompanying the Rödl–

Skokan hypergraph Regularity Lemma. Similar results were independently and alternatively obtained by

W. T. Gowers.
It is known that such results give combinatorial proofs to the density result of E. Szemerédi and some of

the density theorems of H. Furstenberg and Y. Katznelson.

1. Introduction

Extremal problems are among the most central and most extensively studied in combinatorics. Many
of these problems concern thresholds for properties concerning deterministic structures and have proven to
be difficult as well as interesting. An important recent trend in combinatorics has been to consider the
analogous problems for random structures. Tools are then sometimes afforded for determining with what
probability a random structure possesses certain properties.

The study of quasi-random structures, pioneered by the work of Szemerédi [46], merges features of deter-
ministic and random settings. Roughly speaking, a quasi-random structure is one which, while deterministic,
mimics the behavior of random structures in certain important points of view. The (quasi-random) combi-
natorial structures we consider in this paper are set systems or hypergraphs. We begin our discussion with
graphs.

1.1. Szemerédi’s Regularity Lemma for graphs. In the course of proving his celebrated Density The-
orem concerning arithmetic progressions, Szemerédi established a lemma which decomposes the edge set of
any graph into constantly many “blocks”, almost all of which are quasi-random (cf. [24, 25, 47]). In what
follows, we give a precise account of Szemerédi’s lemma.

For a graph G = (V,E) and two disjoint sets A, B ⊂ V , let E(A,B) denote the set of edges {a, b} ∈ E
with a ∈ A and b ∈ B and set e(A,B) = |E(A,B)|. We also set d(A,B) = d(GAB) = e(A,B)/|A||B| for the
density of the bipartite graph GAB = (A ∪B,E(A,B)).

The concept central to Szemerédi’s lemma is that of an ε-regular pair. Let ε > 0 be given. We say that
the pair A, B is ε-regular if |d(A,B) − d(A′, B′)| < ε holds whenever A′ ⊂ A, B′ ⊂ B, and |A′| > ε|A|,
|B′| > ε|B|.

We call a partition V = V0 ∪ V1 ∪ · · · ∪ Vt an equitable partition if it satisfies |V1| = |V2| = · · · = |Vt| and
|V0| < t; we call an equitable partition ε-regular if all but ε

(

t
2

)

pairs Vi, Vj are ε-regular. Szemerédi’s lemma
may then be stated as follows.

Theorem 1 (Szemerédi’s Regularity Lemma). Let ε > 0 be given and let t0 be a positive integer. There
exist positive integers n0 = n0(ε, t0) and T0 = T0(ε, t0) such that any graph G = (V,E) with |V | = n ≥ n0

vertices admits an ε-regular equitable partition V = V0 ∪ V1 ∪ · · · ∪ Vt with t satisfying t0 ≤ t ≤ T0.

Szemerédi’s Regularity Lemma is a powerful tool in the area of extremal graph theory. One of its most
important consequences is that, in appropriate circumstances, it can be used to imply a given graph contains

2000 Mathematics Subject Classification. Primary: 05D05 Secondary: (05C65, 05A16).
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a fixed subgraph. Suppose that a (large) graph is given along with an ε-regular partition V = V0∪V1∪. . .∪Vt

and let H be a fixed graph. If an appropriate collection of pairs IH ⊆
(

[t]
2

)

have each {Vi, Vj}, {i, j} ∈ IH ,
ε-regular and sufficiently dense (with respect to ε), one is guaranteed a copy of H within this collection of
bipartite graphs E(Vi, Vj), {i, j} ∈ IH . This observation is due to the following well-known fact which may
be appropriately called the Counting Lemma.

Fact 2 (Counting Lemma). For every integer ` and positive reals d and γ there exists δ > 0 so that the
following holds. Let G =

⋃

1≤i<j≤`G
ij be an `-partite graph with `-partition V1∪. . .∪V` where Gij = G[Vi, Vj ],

1 ≤ i < j ≤ `, and |V1| = . . . = |V`| = n. Suppose further all graphs Gij are ε-regular with density d. Then

the number of copies of the `-clique K` in G is within the interval (1± γ)d(
`

2)n`.

Unlike Szemerédi’s Regularity Lemma, Fact 2 is fairly easy to prove.

1.2. Extensions of Szemerédi’s Lemma to hypergraphs. Several hypergraph regularity lemmas were
considered, in part, by various authors [2, 5, 9, 13, 33]. None of these regularity lemmas seemed to admit a
companion counting result (i.e. a corresponding generalization of Fact 2). The first attempt of developing a
hypergraph Regularity lemma together with a corresponding Counting Lemma was undertaken in [10]. In
that paper, Frankl and Rödl established an extension of Szemerédi’s Regularity Lemma to 3-graphs, hereafter
called the FR-Lemma (see [20, 6] for an algorithmic version).

Analogously to the feature that Szemerédi’s Regularity Lemma decomposes a given graph into an ε-
regular partition, the FR-Lemma decomposes the edge set of given a 3-graph into constantly many “blocks”,
almost all of which are, in a specific sense, “quasi-random”. The concept of 3-graph regularity which plays the
analogous rôle of the ε-regular pair is, unfortunately, considerably more technical than its graph counterpart.
As well, it is not necessary at this time to know this precise definition in order to understand the current
Introduction. We therefore postpone precise discussion until later.

Just as Fact 2, the Counting Lemma, is an important companion statement to Szemerédi’s Regularity
Lemma, most applications of the FR-Lemma require a similar companion lemma - the “3-graph Counting
Lemma”. Analgously to Fact 2, the 3-graph Counting Lemma estimates the number of copies of the clique

K
(3)
` (i.e., the complete 3-graph on ` vertices) contained in an appropriate collection of “dense and regular

blocks” within a regular partition provided by the FR-Lemma. This 3-graph Counting Lemma was estab-

lished in [10] for the special case K
(3)
4 and subsequently fully established by Nagle and Rödl in [28] (see [32]

and [30] for alternative proofs). Unlike the case for graphs, the proof of the 3-graph Counting Lemma in [28]
was technical and rather lengthy, suggesting that the effort to fully develop hypergraph regularity methods
may not be straightforward.

Recently, Rödl and Skokan [40] established a generalization of the FR-Lemma to k-graphs for k ≥ 3
(see Section 3.2). We will refer to this lemma as the RS-Lemma. In [39], they also succeeded to prove a

companion Counting Lemma in the special case of K
(4)
5 . In this paper,

we prove the k-graph Counting Lemma corresponding to the RS-Lemma.

Our Counting Lemma, the main theorem of this paper, requires some notation. Therefore, we defer its
precise statement to Section 2.3 (see Theorem 9).

Last, but not least, we mention that a Regularity Lemma as well as a corresponding Counting Lemma for
k-graphs was recently proved by Gowers [17]. It is likely that his approach is different from the one taken
in [40] and this paper.

1.3. Quasi-random hypergraphs. A related line of research is the study of quasi-random hypergraphs,
some topics of which play a crucial rôle in our proof. We feel a few words on quasi-random hypergraphs at
this time are appropriate.

Haviland and Thomason [19] and Chung and Graham [3, 4] were the first to investigate systematic
properties of quasi-random hypergraphs. In particular, Chung and Graham considered several quite disparate
looking properties of random-like hypergraphs of density 1/2 and proved that they are, in fact, equivalent.
An important concept in their work is the deviation of a hypergraph. It is proved in [3, 4] that for fixed
integers ` ≥ k, a k-graph of density 1/2 with small deviation contains asymptotically the same number of

copies of the clique K
(k)
` as the random hypergraph of the same density. This result can be viewed as a

Counting Lemma for that notion of quasi-randomness.
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This research was continued by Kohayakawa, Rödl, and Skokan [23] whose approach was based on the
concept of discrepancy of a hypergraph. Discrepancy is more compatible with respect to the type of reg-
ularity a typical “block” exhibits in a partition obtained from the RS-Lemma. One particularly relevant
result in [23] is a ‘dense Counting Lemma’ for hypergraphs with small discrepancy (cf. Theorem 16 in
Section 3.1). Unfortunately, the counting needed to match the RS-Lemma deals with a ‘sparse’ and more
difficult environment. However, the ‘dense’ ancestor of our result plays an important rôle in this paper.

Our attempt for proving the Counting Lemma (corresponding to the RS-Lemma) is to reduce, in an
appropriate sense, the harder sparse case to the easier dense case. Our ‘reduction’ employs the RS-Lemma
itself.

1.4. Applications of the Regularity Method. Szemerédi’s Regularity Lemma together with its corre-
sponding Counting Lemma, Fact 2, has numerous applications (see [24, 25] for excellent surveys). The
FR-Lemma and the companion 3-graph Counting Lemma [28] were exploited in a variety of extremal hyper-
graph problems (cf. [10, 21, 22, 27, 34, 35, 45]).

We believe that the main result of this paper will enable one to apply the RS-Lemma to a variety of
hypergraph problems. Some applications combining the RS-Lemma with the Counting Lemma are already
considered in [38]. In particular, a conjecture of Erdős, Frankl and Rödl [7] (see also [10] for similar problems)
is confirmed in [38].

Theorem 3. Let t ≥ k ≥ 2 be fixed integers. Suppose that a k-uniform hypergraph H(k) on n vertices

contains at most o(nt) copies of K
(k)
t . Then one can delete o(nk) edges of H(k) to make it K

(k)
t -free.

Theorem 3 has several interesting consequences which we briefly outline below.

Density Theorems.

(1 ) It was shown in [10] (see also [38]) that Theorem 3 implies Szemerédi’s well-known Density Theo-
rem [46] concerning integer subsets without arithmetic progressions of prescribed length (cf. [14, 18]
for other alternative proofs).

(2 ) In [45], Solymosi pointed out that Theorem 3 also gives the following multi-dimensional version of
Szemerédi’s Density Theorem originally due to Furstenberg and Katznelson [15]:

Let k and d be fixed integers. If S ⊆ [n]d = {1, . . . , n}d is a subset not containing z + j[k]d for
any z ∈ [n]d and j ∈ [n], then |S| = o(nd).

(3 ) The following theorem of Furstenberg and Katznelson [16] is also a corollary of Theorem 3 (see [37]
for details):

Let q and d be fixed integers and V be an n-dimensional vector space over a finite field of order
q. If S ⊆ V is a subset not containing an affine d-dimensional subspace, then |S| = o(qn).

(4 ) It is also shown in [37] that another theorem of Furstenberg and Katznelson [16] can be deduced
from Theorem 3:

Let G be a finite abelian group and let S ⊆ Gn be a subset of the product group of n copies of G.
If S contains no coset of a subgroup of Gn which is isomorphic to G, then |S| = o(|G|n).

In [37], both theorems discussed in (3 ) and (4 ) are derived from a more general density result about modules
of finite rings.

It is worth mentioning that so far the only known proofs of the theorems of Furstenberg and Katznelson [15,
16] discussed in (2 )–(4 ) above involve ergodic theory. The purely combinatorial proofs based on the RS-
Lemma and the main result of this paper (or similarly proofs based on the recent results of Gowers) give the
first quantitative proofs of those theorems. We make no attempt, however, to give any bounds here.

Combinatorial Number Theory and Geometry.

(5 ) In [43] Solymosi gave an alternative proof of the Balog-Szemerédi Theorem [1] which implies the
affirmative answer to a conjecture of Erdős:

For every δ > 0 and integer t > 3 there is an n0 so that the following holds. If A ⊆ Z contains
δ|A|2 arithmetic progressions of length 3 and |A| > n0, then A contains an arithmetic progression of
length t.

Unlike the original proof of Balog and Szemerédi, Solymosi’s proof is entirely based on Theorem 3
and does not use the well-known theorem of Freiman [11, 12] (see also [41] for a shorter proof of
Freiman’s Theorem).
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(6 ) In [44] Solymosi applies Theorem 3 to a geometric problem. Roughly speaking he proves that if the
number of incidences between hyperplanes and points in dimension d is “close” to the maximum
possible, then there are always “dense” subsets, i.e., large point sets such that any d of them are
incident to a hyperplane from the arrangement.

(7 ) In [38] it was shown that Theorem 3 also implies the affirmative answer to a geometric problem of
Székely [26, p.226].

Extremal Hypergraph Results. In [29] the authors give a few applications of Theorem 3. For example:

(8 ) We give a simple (based on Theorem 3) proof of the following Ramsey-type theorem due to Nešetřil
and Rödl [31]:

For every integer χ ≥ 2 and every fixed k-uniform hypergraph F (k) there exists a k-uniform
hypergraph H(k) such that every χ-coloring of the edges of H(k) yields a monochromatic and induced
copy of F (k).

(9 ) We also extend Turán-type results from [7, 8, 27] concerning the asymptotic number of labeled
hypergraphs not containing any copy of a hypergraph from a fixed family.

We intend to give some further applications of the Regularity Method for hypergraphs in the near future.
Finally, we discuss a way to bridge the methods of this paper with the RS-Lemma to produce a new

variant of the regularity lemma for k-uniform hypergraphs in Section 8.

2. Statement of the Main Result

2.1. Basic notation. We denote by [`] the set {1, . . . , `}. For a set V and an integer k ≥ 1, let
(

V
k

)

be the set

of all k-element subsets of V . A subset G(k) ⊆
(

V
k

)

is a k-uniform hypergraph on the vertex set V . We identify

hypergraphs with their edge sets. For a given k-uniform hypergraph G(k), we denote by V
(

G(k)
)

and E
(

G(k)
)

its vertex and edge set, respectively. For U ⊆ V
(

G(k)
)

, we denote by G(k)[U ] the subhypergraph of G(k)

induced on U (i.e. G(k)[U ] = G(k) ∩
(

U
k

)

). A k-uniform clique of order j, denoted by K
(k)
j , is a k-uniform

hypergraph on j ≥ k vertices consisting of all
(

j
k

)

many k-tuples (i.e., K
(k)
j is isomorphic to

(

[j]
k

)

).
The central objects of this paper are `-partite hypergraphs. Throughout this paper, the underlying vertex

partition V = V1 ∪ · · · ∪ V`, |V1| = · · · = |V`| = n, is fixed. The vertex set itself can be seen as a 1-uniform
hypergraph and, hence, we will frequently refer to the underlying fixed vertex set as G(1). For integers

` ≥ k ≥ 1 and vertex partition V1 ∪ · · · ∪V`, we denote by K
(k)
` (V1, . . . , V`) the complete `-partite, k-uniform

hypergraph (i.e. the family of all k-element subsets K ⊆ ⋃

i∈[`] Vi satisfying |Vi ∩K| ≤ 1 for every i ∈ [`]).

Then, an (n, `, k)-cylinder G(k) is any subset of K
(k)
` (V1, . . . , V`). Observe, that

∣

∣V
(

G(k)
)∣

∣ = ` × n for an

(n, `, k)-cylinder G(k). Observe that the vertex partition V1 ∪ · · · ∪ V` is an (n, `, 1)-cylinder G(1). (This
definition may seem artificial right now, but it will simplify later notation.) For k ≤ j ≤ ` and set Λj ∈
(

[`]
j

)

, we denote by G(k)[Λj ] = G(k)
[
⋃

λ∈Λj
Vλ

]

the subhypergraph of the (n, `, k)-cylinder G(k) induced on
⋃

λ∈Λj
Vλ.

For an (n, `, j)-cylinder G(j) and an integer j ≤ i ≤ `, we denote by K(j)
i

(

G(j)
)

the family of all i-element

subsets of V
(

G(j)
)

which span complete subhypergraphs in G(j) of order i. Note that
∣

∣K(j)
i

(

G(j)
) ∣

∣ is the

number of all copies of K
(j)
i in G(j).

Given an (n, `, j − 1)-cylinder G(j−1) and an (n, `, j)-cylinder G(j), we say an edge J of G(j) belongs to

G(j−1) if J ∈ K(j−1)
j (G(j−1)), i.e., J corresponds to a clique of order j in G(j−1). Moreover, G(j−1) underlies

G(j) if G(j) ⊆ K(j−1)
j

(

G(j−1)
)

, i.e., every edge of G(j) belongs to G(j−1). This brings us to one of the main
concepts of this paper, the notion of a complex.

Definition 4 ((n, `, k)-complex). Let n ≥ 1 and ` ≥ k ≥ 1 be integers. An (n, `, k)-complex G is a
collection of (n, `, j)-cylinders {G(j)}k

j=1 such that

(a) G(1) is an (n, `, 1)-cylinder, i.e., G(1) = V1 ∪ · · · ∪ V` with |Vi| = n for i ∈ [`],
(b) G(j−1) underlies G(j) for 2 ≤ j ≤ k.
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2.2. Regular complexes. We begin with a notion of density of an (n, `, j)-cylinder with respect to a family
of (n, `, j − 1)-cylinders.

Definition 5 (density). Let G(j) be an (n, `, j)-cylinder and suppose Q
(j−1) = {Q(j−1)

1 , . . . ,Q(j−1)
r } be a

family of (n, `, j − 1)-cylinders. We define the density of G(j) w.r.t. the family Q
(j−1) as

d
(

G(j)
∣

∣Q
(j−1)

)

=











˛

˛

˛G(j)∩
S

s∈[r] K
(j−1)
j (Q(j−1)

s )
˛

˛

˛

˛

˛

˛

S

s∈[r] K
(j−1)
j

“

Q
(j−1)
s

”˛

˛

˛

if
∣

∣

∣

⋃

s∈[r]K
(j−1)
j

(

Q(j−1)
s

)
∣

∣

∣
> 0

0 otherwise .

We now define a notion of regularity of an (n, j, j)-cylinder with respect to an (n, j, j − 1)-cylinder.

Definition 6. Let positive reals δj and dj and a positive integer r be given along with an (n, j, j)-cylinder

G(j) and an underlying (n, j, j−1)-cylinder G(j−1). We say G(j) is (δj , dj , r)-regular w.r.t. G(j−1) if whenever

Q
(j−1) = {Q(j−1)

1 , . . . ,Q(j−1)
r }, Q(j−1)

s ⊆ G(j−1), s ∈ [r], satisfies
∣

∣

∣

∣

⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

≥ δj

∣

∣

∣
K(j−1)

j

(

G(j−1)
)∣

∣

∣
, then d

(

G(j)
∣

∣Q
(j−1)

)

= dj ± δj .

We extend the notion of (δj , dj , r)-regularity from (n, j, j)-cylinders to (n, `, j)-cylinders G(j).

Definition 7 ((δj , dj , r)-regular). We say an (n, `, j)-cylinder G(j) is (δj , dj , r)-regular w.r.t. an (n, `, j−1)-

cylinder G(j−1) if for every Λj ∈
(

[`]
j

)

the restriction G(j)[Λj ] = G(j)
[
⋃

λ∈Λj
Vλ

]

is (δj , dj , r)-regular w.r.t. to

the restriction G(j−1)[Λj ] = G(j−1)
[
⋃

λ∈Λj
Vλ

]

.

We sometimes write (δj , r)-regular to mean
(

δj , d
(

G(j)
∣

∣G(j−1)
)

, r
)

-regular for cylinders G(j) and G(j−1).

Finally, we close this section of basic definitions with the central notion of a regular complex.

Definition 8 ((δ,d, r)-regular complex). Let vectors δ = (δ2, . . . , δk) and d = (d2, . . . , dk) of positive
reals be given and let r be a positive integer. We say an (n, `, k)-complex G = {G(j)}k

j=1 is (δ,d, r)-regular
if:

(a) G(2) is (δ2, d2, 1)-regular w.r.t. G(1) and
(b) G(j) is (δj , dj , r)-regular w.r.t. G(j−1) for 3 ≤ j ≤ k.

2.3. Statement of the Counting Lemma. The following assertion is the main theorem of this paper.

Theorem 9 (Counting Lemma). For all integers 2 ≤ k ≤ ` the following is true: ∀γ > 0 ∀dk > 0 ∃δk >

0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and there are integers r and n0 so that, with d = (d2, . . . , dk)
and δ = (δ2, . . . , δk) and n ≥ n0, whenever G = {G(h)}k

h=1 is a (δ,d, r)-regular (n, `, k)-complex, then

∣

∣

∣
K(k)

`

(

G(k)
)

∣

∣

∣
= (1± γ)

k
∏

h=2

d
(`

h)
h × n` .

For given integers k and ` we shall refer to this theorem by CLk,`.
Observe from the quantification ∀γ, dk ∃δk ∀dk−1 ∃δk−1 . . . ∀d2 ∃δ2, the constants of Theorem 9 can

satisfy δh � dh−1 for any 3 ≤ h ≤ k. In particular, the hypothesis of Theorem 9 allows for the possibility
that

γ, dk � δk � dk−1 � δk−1 � . . . � dh � δh � dh−1 � . . . � d2 � δ2. (1)

Consequently, the Counting Lemma includes the case when complexes {G(h)}k
h=1 consists of fairly sparse

hypergraphs. It seems that this is the main difficulty in proving Theorem 9.

2.4. Generalization of the Counting Lemma. The main result of this paper, Theorem 9, allows us to
count complete hypergraphs of fixed order within a sufficiently regular complex. For some applications, it is
more useful to consider slightly more general lemmas.

The first generalization enables us to estimate the number of copies of an arbitrary hypergraph F (k) with
vertices {1, . . . , `} in an (n, `, k)-complex G = {G(j)}k

j=1 satisfying that G(j)[Λj ] is regular w.r.t. G(j−1)[Λj ]

whenever Λj ⊆ K for some edge K of F (k). Rather than counting copies of K
(k)
` in an “everywhere” regular
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complex, this lemma counts copies of F (k) in the complex G satisfying the less restrictive assumptions above.
We introduce some more notation before we give the precise statement below (see Corollary 12).

For a fixed k-uniform hypergraph F (k), we define the j-th shadow for j ∈ [k] by

∆j(F (k)) = {J : |J | = j and J ⊆ K for some K ∈ F (k)} .

We extend the notion of a (δ,d, r)-regular complex to (δ,≥d, r,F (k))-regular complex.

Definition 10 ((δ,≥d, r,F (k))-regular complex). Let δ = (δ2, . . . , δk) and d = (d2, . . . , dk) be vectors of
positive reals and let r be a positive integer. Let F (k) be a k-uniform hypergraph on ` vertices {1, . . . , `}.
We say an (n, `, k)-complex G = {G(j)}k

j=1 with G(1) = V1 ∪ · · · ∪ V` is
(

δ,≥d, r,F (k)
)

-regular if:

(a) for every Λ2 ∈ ∆2(F (k)), the (n, 2, 2)-cylinder G(2)[Λ2] is (δ2, d2, 1)-regular w.r.t. G(1)[Λ2] ,
(b) for every Λj ∈ ∆j(F (k)), the (n, j, j)-cylinder G(j)[Λj ] is (δj , dj , r)-regular w.r.t. G(j−1) for 3 ≤ j < k,

and
(c) for every Λk ∈ F (k), the (n, k, k)-cylinder G(k)[Λk] is (δk, dΛk

, r)-regular w.r.t. G(k−1) with dΛk
≥ dk.

The ‘≥’ in a (δ,≥d, r,F (k))-regular complex indicates that we only enforce a lower bound on the densities
in the k-th layer of G (cf. part (c) of the definition). This is the environment which usually appears in
applications. We also observe that the Definition 10 imposes only a regular structure on those (m, k, k)-
subcomplexes of G which naturally correspond to edges of F (k) (i.e., on a subcomplex induced on Vλ1

, . . . , Vλk
,

where {λ1, . . . , λk} forms an edge in F (k)). We need one more definition before we can state the corollary.

Definition 11 (partite isomorphic). Suppose F (k) is a k-uniform hypergraph with V (F (k)) = [`] and

G(k) is an (n, `, k)-cylinder with vertex partition V (G(k)) = V1 ∪ · · · ∪ V`. We say a copy F (k)
0 of F (k) in G(k)

is partite isomorphic to F (k) if there is a labeling of V (F (k)
0 ) = {v1, . . . , v`} such that

(i) vα ∈ Vα for every α ∈ [`], and

(ii) vα 7→ α is a hypergraph isomorphism (edge preserving bijection of the vertex sets) between F (k)
0 and

F (k).

Corollary 12. For all integers 2 ≤ k ≤ ` and ∀γ > 0 ∀dk > 0 ∃δk > 0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 >

0 ∃δ2 > 0 and there are integers r and n0 so that the following holds for d = (d2, . . . , dk), δ = (δ2, . . . , δk),
and n ≥ n0. If F (k) is a k-uniform hypergraph on `-vertices and G = {G(h)}k

h=1 is a
(

δ,≥d, r,F (k)
)

-regular

(n, `, k)-complex with G(1) = V1 ∪ · · · ∪ V`, then the number of partite isomorphic copies of F (k) in G(k) is at
least

(1− γ)
k−1
∏

h=2

d
|∆h(F(k))|
h ×

∏

Λk∈F(k)

dΛk
× n` ≥ (1− γ)

k
∏

h=2

d
|∆h(F(k))|
h × n` .

Corollary 12 can be easily derived from Theorem 9. Below we briefly outline that proof. The full proof
can be found in [42, Chapter 9].

The idea of the proof consists of two basic parts. For 2 ≤ j ≤ k, for each Λj = {λ1, . . . , λj} 6∈ ∆j(F (k)),

we replace the (n, j, j)-cylinder G(j)[Λj ] with the complete j-partite j-uniform system K
(j)
j (Vλ1

, . . . , Vλj
).

Doing so over all 2 ≤ j ≤ k and all Λj 6∈ ∆j(F (k)) clearly results in an “everywhere” regular complex, let us

call it H, whose cliques K
(k)
` correspond to copies of F (k) in G.

One now wishes to apply the Counting Lemma, Theorem 9, to the complex H to finish the job. The
only minor technicality in doing so is that, unlike the hypothesis of Theorem 9, the complex H potentially

has, for each 2 ≤ j ≤ k, (n, j, j)-cylinders H(j)[Λj ], Λj ∈
(

[`]
j

)

, of differing densities. This is handled,

however, by “randomly slicing” the (n, j, j)-cylinders H(j)[Λj ], Λj ∈
(

[`]
j

)

, into appropriately many pieces

of the same density as formally required in Theorem 9. Consequently, we create a series of pairwise K
(k)
` -

disjoint complexes H1,H2, . . . , each of which satisfies the hypothesis of the Counting Lemma. Theorem 9
applies to each of the newly created complexes Hi, i ≥ 1, and so we add the resulting number of cliques to
finish the proof of Corollary 12.

The second extension of the Counting Lemma allows us to estimate the number of “non-crossing” copies
of a fixed hypergraph F (k). For that we recall the notion of a homomorphic image of a hypergraph.
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Definition 13 (hypergraph homomorphism). Suppose F (k) and F̃ (k) are k-uniform hypergraphs. We

say F̃ (k) is an homomorphic image of F (k) if there exist a surjective map ϑ : V (F (k)) � V (F̃ (k)) such that

for every edge K ∈ E(F̃ (k)) we have ϑ(K) =
⋃

v∈K ϑ(v) ∈ E(F̃ (k)). We say ϑ is a homomorphism from F (k)

to F̃ (k).
In other words, ϑ is a homomorphism from F (k) to F̃ (k) if it is an edge-preserving map between the vertex

sets of F (k) and F̃ (k).

Definition 14 (ϑ-partite isomorphic). Suppose F (k) is a k-uniform hypergraph with V (F (k)) = [`], F̃ (k)

with V (F̃ (k)) = [˜̀] is a homomorphic image under ϑ : [`] � [˜̀] and G̃(k) is an (n, ˜̀, k)-cylinder with vertex

partition V (G̃(k)) = Ṽ1 ∪ · · · ∪ Ṽ˜̀. We say a copy F (k)
0 of F (k) in G̃(k) is ϑ-partite isomorphic to F (k) if there

is a labeling of V (F (k)
0 ) = {v1, . . . , v`} such that

(i) vα ∈ Ṽϑ(α) for every α ∈ [`], and

(ii) vα 7→ α is a hypergraph isomorphism between F (k)
0 and F (k).

We now state the second extension of Therorem 9 considered here.

Corollary 15. For all integers 2 ≤ k ≤ ` and ∀γ > 0 ∀dk > 0 ∃δk > 0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 >

0 ∃δ2 > 0 and there are integers r and n0 so that the following holds for d = (d2, . . . , dk) and δ =
(

δ2, . . . , δk

)

and n ≥ n0.
Suppose F (k) is a k-uniform `-vertex hypergraph and F̃ (k) is a homomorphic image with

∣

∣V
(

F̃ (k)
)∣

∣ = ˜̀

under the homomorphism ϑ. If G̃ = {G̃(h)}k
h=1 is a

(

δ,≥d, r, F̃ (k)
)

-regular (n, ˜̀, k)-complex with G̃(1) =

Ṽ1 ∪ · · · ∪ Ṽ˜̀, then the number of ϑ-partite isomorphic copies of F (k) in G̃(k) is at least

(1− γ)
∏

β∈[˜̀]

1

|ϑ−1(β)|! ×
k−1
∏

h=2

d
|∆h(F(k))|
h ×

∏

Λk∈F(k)

dΛk
×n` ≥ (1− γ)

∏

β∈[˜̀]

1

|ϑ−1(β)|! ×
k

∏

h=2

d
|∆h(F(k))|
h ×n` .

Corollary 15 easily follows from Corollary 12. However, the proof is somewhat technical and is given
in [42, Chapter 9].

3. Auxiliary results

In this section we review a few results that are essential for our proof of Theorem 9 in Section 4.

3.1. The Dense Counting Lemma. We recall that Theorem 9 is formulated under the involved quan-
tification ∀dk ∃δk ∀dk−1 ∃δk−1 . . .∀d2 ∃δ2 and that the Counting Lemma owes its difficulty in proof to the
sparseness arising from this quantification. If the quantification can be simplified so that

min
2≤j≤k

dj � max
2≤j≤k

δj (2)

is ensured, then the so-called Dense Counting Lemma (see Theorem 16 below) is known to be true. This was
proved by Kohayakawa, Rödl, and Skokan (see Theorem 6.5 in [23]). Observe that (2) represents the ‘dense
case’ in contrast to the ‘sparse case’ (1), since all densities are bigger then the measure of regularity max δj .

Theorem 16 (Dense Counting Lemma). For all integers 2 ≤ k ≤ ` and any positive constants d2, . . . , dk,
there exist ε > 0 and integer m0 so that, with d = (d2, . . . , dk) and ε = (ε, . . . , ε) ∈ R

k−1 and m ≥ m0,
whenever H = {H(j)}k

j=1 is a (ε,d, 1)-regular (m, `, k)-complex, then

∣

∣

∣
K(k)

`

(

H(k)
)

∣

∣

∣
= (1± gk,` (ε))

k
∏

h=2

d
(`

h)
h ×m`

where gk,` (ε) → 0 as ε → 0.

While the quantification of the main Theorem, Theorem 9, does not allow us to assume (2), Peng, Rödl,
and Skokan in [32] used Theorem 16 to prove Theorem 9 for k = 3 by reducing the harder ‘sparse case’ to
the easier ‘dense case’. This is also the idea of our current proof. The reduction scheme used here, which is
entirely different, is somewhat simpler and allows an extension for arbitrary k.
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3.2. The Regularity Lemma. One of the major tools we use in our proof of Theorem 9 is the recently
developed regularity lemma of Rödl and Skokan [40] for k-uniform hypergraphs. Our plan is to apply the
regularity lemma to the (n, `, k)-cylinder G(k) in the (n, `, k)-complex G = {G(j)}k

j=1 from the hypothesis

of Theorem 9. Since G(k) is `-partite with `-partition G(1) = V1 ∪ . . . ∪ V`, the regularity lemma below is
formulated for `-partite hypergraphs.

The regularity lemma of Rödl and Skokan provides well-structured partitions of all complete (n, `, j)-

cylinders K
(j)
` (V1, . . . , V`) for j ∈ [k − 1]. We later refer to the family of these partitions by R =

R (k − 1,a,ϕ) = {R(j)}k−1
j=1 where ϕ = (ϕ1, . . . , ϕk−1) is a family of functions which describes the par-

titions of R and a = (a1, . . . , ak−1) describes the image sets of ϕ. In what follows, we use the language
of [40] to give the precise definitions of these concepts.

3.2.1. Partitions. Let V1 ∪ · · · ∪ V` be a partition of V with |Vλ| = n for every λ ∈ [`]. Let k be an integer
and for every j ∈ [k − 1], let aj ∈ N and let ϕj be a function such that

ϕj : K
(j)
` (V1, . . . , V`) → [aj ] .

Note, for every λ ∈ [`], mapping ϕ1 defines a partition Vλ = Vλ,1 ∪ · · · ∪ Vλ,a1 , where Vλ,α = ϕ−1
1 (α)∩ Vλ for

all α ∈ [a1]. Here, we only consider functions ϕ1 such that
∣

∣|ϕ−1
1 (α) ∩ Vλ| − |ϕ−1

1 (α′) ∩ Vλ|
∣

∣ =
∣

∣|Vλ,α| − |Vλ,α′ |
∣

∣ ≤ 1 (3)

for every λ ∈ [`] and α, α′ ∈ [a1]. Consequently, we have bn/a1c ≤ |Vλ,α| ≤ dn/a1e.
Remark 17. For convenience, we delete all floors and ceilings and simply write |Vλ,α| = n/a1 for every
λ ∈ [`] and α ∈ [a1].

Let
(

[`]
j

)

<
= {(λ1, . . . , λj) ∈ [`]j : λ1 < · · · < λj} be the set of vectors that naturally correspond to the

totally ordered j-element subsets of [`]. More generally, for a totally ordered set Π of cardinality at least j,

let
(

Π
j

)

<
be the family of totally ordered j-element subsets of Π. For j ∈ [k − 1] we consider the projection

πj of K
(j)
` (V1, . . . , V`) onto [`];

πj : K
(j)
` (V1, . . . , V`) →

(

[`]

j

)

<

,

mapping J ∈ K(j)
` (V1, . . . , V`) to the totally ordered set πj(J) = (λ1, . . . , λj) ∈

(

[`]
j

)

<
satisfying |J ∩Vλh

| = 1

for every h ∈ [j]. Moreover, for every h ∈ [|J |], let Φh(J) = (xπh(H) = ϕh(H))H∈(J

h)
. In other words, Φh(J)

is a vector of length
(

|J|
h

)

and its entries are indexed by elements from
(

πj(J)
h

)

<
. For our purposes it will be

convenient to assume that the entries of Φh(J) are ordered lexicographically w.r.t. their indices. Observe
that for h > 0

Φh(J) ∈ [ah]× · · · × [ah] = [ah](
j

h) .

We define
Φ(j)(J) = (πj(J),Φ1(J), . . . ,Φj(J)).

Note that Φ(j)(J) is a vector with j + 2j − 1 entries. Observe that if we set a = (a1, a2, . . . , ak−1) and

A(j,a) =

(

[`]

j

)

<

×
j

∏

h=1

[ah](
j

h),

then Φ(j)(J) ∈ A(j,a) for every set J ∈ K(j)
` (V1, . . . , V`). In other words, to each edge J of cardinality j we

assign πj(J) and a vector (xπh(H))H⊂J with each entry xπh(H) corresponding to a non-empty subset H of J
such that xπh(H) = ϕh(H), where h = |H|.

For two edges J1, J2 ∈ K
(j)
` (V1, . . . , V`), the equality Φ(j)(J1) = Φ(j)(J2) defines an equivalence relation

on K
(j)
` (V1, . . . , V`) into at most

|A(j,a)| ≤
(

`

j

)

×
j

∏

h=1

a
(j

h)
h

parts. Now we describe these parts explicitly using (j + 2j − 1)-dimensional vectors from A(j,a).
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For each j < k we define a partition R(j) of K
(j)
` (V1, . . . , V`) with partition classes corresponding to the

equivalence relation defined above. This way each partition class in R(j) has a unique address x(j) ∈ A(j,a).
While x(j) is a (j + 2j − 1)-dimensional vector, we will frequently view it as a j + 1-dimensional vector

(x0,x1, . . . ,xj), where x0 = (x1, . . . , xj) ∈
(

[`]
j

)

<
is a totally ordered set and xh = (xΞ)Ξ∈(x0

h )
<

∈ [ah](
j

h) for

1 ≤ h ≤ j. For each address x(j) ∈ A(j,a) we denote its corresponding partition class from R(j) by

R(j)(x(j)) =
{

R ∈ K(j)
` (V1, . . . , V`) : Φ(j)(R) = x(j)

}

.

This way we will ensure some structure between the classes from R(j) and R(j−1). More formally, for each

partition class R(j)(x(j)) ∈ R(j) there exist j partition classes R(j−1)
1 , . . . ,R(j−1)

j ∈ R(j−1) such that for

R(j−1)(x(j)) =
⋃

h∈[j]R
(j−1)
h we have R(j)(x(j)) ⊆ K(j−1)

j

(

R(j−1)(x(j))
)

. In other words R(j−1)(x(j)) forms

an underlying (j − 1)-uniform j-partite hypergraph of R(j)(x(j)) consisting of
(

j
j−1

)

classes from R(j−1).

Given x(j) ∈ A(j,a) (and the corresponding R(j)(x(j)) ∈ R(j)) we give a formal definition of R(j−1)(x(j))
below. In fact, for h < j we introduce a notation for the h-uniform j-partite hypergraph R(h)(x(j)) which

consists of
(

j
h

)

partition classes of R(h) and satisfies R(j)(x(j)) ⊆ K(h)
j

(

R(h)(x(j))
)

.

To that end, we need the following notation. Let x(j) = (x0, . . . ,xj) ∈ A(j,a) with xu = (xΥ)Υ∈(x0
u )

<

∈

[au](
j

u) for 1 ≤ u ≤ j. Given an ordered subset Ξ ⊆ x0 (recall x0 ∈
(

[`]
j

)

<
) where |Ξ| = h ≤ j. For

1 ≤ u ≤ h = |Ξ| ≤ j let

xΞ
u = (xΥ)Υ∈(Ξ

u)<

.

be the
(

h
u

)

-dimensional vector consisting of those entries of xu which are labeled with the ordered u-element

subsets of Ξ. For each x(j) = (x0,x1, . . . ,xj) ∈ A(j,a) and for each h ∈ [j], we then set

R(h)(x(j)) =
⋃

Ξ∈(x0
h )

<

{

R ∈ K(h)
` (V1, . . . , V`) : Φ(h)(R) = (Ξ,xΞ

1 , . . . ,x
Ξ
h)

}

. (4)

Using the language above, the following claim holds.

Claim 18. For every j ∈ [k − 1] and every x(j) = (x0,x1, . . . ,xj) ∈ A(j,a), the following is true.

(a) For all h ∈ [j], R(h)(x(j)) is an (n/a1, j, h)-cylinder;

(b) R(x(j)) =
{

R(h)(x(j))
}j

h=1
is an (n/a1, j, j)-complex.

To give a precise description of the family of partitions of K
(j)
` (V1, . . . , V`), we summarize the notation

above in the following Setup in which we work.

Setup 19. Let k ≤ ` and n be fixed positive integers, let G(1) = V1 ∪ · · · ∪ V` be a (n, `, 1)-cylinder, and
a = aR = (a1, a2, . . . , ak−1) be a vector of positive integers. Let

A(j,a) =

(

[`]

j

)

<

×
j

∏

h=1

[ah](
j

h) ,

and for every j ∈ [k−1] let ϕj : K
(j)
` (V1, . . . , V`) → [aj ] be a mapping . Moreover, suppose that ϕ1 satisfies (3)

for every λ ∈ [`] and α, α′ ∈ [a1]. Set ϕ = {ϕj : j ∈ [k − 1]}.

We now define the family of partitions of K
(j)
` (V1, . . . , V`).

Definition 20 (Partition). Given Setup 19, for every j ∈ [k−1], define apartition R(j) of K
(j)
` (V1, . . . , V`)

by

R
(j) =

{

R(j)(x(j)) : x(j) ∈ A(j,a)
}

.

We also define the family of partitions R = R(k − 1,a,ϕ) = {R(j)}k−1
j=1 and the rank of R by

rankR = |A(k − 1,a)| .
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3.2.2. Polyads. The ε-regular pair played a central rôle in the definition of a regular partition for graphs
(cf. Szemerédi’s regularity lemma, Theorem 1). In order to define a regular partition R for a k-uniform
hypergraph, this concept was extended in [40] by introducing polyads. Given Setup 19, let R(k − 1,a,ϕ)
be the family of partitions as defined in Definition 20. Polyads are (n/a1, j, j − 1)-cylinders consisting of
selected j members of R(j) for j = 2, . . . , k. The precise definition of a polyad (which we give below) requires
some notation.

Recall that for each edge J ∈ K
(j)
` (V1, . . . , V`) and h ∈ [j − 1], we defined Φh(J) as the

(

j
h

)

-dimensional

vector Φh(J) = (ϕh(H))H∈(J

h)
. We also defined πj(J) to be the totally ordered set (λ1, . . . , λj) ∈

(

[`]
j

)

<
such

that |J ∩ Vλh
| = 1 for every h ∈ [j]. We set

Φ̂
(j−1)

(J) = (πj(J),Φ1(J), . . . ,Φj−1(J)) .

Note that Φ̂
(j−1)

(J) is just the projection of Φ(j)(J) onto its first j vector coordinates. As such, Φ̂
(j−1)

(J)

is a vector having j +
∑j−1

h=1

(

j
h

)

= j + 2j − 2 entries.

We define the set Â(j − 1,a) of (j + 2j − 2)-dimensional vectors for j ∈ [k − 1] by

Â(j − 1,a) =

(

[`]

j

)

<

×
j−1
∏

h=1

[ah](
j

h) .

Observe that then Φ̂
(j−1)

(J) ∈ Â(j − 1,a) for every edge J ∈ K(j)
` (V1, . . . , V`).

Let x̂(j−1) ∈ Â(j−1,a). We write the vector x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1), where x̂0 ∈
(

[`]
j

)

<
is an ordered

set and x̂u = (x̂Υ)Υ∈(x̂0
u )

<

∈ [au](
j

u) for 1 ≤ u ≤ j − 1. Given an ordered set Ξ ⊆ x̂0 with 1 ≤ h = |Ξ| < j,

we set for 1 ≤ u ≤ h

x̂Ξ
u = (x̂Υ)Υ∈(Ξ

u)<

. (5)

For each j ∈ [k], x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) ∈ Â(j − 1,a), and h ∈ [j − 1] we define R̂(h)(x̂(j−1)) by

R̂(h)(x̂(j−1)) =
⋃

Ξ∈(x̂0
h )

<

{

R ∈ K(h)
` (V1, . . . , V`) : Φ(h)(R) = (Ξ, x̂Ξ

1 , . . . , x̂
Ξ
h)

}

. (6)

Note that if x(j) =
(

(x̂(j−1), α)
)

for some α ∈ [aj ] and 1 ≤ h < j, then R(h)(x(j)) defined in (4) and

R̂(h)(x̂(j−1)) defined in (6) are identical.

We also set R̂(x̂(j−1)) =
{

R̂(h)(x̂(j−1))
}j−1

h=1
. Similarly to Claim 18, we can prove the following.

Claim 21. For every vector x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) ∈ Â(j − 1,a), the following statements are true.

(a) For all h ∈ [j − 1], R̂(h)(x̂(j−1)) is an (n/a1, j, h)-cylinder;

(b) R̂(x̂(j−1)) =
{

R̂(h)(x̂(j−1))
}j−1

h=1
is an (n/a1, j, j − 1)-complex.

In this paper, (n/a1, j, j − 1)-cylinders R̂(j−1)(x̂(j−1)) will play a special rôle for 1 < j ≤ k and we will
call them polyads.

Definition 22 (Polyad). Given the Setup 19, let R(k − 1,a,ϕ) be a family of partitions as defined in

Definition 20. Then, for each 1 < j ≤ k and each vector x̂(j−1) ∈ Â(j− 1,a), we refer to the (n/a1, j, j− 1)-

cylinder R̂(j−1)(x̂(j−1)) as polyad.

For every polyad R̂(j−1) there exists a unique vector x̂(j−1) ∈ Â(j−1,a) so that R̂(j−1) = R̂(j−1)(x̂(j−1)).

Hence, each polyad R̂(j−1) uniquely defines an (n/a1, j, j−1)-complex R̂(x̂(j−1)) =
{

R̂(h)(x̂(j−1))
}j−1

h=1
such

that R̂(j−1) = R̂(j−1)(x̂(j−1)).

Remark 23. For j = 2 the set Â(1,a) consists of 2-dimensional vectors x̂(1) = (x̂0, x̂1), where x̂0 =

(λ1, λ2) ∈
(

[`]
2

)

<
and x̂1 = (α1, α2) ∈ [a1]

2. Consequently, a polyad R̂(1)(x̂(1)) is the bipartition Vλ1,α1
∪Vλ2,α2

Every polyad R̂(j−1)(x̂(j−1)) is an (n/a1, j, j − 1)-cylinder that is the union of j appropriately chosen

partition classes of R(j−1). We describe these elements using the vectors x̂(j−1) ∈ Â(j − 1,a).
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Let x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) ∈ Â(j − 1,a) be given. Then, for every u ∈ [j − 1], vector x̂u can be

written as x̂u = (xΥ : Υ ∈
(

x̂0

u

)

<
), i.e. its entries are labeled by the ordered u-element subsets of the ordered

set x̂0 ∈
(

[`]
j

)

<
in lexicographic order w.r.t. the indices. For every ι ∈ [j], we set

∂ιx̂u =

(

xΥ : Υ ∈
(

x̂0 \ ι
u

)

<

)

. (7)

In other words, vector ∂ιx̂u contains precisely those entries of x̂u which are labeled by the u-element subsets
of x̂0 not containing ι. Note that, in view of (5), ∂ιx̂u = x̂Ξ

u with Ξ = x̂0 \ ι. Clearly, ∂ιx̂u has
(

j−1
u

)

entries
from [au]. Furthermore, we set

∂ιx̂
(j−1) = (∂ιx̂1, ∂ιx̂2, . . . , ∂ιx̂j−1)

and observe that ∂ιx̂
(j−1) is a (j − 1 + 2j−1 − 1)-dimensional vector belonging to A(j − 1,a).

3.2.3. Regular Partitions and the Regularity Lemma. The regularity lemma of Rödl and Skokan provides a

family of partitions R with nice certain properties. Loosely speaking, for “most” x̂(k−1) ∈ Â(k − 1,a) the

(n/a1, k, k − 1)-complex R̂(x̂(k−1)) is regular (cf. Definition 8).
In the two definitions, below we introduce two concepts central to regularity. We use the notation δ′, d′

and r′ to be consistent with the context in which we apply the Regularity Lemma (Theorem 26 below).

Definition 24 ((µ, δ′,d′, r′)-equitable). Let µ be a number in the interval (0, 1], let δ′ = (δ′2, . . . , δ
′
k)

and d′ = (d′2, . . . , d
′
k) be two arbitrary but fixed vectors of real numbers between 0 and 1 and let r′ be

a positive integer. We say that a family of partitions R = R(k − 1,a,ϕ) (as defined in Definition 20)

is (µ, δ′,d′, r′)-equitable if all but µnk edges of K
(k)
` (V1, . . . , V`) belong to (δ′,d′, r′)-regular complexes

R̂(x̂(k−1)) =
{

R̂(j)(x̂(k−1))
}k−1

j=1
where x̂(k−1) ∈ Â(k − 1,a).

Before finally stating the regularity lemma, we define regular partitions.

Definition 25 (regular partition). Let G(k) be a (n, `, k)-cylinder and let R = R(k − 1,a,ϕ) be a
(µ, δ′,d′, r′)-equitable family of partitions.

We say R is a (δ′k, r
′)-regular w.r.t. G(k) if all but at most δ′kn

k edges of K
(k)
` (V1, . . . , V`) belong to polyads

R̂(k−1)(x̂(k−1)) such that G(k) is (δ′k, r
′)-regular with respect to R̂(k−1)(x̂(k−1)).

We now state the Regularity Lemma of Rödl and Skokan. In what follows, D = (D2, . . . , Dk−1) is a
vector of positive real variables.

Theorem 26 (Regularity Lemma (`-partite version)). For all integers ` ≥ k ≥ 2 and all positive reals δ′k
and µ and any positive functions

δ′ (D) =
(

δ′k−1 (Dk−1) , . . . , δ
′
2 (D2, . . . , Dk−1)

)

, r′ (A1,D) = r′ (A1, D2, . . . , Dk−1) ,

there exist integers nk and Lk such that the following holds.
For any (n, `, k)-cylinder G(k) with n ≥ nk there exists a

(

µ, δ′(d′),d′, r′(a1,d
′)

)

-equitable
(

δ′k, r
′(a1,d

′)
)

-

regular family of partitions R = R (k − 1,a,ϕ) of density d′ =
(

d′2, . . . , d
′
k−1

)

with rankR = |A (k − 1,a)| ≤
Lk.

In the upcoming Corollary 28, we state an easy modification of Theorem 26 whose formulation is convenient
for us in our proof of Theorem 9. Before stating Corollary 28, we outline the main differences between
Theorem 26 and its corollary below. For that we need the following definition.

Definition 27 (refinement). Let {G(h)}j
h=1 be an (n, `, j)-complex and let R = R(j,a,ϕ) = {R(h)}j

h=1

be a family of partitions of K
(h)
` (V1, . . . , V`) for h ∈ [j]. We say R refines {G(h)}j

h=1 if for every h ∈ [j] and

every x(h) ∈ A(h,a) either R(h)(x(h)) ⊆ G(h) or R(h)(x(h)) ∩ G(h) = ∅.

Moreover, adding an additional layer G(j+1) ⊆ K(j)
j+1(G(j)) to {G(h)}j

h=1, we will also say that R =

{R(h)}j
h=1 refines the (n, `, j + 1)-complex {G(h)}j

h=1 ∪ G(j+1) if R refines {G(h)}j
h=1.

It is a well known fact that the proof of Szemerédi’s regularity lemma not only yields the existence of a
regular partition for any graph G = G(2), but also shows that any given intitial partition G(1) = V1 ∪ · · · ∪V`

of the vertex set V = V
(

G(2)
)

has a regular refinement. Similarily, the proof of Theorem 26 (which is proved
11



by induction on k) yields immediately the existence of a regular and equitable partition R which refines a
given partition of the underlying structure. In particular, regularizing the k-th layer G(k) of a given (n, `, k)-
complex G = {G(j)}k

j=1, one can obtain a partition R = R (k − 1,a,ϕ) satisfying the following property:

for any 1 ≤ j ≤ k− 1 and every x(j) ∈ A (j,a), either R(j)
(

x(j)
)

⊆ G(j) or R(j)
(

x(j)
)

∩ G(j) = ∅. In other

words, R refines the partitions given by G(j) ∪ G(j) = K(j) (V1, . . . , V`) for every j ∈ [k − 1].
One can maintain yet another property of the (µ, δ′ (d′) ,d′, r′)-equitable family of partitions R with

density vector d′. In the proof of Theorem 26 (cf. [40]), the d′ are chosen explicitly and there is a large
freedom to choose them (more precisely there is no necessary lower bound on each d′j , 2 ≤ j ≤ k − 1).
Hence, we shall assume, without loss of generality, that for any given fixed σ2, . . . , σk−1, we may arrange the
constants d′j , 2 ≤ j ≤ k − 1, so that the quotients σj/d

′

j , 2 ≤ j ≤ k − 1, are integers.
Summarizing the discussion above we arrive at the following Corollary 28 (stated below) of Theorem 26.

The full proof of Corollary 28 is identical to the proof of Theorem 26 with the two minor adjustments
indicated above (see [40, Corollary 13.1]).

Corollary 28. For all integers ` ≥ k ≥ 2 and all positive reals σ2, . . . , σk−1, δ
′

k, and µ and all positive
functions

δ′ (D) =
(

δ′k−1 (Dk−1) , . . . , δ
′

2 (D2, . . . , Dk−1)
)

, r′ (A1,D) = r′ (A1, D2, . . . , Dk−1) ,

there exist integers nk and Lk such that the following holds.
For every (n, `, k)-complex G = {G(j)}k

j=1 satisfying n ≥ nk there exists a
(

µ, δ′(d′),d′, r′(a1,d
′)

)

-

equitable
(

δ′k, r
′(a1,d

′)
)

-regular (w.r.t. G(k)) family of partitions R = R (k − 1,a,ϕ), d′ = (d′2, . . . , d
′

k−1),
such that

(i) R refines G,
(ii) σj/d

′

j is an integer for j = 2, . . . , k − 1, and
(iii) rankR = |A (k − 1,a)| ≤ Lk.

3.2.4. Statement of Cleaning Phase I. The proof of the main theorem, Theorem 9, presented in Section 4
uses the following lemma, Lemma 30, which follows from Corollary 28 and the induction assumption on
Theorem 9.

We use Lemma 30 in the proof of Theorem 9 instead of Corollary 28 since it allows a simpler presentation
of the later arguments. For k = 2, Lemma 30 is a straightforward reformulation of Szemerédi’s theorem and
reduces to the statement that for any graph G(2) = (V,E), there is a graph G̃(2) for which

∣

∣G(2)4G̃(2)
∣

∣ is small

and where G̃(2) = (V, Ẽ) admits a “perfectly equitable” partition, i.e., V = V1∪· · ·∪Vt with |V1| = · · · = |Vt|
and all pairs (Vi, Vj) are ε-regular for 1 ≤ i < j ≤ t. Lemma 30 will generalize this concept for G(k) with
k > 2.

The following definition reflects the “almost” ideal situation when, for each 2 ≤ j < k, there is just one
uncontrolable (but very small) “garbage partition class”. Similarly to Definition 24 and Definition 25, we
use tilde-notation in the next definition to be consistent with the context in which it is used.

Definition 29 (almost perfect (δ̃, d̃, r̃, b)-family). Let δ̃ =
(

δ̃2, . . . , δ̃k−1

)

and d̃ =
(

d̃2, . . . , d̃k−1

)

be
vectors of reals, r̃ > 0 be an integer and b = (b1, . . . , bk−1) be a vector of positive integers. Set

b̄ = (b1, b2 + 1, b3, . . . , bk−1) .

We say that a family of partitions P = P(k − 1, b̄,ψ) (as defined in Definition 20) is an almost perfect
(

δ̃, d̃, r̃, b
)

-family of partitions if the following holds:

(i) d̃jbj = 1± δ̃j/d̃j for every 2 ≤ j ≤ k − 1, and

(ii) for every 2 ≤ j ≤ k−1, for every x̂(j−1) ∈ Â (j − 1, b) and for every β ∈ [bj ], the (n/b1, j, j)-cylinder

P(j)
(

(x̂(j−1), β)
)

is
(

δ̃j , d̃j , r̃
)

-regular w.r.t. P̂(j−1)
(

x̂(j−1)
)

.

An almost perfect family of partitions P has the property that for every x(k−1) ∈ A(k − 1, b) the

(n/b1, k − 1, k − 1)-complex P
(k−1)(x(k−1)) = {P(j)(x(k−1))}k−1

j=1 (cf. Claim 18) is ’garbage free’, i.e.,
(

(δ̃2, . . . , δ̃k−1), (d̃2, . . . , d̃k−1), r̃
)

-regular. In other words, all addresses x(k−1) which give rise to irregular

parts of the partition P are in A(k − 1, b̄) \A(k − 1, b).
12



The statement of the next lemma is very much tailored for its application in Section 4.4. While the
constants δ3, . . . , δk are inessential for the proof of the following lemma, they allow a more convenient
notation.

Lemma 30 (Cleaning Phase I). For every vector d = (d2, . . . , dk) of positive reals, for every choice of

δ3, . . . , δk, for any positive real δ̃k and all positive functions

δ̃
(

D
)

=
(

δ̃k−1

(

Dk−1

)

, . . . , δ̃2
(

D2, . . . , Dk−1

)

)

, r̃
(

B1,D
)

= r̃
(

B1, D2, . . . , Dk−1

)

,

there exist integers ñk, L̃k, a vector of positive reals c̃ = (c̃2, . . . , c̃k−1) and a positive constant δ2 so that the
following holds:

For every (δ = (δ2, . . . , δk),d, 1)-regular (n, `, k)-complex G = {G(j)}k
j=1 with n ≥ ñk there exist an

(n, `, k)-complex G̃ = {G̃(j)}k
j=1, a vector d̃ =

(

d̃2, . . . , d̃k−1

)

componentwise bigger than c̃, and an almost

perfect
(

δ̃(d̃), d̃, r̃(b1, d̃), b
)

-family of partitions P = P
(

k − 1, b̄,ψ
)

= {P(j)}k−1
j=1 refining G̃ so that:

(i) G̃(k) is
(

δ̃k, r̃(b1, d̃)
)

-regular with respect to P̂(k−1)(x̂(k−1)) for every x̂(k−1) ∈ Â (k − 1, b),

(ii) G̃(1) = G(1), G̃(2) = G(2), and G̃(j) ⊆ G(j) for every 3 ≤ j ≤ k,
(iii) for every 3 ≤ j ≤ k and every j ≤ i ≤ `, the following holds:

∣

∣K(j)
i (G(j))4K(j)

i (G̃(j))
∣

∣ =
∣

∣K(j)
i (G(j)) \ K(j)

i (G̃(j))
∣

∣ ≤ δ̃k

j
∏

h=2

d
(i

h)
h × ni ,

(iv) for every x̂(1) = ((λ1, λ2), (β1, β2)) ∈ Â(1, b), the graph G̃(2)[Vλ1,β1
, Vλ2,β2

] is (L̃2
kδ2, d2, 1)-regular

w.r.t. P̂(1)(x̂(1)) = Vλ1,β1
∪ Vλ2,β2

, and

(v) rankP ≤ L̃k and consequently |Â(k − 1, b)| ≤ (L̃k)k.

In the proof of Lemma 30 (see Section 5) we construct an (n, `, k)-complex G̃ admitting an almost perfect

family of partitions P. Moreover, G̃ is almost identical to a given (n, `, k)-complex G (see (ii) and (iii) of

Lemma 30). In particular, G̃(2) = G(2), while we allow a small difference between G̃(j) and G(j) for j ≥ 3. For

the special rôle of G̃(2) we have to allow “garbage classes” in P(2). These “garbage classes” are contained
in ψ−1

2 (b2 + 1). Note that the integer vector b̄ differs from b only in the second coordinate.
On the other hand, note that the partition P given by Lemma 30 is perfect in the sense that for 2 ≤ j ≤ k

every j-tuple of G̃(j) belongs to a regular polyad of P. This feature will later give us a significant notational
advantage. On the other hand, Lemma 30 (iii) ensures that the two complexes G and G̃ differ by few cliques
only.

3.2.5. The Slicing Lemma. The following lemma whose proof is based on the fact that randomly chosen
subcylinders of a regular cylinder are regular was proved in [40]. We will find it useful in this paper as well.

Lemma 31 (Slicing Lemma). Suppose %, δ are two real numbers such that 0 < δ/2 < % ≤ 1. There is an

m0 = m0 (%, δ) such that the following holds. If P̂(j−1) is an (m, j, j−1)-cylinder so that
∣

∣K(j−1)
j

(

P̂(j−1)
)∣

∣ ≥
mj/ lnm and if F (j) ⊆ K(j−1)

j

(

P̂(j−1)
)

is an (m, j, j)-cylinder which is (δ, %, rSL)-regular w.r.t. P̂(j−1), then

for every 0 < p < 1, where 3δ < p% and u = b1/pc, there exists a decomposition of F (j) = F (j)
0 ∪F (j)

1 ∪· · ·∪F (j)
u

such that F (j)
i is (3δ, p%, rSL)-regular w.r.t. P̂(j−1) for 1 ≤ i ≤ u.

Moreover if 1/p is an integer then F (j)
0 = ∅.

4. Proof of the Counting Lemma

The proof of the Counting Lemma, Theorem 9, is based on upcoming Theorem 34 stated in the Section 4.2.
In Section 4.2, we prove Theorem 9 follows from Theorem 34. The remainder of the paper is devoted to the
proof of Theorem 34, an outline of which is given in Section 4.3.

The proof of Theorem 34 splits into four lemmas, Lemmas 30, 37, 38 and 40. In Section 4.4, we show how
Theorem 34 follows from these four lemmas. We defer the proofs of these lemmas to Sections 5–7.

The structure of the proof of the Counting Lemma outlined here will be summarized in Figure 1. Some
further consequences of Theorem 34 are discussed in Section 8.
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4.1. Induction assumption on the Counting Lemma. We prove the Counting Lemma, Theorem 9, by
induction on k. For k = 2, the Counting Lemma, i.e, Fact 2, is a well known fact (see, e.g., [24, 25]) and
for k = 3 it was proved by Nagle and Rödl in [28]. Therefore, from now on let k ≥ 4 be a fixed integer. (For
the inductive proof presented here it suffices to assume Fact 2 as the base case.)

Induction Hypothesis. We assume that

CLj,i holds for 2 ≤ j ≤ k − 1 and i ≥ j . (8)

We prove CLk,` holds for all integers ` ≥ k. For that, throughout the proof, let ` ≥ k be fixed.
Rather than quoting various forms of our induction hypothesis CLj,i (for varying 2 ≤ j ≤ k − 1 and

j ≤ i ≤ `) involving different δ’s and γ’s, we summarize all such statements in one. The following statement,
which we denote by IHCk−1,`, is a reformulation of our Induction Hypothesis.

Statement 32 (Induction Hypothesis on Counting). The following is true: ∀η > 0 ∀dk−1 > 0 ∃δk−1 >
0 ∀dk−2 > 0 ∃δk−2 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and there exist integers r and mk−1,` so that for all integers j
and i with 2 ≤ j ≤ k − 1 and j ≤ i ≤ ` the following holds.

If G = {G(h)}j
h=1 is a

(

(δ2, . . . , δj), (d2, . . . , dj), r
)

-regular (m, i, j)-complex with m ≥ mk−1,`, then

∣

∣

∣
K(j)

i

(

G(j)
)

∣

∣

∣
= (1± η)

j
∏

h=2

d
(i

h)
h ×mi .

The following fact confirms that Statement 32 is an easy consequence of our Induction Hypothesis in (8).

Fact 33. If CLj,i holds for all integers 2 ≤ j ≤ k − 1 and j ≤ i ≤ `, then IHCk−1,` holds.

Note that Fact 33 is trivial to prove and only requires confirming the constants may be chosen appropriately;
when given η, dk−1, δk−1, . . . , δj+1 and dj , choose δj to be the minimum of all δj ’s from the statements CLh,i

with j ≤ h ≤ k − 1 and h ≤ i ≤ `, where δj appears. Similarly, we set r and mk−1,` to the maximum of the
corresponding constants in CLh,i.

As a consequence of the induction assumption stated in (8) and Fact 33, we may assume for the remainder
of this paper that

IHCk−1,` holds . (9)

4.2. Proof of Theorem 9. The proof of the Counting Lemma, Theorem 9, consists of two main parts. The
first part is Theorem 34, stated below, which receives input an (n, `, k)-complex G = {G(h)}k

h=1 from the
hypothesis of the Counting Lemma, Theorem 9. Theorem 34 then guarantees the existence of an (n, `, k)-
complex F = {F (h)}k

h=1 having the following properties.

(a) The complex F differs only slightly from G. In particular, the number of `-cliques in G(k) and F (k)

are essentially the same (see property (iii) of Theorem 34).
(b) The complex F is “ready” for an application of the Dense Counting Lemma, Theorem 16.

The proof of the following Theorem 34 is based on the induction hypothesis, IHCk−1,` (cf. Statement 32).
In the formulation below, the integer k is already fixed (cf. Section 4.1) according to our induction hypothesis.

Theorem 34. Let ` ≥ k be a fixed integer. The following is true: ∀γ > 0 ∀dk > 0 ∃δk > 0 ∀dk−1 >
0 ∃δk−1 > 0 . . . ∀d2 > 0, ε > 0 ∃δ2 > 0 and there exist integers r and n0 so that, with d = (d2, . . . , dk)
and δ = (δ2, . . . , δk) and n ≥ n0, whenever G = {G(h)}k

h=1 is a (δ,d, r)-regular (n, `, k)-complex, then there

exists an (n, `, k)-complex F = {F (h)}k
h=1 such that

(i) F is (ε,d, 1)-regular, with ε = (ε, . . . , ε) ∈ R
(k−1),

(ii) F (1) = G(1) and F (2) = G(2), and

(iii)
∣

∣K(k)
`

(

G(k)
)

4K(k)
`

(

F (k)
)∣

∣ ≤ (γ/2)
∏k

h=2 d
(`

h)
h × n`.

We mention that Theorem 34 has some interesting implications of its own which we discuss in Section 8.
We present a proof of Theorem 34 in Section 4.4. In the immediate sequel, we give the proof of the

Inductive Step for the Counting Lemma based on Theorem 34 and Theorem 16. We note that this proof of
CLk,` does not directly use the induction hypothesis IHCk−1,`, but we will use IHCk−1,` in the proof of
Theorem 34 (see Figure 1).

14



Proof of the Induction Step. We begin by describing the constants involved. With the exception of ε, The-
orem 9 and Theorem 34 involve the same constants under the same quantification. Hence, given γ and dk

from Theorem 9, we let δk be the δk
(

Thm.34(γ, dk)
)

from Theorem 34. In general, given dj , j = k, . . . , 3,
we set

δj = δj
(

Thm.34(γ, dk, δk, dk−1, . . . , δj+1, dj)
)

.

Having fixed γ, dk, δk, dk−1, . . . , δ4, d3, δ3, now let d2 be given by Theorem 9. Next, we fix ε for Theorem 34
so that

ε ≤ ε
(

Thm.16(d2, . . . , dk)
)

and gk,`(ε) ≤
γ

2
, (10)

where gk,` is given by the Dense Counting Lemma, Theorem 16. Moreover, let m0

(

Thm.16(d2, . . . , dk)
)

be
the lower bound on the number of vertices given by Theorem 16 applied to d2, . . . , dk.

Then, Theorem 34 yields

δ2
(

Thm.34(γ, dk, δk, . . . , δ3, d2, ε)
)

, r
(

Thm.34(γ, dk, δk, . . . , δ3, d2, ε)
)

,

and n0

(

Thm.34(γ, dk, δk, . . . , δ3, d2, ε)
)

.
(11)

Finally, we set δ2 and r for Theorem 9 to its corresponding constants given in (11). Also, we set n0 for
Theorem 9 to

n0 = max
{

n0

(

Thm.34(γ, dk, δk, . . . , δ3, d2, ε)
)

,m0

(

Thm.16(d2, . . . , dk)
)}

.

Now, let G be a (δ,d, r)-regular (n, `, k)-complex satisfying n ≥ n0. Then, Theorem 34 yields an (ε,d, 1)-
regular (n, `, k)-complex F satisfying (i)–(iii) of Theorem 34. Consequently, by (10) and (i), we may apply
the Dense Counting Lemma to F . Therefore,

∣

∣

∣
K(k)

`

(

F (k)
)

∣

∣

∣
=

(

1± γ

2

)

k
∏

h=2

d
(`

h)
h × n`

and Theorem 9 follows from (iii) of Theorem 34. �

We note that the proof of Theorem 9 did not use the full strength of Theorem 34. In particular, we made
no use of (ii) here. However, (ii) is important with respect to further consequences of Theorem 34 discussed
in Section 8.

4.3. Outline of the proof of Theorem 34. Given an (n, `, k)-complex G = {G(j)}k
j=1, Theorem 34 ensures

the existence of an appropriate (n, `, k)-complex F = {F (j)}k
j=1. This complex is constructed successively

in three phases outlined below.
The first phase we call Cleaning Phase I and is a variant of the RS-Lemma (see Theorem 26). The lemma

corresponding to Cleaning Phase I, Lemma 30, was already stated in Section 3.2.4. Given a (δ,d, r)-regular
input complex G with δ = (δ2, . . . , δk) and d = (d2, . . . , dk), we fix

δ̃k � ε′ � min{ε, d2, . . . , dk}. (12)

Lemma 30 alters G slightly (this is measured by δ̃k) to obtain an (n, `, k)-complex G̃ = {G̃(j)}k
j=1 together with

an almost perfect (δ̃(d̃), d̃, r̃(d̃), b)-family of partitions which is (δ̃k, r̃(d̃))-regular w.r.t. G̃(k) (cf. Lemma 30
and Figure 2 in Section 4.4.2). Importantly, Lemma 30 (iii) will ensure that

∣

∣

∣
K(k)

`

(

G(k)
)

4K(k)
`

(

G̃(k)
)

∣

∣

∣
is “small”. (13)

Cleaning Phase I enables us to work with a complex G̃ admiting a partition with almost no irregular
polyads. These details are done largely for convenience to help ease subsequent parts of the proof.

We next proceed to Cleaning Phase II with the complex G̃ and an almost perfect (δ̃(d̃), d̃, r̃(d̃), b)-family

of partitions P = P(k − 1, b̄,ψ), rankP ≤ L̃k (cf. Lemma 30). Since G̃ differs from G only slightly (this

is measured by δ̃k), it follows from the choice of constants (argued in Fact 44) that G̃ inherits (2δ,d, r)-

regularity from G. Moreover, the choice of r ensuring r ≥ L̃k (cf. (29)) implies that the density d
(

G̃(j)|P̂(j−1)
)

is close to what it “should be”, namely, dj , for “most” polyads P̂(j−1) from P with P̂(j−1) ⊆ G̃(j−1).
The goal in Cleaning Phase II is to perfect the small number of polyads having aberrant density. More

specifically, Cleaning Phase II constructs “unidense” (n, `, k)-complex F = {F (j)}k
j=1 where d

(

F (j)|P̂(j−1)
)
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is the same and equal to dj for every polyad P̂(j−1) from P with P̂(j−1) ⊆ F (j−1). The importance of
“unidensity” is that it allows us to apply the Union Lemma, Lemma 40. Then the “final product” of the
Union Lemma, the (n, `, k)-complex F , will satisfy (i) of Theorem 34. We now further examine the details
of Cleaning Phase II.

Cleaning Phase II splits into two parts. In Part 1 of Cleaning Phase II (cf. Lemma 37), we correct

the first k − 1 layers of possible imperfections of G̃ = {G̃(j)}k
j=1, j < k, by constructing a “unidense”

(n, `, k−1)-complex H
(k−1) = {H(j)}k−1

j=1 . For the construction of H
(k−1), we need to count cliques in such

a complex and use the powerful tool IHCk−1,` which we have available by the induction assumption (CLj,`

for 2 ≤ j ≤ k − 1).

We next remedy imperfections on the k-th layer G̃(k). However, in the absence of our Induction Assumption
herein, we have to proceed more carefully.

We first construct a still “somewhat imperfect” (n, `, k)-cylinderH(k) so that H = {H(j)}k
j=1 is an (n, `, k)-

complex and d
(

H(k)|P̂(k−1)
)

= dk ±
√
δk for every polyad P̂(j−1) from P with P̂(j−1) ⊆ H(j−1). While G̃(k)

satisfies that for “most” P̂(k−1) ⊆ G̃(k−1), its density is close to dk, the new H(k) has density close to dk for
“all” P̂(k−1) ⊆ H(k−1). Moreover, we can construct H(k) in such a way that

∣

∣

∣
K(k)

`

(

G̃(k)
)

4K(k)
`

(

H(k)
)

∣

∣

∣
is “small”. (14)

Part 2 of Cleaning Phase II deals with H(k), the k-th layer of the complex H. In this part, we construct

unidense (w.r.t. H(k−1) and P(k−1)) (n, `, k)-cylinders H(k)
− and H(k)

+ (with densities dk−
√
δk and dk +

√
δk,

respectively) and F (k) where each of these cylinders, together with H
(k−1) = {H(j)}k−1

j=1 , forms an (n, `, k)-
complex. In the construction, we will also ensure that

H(k)
− ⊆ H(k) ⊆ H(k)

+ H(k)
− ⊆ F (k) ⊆ H(k)

+ . (15)

We then set F (j) = H(j) for j < k and F = {F (j)}k
j=1.

We now discuss how we infer (i) and (iii) of Theorem 34 for F (property (ii) is somewhat technical and we
omit it from the outline given here). For part (i) of Theorem 34, we need to show that F (j) is (ε, dj , 1)-regular

w.r.t. F (j−1), 2 ≤ j ≤ k. To this end, we take the union of all “partition blocks” from P(j) (which are
subhypergraphs of F (j)). Note that all these blocks are very regular (w.r.t. their underlying polyads (which
are subhypergraphs of F (j−1))) and have the same relative density (due to the unidensity). In fact, these
blocks will be so regular that their union is (ε′, dj , 1)-regular and therefore also (ε, dj , 1)-regular (cf. (12)).
Consequently, as proved in the Union Lemma, Lemma 40, we obtain that F is

(

(ε, . . . , ε),d, 1)-regular which
proves (i) of Theorem 34.

We now outline the proof of part (iii). Observe that
∣

∣

∣
K(k)

`

(

G(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
≤

∣

∣

∣
K(k)

`

(

G(k)
)

4K(k)
`

(

G̃(k)
)

∣

∣

∣
+

+
∣

∣

∣
K(k)

`

(

G̃(k)
)

4K(k)
`

(

H(k)
)

∣

∣

∣
+

+
∣

∣

∣
K(k)

`

(

H(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
.

(16)

The first two terms of the right-hand side are small as mentioned earlier (see (13) and (14)). Let us say a
few words on how to bound the third quantity.

Because of (15), we have
∣

∣

∣
K(k)

`

(

H(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
≤

∣

∣

∣
K(k)

`

(

H(k)
+

)

4K(k)
`

(

H(k)
−

)

∣

∣

∣
=

∣

∣

∣
K(k)

`

(

H(k)
+

)

∣

∣

∣
−

∣

∣

∣
K(k)

`

(

H(k)
−

)

∣

∣

∣
. (17)

Since both complexes H+ and H− are unidense, we can show that H∗ is
(

(ε′, . . . , ε′),d∗, 1
)

-regular for

∗ ∈ {+,−} where d∗ = (d2, . . . , dk−1, d
∗
k) and d∗k = dk +

√
δk for ∗ = + and d∗k = dk −

√
δk for ∗ = −.

Similarly to the proof of (i), where the Union Lemma was applied to F , we can use it here for H+ and H−.
Consequently, owing to (12), we can apply the Dense Counting Lemma, Theorem 16, to bound the right-hand
side of (17) and thus the right-hand side of (16). This yields part (iii) of Theorem 34.

The flowchart in Figure 1 gives a sketch of the connection of theorems and lemmas involved in the proof
of CLk,`, Theorem 9. Each box represents a theorem or lemma containing a reference for its proof. Vertical
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Theorem 9
CLj,i, 2 ≤ j < k, j ≤ i ≤ `

induction assumption

Theorem 26
RS-Lemma

[40]

Lemma 31
Slicing Lemma

[40]

Statement 32
IHCk−1,`

Section 4.1

6

Prop. 47

Section 7.1

Prop. 49

Section 7.1

G .....-Lemma 30
Clean I

Section 5

G̃
...............-

6

Lemma 37
Clean II.1
Section 6.2

H
...............-

6

Lemma 38
Clean II.2
Section 6.3

H+

H
−

...............-

6

Lemma 40
Union Lemma

Section 7.2
F.....-

6

Theorem 16
Dense Counting Lemma

[23]

Theorem 34
Section 4.4

6

Theorem 9
CLk,`

Section 4.2

6

Figure 1. Structure of the proof of Theorem 9

arcs indicate which statements are needed to prove the statement to which the arc points. The horizontal
arcs indicate the alteration of the involved complexes outlined above.

4.4. Proof of Theorem 34. In this section, we give all the details of the proof of Theorem 34 outlined in the
last section. The proof of Theorem 34 splits into four parts. We separate these parts across Sections 4.4.1–
4.4.4.

4.4.1. Constants. The hierarchy of the involved constants plays an important rôle in our proof. The choice
of the constants breaks into two steps.

Step 1. Let an integer ` be given. We first recall the quantification of Theorem 34:

∀γ, dk ∃δk ∀dk−1 . . .∃δ3 ∀d2, ε ∃δ2, r, n0 .

Given γ and dk we choose δk such that

δk ≪ min{γ, dk} (18)

holds. Now, let dk−1 be given. We set

η = 1/4 . (19)

(Our proof is not too sensitive to the choice of η, representing the multiplicative error for IHCk−1,`.) We
then choose δk−1 in such a way that δk−1 ≪ min{δk, dk−1} and δk−1 ≤ δk−1

(

IHCk−1,`(η, dk−1)
)

where

δk−1

(

IHCk−1,`(η, dk−1)
)

is the value of δk−1 given by Statement 32 for η and dk−1. We then proceed and
17



define δj for j = k − 2, . . . , 3, in the similar way. Summarizing the above, for j = k − 1, . . . , 3 we choose δj
such that

δj ≪ min{δj+1, dj} and δj ≤ δj
(

IHCk−1,`(η, dk−1, δk−1, dk−2, . . . , δj+1, dj)
)

. (20)

We mention that after d2 is revealed, we pause before defining δ2.
Indeed, next we choose an auxiliary constant ε′ so that

ε′ ≤ min
{

ε
(

Thm.16(d2, . . . , dk−1, dk − δ
1/2
k )

)

, ε
(

Thm.16(d2, . . . , dk−1, dk + δ
1/2
k )

)

}

,

ε′ ≪ min
{

δ3, d2, ε
}

, and gk,`(ε
′) ≪ δk ,

(21)

where gk,` is given by the Dense Counting Lemma, Theorem 16. We then fix η̃, ν, and δ̃k to satisfy

ε′ ≫ η̃ ≫ ν ≫ δ̃k and δ̃k ≤ 1/8 . (22)

This completes Step 1 of the choice of the constants. We summarize the choices above in the following
flowchart:

dk . . . d3 d2, ε

≫

. . .
≫ ≫

γ ≫ δk ≫ · · · ≫ δ3 ≫ ε′ ≫ η̃ ≫ ν ≫ δ̃k

(23)

Step 2. The definition of the constants here is more subtle. Our goal is to extend (23) with the additional

constants d̃j , δ̃j (for j = k − 1, . . . , 2), r̃, L̃2
kδ2 and r so that

d̃k−1 . . . d̃3 d̃2

≫

. . .

≫ ≫

δ̃k ≫ δ̃k−1 ≫ · · · ≫ δ̃3 ≫ δ̃2, 1/r̃ ≫ L̃2
kδ2, 1/r

In our proof, we apply Lemma 30 to the (n, `, k)-complex G = {G(j)}k
j=1. Lemma 30 has functions

δ̃j(Dj , . . . , Dk−1) for j = 2, . . . , k − 1 and r̃(D2, . . . , Dk−1) in variables D2, . . . , Dk−1 as part of its input.

The application of Lemma 30 results in an almost perfect
(

δ̃(d̃), d̃, r̃(d̃), b
)

-family of partitions P with some

d̃ = (d̃2, . . . , d̃k−1). We want to be able to count cliques within the polyads of the family of regular partitions

P by applying IHCk−1,`. Therefore, we choose the functions δ̃j(Dj , . . . , Dk−1) for Lemma 30 in such a way
that they comply with the quantification of IHCk−1,`, Statement 32.

To this end let δ̃k−1(Dk−1) be a function satisfying δ̃k−1(Dk−1) ≪ min{δ̃k, Dk−1}, δ̃k−1(Dk−1) ≤
δk−1

(

IHCk−1,`(η̃, Dk−1)
)

and (1 + δ̃k−1(Dk−1)/Dk−1)
( `

k−1) < (1 + ν)1/k−2. We next choose the function

δ̃k−2(Dk−2, Dk−1) in a similar way, making sure that

δ̃k−2(Dk−2, Dk−1) ≪ min
{

δ̃k−1(Dk−1), Dk−2

}

,

δ̃k−2(Dk−2, Dk−1) ≤ δk−2

(

IHCk−1,`(η̃, Dk−1, δ̃k−1(Dk−1), Dk−2)
)

,

and

(

1 +
δ̃k−2(Dk−2, Dk−1)

Dk−2

)( `

k−2)

< (1 + ν)1/k−2 .

(Since δ̃k−1(Dk−1) is a function of Dk−1 and η̃ was fixed in (22) already, we indeed also have that the
right-hand sides of the first two inequalities above depend on the variables Dk−2 and Dk−1 only.) In general
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for j = k − 1, . . . , 2 we choose δ̃j(Dj , . . . , Dk−1) so that

δ̃j(Dj , . . . , Dk−1) ≪ min
{

Dj , δ̃j+1(Dj+1, . . . , Dk−1)
}

,

δ̃j(Dj , . . . , Dk−1) ≤ δj
(

IHCk−1,`(η̃, Dk−1, δ̃k−1(Dk−1), Dk−2, . . . , δ̃j+1(Dj+1, . . . , Dk−1), Dj)
)

and

(

1 +
δ̃j(Dj , . . . , Dk−1)

Dj

)(`

j)

< (1 + ν)1/k−2 .

(24)

We may assume, without loss of generality, that the functions defined in (24) are componentwise monotone

decreasing. Since for every h ≥ j + 1 the δ̃h was constructed as a function of Dh, . . . , Dk−1 only, as before,
we may view the right-hand sides of the first two inequalities of (24) as a function of Dj , . . . , Dk−1 only.

Consequently, δ̃j is a function of Dj , . . . , Dk−1, as promised. Furthermore, we set r̃(D2, . . . , Dk−1) to be a
componentwise monotone increasing function such that

r̃(D2, . . . , Dk−1) ≫ max
{

1/D2, 1/δ̃3(D3, . . . , Dk−1)
}

and

r̃(D2, . . . , Dk−1) ≥ r
(

IHCk−1,`(η̃, Dk−1, δ̃k−1(Dk−1), . . . D2)
)

.
(25)

As a result of Lemma 30 applied to the constants d = (d2, . . . , dk), δ3, . . . , δk, δ̃k, and the functions

δ̃k−1(Dk−1), . . . , δ̃2(D2, . . . , Dk−1) and r̃(D2, . . . , Dk−1) we obtain integers ñk, L̃k, a vector of positive re-
als c̃ = (c̃2, . . . , c̃k−1) and a constant δLem.30

2 . (Here we did not use the variable B1 for the function
r̃(D2, . . . , Dk−1).) Next, we disclose δ2 and r promised by Theorem 9. For that we apply the functions

δ̃2(D2, . . . , Dk−1) and r̃(D2, . . . , Dk−1), defined in (24) and (25), to c̃. We set δ2 and r so that
(

L̃2
kδ2
)

≪ min
{

δ̃2(c̃), 1/r̃(c̃)
}

δ2 ≤ δ2
(

IHCk−1,`(η, dk−1, δk−1, dk−2, . . . , δ3, d2)
)

, (26)

and

r ≫ max
{

1/δ̃2(c̃), r̃(c̃), 2
`L̃k

k

}

r ≥ r
(

IHCk−1,`(η, dk−1, δk−1, dk−2, . . . , δ3, d2)
)

. (27)

Finally, we set n0 so that

n0 ≫ max
{

ñk, 1/δ2, r, m0 L̃kmk−1,`, L̃km̃k−1,`

}

, (28)

where

m0 = max
{

m0

(

Thm.16(d2, . . . , dk − δ
1/2
k )

)

,m0

(

Thm.16(d2, . . . , dk + δ
1/2
k )

)

}

is given by Theorem 16 applied to d2, . . . , dk−1 and dk − δ
1/2
k and dk + δ

1/2
k , respectively, and similarly

mk−1,` = mk−1,`

(

IHCk−1,`(η, dk−1, δk−1, . . . , d2, δ2)
)

and

m̃k−1,` = mk−1,`

(

IHCk−1,`(η̃, c̃k−1, δ̃k−1(c̃k−1), . . . , c̃2, δ̃2(c̃))
)

come from Statement 32.
We now defined all constants involved in the statement Theorem 34. Moreover, we defined the functions

and constants needed for Lemma 30. This brings us to the next part of the proof, Cleaning Phase I.

4.4.2. Cleaning Phase I. Let G = {G(j)}k
j=1 be a (δ,d, r)-regular (n, `, k)-complex where n ≥ n0 and δ =

(δ2, . . . , δk), d = (d2, . . . , dk) and r are chosen as described in Section 4.4.1. We apply Lemma 30 to G

with the constant δ̃k, the functions δ̃(D) = (δ̃k−1(Dk−1), . . . , δ̃2(D2, . . . , Dk−1)) and the function r̃(D) as

given in (22), (24) and (25). Lemma 30 renders an (n, `, k)-complex G̃ = {G̃(j)}k
j=1, a real vector of positive

coordinates d̃ = (d̃2, . . . , d̃k−1) componentwise bigger than c̃ and an almost perfect (δ̃(d̃), d̃, r̃, b)-family of

partitions P = P(k − 1, b̄,ψ) refining G̃ (cf. Definition 27 and Definition 29). Note that the choice of r
in (27) and (v) of Lemma 30 ensures that for 2 ≤ j ≤ k,

r ≥ 2`L̃k
k ≥ 2`

∣

∣Â(k − 1, b)
∣

∣ ≥
∣

∣Â(j − 1, b)
∣

∣ . (29)

For 2 ≤ j ≤ k − 1, we finally fix the constants

δ̃j = δ̃j(d̃j , . . . , d̃k−1) and r̃ = r̃(d̃) .
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From the monotonicity of the functions δ̃2 and r̃, we infer

δ̃2 = δ̃2(d̃) ≥ δ̃2(c̃) ≫ δ2 and r̃ = r̃(d̃) ≤ r̃(c̃) ≪ r . (30)

For future reference, we summarize, in Figure 2, (18)–(27) and (30).

dk . . . d3 d2, ε

≫

. . .

≫ ≫

γ ≫ δk ≫ · · · ≫ δ3 ≫ ε′

≫

η̃

≫

ν d̃k−1 . . . d̃3 d̃2

≫ ≫

. . .

≫ ≫

δ̃k ≫ δ̃k−1 ≫ · · · ≫ δ̃3 ≫ δ̃2,
1
r̃

≫

L̃2
kδ2,

1
r

Figure 2. Flowchart of the constants

For the remainder of this paper, all constants are fixed as summarized above in Figure 2.
Observe that by the choice of the functions δ̃j in (24) and part (i) of Definition 29, we have for every

2 ≤ j < k and j < i ≤ `

j
∏

h=2

(d̃hbh)(
i

h) =

j
∏

h=2

(

1± δ̃h/d̃h

)(i

h)
=

j
∏

h=2

(1± ν)1/k−2 = 1± ν . (31)

Remark 35. Observe that the last two “equality signs” in (31) are used in a non-symmetric way. For
example, the last equality sign abbreviates the validity of the two inequalities

(1− ν) ≤
j

∏

h=2

(1− ν)1/k−2 and

j
∏

h=2

(1 + ν)1/k−2 ≤ (1 + ν) .

We will use this notation occasionally in the calculations throughout this paper.

Part (iii) of Lemma 30 bounds the difference of the number of K
(k)
` ’s in G(k) and G̃(k) by

δ̃k

k
∏

h=2

d
(`

h)
h × n`

≪ δk

k
∏

h=2

d
(`

h)
h × n` . (32)

For future reference, we summarize the results of Cleaning Phase I.

Setup 36 (After Cleaning Phase I). Let all constants be chosen as summarized in Figure 2 so that also (29)
and (31) hold. Let G be the (δ,d, r)-regular (n, `, k)-complex from the input of the Counting Lemma, The-

orem 9. Let G̃ be the (n, `, k)-complex and P = P(k − 1, b̄,ψ) be the almost perfect (δ̃, d̃, r̃, b)-family of

partitions refining G̃ given after Cleaning Phase I, i.e., after an application of Lemma 30.

We now mention a few comments to motivate our next step in the proof. The family of partitions P

given by Lemma 30 (cf. Setup 36) is an almost perfect family (cf. Definition 29); moreover, by (i), G̃(k)

is (δ̃k, r̃)-regular w.r.t. P̂(k−1)(x̂(k−1)) for every x̂(k−1) ∈ Â(k − 1, b). However, while every component

of the partition is regular, it is possible that the densities d
(

G̃(j)
∣

∣P̂(j−1)(x̂(j−1))
)

may vary across different

x̂(j−1) ∈ Â(j − 1, b) for which P̂(j−1)(x̂(j−1)) ⊆ G̃(j−1).

The goal of the next cleaning phase is to alter G̃ to form a complex F where all densities are appropriately
uniform. Importantly, we show that the two complexes G̃ and F share mostly all their respective cliques.
(For technical reasons, we will also need to construct two auxiliary complexes H+ and H−)
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4.4.3. Cleaning Phase II. The aim of this section is to construct the complex F = {F (j)}k
j=1 which is

promised by Theorem 34. For the proof of part (iii) of Theorem 34, we se two auxiliary complexes H+ =

{H(j)
+ }k

j=1 and H− = {H(j)
− }k

j=1. Later, in the final phase (see Section 4.4.4), our goal is to apply the Dense
Counting Lemma to these auxiliary complexes.

The construction of H+, H− and F splits into two parts. First (cf. upcoming Lemma 37), we construct

an auxiliary (n, `, k)-complex H = {H(j)}k
j=1 which will have the required properties for 1 ≤ j < k (we have

H(j)
+ = H(j)

− = F (j) = H(j) for 1 ≤ j < k).

In the second part, we use upcoming Lemma 38 to overcome a ‘slight imperfection’ of H(k) and con-

struct H(k)
+ , H(k)

− , and F (k) so that H+ and H− (as we will later show in Lemma 40) satisfy the as-

sumptions of the Dense Counting Lemma. Moreover, H(k)
+ and H(k)

− will “sandwich” F (k) and H(k) (i.e.

H(k)
+ ⊇ F (k) ⊇ H(k)

− and H(k)
+ ⊇ F (k) ⊇ H(k)

− ).

We need the following definition in order to state Lemma 37. For a (j − 1)-uniform hypergraph H(j−1),

we denote by Â
(

H(j−1), j − 1, b
)

⊆ Â(j − 1, b) the set of polyad addresses x̂(j−1) such that

P̂(j−1)
(

x̂(j−1)
)

⊆ H(j−1) . (33)

Lemma 37 (Cleaning Phase II, Part 1). Given Setup 36, there exists an (n, `, k)-complex H =
{

H(j)
}k

j=1

such that:

(a) H(1) = G̃(1) = G(1) (and consequently Â
(

H(1), 1, b
)

= Â (1, b)) and H(2) = G̃(2) = G(2).
(b) For every 2 ≤ j < k, the following holds:

(b1 ) For any x̂(j−1) ∈ Â
(

H(j−1), j − 1, b
)

, there is an index set I
(

x̂(j−1)
)

⊆ [bj ] of size
∣

∣I
(

x̂(j−1)
)∣

∣ =
djbj such that

H(j) ∩ K(j−1)
j

(

P̂(j−1)(x̂(j−1))
)

=
⋃

α∈I(x̂(j−1))

P(j)
(

(

x̂(j−1), α
)

)

.

(b2 ) For every j ≤ i ≤ `,

∣

∣

∣
K(j)

i

(

H(j)
)

4K(j)
i

(

G̃(j)
)
∣

∣

∣
≤ δ

1/3
j

(

j
∏

h=2

d
(i

h)
h

)

ni .

(c) Finally, the (n, `, k)-cylinder H(k) satisfies the following two properties:

(c1 ) For every x̂(k−1) ∈ Â
(

H(k−1), k−1, b
)

, H(k) is
(

δ̃k, d̄k(x̂(k−1)), r̃
)

-regular w.r.t. P̂(k−1)
(

x̂(k−1)
)

where d̄k

(

x̂(k−1)
)

= dk ±
√

δk.
(c2 )

∣

∣

∣
K(k)

`

(

H(k)
)

4K(k)
`

(

G̃(k)
)∣

∣

∣
≤ δ

1/3
k

(

k
∏

h=2

d
(`

h)
h

)

n` .

We prove Lemma 37 in Section 6.2.

Consider the subcomplex H
(k−1) = {H(j)}k−1

j=1 . The complex H
(k−1) is ‘absolutely perfect’ by having

the following two properties for every 2 ≤ j < k:

perfectly equitable (PE): For every x̂(j−1) ∈ Â(H(j−1), j − 1, b) and every β ∈ I(x̂(j−1)), the

(n/b1, j, j)-cylinder P(j)
(

(x̂(j−1), β)
)

is (δ̃j , d̃j , r̃)-regular w.r.t. its underlying polyad P̂(j−1)(x̂(j−1)).

uniformly dense (UD): For every x̂(j−1) ∈ Â(H(j−1), j − 1, b),

d
(

H(j)
∣

∣P̂(j−1)(x̂(j−1))
)

= (djbj)(d̃j ± δ̃j) . (34)

The property (PE ) is an immediate consequence of the fact that P is an almost perfect (δ̃, d̃, r̃, b)-family
of partitions. Property (UD) easily follows from (b1 ) combined with (PE ).

We now rewrite the right-hand side of (34) in a more convenient form (cf. (35)). Using (i) from Defini-
tion 29, we infer

d
(

H(j)
∣

∣P̂(j−1)(x̂(j−1))
)

= dj(1± δ̃j/d̃j)± bj δ̃j = dj ± (δ̃j/d̃j + bj δ̃j) .
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As a consequence of Definition 29 (i) and d̃j > δ̃j , we have bj < 2/d̃j . Due to the choice of the constants

(cf. Figure 2) δ̃j ≪ d̃j . We therefore infer

d
(

H(j)
∣

∣P̂(j−1)(x̂(j−1))
)

= dj ± (δ̃j/d̃j + bj δ̃j) = dj ± 3δ̃j/d̃j = dj ±
√

δ̃j . (35)

For each 2 ≤ j < k consider H(j) as the union

H(j) =
⋃

{

H(j) ∩ P̂(j−1)(x̂(j−1)) : x̂(j−1) ∈ Â(H(j−1), j − 1, b)
}

.

From property (PE ) and (35) we will infer that H(j) is (δ̃
1/3
j , d̃j , 1)-regular (and, therefore, also (ε′, d̃j , 1)-

regular) w.r.t. H(j−1) (this will be verified in the proof of Lemma 40 in Section 7.2). This means, however,

that the complex H
(k−1) is ‘ready’ for an application of the Dense Counting Lemma, Theorem 16.

The proof of (b2 ) is based on the induction assumption (cf. IHCk−1,`). The treatment of H(k) will

necessarily have to be different. We shall construct two (n, `, k)-cylinders H(k)
+ and H(k)

−
so that H(k)

+ ⊇
H(k) ⊇ H(k)

−
. Moreover, we construct F (k), incomparable with respect to H(k), but with H(k)

+ ⊇ F (k) ⊇ H(k)
−

.
To this end, we use the following lemma whose proof we defer to Section 6.3.

Lemma 38 (Cleaning Phase II, Part 2). Given Setup 36 and the (n, `, k)-complex H from Part 1 of Cleaning

Phase II, Lemma 37, there are (n, `, k)-cylinders H(k)
−

⊆ F (k) ⊆ H(k)
+ such that:

(α) H− = {H(i)}k−1
i=1 ∪H

(k)
−

, H+ = {H(i)}k−1
i=1 ∪H

(k)
+ , and F = {H(i)}k−1

i=1 ∪F (k) are (n, `, k)-complexes

and H(k)
−

⊆ H(k) ⊆ H(k)
+ .

(β) For every x̂(k−1) ∈ Â
(

H(k−1), k − 1, b
)

, the following holds:

(β1 ) H(k)
−

is
(

3δ̃k, dk −
√

δk, r̃
)

-regular w.r.t. to P̂(k−1)
(

x̂(k−1)
)

and

(β2 ) H(k)
+ is

(

3δ̃k, dk +
√

δk, r̃
)

-regular w.r.t. to P̂(k−1)
(

x̂(k−1)
)

,

(β3 ) F (k) is
(

21δ̃k, dk, r̃
)

-regular w.r.t. to P̂(k−1)
(

x̂(k−1)
)

.

Cleaning Phase II is now concluded. For future reference, we summarize the effects of Cleaning Phase II.

Setup 39 (After Cleaning Phase II). Let all constants be chosen as summarized in Figure 2 so that (29)
and (31) hold.

• Let P = P(k − 1, b̄,ψ) be the almost perfect (δ̃, d̃, r̃, b)-family of partitions given after Cleaning
Phase I, i.e., after an application of Lemma 30.

• Let H be the (n, `, k)-complex given from Part 1 of Cleaning Phase II, Lemma 37. For every 2 ≤ j <

k and x̂(j−1) ∈ Â(H(j−1), j − 1, b), let I(x̂(j−1)) ⊆ [bj ] be the index set satisfying (b1) of Lemma 37.
• Moreover, let H+, H−, and F be the (n, `, k)-complexes given by Part 2 of Cleaning Phase II,

Lemma 38.

4.4.4. The Final Phase. We now finish the proof Theorem 34. The first goal is to show that H+ and H−

satisfy the assumptions of the Dense Counting Lemma. To this end, we use the upcoming Union Lemma,
Lemma 40, stated below. After stating the Union Lemma, we finish the proof of Theorem 34.

Lemma 40 (Union lemma). Given Setup 39 and ∗ ∈ {+,−}, the complex H∗ is (ε′,d∗, 1)-regular where
ε′ = (ε′, . . . , ε′) ∈ R

k−1 and d∗ = (d∗2, . . . , d
∗

k) with

d∗j =











dj if 2 ≤ j ≤ k − 1

dk +
√

δk if j = k and ∗ = +

dk −
√

δk if j = k and ∗ = − .

(36)

Similarly, the (n, `, k)-complex F = {H(j)}k−1
j=1 ∪ F (k) is (ε′,d, 1)-regular where ε′ = (ε′, . . . , ε′) ∈ R

k−1 and

d = (d2, . . . , dk).

We give the proof of Lemma 40 in Section 7. We now finish this section with the proof of Theorem 34.

Proof of Theorem 34. Set F (j) = H(j) for 1 ≤ j < k and let F (k) be given by Lemma 38. Consequently,
F = {F (j)}k

j=1 is an (n, `, k)-complex and Lemma 40 gives (i) of Theorem 34. Moreover, due to part (a) of
22



Lemma 37, we have G(1) = H(1) = F (1) and G(2) = H(2) = F (2) which yields (ii) of Theorem 34. It is left to
verify part (iii) of the theorem.

As an intermediate step, we first consider K(k)
` (H(k))4K(k)

` (F (k)). Since H(k)
+ ⊇ H(k) ∪ F (k) and H(k) ∩

F (k) ⊇ H(k)
− (cf. Lemma 38), we have

∣

∣

∣
K(k)

`

(

H(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
≤

∣

∣

∣
K(k)

`

(

H(k)
+

)

\ K(k)
`

(

H(k)
−

)

∣

∣

∣
. (37)

We infer from Lemma 40 and the choice of ε′ in (21) and n0 in (28) that H+ and H− satisfy the assumptions
of the Dense Counting Lemma, Theorem 16. Consequently,

∣

∣

∣
K(k)

`

(

H(k)
+

)

∣

∣

∣
≤

(

1 +
√

δk

) (

dk +
√

δk

)(`

k)
k−1
∏

h=2

d
(`

h)
h × n` ≤

(

1 +
√

δk

)

(

1 + 2

(

`

k

)
√

δk

dk

) k
∏

h=2

d
(`

h)
h × n`

≤
(

1 + δ
1/3
k

)

k
∏

h=2

d
(`

h)
h × n`.

(38)

Similarly,
∣

∣

∣
K(k)

`

(

H(k)
−

)

∣

∣

∣
≥

(

1− δ
1/3
k

)

k
∏

h=2

d
(`

h)
h × n` . (39)

Therefore, from (37), (38) and (39), we infer

∣

∣

∣
K(k)

`

(

H(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
≤ 2δ

1/3
k

k
∏

h=2

d
(`

h)
h × n` . (40)

We now prove (iii) of Theorem 34. Using the triangle-inequality, we infer
∣

∣

∣
K(k)

`

(

G(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
≤

∣

∣

∣
K(k)

`

(

G(k)
)

4K(k)
`

(

G̃(k)
)

∣

∣

∣
+

+
∣

∣

∣
K(k)

`

(

G̃(k)
)

4K(k)
`

(

H(k)
)

∣

∣

∣
+

+
∣

∣

∣
K(k)

`

(

H(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
.

(41)

Then (32), (c2 ) of Lemma 37, and (40) bound the right-hand side of (41) and, hence,

∣

∣

∣
K(k)

`

(

G(k)
)

4K(k)
`

(

F (k)
)

∣

∣

∣
≤

(

δk + 3δ
1/3
k

)

k
∏

h=2

d
(`

h)
h × n` . (42)

Part (iii) of Theorem 34 now follows from γ ≫ δk (cf. Figure 2). This concludes the proof of Theorem 34. �

5. Proof of Cleaning Phase I

The proof of Lemma 30 is organized as follows. We first fix all constants involved in the proof (as usual).

We then inductively construct the almost perfect family of partitions P and the complex G̃ promised by
Lemma 30. Finally, we verify that P and G̃ have the desired properties.

5.1. Constants. Let d = (d2, . . . , dk) be a vector of positive reals and let δ3, . . . , δk satisfy 0 ≤ δj ≤ dj/2

for j = 3, . . . , k. Moreover, let δ̃k be a positive real and let δ̃(D) and r̃(B1,D) be the arbitrary positive
functions in variables D = (D2, . . . , Dk−1) and B1 given by the lemma. The proof of Lemma 30 relies on the
Regularity Lemma, and more specifically, on Corollary 28. The proof also relies on the Induction Hypothesis
on the Counting Lemma (IHCk−1,`), Statement 32, with ` = k. Therefore, for the proof of Lemma 30
presented here, we assume that IHCk−1,` holds (cf. (9)).

We set

η =
1

4
, σj =

{

d2 if j = 2

1 if 3 ≤ j ≤ k − 1
and δ′k = µ =

δ̃k

2`+k

k
∏

h=2

d
(`

h)
h . (43)
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We also fix functions in variables Dj , . . . , Dk−1 for j = k − 1, . . . , 2 so that

δ′j (Dj , . . . , Dk−1) < min

{

Dj

18
δ̃j (Dj , . . . , Dk−1) ,

D3
j

36
<
D2

j

9

δ′j (Dj , . . . , Dk−1) <
Dj

9
δj

(

IHCk−1,`(η,Dk−1, δ
′

k−1(Dk−1), Dk−2, . . . , δ
′

j+1(Dj+1 . . . , Dk−1), Dj)
)

.

(44)

(Observe that the right-hand side of the last inequality is a function in variables Dj , . . . , Dk−1.) Similarly,
we set

r′ (B1,D) ≥ r̃ (B1,D) ,

r′ (B1,D) ≥ r
(

IHCk−1,`

(

η,Dk−1, δ
′

k−1(Dk−1), Dk−2, . . . , δ
′

j+1(Dj+1 . . . , Dk−1), Dj)
) (45)

where, without loss of generality, we may assume that the functions given in (44) and (45) are monotone.
Corollary 28 then yields the integer constants nk and Lk. Next we define the constants promised by Lemma 30
as follows

c̃j =
1

2`+2Lk
k

for j = 2, . . . , k − 1 , c̃ = (c̃2, . . . , c̃k−1) ,

L̃k = 2`+k2

Lk−1
k

k−1
∏

j=2

(

1

c̃j

)(k−1
j )

and δ2 =
δ′2(c̃)

L̃2
k

.

(46)

Finally, let mk−1,` be the integer given by Statement 32 applied to the constants η, c̃k−1, δ
′

k−1(c̃k−1), . . . , c̃2,
δ′2(c̃) and set ñk = max{nk, Lkmk−1,`}.

5.2. Getting started. Let G = {G(j)}k
j=1 be an (n, `, k)-complex with n ≥ ñk. We apply Corollary 28

to G to obtain a
(

µ, δ′(d̃), d̃, r′(d̃)
)

-equitable
(

δ′k, r′(d̃)
)

-regular family of partitions R = R (k − 1,a,ϕ) =

{R(j)}k−1
j=1 refining G (cf. Definition 27) where d̃ = (d̃2, . . . , d̃k−1) is the density vector of the partition R.

Note that it follows from our choice of σj in (43) that

d2/d̃2 and, for all j = 3, . . . , k − 1, 1/d̃j, are integers. (47)

We now make a few preparations concerning notation. Having d̃ = (d̃2, . . . , d̃k−1) as an outcome of

Corollary 28, we derive the constants δ′j , δ̃j for j = 2, . . . , k− 1 and r′ and r̃ from the functions given in (44)
and (45) by setting

δ′j = δ′j(d̃j , . . . , d̃k−1) < δ̃j = δ̃j(d̃j , . . . , d̃k−1) and r′ = r′(a1, d̃) ≥ r̃(a1, d̃) = r̃ ,

(the inequalities above follow immediately from (44) and (45)). Moreover, we set δ′ = (δ′2, . . . , δ
′

k−1) and

δ̃ = (δ̃2, . . . , δ̃k−1).

For any j = 2, . . . , k−1 and ŷ(j−1) ∈ Â(j−1,a), let areg
j = areg

j (ŷ(j−1)) be the number of (δ′j , d̃j , r
′)-regular

(n/a1, j, j)-cylinders belonging to R̂(j−1)(ŷ(j−1)). We then observe that

areg
j = areg

j (ŷ(j−1)) ≤ 1

d̃j − δ′j
≤ 2

d̃j

. (48)

Finally, we fix the integer vector b = (b1, . . . , bk−1). We set

b1 = a1, b2 =

⌈

1

d̃2 + 9δ′2/d̃2

⌉

≤ 2

d̃j

, and bj
(47)
=

1

d̃j

for j = 3, . . . , k − 1 . (49)

We then define b̄ = (b1, b2 + 1, b3, . . . , bk−1).

Before constructing the promised almost perfect
(

δ̃, d̃, r̃, b
)

-family of partitions P = P
(

k − 1, b̄,ψ
)

=

{P(j)}k−1
j=1 (cf. Definition 29) and the (n, `, k)-complex G̃ = {G̃(j)}k

j=1, we proceed with the following simple
observation.
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Observation regarding ‘bad’ j-tuples. Since R is a (µ, δ′, d̃, r′)-equitable (δ′k, r
′)-regular partition,

all but at most µnk crossing (w.r.t. G(1)) k-tuples belong to (δ′, d̃, r′)-regular (n/a1, k, k − 1)-complexes

R̂(x̂(k−1)) =
{

R̂(j)(x̂(k−1))
}k−1

j=1
given by the family of partitions R. We assert that

for each 2 ≤ j ≤ k, at most µ

(

k

j

)

nj crossing j-tuples belong to

(

(δ′2, . . . , δ
′

j−1), (d̃2, . . . , d̃j−1), r
′
)

-irregular (n/a1, j, j − 1)-complexes of R.

(50)

Indeed, a j-tuple belonging to an irregular (n/a1, j, j − 1)-complex can be extended to
(

l−j
k−j

)

nk−j crossing

k-tuples and at most
(

k
j

)

such j-tuples can be extended to the same k-tuple. Each such k-tuple necessarily

belongs to an irregular (n/a1, k, k − 1)-complex.

Itinerary. We define complex G̃ and family of partitions P = P(k−1, b̄,ψ) so that P is an almost perfect

family of partitions refining G̃. Our plan is to alter the family of partitions R = R(k − 1,a,ϕ) into the

family of partitions P = P(k − 1, b̄,ψ) = {P(j)}k−1
j=1 . The families P and R will overlap in the regular

elements of R. The elements of R which are not regular are substituted by random cylinders.
We construct P(j) and G̃(j) inductively for j = 1, . . . , k− 1. First set G̃(1) = G(1). Since b1 = a1, we have

A(1,a) = A(1, b) = A(1, b̄) and Â(1,a) = Â(1, b) = Â(1, b̄). We set ψ1 ≡ ϕ1 and define P(1) = R(1). In
other words, both R and P split the sets Vλ for λ ∈ [`] into the same pieces Vλ = Vλ,1 ∪ · · · ∪ Vλ,b1 .

For 2 ≤ j < k, we shall define P(j) and G̃(j) in such a way that the following statement (Cj) holds:

(Cj) There is a partition P(j) = P
(j)
orig ∪P

(j)
new of K

(j)
` (V1, . . . , V`) where, for ∗ ∈ {orig,new}, we define

P(j)
∗ =

⋃

{P(j) : P(j) ∈ P
(j)
∗ },

and an (n, `, j)-cylinder G̃(j) ⊆ K
(j)
` (V1, . . . , V`) such that (I)–(III) below hold:

(I) P
(j)
orig =

{

R(j)(y(j)) : y(j) ∈ A(j,a) and R
(j)(y(j)) = {R(h)(y(j))}j

h=1

is a
(

(δ′2, . . . , δ
′

j), (d̃2, . . . , d̃j), r
′
)

-regular (n/a1, j, j)-complex
}

,

(II) G̃(j) =

{

G(2) if j = 2

G(j) ∩ P(j)
orig = G(j) \ P(j)

new if 3 ≤ j < k
and

(III) the family of partitions Pj = {P(1), . . . ,P(j)} is an almost perfect
(

(9δ′2/d̃2, . . . , 9δ′j/d̃j), (d̃2, . . . , d̃j), r
′, b

)

-family.

Before we give an inductive proof of statement (Cj), we list a few of its consequences in Fact 41. The
properties (1 )–(5 ) of Fact 41 will be derived directly from (Cj). They are utilized in our proof, in particular,
we use Fact 41 with j − 1 to establish (Cj).

Fact 41 (Consequences of (Cj)). Let 2 ≤ j ≤ k − 1 be fixed. If (Cj′) holds for 2 ≤ j′ ≤ j and if P(2)

refines G̃(2), then the following is true:

(1 ) G̃(j) ⊆ G(j),

(2 ) G̃
(j)

= {G̃(h)}j
h=1 is an (n, `, j)-complex and for each 2 ≤ h ≤ j, G̃(h) ⊆ K(h−1)

h

(

G̃(h−1)
)

,

(3 ) Pj refines the complex G̃
(j)

,
(4 ) for every j ≤ i ≤ `,

∣

∣

∣
K(j)

i (G̃(j))4K(j)
i (G(j))

∣

∣

∣
≤ δ̃k

j
∏

h=2

d
(i

h)
h × ni , and

(5 ) for every x̂(j) ∈ Â(j, b),

∣

∣

∣
K(j)

j+1

(

P̂(j)(x̂(j))
)

∣

∣

∣
= (1± η)

j
∏

h=2

d̃
(j+1

h )
h ×

(

n

b1

)j+1

>
(n/b1)

j+1

ln(n/b1)
.
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Proof of Fact 41. Part (1 ) follows clearly from (II). We prove (2 ) by induction on j. For j = 1 or 2 there is
nothing to prove. Let j ≥ 3. Suppose (Ci) is true for 2 ≤ i ≤ j and suppose, by induction, (2 ) holds for j−1,

i.e, G̃
(j−1)

is an (n, `, j − 1)-complex. We show that every j-tuple J ∈ G̃(j) satisfies J ∈ K(j−1)
j (G̃(j−1)).

Let J ∈ G̃(j) be fixed. It then follows from (II) of (Cj) that

J ∈ G(j) ∩ P(j)
orig . (51)

We first confirm

J ∈ K(j−1)
j (P(j−1)

orig ) . (52)

To that end, since J ∈ P(j)
orig, it follows from (I) of (Cj) that there exists y(j) ∈ A(j,a) such that J ∈ R(j)(y(j))

and the complex R
(j)(y(j)) = {R(h)(y(j))}j

h=1 is
(

(δ′2, . . . , δ
′

j), (d̃2, . . . , d̃j), r
′
)

-regular. Consequently, J ∈
K(j−1)

j

(

R(j−1)(y(j))
)

and by (I) of (Cj−1) we have thatR(j−1)(y(j)) ⊆ P(j−1)
orig . This yields J ∈ K(j−1)

j (P(j−1)
orig )

as claimed in (52).

Now from (51) and (52), we infer that J ∈ K(j−1)
j (G(j−1) ∩P(j−1)

orig ) (since G is a complex), and so by (II)

of (Cj−1) we have J ∈ K(j−1)
j (G̃(j−1)). This completes the proof of (2 ).

Next we show part (3 ), again by induction on j. The statement is trivial for j = 1. It holds for j = 2

by assumption of Fact 41. So let j ≥ 3 and assume that Pj−1 refines {G̃(h)}j−1
j=1. We have to show that

either P(j) ⊆ G̃(j) or P(j) ∩ G̃(j) = ∅ for every P(j) ∈ P(j). So let P(j) ∈ P(j) be fixed. If P(j) ∈ P
(j)
new,

then P(j) ∩ G̃(j) = ∅ by (II) of (Cj). Therefore, we may assume that P(j) ∈ P
(j)
orig. Now, if P(j) ∩ G(j) = ∅,

then again by (II) of (Cj) we infer P(j) ∩ G̃(j) = ∅. On the other hand, if P(j) ∩ G(j) 6= ∅, then P(j) ⊆ G(j)

since P(j) ∈ P
(j)
orig, (I) of (Cj), and the fact that the original family of partitions R refines the complex G.

Therefore, P(j) ⊆ G(j) ∩ P(j)
orig = G̃(j) by (1 ) of Fact 41. This verifies (3 ) of Fact 41.

Next we show (4 ) of Fact 41. From (50) and (I) and (II) of (Cj) we infer that

∣

∣G(j)4G̃(j)
∣

∣ =
∣

∣G(j) \ G̃(j)
∣

∣ ≤ µ

(

k

j

)

nj .

Consequently, by the choice of µ in (43)

∣

∣

∣
K(j)

i (G̃(j))4K(j)
i (G(j))

∣

∣

∣
≤ µ

(

k

j

)

nj ×
(

`− j

i− j

)

ni−j ≤ δ̃k

j
∏

h=2

d
(i

h)
h × ni ,

which yields (4 ).
Finally, we note that (5 ) follows from (III) and IHCk−1,` (cf. (9)) since j ≤ k− 1. In particular, (5 ) is a

consequence of the choice of δ′j and r′ in (44) and (45), (III) of (Ck−1), and (9). �

5.3. Proof of Statement (Cj). As mentioned earlier, we verify (Cj) by induction on j.

5.3.1. The Induction Start. In the immediate sequel, we define P(2) = P
(2)
new ∪P

(2)
orig of K

(2)
` (V1, . . . , V`) .

In our construction, we use that due to (44) and (46), our constants satisfy

a2
1δ2 < L2

kδ2 < L̃2
kδ2 < δ′2 < d̃2 ≤ d2 (53)

and also use that d2/d̃2 is an integer (see (47)). Before constructing the partition P(2), we require some
notation.

Notation. Recall that the partition R(2) = {R(2)(y(2)) : y(2) ∈ A(2,a)} refines the partition G(2) ∪
G(2) (here, G(2) = K

(2)
` (V1, . . . , V`) \ G(2)). Therefore, for each ŷ(1) =

(

(λ, λ′), (β, β′)
)

∈ Â(1,a), there

exist disjoint sets of indices Ireg
2 = Ireg

2 (ŷ(1)) and I
reg

2 = I
reg

2 (ŷ(1)) so that
{

R(2)
(

(ŷ(1), α)
)}

α∈Ireg
2

and
{

R(2)
(

(ŷ(1), α)
)}

α∈I
reg
2

are the collections of all (δ′2, d̃2, 1)-regular graphs R(2)(y(2)) = R(2)
(

(ŷ(1), α)
)

whose

edge sets are subsets of G(2)(y(1)) = G(2)[Vλ,β ∪ Vλ′,β′ ] and G(2)(y(1)) = Vλ,β × Vλ′,β′ \ G(2), respectively.

Plan for constructing P(2). We now outline our plan for constructing P(2) = {P(2)(x(2)) : x(2) ∈
A(2, b̄)}. Later we fill in the technical details. With x̂(1) = ŷ(1) =

(

(λ, λ′), (β, β′)
)

∈ Â(1,a) = Â(1, b̄)
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fixed, we define a partition P(2)(x̂(1)) of K(1)
2

(

P̂(1)(x̂(1))
)

= Vλ,β × Vλ′,β′ . More precisely, with x̂(1) = ŷ(1)

defining a pair of sets Vλ,β , Vλ′,β′ , we consider all regular subgraphs of Vλ,β × Vλ′,β′ from the partition R(2)

and leave them in the “original part” (P
(2)
orig(x̂

(1))) of P(2)(x̂(1)). In other words, for x̂(1) = ŷ(1) we set

P
(2)
orig(x̂

(1)) =
{

R(2)
(

(ŷ(1), α)
)

}

α∈Ireg
2 (x̂(1))

∪
{

R(2)
(

(ŷ(1), α)
)

}

α∈I
reg
2 (x̂(1))

. (54)

This collection of graphs consist of all subgraphs of Vλ,β×Vλ′,β′ belonging to R(2) which are (δ′2, d̃2, 1)-regular.
In order to simplify the notation, we set

P(2)
orig(x̂

(1)) =
⋃

{

P(2) : P(2) ∈ P
(2)
orig(x̂

(1))
}

.

For the construction of the partition of Vλ,β × Vλ′,β′ \ P(2)
orig, we will use the Slicing Lemma to introduce

new (9δ′2/d̃2, d̃2, 1)-regular graphs that do not belong to R(2). We shall call the collection of those graphs

P
(2)
new(x̂(1)). We now provide the technical details to the plan described above.

Technical details for constructing P(2). Let x̂(1) =
(

(λ, λ′), (β, β′)
)

∈ Â(1,a) remain fixed. Let

G(2)
reg(x̂

(1)) = P(2)
orig(x̂

(1)) ∩ G(2)

be the union of all graphs P(2) ⊆ G(2) in P
(2)
orig(x̂

(1)). Similarly, we define

G(2)
reg(x̂

(1)) = P(2)
orig(x̂

(1)) ∩ G(2) .

Note that while G(2)
reg(x̂

(1)) and G(2)
reg(x̂

(1)) are disjoint, they are not not necessarily complements of each

other. Moreover, observe that G(2)
reg(x̂

(1)) is the union of αreg
2 = |Ireg

2 (x̂(1))| ≤ areg
2 (x̂(1)) ≤ 2/d̃2 (see (48))

(δ′2, d̃2, 1)-regular graphs. Consequently, G(2)
reg(x̂

(1)) is (2δ′2/d̃2, α
reg
2 d̃2, 1)-regular (cf. Proposition 47). Simi-

larly, G(2)
reg(x̂

(1)) is (2δ′2/d̃2, α
reg
2 d̃2, 1)-regular, where αreg

2 = |Ireg

2 (x̂(1))|.
Since G(2) is (δ2, d2, 1)-regular by the assumption of Lemma 30, we infer that G(2)(x̂(1)) = G(2)[Vλ,β∪Vλ′,β′ ]

is (a2
1δ2, d2, 1)-regular. Therefore, G(2)(x̂(1)) is (δ′2, d2, 1)-regular by (53). Consequently, since 2δ′2/d̃2 + δ′2 ≤

3δ′2/d̃2 we have that G(2)(x̂(1)) \ G(2)
reg(x̂

(1)) is (3δ′2/d̃2, d2 − αreg
2 d̃2, 1)-regular. We now apply the Slicing

Lemma, Lemma 31, to G(2)(x̂(1)) \ G(2)
reg(x̂

(1)).

To this end, recall d2/d̃2 is an integer (see (47)) and set p = d̃2(d2−αreg
2 d̃2)

−1 so that 1/p = d2/d̃2−αreg
2

is an integer. We apply the Slicing Lemma with % = d2 − αreg
2 d̃2, δ = 3δ′2/d̃2, p as above and rSL = 1 to

decompose G(2)(x̂(1))\G(2)
reg(x̂

(1)) into 1/p = d2/d̃2−αreg
2 pairwise edge-disjoint (9δ′2/d̃2, d̃2, 1)-regular graphs.

Denote the family of these bipartite graphs by P
(2)

new,G(2)(x̂
(1)).

The partition P
(2)

new,G(2)
(x̂(1)) of G(2)(x̂(1))\G(2)

reg(x̂
(1)) will be defined similarly. Indeed, the graph G(2)(x̂(1))

is (a2
1δ2, 1−d2, 1)-regular since it is the complement of the (a1δ2, d2, 1)-regular graph G(2)(x̂(1)). By (53), the

graph G(2)(x̂(1)) is then also (δ′2/d̃2, 1− d2, 1)-regular. Furthermore, G(2)
reg(x̂

(1)) is (2δ′2/d̃2, α
reg
2 d̃2, 1)-regular

(since G(2)
reg(x̂

(1)) is the union of αreg
2 disjoint (δ′2, d̃2, 1)-regular graphs and αreg

2 ≤ areg
2 ≤ 2/d̃2 by (48)).

Consequently, G(2)(x̂(1)) \ G(2)
reg(x̂

(1)) is (3δ′2/d̃2, 1− d2 − αreg
2 d̃2, 1)-regular.

We apply the Slicing Lemma with % = 1− d2 − αreg
2 d̃2, δ = 3δ′2/d̃2, p = d̃2/% and rSL = 1 to decompose

G(2)(x̂(1)) \ G(2)
reg(x̂

(1)) into a family P
(2)

new,G(2)
(x̂(1)) of bipartite graphs. We conclude that all but at most

one of which are (9δ′2/d̃2, d̃2, 1)-regular. Indeed, note that since (47) guaranteed that d2/d̃2 is an integer, we

are unable to ensure that 1/p = (1− d2 − αreg
2 d̃2)/d̃2 is an integer as well. Consequently, the application of

the Slicing Lemma may admit at most one sparse bipartite graph.
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For x̂(1) =
(

(λ, λ′), (β, β′)
)

, set

P
(2)
new(x̂(1)) = P

(2)

new,G(2)(x̂
(1)) ∪P

(2)

new,G(2)
(x̂(1))

and

P
(2)(x̂(1)) = P

(2)
new(x̂(1)) ∪P

(2)
orig(x̂

(1)) .

Also set z(x̂(1)) = |P(2)(x̂(1))|. The partition P(2)(x̂(1)) has the following properties:

(A) P(2)(x̂(1)) is a partition of Vλ,β × Vλ′,β′ .

(B) z(x̂(1)) ∈ {b2, b2 + 1}. Indeed, since all graphs but at most 1 from P(2)(x̂(1)) have density within

d̃2 ± 9δ′2/d̃2, it therefore follows that

1

d̃2 + 9δ′2/d̃2

≤ z(x̂(1)) ≤ 1

d̃2 − 9δ′2/d̃2

+ 1. (55)

It follows from (44) that 9δ′2/d̃2 < (d̃2/2)2 yielding (d̃2 − 9δ′2/d̃2)
−1 − (d̃2 + 9δ′2/d̃2)

−1 < 1. Conse-

quently, z(x̂(1)) ∈ {b2, b2 + 1} follows from (49).

(C ) P(2)(x̂(1)) refines G(2) = G̃(2) in the sense that for every α ∈ [z(x̂(1))] either P(2)
(

(x̂(1), α)
)

⊆ G(2)

or P(2)
(

(x̂(1), α)
)

∩ G = ∅.

(D) All graphs but at most one from P(2)(x̂(1)) are (9δ′2/d̃2, d̃2, 1)-regular. Moreover, the exceptional

graph belongs to P
(2)

new,G(2)
(x̂(1)) ⊆ P

(2)
new(x̂(1)) and we may assume with an appropriate addressing

the exceptional graph is always P(2)
(

(x̂(1), b2 + 1)
)

.

Now, we set

G̃(2)(x̂(1)) =
⋃

{

P(2) ∈ P
(2)(x̂(1)) : P(2) ⊆ G(2)

}

, G̃(2) =
⋃

{

G̃(2)(x̂(1)) : x̂(1) ∈ Â(1, b̄) = Â(1,a)
}

(56)

and we set

P
(2)
new =

⋃

{

P
(2)
new(x̂(1)) : x̂(1) ∈ Â(1, b̄)

}

,

P
(2)
orig =

⋃

{

P
(2)
orig(x̂

(1)) : x̂(1) ∈ Â(1, b̄)
}

and P
(2) = P

(2)
new ∪P

(2)
orig .

It is left to verify (I)–(III) of the statement (C2). Due to (54) and the definition of Ireg
2 (x̂(1)) and I

reg

2 (x̂(1)),

for every x̂(1) ∈ Â(1, b̄), we infer that

P
(2)
orig =

{

R(2)(y(2)) : R(2)(y(2)) is (δ′2, d̃2, 1)-regular
}

,

which yields (I) of (C2). Owing to (C ) from above and (56), we have G̃(2) = G(2) (which is (II)) and

P
(2) refines G̃(2) . (57)

Finally, from (B) (cf. (55)) and δ′2 ≤ d̃2δ̃2/18 (cf. (44)), we infer

1− δ̃2

d̃2

(44)

≤ d̃2
2

d̃2
2 + 9δ′2

(55)

≤ d̃2b2
(55)

≤ d̃2
2

d̃2
2 − 9δ′2

(44)

≤ 1 +
δ̃2

d̃2

. (58)

Now, (58) and (D) yield that P2 = {P(1),P(2)} is an almost perfect (9δ′2/d̃2, d̃2, r
′, b)-family (see Defini-

tion 29), which gives (III) of (C2).
We again remind the reader that we choose the addressing of the partition classes P(2) in such a way

that for each x(2) ∈ A(2, b), the graph P(2)(x(2)) is (9δ′2, /d̃2, d̃2, r
′)-regular. The graph P(2)(x(2)) may not

be (9δ′2, /d̃2, d̃2, r
′)-regular if and only if x(2) ∈ A(2, b̄) \A(2, b).

This concludes the construction of P(2) which satisfies (C2) and, therefore, we established the induction

start of our construction of P and G̃. Also note that we additionally verified (57).
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5.3.2. The Inductive Step. We proceed to the inductive step and construct partition P(j+1) and (n, `, j +1)-

cylinder G̃(j+1) which will satisfy (I)–(III) of (Cj+1). Moreover, we assume that P(h) and G̃(h) satisfying (Ch),
2 ≤ h ≤ j, are given. Moreover, due to (57), we assume Fact 41 holds as well for 2 ≤ h ≤ j.

Our work in constructing P(j+1) will be quite similar, albeit easier, than our work for constructing P(2).
This is in part because we do not require that G̃(j+1) = G(j+1) for j ≥ 2. It will be necessary to construct
P(j+1) before constructing G̃(j+1) as the partition ends up defining the hypergraph.

Construction of P(j+1) and G̃(j+1). We set the partition P(j+1) = P
(j+1)
new ∪P

(j+1)
orig of K

(j+1)
` (V1, . . . , V`)

separately for each family K(j)
j+1

(

P̂(j)(x̂(j))
)

of (j + 1)-tuples with x̂(j) ∈ Â(j, b̄).

Fix x̂(j) ∈ Â(j, b̄). We define the partition P(j+1)(x̂(j)) = P
(j+1)
new (x̂(j))∪P

(j+1)
orig (x̂(j)) ofK(j)

j+1

(

P̂(j)(x̂(j))
)

by distinguishing three cases.

Case 1 (x̂(j) ∈ Â(j, b̄) \ Â(j, b)). Observe that P̂(j)(x̂(j)) touches at least one of the exceptional graphs
from the construction of P(2). For the sake of consistency only (i.e., the partition P(j+1) should contain a

(n/b1, j+1, j+1)-cylinder P(j+1)(x(j+1)) for every x(j+1) ∈ A(j+1, b̄)), we split K(j)
j+1

(

P̂(j)(x̂(j))
)

arbitrarily

into bj+1 possibly empty classes. Clearly, all the (n/b1, j+1, j+1)-cylinders P(j+1)(x(j+1)) constructed in this

way satisfy x(j+1) ∈ Â(j +1, b̄)\ Â(j +1, b). The collection of these bj+1 disjoint (n/b1, j +1, j +1)-cylinders

defines P
(j+1)
new (x̂(j)). We set P

(j+1)
orig (x̂(j)) = ∅.

Case 2 (x̂(j) ∈ Â(j, b) and there exists 1 ≤ s ≤ j + 1 so that P(j)(∂sx̂
(j)) ∈ P

(j)
new). We appeal to (5 ) of

Fact 41 for j. Indeed, observe that K(j)
j+1

(

P̂(j)(x̂(j))
)

is (δ, 1, r)-regular w.r.t. P̂(j)(x̂(j)) for any positive δ and

integer r. Consequently, we may apply the Slicing Lemma, Lemma 31, with % = 1, p = d̃j+1, δ = 3δ′j+1/d̃j+1,

and rSL = r′ to F (j+1) = K(j)
j+1

(

P̂(j)(x̂(j))
)

. (Observe that 3δ = 9δ′/d̃j+1 < d̃j+1 = p% by (44).) Since

1/p = 1/d̃j+1 = bj+1 by (49), we obtain a collection of 1/d̃j+1 pairwise edge-disjoint (9δ′j+1/d̃j+1, d̃j+1, r
′)-

regular (n/b1, j + 1, j + 1)-cylinders P(j+1)
(

x̂(j), α)
)

with α ∈ [bj+1]. Denote by

P
(j+1)
new (x̂(j)) =

{

P(j+1)
(

(x̂(j), α)
)

: α ∈ [bj+1]
}

the family of (n/b1, j + 1, j + 1)-cylinders newly created. Again, set P
(j+1)
orig (x̂(j)) = ∅. This concludes our

treatment of Case 2.

Case 3 (x̂(j) ∈ Â(j, b) and P(j)(∂sx̂
(j)) ∈ P

(j)
orig for every 1 ≤ s ≤ j + 1). By the assumption of this case

and (I) of (Cj), we infer that there exists ŷ(j) ∈ Â(j,a) such that R̂(j)(ŷ(j)) = P̂(j)(x̂(j)). Recall the definition

of areg
j+1 = areg

j+1(ŷ
(j)) (preceding (48)). Without loss of generality, let

{

R(j+1)
(

(ŷ(j), α)
)}

α∈[areg
j+1]

be an

enumeration of the (δ′j+1, d̃j+1, r
′)-regular (n/b1, j+1, j+1)-cylinders (regular w.r.t. R̂(j)(ŷ(j)) = P̂(j)(x̂(j))).

We set

P
(j+1)
orig (x̂(j)) =

{

R(j+1)
(

(ŷ(j), α)
)

}

α∈[areg
j+1]

and (59)

P(j+1)
orig (x̂(j)) =

⋃

{

P(j+1) : P(j+1) ∈ P
(j+1)
orig (x̂(j))

}

=
⋃

α∈[areg
j+1]

R(j+1)
(

(ŷ(j), α)
)

.

Observe that P(j+1)
orig (x̂(j)) is (areg

j+1δ
′
j+1, a

reg
j+1d̃j+1, r

′)-regular w.r.t. P̂(j)(x̂(j)) (cf. Proposition 47) and, as

a consequence of (48), also (3δ′j+1/d̃j+1, a
reg
j+1d̃j+1, r

′)-regular. Then, K(j)
j+1

(

P̂(j)(x̂(j))
)

\ P(j+1)
orig (x̂(j)) is

(3δ′j+1/d̃j+1, 1− areg
j+1d̃j+1, r

′)-regular. We apply the Slicing Lemma to K(j)
j+1

(

P̂(j)(x̂(j))
)

\ P(j+1)
orig (x̂(j)) with

% = 1 − areg
j+1d̃j+1, p = d̃j+1/%, δ = 3δ′j+1/d̃j+1 (yielding 3δ < p% by (44)) and rSL = r′. Note that

1/p = %/d̃j+1 = 1/d̃j+1−areg
j+1 is an integer by (47). We thus obtain collection P

(j+1)
new (x̂(j)) of 1/d̃j+1−areg

j+1

pairwise edge-disjoint (9δ′j+1/d̃j+1, d̃j+1, r
′)-regular (n/b1, j + 1, j + 1)-cylinders P(j+1)

(

(x̂(j), α)
)

. Setting

P(j+1)(x̂(j)) = P
(j+1)
new (x̂(j))∪P

(j+1)
orig (x̂(j)) yields a partition of K(j)

j+1

(

P̂(j)(x̂(j))
)

into 1/d̃j+1−areg
j+1+areg

j+1 =

1/d̃j+1 = bj+1 (by (49)) disjoint (9δ′j+1/d̃j+1, d̃j+1, r
′)-regular (n/b1, j + 1, j + 1)-cylinders. This concludes

our treatment of Case 3.
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Now, we set

G̃(j+1)(x̂(j)) =
⋃

{

P(j+1) ∈ P
(j+1)
orig (x̂(j)) : P(j+1) ⊆ G(j+1)

}

G̃(j+1) =
⋃

{

G̃(j+1)(x̂(j)) : x̂(j) ∈ Â(j, b̄)
} (60)

and we set

P
(j+1)
new =

⋃

{

P
(j+1)
new (x̂(j)) : x̂(j) ∈ Â(j, b̄)

}

,

P
(j+1)
orig =

⋃

{

P
(j+1)
orig (x̂(j)) : x̂(j) ∈ Â(j, b̄)

}

and P
(j+1) = P

(j+1)
new ∪P

(j+1)
orig .

It is left to verify (I)–(III) of statement (Cj+1).

Confirmation of (Cj+1). First we verify (I). To this end, we establish the equality of sets in (I) by
decomposing the equality into its respective ‘⊆’ and ‘⊇’ parts, and begin by considering the former.

We verify the ‘⊆’ component of the equality of the sets in (I) of (Cj+1). Let P(j+1) = P(j+1)
(

(x̂(j+1), α)
)

∈
P

(j+1)
orig . Owing to the construction of P(j+1) above, P(j+1) originates from Case 3. By the assumption of

Case 3, we know that P(j)(∂sx̂
(j+1)) ∈ P

(j)
orig for every s ∈ [j+1]. Consequently, from (I) of (Cj) we infer that

for each s ∈ [j+1], there exists y
(j)
s such that R

(j)(y
(j)
s ) =

{

R(h)(y
(j)
s )
}j

h=1
is a

(

(δ′2, . . . , δ
′
j), (d̃2, . . . , d̃j), r

′
)

-

regular (n/a1, j, j)-complex and R(j)(y
(j)
s ) = P(j)(∂sx̂

(j+1)). Clearly,
{

⋃

s∈[j+1]

R(h)(y(j)
s )

}j

h=1

is
(

(δ′2, . . . , δ
′
j), (d̃2, . . . , d̃j), r

′
)

-regular (61)

and P̂(j)(x̂(j)) =
⋃

s∈[j+1]R(j)(y
(j)
s ). Moreover, by the construction in Case 3 and P(j+1) ∈ P

(j+1)
orig , there

exists R(j+1) ∈ R(j+1) such that P(j+1) = R(j+1) and R(j+1) is (δ′j+1, d̃j+1, r
′)-regular with respect to

⋃

s∈[j+1]R(j)(y
(j)
s ) = P̂(j)(x̂(j)). Then (61) yields the ‘⊆’ component of the equality in (I) of (Cj+1).

We now verify the ‘⊇’ component of the equality in (I). To that end, let ŷ(j) ∈ Â(j,a) and α ∈ [aj+1] be

given so that R
(j+1)

(

(ŷ(j), α)
)

=
{

R(h)
(

(y(j), α)
)}j+1

h=1
is a

(

(δ′2, . . . , δ
′
j+1), (d̃2, . . . , d̃j+1), r

′
)

-regular com-

plex. Hence, R(j+1)(∂sŷ
(j)) ∈ P

(j)
orig for every s ∈ [j + 1] by the induction assumption (more precisely

by (I) of (Cj)). Moreover, the (n, j + 1, j + 1)-cylinder R(j+1)
(

(ŷ(j), α)
)

is (δ′j+1, d̃j+1, r
′)-regular (i.e.,

α ∈ [areg
j+1(x̂

(j))]) and, consequently, R(j+1)
(

(ŷ(j), α)
)

∈ P
(j+1)
orig (cf. (59) in Case 3). This concludes the

proof of (I) of (Cj).

Since j +1 ≥ 3, part (II) follows directly from (60) (recall, that we defined G̃(2) slightly differently in (56)

so that G̃(2) = G(2)).
In order to verify (III), we appeal to the induction assumption, and in particular, to (III) of (Cj). Observe

that we only need to consider P(j+1)(x(j+1)) for x(j+1) ∈ A(j + 1, b). Hence, it suffices to consider the
constructions from Case 2 and Case 3. It is clear from the construction that in both of these cases we
partitioned K(j)

j+1

(

P̂(j)(x(j))
)

into bj+1 different (9δ′j+1/d̃j+1, d̃j+1, r
′)-regular (n/b1, j + 1, j + 1)-cylinders.

Consequently, (III) of (Cj+1) holds and (Cj+1) is verified.
This finishes the inductive proof of statement (Ci) for 2 ≤ i ≤ k − 1.

5.4. Finale. Having inductively defined partitions P(j) and hypergraphs G̃(j), 2 ≤ j ≤ k − 1, we proceed
to construct the promised hypergraph G̃(k) (see (62) below). Then we shall show that the conclusions of

Lemma 30 hold for P = {P(1), . . . ,P(k−1)} and G̃ = {G̃(j)}k
j=1.

Let Âreg

(

P(k−1)
orig ,G(k), k − 1, b

)

denote the set of x̂(k−1) ∈ Â(k − 1, b) for which P̂(k−1)(x̂(k−1)) ⊆ P(k−1)
orig

and G(k) is (δ̃k, r̃)-regular with respect to P̂(k−1)(x̂(k−1)). We set

G̃(k) =
⋃

{

G(k) ∩ K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)

: x̂(k−1) ∈ Âreg

(

P(k−1)
orig ,G(k), k − 1, b

)

}

. (62)

It is left to verify that the earlier constructed family of partitions P = {P(j)}k−1
j=1 and G̃ = {G̃(j)}k

j=1

satisfy the conclusion of Lemma 30.
30



Recall that for 2 ≤ j ≤ k−1, we constructed P(j) and G̃(j) so that (Cj) and (57) holds. Consequently, by
Fact 41 assertions (1 )–(5 ) hold for every j = 2, . . . , k − 1. The verification of Lemma 30 will rely on these
assertions.

We first show that
G̃ is an (n, `, k)-complex . (63)

By (2 ) of Fact 41 for j = k−1 we see that {G̃(j)}k−1
j=1 is an (n, `, k−1)-complex. Now, let K ∈ G̃(k). We have

to show that K ∈ K(k−1)
k (G̃(k−1)). From (62), we infer that K ∈ K(k−1)

k (G(k−1) ∩P(k−1)
orig ) and, consequently,

by (II) of (Ck−1), we have K ∈ K(k−1)
k (G̃(k−1)). Therefore, G̃(k−1) underlies G̃(k) and (63) follows.

Now we show that
d̃ is componentwise bigger than c̃ . (64)

Suppose d̃j ≤ c̃j for some 2 ≤ j ≤ k − 1. Recall, that d̃ was given by Corollary 28 as the density vector of

R(k− 1,a,ϕ). Moreover, Lk ≥ |A(k− 1,a)| and hence |Â(j − 1,a)| < 2`Lk
k for j = 2, . . . , k. Therefore, the

assumption d̃j ≤ c̃j = 1/(2`+1Lk
k) (see (46)) implies that the number of j-tuples in (δ′j , d̃j , r

′)-regular polyads

of R is at most 2`Lk
k(d̃j + δ′j)n

j ≤ 2`+1Lk
k c̃jn

j = nj/2. On the other hand, by (50), all but at most µ
(

k
j

)

nj

crossing j-tuples belong to (δ′j , d̃j , r
′)-regular polyads of R. Since (1/2 + µ

(

k
j

)

)nj ≤
(

`
j

)

nj the assumption

d̃j ≤ c̃j must be wrong and we infer that d̃j > c̃j for every 2 ≤ j ≤ k − 1, as claimed in (64).

Summarizing the above we infer that d̃j > c̃j for every 2 ≤ j ≤ k − 1, as claimed in (64).
Using (III) of (Ck−1) combined with (44) and (45) yields that

P = Pk−1 is an almost perfect (δ̃, d̃, r̃, b)-family of partitions . (65)

Moreover, (3 ) of Fact 41 for j = k − 1 states that

P = Pk−1 refines G̃ . (66)

From (63)–(66) we infer that it is left to show (i)–(v) of Lemma 30, only. We observe that (i) is immediate

from the construction of G̃(k) in (62). Also, due to (62), (II) of (Cj) for j = 2, . . . , k − 1 (see also (1 ) of

Fact 41), and the definition of G̃(1) = G(1) we have (ii) of Lemma 30.
Now we verify (iii) of Lemma 30. For 3 ≤ j < k it is given by part (4 ) of Fact 41. For j = k, we recall

the definition of G̃(k) in (62) and consider G(k) \ G̃(k). There are two reasons for a k-tuple K ∈ G(k) to be in

G(k) \ G̃(k). Either K 6∈ K(k−1)
k (P(k−1)

orig ) or K belongs to a polyad P̂(k−1) such that G(k) is (δ̃k, r̃)-irregular

w.r.t. P̂(k−1).
Consider a k-tuple of the first type, i.e., K 6∈ K(k−1)

k (P(k−1)
orig ). Owing to (I) of (Ck−1) we see that K belongs

to a
(

(δ′2, . . . , δ
′
k−1), (d̃2, . . . , d̃k−1), r

′)-irregular (n/a1, k, k−1)-complex of the original family of partitions R.

Consequently, by (50) (with j = k) there are at most µnk k-tuples K of the first type (K 6∈ K(k−1)
k (P(k−1)

orig )).
Now consider a k-tuple K, which is not of the first type, but of the second type. In particular, K ∈

K(k−1)
k (P(k−1)

orig ) and G(k) is (δ̃k, r̃)-irregular w.r.t. P̂(k−1), the underlying polyad of K in the family of parti-

tions P. From (I) of (Ck−1) we infer that P̂(k−1) corresponds to k different (n, k− 1, k− 1)-cylinders, which

are all elements of R(k−1). Since R is a (δ′k, r′)-regular partition w.r.t. G(k) and δ̃k ≥ δ′k and r̃ ≤ r′ (cf. (44)

and (45)), there are at most δ′knk k-tuples K ∈ G(k) ∩ K(k−1)
k (P(k−1)

orig ) so that G(k) is (δ̃k, r̃)-irregular w.r.t.

to the underlying polyad P̂(k−1) of K.
Summarizing the above, we infer that

|G(k)4G̃(k)| = |G(k) \ G̃(k)| ≤ (µ + δ′k)nk (43)
= 2µnk.

Consequently, by the choice of δ′k in (43), the following holds for every k ≤ i ≤ `,

∣

∣

∣
K

(k)
i (G̃(k))4K

(k)
i (G(k))

∣

∣

∣
≤ 2µnk ×

(

`− k

i− k

)

ni−k
(43)

≤ δ̃k

k
∏

h=2

d
(i

h)
h × ni ,

which completes the verification of (iii) of Lemma 30.

We further note that (iv) of Lemma 30 is an immediate consequence of b1 = a1 ≤ rankR ≤ Lk ≤ L̃k

(cf. (46)), G̃(2) = G(2) and the assumption of Lemma 30 that G is a (δ,d, 1)-regular complex.
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Finally, we show (v) of Lemma 30 as follows:

rankP = |A(k − 1, b̄)| =
(

`

k − 1

)

bk−1
1 (b2 + 1)(

k−1
2 )

k−1
∏

j=3

b
(k−1

j )
j

≤
(

`

k − 1

)

ak−1
1 (2b2)

(k−1
2 )

k−1
∏

j=3

b
(k−1

j )
j

(49)

≤ 2`+2(k−1
2 )Lk−1

k

k−1
∏

j=2

(

1

d̃j

)(k−1
j )

.

Then (v) follows from c̃ ≤ d̃ and the choice of L̃k in (46).
This completes the proof of Lemma 30.

6. Proofs concerning Cleaning Phase II

We prove Lemma 37 and Lemma 38 in this section. We work in the context of Setup 36, the environment
after Cleaning Phase I (after an application of Lemma 30) with the constants from Figure 2. The main
objective of this section is to construct the complexes H+ and H− stated in Lemma 37 and Lemma 38. We
prove these lemmas in Section 6.2 and Section 6.3, respectively. The following section, Section 6.1, contains
some preliminary facts, which are immediate consequences of the choice of constants given in Section 4.4.1
(see Figure 2).

6.1. Preliminary Facts. We start with the following facts which we apply liberally in the remainder of
this section. The first two facts are immediate consequences of IHCk−1,` and the choice of constants in
Section 4.4.1 (applied to differing setups).

Fact 42. For all integers 2 ≤ j < k and j < i ≤ ` and every Λi ∈
(

[`]
i

)

,

∣

∣

∣
K(j)

i

(

G(j)[Λi]
)

∣

∣

∣
= (1± η)

j
∏

h=2

d
(i

h)
h × ni , (67)

∣

∣

∣
K(j)

i

(

G̃(j)[Λi]
)

∣

∣

∣
=
(

1± (η + δ̃k)
)

j
∏

h=2

d
(i

h)
h × ni . (68)

Consequently, by the choice of η in (19) and δ̃k ≤ 1/8 in (22),

∣

∣

∣
K(j)

i

(

G̃(j)[Λi]
)

∣

∣

∣
≥ 1− 1/4− δ̃k

1 + 1/4

∣

∣

∣
K(j)

i

(

G(j)[Λi]
)

∣

∣

∣
≥ 1

2

∣

∣

∣
K(j)

i

(

G(j)[Λi]
)

∣

∣

∣
. (69)

Proof. Due to the choice of δ = (δ2, . . . , δk−1) and r (cf. (20), (26), and (27)) for 2 ≤ j < k, the com-

plex G
(j) = {G(h)}j

h=1 satisfies the assumption of IHCk−1,`. As such, we conclude that (67) holds. Since G̃

is given by Lemma 30, it satisfies (iii) of that lemma and (68) follows. �

In the following fact, Ȟ
(j−1)

represents an arbitrary regular (n/b1, i, j − 1)-complex arising from an

application of Lemma 30 (i.e., the complex Ȟ
(j−1)

is “built from blocks” of the partition P).

Fact 43. If 1 ≤ j − 1 < k and j ≤ i ≤ ` and Ȟ
(j−1)

= {Ȟ(h)}j−1
h=1 is a

(

(δ̃2, . . . , δ̃j−1), (d̃2, . . . , d̃j−1), r̃)-
regular (n/b1, i, j − 1)-complex, then

∣

∣

∣
K(j−1)

i

(

Ȟ(j−1)
)

∣

∣

∣
= (1± η̃)

j−1
∏

h=2

d̃
(i

h)
h ×

(

n

b1

)i

. (70)

In particular, for every 1 ≤ j − 1 < k and every x̂(j−1) ∈ Â(j − 1, b),

∣

∣

∣
K(j−1)

j

(

P̂(j−1)(x̂(j−1))
)

∣

∣

∣
= (1± η̃)

j−1
∏

h=2

d̃
(j

h)
h ×

(

n

b1

)j

. (71)
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Proof. Similarly as in the proof of Fact 42, by the choice of η̃ and δ̃ = (δ̃2, . . . , δ̃k−1) and r̃ (cf. (22) and (24)),

we infer that Ȟ
(j−1)

for 2 ≤ j − 1 ≤ k − 1 satisfies the assumptions of IHCk−1,` and, consequently, (70) of
Fact 43 holds. �

Recall that G is a (δ,d, r)-regular complex where by (ii) and (iii) of Lemma 30 (with i = j)

G(1) = G̃(1), G(2) = G̃(2) and
∣

∣

∣
G(j) \ G̃(j)

∣

∣

∣
≤ δ̃k

j
∏

h=2

d
(j

h)
h × nj for 3 ≤ j ≤ k . (72)

Since δ̃k is significantly smaller than δj , 3 ≤ j ≤ k (cf. Figure 2), we infer the following fact by a standard
argument.

Fact 44. The (n, `, k)-complex G̃ is (2δ,d, r)-regular.

Proof. By the choice of the constants in Section 4.4.1, we infer that G̃(2) = G(2) (see Lemma 30 (ii)) and

hence G̃(2) = G(2) is (δ2, d2, 1)-regular w.r.t. G̃(1) = G(1).

We now show that G̃(j) is (2δj , dj , r)-regular w.r.t. G̃(j−1) for each j ≥ 3. Let j and Λj ∈
(

[`]
j

)

be fixed.

Let Q
(j−1) =

{

Q(j−1)
s

}

s∈[r]
be a family of subhypergraphs of G̃(j−1) [Λj ] ⊆ G(j−1) [Λj ] such that

∣

∣

∣

∣

⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

≥ 2δj

∣

∣

∣
K(j−1)

j

(

G̃(j−1) [Λj ]
)∣

∣

∣
.

From (67) and (69), we then infer

∣

∣

∣

∣

⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

> δj

∣

∣

∣
K(j−1)

j

(

G(j−1) [Λj ]
)∣

∣

∣
≥ δj(1− η)

j−1
∏

h=2

d
(j

h)
h × nj . (73)

Since Q
(j−1) is a family of subhypergraphs of G(j−1) [Λj ] and since G(j) [Λj ] is (δj , dj , r)-regular with respect

to G(j−1) [Λj ], we see
∣

∣

∣

∣

G(j) [Λj ] ∩
⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

= (dj ± δj)

∣

∣

∣

∣

⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

. (74)

On the other hand, (72) and (74) imply

∣

∣

∣

∣

G̃(j) [Λj ] ∩
⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

(72)
=

∣

∣

∣

∣

G(j) [Λj ] ∩
⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

± δ̃k

j
∏

h=2

d
(j

h)
h × nj

(74)
= (dj ± δj)

∣

∣

∣

∣

⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

± δ̃k

j
∏

h=2

d
(j

h)
h × nj

= (dj ± 2δj)

∣

∣

∣

∣

⋃

s∈[r]

K(j−1)
j

(

Q(j−1)
s

)

∣

∣

∣

∣

,

where the last equality uses (73) and δ̃kdj ≤ δ2
j (1− η) for j ≥ 3. �

6.2. Proof of Lemma 37. The proof of Lemma 37 will take place in stages. Setting H(1) = G̃(1) and
H(2) = G̃(2) satisfies part (a) of Lemma 37. We prove part (b) of Lemma 37 in Section 6.2.1 and part (c) in
Section 6.2.3.

6.2.1. Proof of Property (b) of Lemma 37. We prove part (b) by induction on j.

Induction Start. Recall that we set H(2) = G̃(2). Consequently, the symmetric difference considered in
part (b2 ) of Lemma 37 is empty. Hence, (b2 ) holds trivially for j = 2 and it is left to verify (b1 ). To that

33



end, let x̂(1) = ((λ1, λ2), (β1, β2)) ∈ Â(H(1), 1, b) = Â(1, b) be fixed. From part (iv) of Lemma 30, we infer

d
(

G̃(2)
∣

∣P̂(1)
(

x̂(1)
))

= d2 ± L̃2
kδ2. From (ii) of Definition 29, we then infer

d2 − L̃2
kδ2

d̃2 + δ̃2

≤
∣

∣

∣
I
(

x̂(1)
)

∣

∣

∣
≤ d2 + L̃2

kδ2

d̃2 − δ̃2

.

As such, to verify (b1 ), we may show that the left-hand side of the last inequality is bigger than d2b2 − 1
and the right-hand side is less than d2b2 + 1. Consequently, it suffices to verify

(d̃2 + δ̃2)(d2b2 − 1) < d2 − L̃2
kδ2 and d2 + L̃2

kδ2 < (d2b2 + 1)(d̃2 − δ̃2) . (75)

The proofs of both inequalities are similar and we only present the details for the first one here.
We consider the left-hand side of the first inequality in (75) and see

(d̃2 + δ̃2)(d2b2 − 1) < d̃2d2b2 − d̃2 + δ̃2d2b2 ≤ d2(1 + δ̃2/d̃2)− d̃2 + δ̃2b2 ≤ d2 + δ̃2/d̃2 − d̃2 + δ̃2b2 . (76)

where we use (i) of Definition 29 for the last inequality. Again, from (i) of Definition 29 and d̃2 > δ̃2, we

know b2 < 2/d̃2. Therefore, using δ̃2 ≪ d̃2 gives the following bound for the right-hand side of (76)

d2 + δ̃2/d̃2 − d̃2 + δ̃2b2 < d2 − d̃2 + 3δ̃2/d̃2 < d2 − d̃2 +

√

δ̃2 . (77)

Summarizing (76) and (77), the first inequality of (75) follows from the choice of constants d̃2 ≫ δ̃2 ≫ L̃2
kδ2

(see Figure 2), by

(d̃2 + δ̃2)(d2b2 − 1) < d2 − d̃2 +

√

δ̃2 < d2 − L̃2
kδ2 .

Induction Step. Assume that for 2 ≤ j < k, part (b) of Lemma 37 holds for j − 1 with inductively

defined complex H
(j−1) = {H(h)}j−1

h=1. We construct the sets I(x̂(j−1)), x̂(j−1) ∈ Â
(

H(j−1), j − 1, b
)

,

and hypergraph H(j) satisfying (b1 ) and (b2 ). We first define the following set of indices crucial for our
constructions.

For a vector x̂(j−1) ∈ Â
(

H(j−1), j − 1, b
)

, set

J
(

x̂(j−1)
)

=
{

β ∈ [bj ] : P(j)
(

(x̂(j−1), β)
)

⊆ G̃(j)
}

. (78)

For x̂(j−1) ∈ Â
(

H(j−1), j − 1, b
)

, observe
∣

∣

∣
G̃(j) ∩ K(j−1)

j

(

P(j−1)(x̂(j−1))
)

∣

∣

∣
=

∑

β∈J(x̂(j−1))

∣

∣

∣
P(j)

(

(x̂(j−1), β)
)

∣

∣

∣
. (79)

Now we construct the sets I(x̂(j−1)) for every x̂(j−1) in Â(H(j−1), j − 1, b).

• If
∣

∣J(x̂(j−1))
∣

∣ > djbj , then I(x̂(j−1)) is defined by removing
∣

∣J(x̂(j−1))
∣

∣−djbj arbitrary indices from

J(x̂(j−1)).

• If
∣

∣J(x̂(j−1))
∣

∣ < djbj , then I(x̂(j−1)) is defined by adding djbj −
∣

∣J(x̂(j−1))
∣

∣ arbitrary indices of

[bj ] \ J(x̂(j−1)) to J(x̂(j−1)).

This defines the sets I(x̂(j−1)).

For upcoming considerations, we define the set B̂(j−1) of addresses x̂(j−1) ∈ Â(H(j−1), j − 1, b) for which

|J(x̂(j−1))4 I(x̂(j−1))| is ‘too big’. More precisely, we define

B̂(j−1) =
{

x̂(j−1) ∈ Â(H(j−1), j − 1, b) :
∣

∣J(x̂(j−1))4 I(x̂(j−1))
∣

∣ >
√

δjdjbj

}

. (80)

We prove the following claim in Section 6.2.2.

Claim 45.
∣

∣

∣
B̂(j−1)

∣

∣

∣
< 2

√

δj

∏j−1
h=2 (dhbh)(

j

h) × bj
1 .

We define hypergraph H(j) as

H(j) =
⋃

{

P(j)
(

(x̂(j−1), α)
)

: x̂(j−1) ∈ Â(H(j−1), j − 1, b) ∧ α ∈ I(x̂(j−1))
}

. (81)
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We now prove Property (b) of Lemma 37, and to that end, we establish both parts (b1 ) and (b2 ). Note,

however, that with I(x̂(j−1)), x̂(j−1) ∈ Â(H(j−1), j − 1, b), and H(j) constructed above, Property (b1 ) of
Lemma 37 follows immediately. Thus, it remains to prove Property (b2 ).

Let j ≤ i ≤ ` be fixed and consider the set K(j)
i (H(j))4K(j)

i (G̃(j)). Clearly, for every i-tuple I0 ∈
K(j)

i (H(j))4K(j)
i (G̃(j)), there exists a j-tuple J0 ∈

(

I0

j

)

such that J0 ∈ H(j)4G̃(j). We note that one

possibility for J0 ∈ H(j)4G̃(j) is that J0 ∈ K(j−1)
j (H(j−1))4K(j−1)

j (G̃(j−1)). Since we have some control

over the cardinality of K(j−1)
j (H(j−1))4K(j−1)

j (G̃(j−1)) (by the induction assumption on (b1 )), it is natural

to split the i-tuples I0 ∈ K(j)
i (H(j))4K(j)

i (G̃(j)) into two parts, K
(j)
i (1) and K

(j)
i (2), depending on whether

there is a J0 ∈
(

I0

j

)

as described above. More precisely, we define

K
(j)
i (1) =

{

I0 ∈
(

K(j)
i (H(j))4K(j)

i (G̃(j))
)

: ∃J0 ∈
(

I0

j

)

so that J0 ∈
(

K(j−1)
j (H(j−1))4K(j−1)

j (G̃(j−1))
)

}

and

K
(j)
i (2) =

(

K(j)
i (H(j))4K(j)

i (G̃(j))
)∖

K
(j)
i (1)

=

{

I0 ∈
(

K(j)
i (H(j))4K(j)

i (G̃(j))
)

: ∀J0 ∈
(

I0

j

)

J0 6∈
(

K
(j−1)
j (H(j−1))4K(j−1)

j (G̃(j−1))
)

}

.

Observe that we may rewrite K
(j)
i (2) as

K
(j)
i (2) =

{

I0 ∈
(

K(j)
i (H(j))4K(j)

i (G̃(j))
)

: ∀J0 ∈
(

I0

j

)

J0 ∈
(

K(j−1)
j (H(j−1)) ∩ K(j−1)

j (G̃(j−1))
)

}

. (82)

Indeed, for the equality (of sets) in (82), the inclusion ‘⊇’ is obvious. The opposite inclusion ‘⊆’ follows

from the fact that K(j)
i (H(j))4K(j)

i (G̃(j)) ⊆ K(j)
i (H(j)) ∪ K(j)

i (G̃(j)) and, consequently, for every considered

I0 and J0 ∈
(

I0

j

)

, we have J0 ∈ K(j−1)
j (H(j−1)) ∪ K(j−1)

j (G̃(j−1)). The ‘⊆’ inclusion then follows. Note that

from (82), we infer

K
(j)
i (2) ⊆ K(j−1)

i (H(j−1)) ∩ K(j−1)
i (G̃(j−1)) . (83)

We now consider a subdivision of K
(j)
i (2). From (82), we infer that all I0 ∈ K

(j)
i (2) only ‘touch’ polyads

P̂(j−1)(x̂(j−1)) with x̂(j−1) ∈ Â(H(j−1), j − 1, b). Let K
(j)
i (2, 1) be the set of all I0 ∈ K

(j)
i (2) which ‘touch’

a bad polyad P̂(j−1)(x̂(j−1)) (bad in the sense of Claim 45) with x̂(j−1) ∈ B̂(j−1) ⊆ Â(H(j−1), j − 1, b).
Formally, set

K
(j)
i (2, 1) =

{

I0 ∈ K
(j)
i (2) : ∃ J0 ∈

(

I0

j

)

and x̂(j−1) ∈ B̂(j−1)so that J0 ∈ K(j−1)
j

(

P̂(j−1)(x̂(j−1))
)

}

.

The remaining I0 ∈ K
(j)
i (2) \ K

(j)
i (2, 1) ‘touch’ only good polyads. However, as observed earlier, for every

such I0, there exists a J0 ∈
(

I0

j

)

such that J0 ∈ H(j)4G̃(j). Recall that the union of the sets J(x̂(j−1)) with

x̂(j−1) ∈ Â(H(j−1), j − 1, b) represents G̃(j) ∩ K(j−1)
j (H(j−1)) (cf. (78)) and similarly the union of I(x̂(j−1))

represents H(j) (cf. (81)). Consequently, J(x̂(j−1))4 I(x̂(j−1)) represents the difference of G̃(j) and H(j) on

the underlying polyad having address x̂(j−1). Hence, we infer that for every I0 ∈ K
(j)
i (2)\K(j)

i (2, 1), there exist

a J0 ∈
(

I0

j

)

, x̂(j−1) ∈ Â(H(j−1), j−1, b)\B̂(j−1) and α ∈ J(x̂(j−1))4 I(x̂(j−1)) so that J0 ∈ P(j)
(

(x̂(j−1), α)
)

.

We therefore set

K
(j)
i (2, 2) =

{

I0 ∈ K
(j)
i (2) : ∃ J0 ∈

(

I0

j

)

, x̂(j−1) ∈ Â(H(j−1), j − 1, b) \ B̂(j−1)

and α ∈ J(x̂(j−1))4 I(x̂(j−1)) so that J0 ∈ P(j)
(

(x̂(j−1), α)
)

}

.

Note that K
(j)
i (2, 1) and K

(j)
i (2, 2) are not necessarily disjoint. However, K

(j)
i (2) = K

(j)
i (2, 1) ∪ K

(j)
i (2, 2) and

therefore
∣

∣

∣
K(j)

i

(

H(j)
)

4K(j)
i

(

G̃(j)
)

∣

∣

∣
≤

∣

∣K
(j)
i (1)

∣

∣ +
∣

∣K
(j)
i (2, 1)

∣

∣ +
∣

∣K
(j)
i (2, 1)

∣

∣ . (84)
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In what follows, we derive an upper bound for each term of the right-hand side of (84) which all combined
yield part (b2 ) of Lemma 37.

Bounding |K(j)
i (1)|. The upper bound on |K(j)

i (1)| follows from the induction assumption on part (b) of
Lemma 37. First, observe that

K
(j)
i (1) ⊆ K(j−1)

i

(

H(j−1)
)

4K(j−1)
i

(

G̃(j−1)
)

. (85)

Indeed, if I0 ∈ K
(j)
i (1), then (immediately) I0 ∈ K(j)

i (H(j))4K(j)
i (G̃(j)). Assume, without loss of generality,

that I0 ∈ K(j)
i (H(j)) \ K(j)

i (G̃(j)) (the other case is symmetric). Since, K(j)
i (H(j)) ⊆ K(j−1)

i (H(j−1)) we have

I0 ∈ K(j−1)
i (H(j−1)) . (86)

On the other hand, due to the definition of K
(j)
i (1), for each such I0 there exists J0 ∈

(

I0

j

)

satisfying

J0 ∈ K(j−1)
j (H(j−1))4K(j−1)

j (G̃(j−1)). From (86), we also have J0 ∈ K(j−1)
j (H(j−1)) and hence J0 6∈

K(j−1)
j (G̃(j−1)). Consequently, I0 6∈ K(j−1)

i (G̃(j−1)) and thus I0 ∈ K(j−1)
i (H(j−1))4K(j−1)

i (G̃(j−1)) which

yields (85).
Now the induction assumption on (b2 ), with j replaced by j − 1, gives the following:

∣

∣

∣
K

(j)
i (1)

∣

∣

∣
≤
∣

∣

∣
K(j−1)

i

(

H(j−1)
)

4K(j−1)
i

(

G̃(j−1)
)

∣

∣

∣
≤ δ

1/3
j−1

(

j−1
∏

h=2

d
(i

h)
h

)

ni ≤ 1

3
δ
1/3
j

(

j
∏

h=2

d
(i

h)
h

)

ni (87)

where the last inequality follows from the choice of constants summarized in Figure 2 ensuring δ
1/3
j−1 ≪

δ
1/3
j d

(i

j)
j .

Bounding |K(j)
i (2, 1)|. By Property (b1 ), there are

(

`−j
i−j

)(
∏j−1

h=2(dhbh)(
i

h)−(j

h)
)

bi−j
1 different ways to com-

plete any given P̂(j−1)(x̂(j−1)) with x̂(j−1) ∈ Â(H(j−1), j−1, b) to a
(

(δ̃2, . . . , δ̃j−1), (d̃2, . . . , d̃j−1), r̃
)

-regular

(n/b1, i, j − 1)-subcomplex Ȟ
(j−1)

= {Ȟ(h)}j−1
h=1 of H

(j−1). Then, (70) of Fact 43 yields that for each such

Ȟ(j−1),
∣

∣

∣
K(j−1)

i

(

Ȟ(j−1)
)

∣

∣

∣
≤ (1 + η̃)

(

j−1
∏

h=2

d̃
(i

h)
h

)

(

n

b1

)i

≤ 2

(

j−1
∏

h=2

d̃
(i

h)
h

)

(

n

b1

)i

.

Using (83) and Claim 45 (for the second inequality below), we therefore see

∣

∣

∣
K

(j)
i (2, 1)

∣

∣

∣
≤
∣

∣

∣
B̂(j−1)

∣

∣

∣
×
(

`− j

i− j

)

(

j−1
∏

h=2

(dhbh)(
i

h)−(j

h)

)

bi−j
1 × 2

(

j−1
∏

h=2

d̃
(i

h)
h

)

(

n

b1

)i

≤ 4

(

`− j

i− j

)

√

δj

(

j−1
∏

h=2

(dhbh)(
i

h)

)(

j−1
∏

h=2

d̃
(i

h)
h

)

ni ≤ 4

(

`− j

i− j

)

√

δj

(

j−1
∏

h=2

(dhbhd̃h)(
i

h)

)

ni ,

and so, by (31) and the choice of δj ≪ dj , we have the upper bound

∣

∣

∣
K

(j)
i (2, 1)

∣

∣

∣
≤ 4

(

`− j

i− j

)

(1 + ν)
√

δj

(

j−1
∏

h=2

d
(i

h)
h

)

ni ≤ 1

3
δ
1/3
j

(

j
∏

h=2

d
(i

h)
h

)

ni . (88)

Bounding |K(j)
i (2, 2)|. First, let x̂(j−1) ∈ Â(H(j−1), j−1, b)\ B̂(j−1) and α ∈ J(x̂(j−1))4 I(x̂(j−1)) be fixed

and consider the (n/b1, j, j)-complex implicitly given by P(j)
(

(x̂(j−1), α)
)

. By Property (b1 ), there are

(

`− j

i− j

)

bi−j
1

(

j−1
∏

h=2

(dhbh)(
i

h)−(j

h)

)

b
(i

j)−1

j = d
1−(i

j)
j

(

`− j

i− j

)

bi−j
1

j
∏

h=2

(dhbh)(
i

h)−(j

h)

ways to complete any P(j)
(

(x̂(j−1), α)
)

to a
(

(δ̃2, . . . , δ̃j), (d̃2, . . . , d̃j), r̃
)

-regular (n/b1, i, j)-complex Ȟ
(j)

=

{Ȟ(h)}j
h=1 in such a way that {Ȟ(h)}j−1

h=1 is a subcomplex of H
(j−1).
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Then (70) of Fact 43 yields

∣

∣

∣
K(j)

i (Ȟ(j))
∣

∣

∣
≤ (1 + η̃)

j
∏

h=2

d̃
(i

h)
h ×

(

n

b1

)i

for every such Ȟ(j). Now, summing over all choices x̂(j−1) ∈ Â(H(j−1), j−1, b)\ B̂(j−1) ⊆ Â(H(j−1), j−1, b)

and α ∈ J(x̂(j−1))4 I(x̂(j−1)) gives

∣

∣

∣
K

(j)
i (2, 2)

∣

∣

∣

(83)

≤
∣

∣

∣
Â
(

H(j−1), j − 1, b
)

∣

∣

∣
× max

{

∣

∣

∣
J
(

x̂(j−1)
)

4 I
(

x̂(j−1)
)

∣

∣

∣
: x̂(j−1) 6∈ B̂(j−1)

}

×

× d
1−(i

j)
j

(

`− j

i− j

)

bi−j
1

(

j
∏

h=2

(dhbh)(
i

h)−(j

h)

)

× (1 + η̃)

(

j
∏

h=2

d̃
(i

h)
h

)

(

n

b1

)i

.

(89)

By Property (b1 ),
∣

∣

∣
Â
(

H(j−1), j − 1, b
)

∣

∣

∣
=

(

`

j

)

(

j−1
∏

h=2

(dhbh)(
j

h)

)

bj
1 .

Also note that for each x̂(j−1) 6∈ B̂(j−1),
∣

∣J(x̂(j−1))4 I(x̂(j−1))
∣

∣ ≤
√

δjdjbj . Consequently, the right-hand
side of (89) is less than

d
1−(i

j)
j

(

`

j

)(

`− j

i− j

)

√

δj(1 + η̃)

(

j
∏

h=2

(dhbhd̃h)(
i

h)

)

ni

Now, using (31), the choice of η̃ and δj ≪ dj yields

∣

∣

∣
K

(j)
i (2, 2)

∣

∣

∣
≤ 1

3
δ
1/3
j

(

j
∏

h=2

d
(i

h)
h

)

ni . (90)

Finally, (84) combined with (87), (88), and (90) yields part (b2 ) of Lemma 37. In order to complete the
proof of part (b) of Lemma 37 we still have to verify Claim 45.

6.2.2. Proof of Claim 45. The proof is rather straightforward in the genre of hypergraph regularity. We first

split the set B̂(j−1) into two parts B̂
(j−1)
+ and B̂

(j−1)
− as follows:

B̂
(j−1)
+ =

{

x̂(j−1) ∈ Â
(

H(j−1), j − 1, b
)

:
∣

∣

∣
J
(

x̂(j−1)
)

∣

∣

∣
>
(

1 +
√

δj

)

djbj

}

B̂
(j−1)
− =

{

x̂(j−1) ∈ Â
(

H(j−1), j − 1, b
)

:
∣

∣

∣
J
(

x̂(j−1)
)

∣

∣

∣
<
(

1−
√

δj

)

djbj

}

.
(91)

We prove the following claim which in view of Fact 44 is a slightly stronger statement than Claim 45.

Claim 45′. If for some ∗ ∈ {+,−},
∣

∣

∣
B̂

(j−1)
∗

∣

∣

∣
≥
√

δj

(

j−1
∏

h=2

(dhbh)(
j

h)

)

bj
1 ,

then G̃(j) is not (2δj , dj , r)-regular w.r.t. G̃(j−1).

Proof. We prove the case ∗ = − only with the other case very similar. We assume there exists an ordered

set Λj ∈
(

[`]
j

)

<
such that

∣

∣

∣
B̂

(j−1)
− [Λj ]

∣

∣

∣
≥
√

δj
(

`
j

)

(

j−1
∏

h=2

(dhbh)(
j

h)

)

bj
1 (92)

where B̂
(j−1)
− [Λj ] is the set of x̂(j−1) = (x̂0, . . . , x̂j−1) ∈ B̂

(j−1)
− such that x̂0 = Λj .

We show that (92) implies that G̃(j) is irregular. Note that the polyad addresses x̂(j−1) in B̂
(j−1)
− [Λj ]

considered in (92) correspond to subhypergraphs of H(j−1) and not necessarily to subhypergraphs of G̃(j−1).
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The set Γ̂
(j−1)
− [Λj ] which we define below is the subset of those polyad addresses of B̂

(j−1)
− [Λj ] which corre-

spond to subhypergraphs of G̃(j−1) as well. Only those addresses are useful to verify Claim 45′. We therefore
set

Γ̂
(j−1)
−

[Λj ] = B̂
(j−1)
−

[Λj ] ∩ Â
(

G̃(j−1), j − 1, b
)

(93)

and

Q̂
(j−1)

=
{

P̂(j−1)
(

x̂(j−1)
)

: x̂(j−1) ∈ Γ̂
(j−1)
−

[Λj ]
}

=
{

Q̂(j−1)
1 , . . . , Q̂(j−1)

t

}

where t =
∣

∣Γ̂
(j−1)
−

[Λj ]
∣

∣. In what follows, we show
∣

∣

∣

∣

⋃

s∈[t]

{

K(j−1)
j

(

Q̂(j−1)
s

)

}

∣

∣

∣

∣

> 2δj

∣

∣

∣
K(j−1)

j

(

G̃(j−1)[Λj ]
)∣

∣

∣
(94)

and

d
(

G̃(j)
∣

∣Q̂
(j−1)

)

< dj − 2δj . (95)

From (29), we see that r ≥
∣

∣Â(j − 1, b)
∣

∣ ≥ t. Therefore, establishing (94) and (95) proves Claim 45′.

We first verify (94). Observe that due to the definition of Γ̂
(j−1)
−

[Λj ] in (93),

B̂
(j−1)
−

[Λj ] \ Γ̂
(j−1)
−

[Λj ] ⊆ Â
(

H(j−1), j − 1, b
)

∖

Â
(

G̃(j−1), j − 1, b
)

⊆ Â
(

H(j−1), j − 1, b
)

4 Â
(

G̃(j−1), j − 1, b
)

(96)

and since P(j−1) respects H(j−1) (cf. part (b1 )) and P(j−1) respects G̃(j−1) (cf. Setup 36),
⋃

{

K(j−1)
j

(

P̂(j−1)(x̂(j−1))
)

: x̂(j−1) ∈ Â
(

H(j−1), j − 1, b
)

4 Â
(

G̃(j−1), j − 1, b
)

}

= K(j−1)
j

(

H(j−1)
)

4K(j−1)
j

(

G̃(j−1)
)

. (97)

Combining (96) and (97) with the induction hypothesis on (b2 ) for j − 1 yields
∣

∣

∣

⋃

{

K(j−1)
j

(

P̂(j−1)(x̂(j−1))
)

: x̂(j−1) ∈ B̂
(j−1)
−

[Λj ] \ Γ̂
(j−1)
−

[Λj ]
}∣

∣

∣

≤
∣

∣

∣
K(j−1)

j

(

H(j−1)
)

4K(j−1)
j

(

G̃(j−1)
)

∣

∣

∣
< δ

1/3
j−1

(

j−1
∏

h=2

d
(j

h)
h

)

nj .

Consequently, we have
∣

∣

∣

∣

⋃

s∈[t]

{

K(j−1)
j

(

Q̂(j−1)
s

)

}

∣

∣

∣

∣

=
∣

∣

∣

⋃

{

K(j−1)
j

(

P̂(j−1)(x̂(j−1))
)

: x̂(j−1) ∈ Γ̂
(j−1)
−

[Λj ]
}∣

∣

∣

≥
∑

{∣

∣

∣
K(j−1)

j

(

P̂(j−1)(x̂(j−1))
)

∣

∣

∣
: x̂(j−1) ∈ B̂

(j−1)
−

[Λj ]
}

− δ
1/3
j−1

(

j−1
∏

h=2

d
(j

h)
h

)

nj .

Applying (71) of Fact 43 to each term in the sum above yields the further lower bound

∣

∣

∣
B̂

(j−1)
−

[Λj ]
∣

∣

∣
(1− η̃)

(

j−1
∏

h=2

d̃
(j

h)
h

)

(

n

b1

)j

− δ
1/3
j−1

(

j−1
∏

h=2

d
(j

h)
h

)

nj .

Finally, from our assumption (92) and inequality (31), we infer

∣

∣

∣

∣

⋃

s∈[t]

{

K(j−1)
j

(

Q̂(j−1)
s

)

}

∣

∣

∣

∣

≥
(

`

j

)−1

(1− η̃)
√

δj

(

j−1
∏

h=2

(

dhbhd̃h

)(j

h)
)

nj − δ
1/3
j−1

(

j−1
∏

h=2

d
(j

h)
h

)

nj

≥
(

(

`

j

)−1

(1− η̃)(1− ν)
√

δj − δ
1/3
j−1

)(

j−1
∏

h=2

d
(j

h)
h

)

nj ≥ δ
3/4
j

(

j−1
∏

h=2

d
(j

h)
h

)

nj

(98)

where the last inequality follows from the choice of η̃, ν, and δj ≫ δj−1. Now, (94) follows from (98)
combined with (68) of Fact 42 for j − 1 and i = j.
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It is left to verify (95). First, observe that from the definition of Q̂
(j−1)

and (79), we have
∣

∣

∣

∣

G̃(j) ∩
⋃

s∈[t]

K(j−1)
j

(

Q̂(j−1)
s

)

∣

∣

∣

∣

=
∑

{
∣

∣

∣
G̃(j) ∩ K(j−1)

j

(

P̂(j−1)(x̂(j−1))
)

∣

∣

∣
: x̂(j−1) ∈ Γ̂

(j−1)
− [Λj ]

}

=
∑∑

{
∣

∣

∣
P(j)

(

(x̂(j−1), β)
)

∣

∣

∣
: x̂(j−1) ∈ Γ̂

(j−1)
− [Λj ], β ∈ J(x̂(j−1))

}

.

(99)

Recall that by Definition 29, part (ii), every P(j)
(

(x̂(j−1), β)
)

is (δ̃j , d̃j , r̃)-regular w.r.t. P̂(j)(x̂(j−1)),

x̂(j−1) ∈ Γ̂
(j−1)
− [Λj ] and β ∈ J(x̂(j−1)). Consequently, from (71) of Fact 43, we note

∣

∣

∣
P(j)

(

(x̂(j−1), β)
)

∣

∣

∣
≤
(

d̃j + δ̃j

)

(1 + η̃)

(

j−1
∏

h=2

d̃
(j

h)
h

)

(

n

b1

)j

for every x̂(j−1) and β considered in (99). Consequently, we may bound (99) using that for every x̂(j−1) ∈
Γ̂

(j−1)
− [Λj ] ⊆ B̂

(j−1)
− , |J(x̂(j−1))| < (1−

√

δj)djbj (cf. (91)) as

∣

∣

∣
Γ̂

(j−1)
− [Λj ]

∣

∣

∣
×
(

1−
√

δj

)

djbj ×
(

d̃j + δ̃j

)

(1 + η̃)

(

j−1
∏

h=2

d̃
(j

h)
h

)

(

n

b1

)j

. (100)

On the other hand, we infer again from (71) of Fact 43 that
∣

∣

∣

∣

⋃

s∈[t]

K(j−1)
j

(

Q̂(j−1)
s

)

∣

∣

∣

∣

=
∑

{∣

∣

∣
K(j−1)

j

(

P̂(j−1)(x̂(j−1))
)

∣

∣

∣
: x̂(j−1) ∈ Γ̂

(j−1)
− [Λj ]

}

≥
∣

∣

∣
Γ̂

(j−1)
− [Λj ]

∣

∣

∣
× (1− η̃)

(

j−1
∏

h=2

d̃
(j

h)
h

)

(

n

b1

)j

. (101)

Comparing (100) and (101) yields

d
(

G̃(j)
∣

∣Q̂
(j−1)

)

< dj

(

1−
√

δj

) (

bj d̃j + bj δ̃j

)

(1 + η̃)

1− η̃
.

From (31) and η̃ ≪ δj (observe j > 2 here), we infer

d
(

G̃(j)
∣

∣Q̂
(j−1)

)

< dj

(

1− δ
3/4
j

)(

1 + ν + bj δ̃j

)

. (102)

Finally, we observe that by Definition 29 (i) and d̃j > δ̃j we have bj < 2/d̃j . Therefore, (95) follows

from (102) and the choice of constants δj ≫ ν ≫ d̃j ≫ δ̃j . This completes the proof of Claim 45′. �

6.2.3. Proof of Property (c) of Lemma 37. In this section, we define the promised hypergraph H(k) and

confirm the Properties (c1 ) and (c2 ). We first observe that the hypergraph G̃(k) ‘almost’ satisfies the prop-

erties of the promised H(k). In particular, due to Lemma 30 (i), the hypergraph G̃(k) is (δ̃k, r̃)-regular w.r.t.

every polyad P̂(k−1)(x̂(k−1)) for x̂(k−1) ∈ Â(k − 1, b). However, the relative density d
(

G̃(k)|P̂(k−1)(x̂(k−1))
)

of G̃(k) w.r.t. P̂(k−1)(x̂(k−1)) may be ‘wrong’ (that is, differing substantially from dk) for some x̂(k−1) ∈
Â(H(k−1), k − 1, b). We intend to replace G̃(k) on those polyads. To that end, define

B̂(k−1) =
{

x̂(k−1) ∈ Â
(

H(k−1), k − 1, b
)

:
∣

∣

∣
d
(

G̃(k)
∣

∣

∣
P̂(k−1)

(

x̂(k−1)
)

)

− dk

∣

∣

∣
>
√

δk

}

.

Similarly as in Section 6.2.1 (cf. Claim 45), we claim
∣

∣

∣
B̂(k−1)

∣

∣

∣
is small.

Claim 46.
∣

∣

∣
B̂(k−1)

∣

∣

∣
< 2

√
δk

∏k−1
h=2 (dhbh)(

k

h) × bk
1 .

The proof of Claim 46 follows the lines of the proof of Claim 45. Observe that in the proof of Claim 45, we
used the Counting Lemma for (j − 1)-uniform hypergraphs (cf. (71) of Fact 43). In a proof of Claim 46, we
would do the same with j − 1 = k − 1.
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We prepare to define H(k). To that end, we first define auxiliary hypergraphs S(k)(x̂(k−1)) for x̂(k−1) ∈
Â(H(j−1), j− 1, b). While our work below is straightforward, we do need to distinguish two cases depending

on whether x̂(k−1) ∈ B̂(k−1) or x̂(k−1) ∈ Â(H(j−1), j − 1, b) \ B̂(k−1).

Case 1 (x̂(k−1) ∈ Â(H(k−1), k − 1, b) \ B̂(k−1)). We set

S(k)
(

x̂(k−1)
)

= G̃(k) ∩ K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)

. (103)

Case 2 (x̂(k−1) ∈ B̂(k−1)). Observe that

∣

∣K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)∣

∣ >
(n/b1)

k

ln(n/b1)

by (71) of Fact 43. Therefore, we may apply the Slicing Lemma, Lemma 31, with m = n/b1, p = dk, % = 1,

δ = δ̃k/3 and rSL = r̃, and conclude that for every x̂(k−1) ∈ B̂(k−1) there exists a hypergraph

S(k)
(

x̂(k−1)
)

⊆ K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)

(104)

which is (δ̃k, dk, r̃)-regular w.r.t. P̂(k−1)(x̂(k−1)).

We now define the promised hypergraph H(k) as

H(k) =
⋃

{

S(k)(x̂(k−1)) : x̂(k−1) ∈ Â(H(k−1), k − 1, b)
}

. (105)

With H(k) defined above, we claim that property (c1 ) of Lemma 37 is immediately satisfied. Indeed,

Property (c1 ) is clearly satisfied whenever x̂(k−1) ∈ B̂(k−1). On the other hand, by Property (i) of Lemma 30,

for any x̂(k−1) ∈ Â
(

H(k−1), k − 1, b
)

, G̃(k) is (δ̃k, r̃)-regular with respect to P̂(k−1)(x̂(k−1)). Moreover, by

the definition of B̂(k−1) above and H(k) in (105), for every x̂(k−1) ∈ Â(H(k−1), k − 1, b) \ B̂(k−1),

d
(

H(k)
∣

∣

∣
P̂(k−1)(x̂(k−1))

)

= d
(

S(k)
∣

∣

∣
P̂(k−1)(x̂(k−1))

)

= d
(

G̃(k)
∣

∣

∣
P̂(k−1)(x̂(k−1))

)

= dk ±
√

δk .

Thus, property (c1 ) is satisfied with H(k) as defined above. The remainder of this section is therefore devoted
to the proof of property (c2 ) for H(k).

The proof of property (c2 ) is similar (but somewhat simpler) than the proof of (b2 ). Here, we partition

the `-tuples L0 ∈ K(k)
` (H(k))4K(k)

` (G̃(k)) into

K
(k)
` (1) =

{

L0 ∈
(

K(k)
` (H(k))4K(k)

` (G̃(k))
)

: ∃K0 ∈
(

L0

k

)

s.t. K0 ∈
(

K(k−1)
k (H(k−1))4K(k−1)

k (G̃(k−1))
)

}

K
(k)
` (2) =

(

K(k)
` (H(k))4K(k)

` (G̃(k))
)∖

K
(k)
` (1) =

=

{

L0 ∈
(

K(k)
` (H(k))4K(k)

` (G̃(k))
)

: ∀K0 ∈
(

L0

k

)

K0 ∈
(

K(k−1)
k (H(k−1)) ∩ K(k−1)

k (G̃(k−1))
)

}

.

The last equality follows from an argument similar to the one given after (82).

Let L0 be in K
(k)
` (2). Observe that L0 ∈ K(k−1)

` (H(k−1))∩K(k−1)
` (G̃(k−1)) (i.e., every K0 ∈

(

L0

k

)

‘touches’

polyads P̂(k−1)(x̂(k−1)) with x̂(k−1) ∈ Â(H(k−1), k − 1, b) only) and L0 ∈ K(k)
` (H(k))4K(k)

` (G̃(k)). Recall

H(k) and G̃(k) only differ on ‘bad’ polyads (see the construction of H(k) in (104)–(105)). Consequently, there

exists K0 ∈
(

L0

k

)

that ‘touches’ some ‘bad’ polyad P̂(k−1)(x̂(k−1)) with x̂(k−1) ∈ B̂(k−1). Summarizing the
above, we observe

K
(k)
` (2) =

{

L0 ∈
(

K(k)
` (H(k))4K(k)

` (G̃(k))
)

: ∃K0 ∈
(

L0

k

)

and

x̂(k−1) ∈ B̂(k−1) so that K0 ∈ K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)

}

.

(106)

By definition, K
(k)
` (1) ∪ K

(k)
` (2) is a partition of K(k)

` (H(k))4K(k)
` (G̃(k)) and so we have

∣

∣

∣
K(k)

`

(

H(k)
)

4K(k)
`

(

G̃(k)
)

∣

∣

∣
=
∣

∣K
(k)
` (1)

∣

∣+
∣

∣K
(k)
` (2)

∣

∣ . (107)

We now bound
∣

∣K
(k)
` (1)

∣

∣ and
∣

∣K
(k)
` (2)

∣

∣ to obtain part (c) of Lemma 37.
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Bounding |K(k)
` (1)|. The upper bound again easily follows from (b2 ) of Lemma 37 for j = k− 1 and i = `.

Indeed, observe K
(k)
` (1) ⊆ K(k−1)

`

(

H(k−1)
)

4K(k−1)
`

(

G̃(k−1)
)

holds by the same argument presented after (85).
We therefore see

∣

∣K
(k)
` (1)

∣

∣ ≤ δ
1/3
k−1

(

k−1
∏

h=2

d
(`

h)
h

)

n` ≤ 1

2
δ
1/3
k

(

k
∏

h=2

d
(`

h)
h

)

n` , (108)

where the last inequality follows from δ
1/3
k−1 ≪ δ

1/3
k dk as given in Figure 2.

Bounding |K(k)
` (2)|. As a consequence of (b1 ) for 2 ≤ j < k and x̂(k−1) ∈ B̂(k−1), we infer there are

∏k−1
h=2(dhbh)(

`

h)−(k

h) × b`−k
1 ways to complete P̂(k−1)

(

x̂(k−1)
)

to a
(

(δ̃2, . . . , δ̃k−1), (d̃2, . . . , d̃k−1), r̃
)

-regular

(n/b1, `, k − 1)-subcomplex Ȟ
(k−1)

= {Ȟ(h)}k−1
h=1 of H(k−1). Note that (70) of Fact 43 applied with i = `

and j = k yields

∣

∣

∣
K(k−1)

` (Ȟ(k−1))
∣

∣

∣
≤ (1 + η̃)

(

k−1
∏

h=2

d̃
(`

h)
h

)

(

n

b1

)`

≤ 2

(

k−1
∏

h=2

d̃
(`

h)
h

)

(

n

b1

)`

for each such Ȟ(k−1). Since this holds for every x̂(k−1) ∈ B̂(k−1), the last inequality combined with (106)
and Claim 46 yields

∣

∣

∣
K

(k)
` (2)

∣

∣

∣
≤
∣

∣

∣
B̂(k−1)

∣

∣

∣
×
(

k−1
∏

h=2

(dhbh)(
`

h)−(k

h)

)

b`−k
1 × 2

(

k−1
∏

h=2

d̃
(`

h)
h

)

(

n

b1

)`

≤ 4
√

δk

(

k−1
∏

h=2

(dhbhd̃h)(
`

h)

)

n`
(31)

≤ 4
√

δk(1 + ν)

(

k−1
∏

h=2

d
(`

h)
h

)

n` ,

(109)

and so by the choice of δk ≪ dk we have

∣

∣

∣
K

(k)
` (2)

∣

∣

∣
≤ 1

2
δ
1/3
k

(

k
∏

h=2

d
(`

h)
h

)

n` . (110)

Combining (107) with (108) and (110) yields part (c2 ) of Lemma 37.

6.3. Proof of Lemma 38. Lemma 38 follows from a simple and straightforward application of the Slicing
Lemma, Lemma 31. Recall Setup 36 and that H = {H(h)}k

h=1 is the (n, `, k)-complex given by Lemma 37.

Proof of Lemma 38. Recall that by part (c) of Lemma 37, for every x̂(k−1) ∈ Â(H(k−1), k−1, b), the (n, `, k)-
cylinder

H(k)(x̂(k−1)) = H(k) ∩ K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)

is (δ̃k, d̄(x̂(k−1)), r̃)-regular (111)

w.r.t. P̂(k−1)(x̂(k−1)) where d̄(x̂(k−1)) = dk ±
√

δk.

Construction of H−. For x̂(k−1) ∈ Â(H(k−1), k − 1, b), apply the Slicing Lemma, Lemma 31, with

% = d̄(x̂(k−1)), p = (dk −
√

δk)/%, δ = δ̃k and rSL = r̃ to H(k)(x̂(k−1)) to obtain a (3δ̃k, dk −
√

δk, r̃)-regular

hypergraph S(k)
− (x̂(k−1)).

Note that the assumptions of the Slicing Lemma are satisfied. This is due to the fact that the fam-

ily of partitions P is an almost perfect (δ̃, d̃, r̃, b)-family and, consequently, the polyad P̂(k−1)(x̂(k−1)) is
(

(δ̃2, . . . , δ̃k−1), (d̃2, . . . , d̃k−1), r̃
)

-regular. Hence, by (71) of Fact 43 (with j = k),

∣

∣

∣
K(k−1)

k

(

P̂(k−1)(x̂(k−1))
)

∣

∣

∣
>

(n/b1)
k

ln(n/b1)

for every x̂(k−1) ∈ Â(H(k−1), k − 1, b).
We then set

H(k)
− =

⋃

{

S(k)
−

(

x̂(k−1)
)

: x̂(k−1) ∈ Â(H(k−1), k − 1, b)
}

.

Obviously, H(k)
− has the desired properties (α) and (β1 ) by construction.
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Construction of H+. The construction of H(k)
+ is similar and follows by an application of the Slicing

Lemma to the complement of H(k). More precisely, for every x̂(k−1) ∈ Â(H(k−1), k−1, b), set H(k)
(x̂(k−1)) =

K(k−1)
k

(

P̂(x̂(k−1))
)

\H(k). Note that, due to (111),H(k)
(x̂(k−1)) is (δ̃k, 1−d̄(x̂(k−1)), r̃)-regular. Consequently,

we can apply the Slicing Lemma to H(k)
(x̂(k−1)) with % = 1 − d̄(x̂(k−1)), p = (1 − dk −

√
δk)/%, δ = δ̃k

and rSL = r̃ to obtain a (3δ̃k, 1− dk −
√

δk, r̃)-regular hypergraph S(k)

+ (x̂(k−1)). We then set S(k)
+ (x̂(k−1)) =

K(k−1)
k

(

P̂(x̂(k−1))
)

\ S(k)

+ (x̂(k−1)). Clearly, S(k)
+ (x̂(k−1)) is (3δ̃k, dk +

√
δk, r̃)-regular and S(k)

+ (x̂(k−1)) ⊇
H(k)(x̂(k−1)). Finally, we define H(k)

+ to be the union of all S(k)
+ (x̂(k−1)) constructed that way.

Construction of F . The construction of F (k) is more involved owing to the requirement H(k)
− ⊆ F (k) ⊆

H(k)
+ .

Let H(k)
− and H(k)

+ be given as constructed above and for ∗ ∈ {+,−} and x̂(k−1) ∈ Â(H(k−1), k− 1, b), let

H(k)
∗ (x̂(k−1)) = H(k)

∗ ∩ K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)

. Due to (β1 ) and (β2 ), H(k)
∗ (x̂(k−1)) is (3δ̃k, d∗k, r̃)-regular

where d−k = dk −
√

δk and d+
k = dk +

√
δk. Moreover, H(k)

+ (x̂(k−1)) ⊇ H(k)
− (x̂(k−1)) and, consequently,

H(k)
+ (x̂(k−1)) \ H(k)

− (x̂(k−1)) is (6δ̃k, 2
√

δk, r̃)-regular. We now apply the Slicing lemma to H(k)
+ (x̂(k−1)) \

H(k)
− (x̂(k−1)) with % = 2

√
δk, p =

√
δk/% = 1/2, δ = 6δ̃k and rSL = r̃ to obtain a (18δ̃k,

√
δk, r̃)-regular

hypergraph S(k)
F (x̂(k−1)). Now define F (k)(x̂(k−1)) to be the disjoint union H(k)

− (x̂(k−1)) ∪ S(k)
F (x̂(k−1)).

Clearly, H(k)
− (x̂(k−1)) ⊆ F (k)(x̂(k−1)) ⊆ H(k)

+ (x̂(k−1)). Moreover, it is straightforward to verify that F (k) is

(21δ̃k, dk, r̃)-regular w.r.t. P̂(k−1)(x̂(k−1)) and, consequently,

F (k) =
⋃

{

F (k)
(

x̂(k−1)
)

: x̂(k−1) ∈ Â(H(k−1), k − 1, b)
}

,

has the desired properties. �

7. Proof of the Union Lemma

7.1. Union of regular hypergraphs. Below we present some useful facts regarding regularity properties
of the union of regular (m, j, j)-cylinders. We distinguish two cases depending whether the (m, j, j)-cylinders
in question have the same underlying polyad or not.

The first proposition says that we may unite disjoint regular (m, j, j)-cylinders of the same density which
share the same underlying (m, j, j − 1)-cylinder without spoiling the regularity too much.

Proposition 47. Let j ≥ 2, t and m be fixed positive integers, let δ and d be positive reals and let

P(j)
1 , . . . ,P(j)

t be a family of pairwise edge disjoint (m, j, j)-cylinders with the same underlying (m, j, j − 1)-

cylinder P̂(j−1). If for every s ∈ [t], the hypergraph P(j)
s is (δ, d, 1)-regular with respect to P̂(j−1), then

P(j) =
⋃

s∈[t] P
(j)
s is (tδ, td, 1)-regular with respect to P̂(j−1).

The proof of Proposition 47 is straightfoward and short and we therefore omit it. The next proposition
gives us control when we unite hypergraphs having different underlying polyads. Before we make this precise,
we define the setup for our proposition.

Setup 48. Let j ≥ 3, t and m be fixed positive integers and let δ and d be positive reals. Let
{

P̂(j−1)
s

}

s∈[t]

be a family of (m, j, j − 1)-cylinders such that

K(j−1)
j

(

⋃

s∈[t]

P̂(j−1)
s

)

=
⋃

s∈[t]

K(j−1)
j

(

P̂(j−1)
s

)

and

K(j−1)
j

(

P̂(j−1)
s

)

∩ K(j−1)
j

(

P̂(j−1)
s′

)

= ∅ for 1 ≤ s < s′ ≤ t .

(112)

From (112),
⋃

s∈[t]K
(j−1)
j

(

P̂(j−1)
s

)

is a partition of the j-cliques of
⋃

s∈[t] P̂
(j−1)
s . Let

{

P(j)
s

}

s∈[t]
be a family

of (m, j, j)-cylinders such that P̂(j−1)
s underlies P(j)

s for any s ∈ [t]. Set P̂(j−1) =
⋃

s∈[t] P̂
(j−1)
s and P(j) =

⋃

s∈[t] P
(j)
s .
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Proposition 49. Let
{

P(j)
s s∈[t]

and
{

P̂(j−1)
s s∈[t]

satisfy Setup 48. If P(j)
s is (δ, d, 1)-regular w.r.t. P̂(j−1)

s

for every s ∈ [t], then P(j) is (2
√

δ, d, 1)-regular w.r.t. P̂(j−1).

Proof. Let Q̂(j−1) ⊆ P̂(j−1) be such that
∣

∣K(j−1)
j

(

Q̂(j−1)
)∣

∣ ≥
√

δ
∣

∣K(j−1)
j

(

P̂(j−1)
)∣

∣ . (113)

For every s ∈ [t], set Q̂(j−1)
s = Q̂(j−1) ∩ P̂(j−1)

s . Since
⋃

s∈[t]K
(j−1)
j

(

P̂(j−1)
s

)

is a partition of the j-cliques of
⋃

s∈[t] P̂
(j−1)
s ,

⋃

s∈[t]K
(j−1)
j

(

Q̂(j−1)
s

)

is a partition of the j-cliques of Q̂(j−1) =
⋃

s∈[t] Q̂
(j−1)
s . As such,

∑

s∈[t]

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
=

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
)

∣

∣

∣
. (114)

Define

T =
{

s ∈ [t] :
∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
≥ δ

∣

∣

∣
K(j−1)

j

(

P̂(j−1)
s

)

∣

∣

∣

}

.

Observe that
∑

s 6∈T

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
< δ

∣

∣

∣
K(j−1)

j

(

P̂(j−1)
)

∣

∣

∣

(113)

≤
√

δ
∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
)

∣

∣

∣
. (115)

Consequently (113), (114) and (115) give
∑

s∈T

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
≥

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
)

∣

∣

∣
− δ

∣

∣

∣
K(j−1)

j

(

P̂(j−1)
)

∣

∣

∣
≥

(

1−
√

δ
)

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
)

∣

∣

∣
. (116)

If s ∈ T , then the (δ, d, 1)-regularity of P(j)
s w.r.t. P̂(j−1)

s implies
∣

∣

∣
P(j)

s ∩ K(j−1)
j

(

Q̂(j−1)
s

)

∣

∣

∣
= (d± δ)

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
.

Consequently,
∣

∣

∣
P(j) ∩ K(j−1)

j

(

Q̂(j−1)
)

∣

∣

∣
=

∑

s∈[t]

∣

∣

∣
P(j) ∩ K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣

=
∑

s∈T

∣

∣

∣
P(j)

s ∩ K(j−1)
j

(

Q̂(j−1)
s

)

∣

∣

∣
+

∑

s 6∈T

∣

∣

∣
P(j)

s ∩ K(j−1)
j

(

Q̂(j−1)
s

)

∣

∣

∣

= (d± δ)
∑

s∈T

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
+

∑

s 6∈T

∣

∣

∣
P(j)

s ∩ K(j−1)
j

(

Q̂(j−1)
s

)

∣

∣

∣
.

We then see

(d−δ)
∑

s∈T

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
≤

∣

∣

∣
P(j) ∩ K(j−1)

j

(

Q̂(j−1)
)

∣

∣

∣
≤ (d+δ)

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
)

∣

∣

∣
+

∑

s 6∈T

∣

∣

∣
K(j−1)

j

(

Q̂(j−1)
s

)

∣

∣

∣
.

In view of (115) and (116), we infer

(d− δ)(1−
√

δ) ≤ d
(

P(j)
∣

∣Q̂(j−1)
)

≤ d + δ +
√

δ

from which Proposition 49 follows. �

7.2. Proof of Lemma 40. Before proving Lemma 40, we recall some notation. For ∗ ∈ {+,−}, let

H∗ = {H(j)}k−1
j=1 ∪ H

(k)
∗ = {H(j)

∗ }k
j=1 be given by Lemma 38. It follows that for each j = 2, . . . , k − 1,

the set Â(H(j−1)
∗ , j − 1, b) of polyad addresses with P̂(x̂(j−1)) ⊆ H(j−1) satisfies that for each x̂(j−1) ∈

Â(H(j−1)
∗ , j − 1, b), there is an index set I(x̂(j−1)) ⊆ [bj ] of size djbj such that

H(j)
∗ ∩ K(j−1)

j

(

P̂(j−1)(x̂(j−1))
)

=
⋃

α∈I(x̂(j−1))

P(j)
(

(x̂(j−1), α)
)

.

Moreover, d
(

H(k)
∗

∣

∣P̂(k−1)(x̂(k−1))
)

= d∗k, where d∗k is defined in (36). Recall that for Λj = (λ1, . . . , λj) ∈
(

[`]
j

)

<
, we denote by H(j)

∗ [Λj ] the subhypergraph of H(j)
∗ induced on Vλ1 ∪ · · · ∪ Vλj

.
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Due to Lemma 37, we know that for j = 2, . . . , k−1, for every x̂(j−1) ∈ Â(H(j−1), j−1, b), the set I(x̂(j−1))

satisfies |I(x̂(j−1))| = djbj ; moreover, for every α ∈ I(x̂(j−1)), the (n/b1, j, j)-cylinder P(j)
(

x̂(j−1), α)
)

is

(δ̃, d̃, r̃)-regular w.r.t. P̂(j−1)(x̂(j−1)). Inductively on j, we aim to show that H(j)
∗ [Λj ], which is the union of

all P(j)(x̂(j−1), α), with x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1), x̂0 = Λj and α ∈ I(x̂(j−1)), is regular w.r.t. H(j−1)
∗ [Λj ].

Proof of Lemma 40. We only prove the statement about H∗ here. The proof for F is identical. Consider
the following statement:

(Sj) If Λj = (λ1, . . . , λj) ∈
(

[`]
j

)

<
then H

(j)
∗

[Λj ] is a
(

(ε′, . . . , ε′), (d∗2, . . . , d
∗

j ), 1
)

-regular (n, j, j)-complex.

Lemma 40 then follows from (Sk).

We prove statement (Sj) by induction on j. Suppose j = 2 and let Λ2 ∈
(

[`]
2

)

<
be given. By (a) of

Lemma 37, we have G̃(2) = H(2) = H(2)
∗ . Consequently, H(2)

∗ [Λ2] is (δ2, d2, 1)-regular w.r.t. H(1)
∗ [Λ2] and

(S2) follows from δ2 ≪ ε′ (cf. Figure 2).

We now proceed to the induction step. Assume 3 ≤ j ≤ k and (Sj−1) holds. Let Λj = (λ1, . . . , λj) ∈
(

[`]
j

)

<

be arbitrary but fixed. The proof of (Sj) consists of three steps and we begin with the easiest.

Step 1. Let X̂(Λj) ⊆ Â(H(j−1)
∗ , j − 1, b) be the set of all polyad addresses x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) with

x̂0 = Λj . In Step 2, we consider

H(j)
∗ (x̂(j−1)) = H(j)

∗ ∩ K(j−1)
j

(

P̂(j−1)(x̂(j−1))
)

(117)

for every x̂(j−1) ∈ X̂(Λj). To that end, fix a x̂(j−1) ∈ X̂(Λj). This (and only this) step splits into two cases,
depending on whether j = k or not.

Case 1 (3 ≤ j < k). We apply Proposition 47 to

P̂(j−1)(x̂(j−1)) and
{

P(j)
(

(x̂(j−1), α)
)

: α ∈ I(x̂(j−1))
}

with δ = δj , d = d̃j (since j < k), and t =
∣

∣I(x̂(j−1))
∣

∣ = djbj = d∗jbj . Consequently, for every x̂(j−1) ∈ X̂(Λj),

H(j)
∗ (x̂(j−1)) =

⋃

α∈I(x̂(j−1))

P(j)
(

(x̂(j−1), α)
)

= H(j)
∗ ∩ K(j−1)

j

(

P̂(j−1)(x̂(j−1))
)

is
(

(d∗jbj)δ̃j , (d
∗

jbj)d̃j , 1
)

-regular w.r.t. P̂(j−1)(x̂(j−1)). Since bj δ̃j ≤ 2δ̃j/d̃j ≪ ν and from (31), each such

H(j)
∗ (x̂(j−1)) is

(

2ν, d∗j , 1
)

-regular w.r.t. P̂(j−1)(x̂(j−1)).

Case 2 (j = k). Here, we infer from (β) of Lemma 38 that H(k)
∗ (x̂(k−1)) = H(k)

∗ ∩ K(k−1)
k

(

P̂(k−1)(x̂(k−1))
)

is (3δ̃k, d∗k, 1)-regular with respect to P̂(k−1)(x̂(k−1)). Hence, H(k)
∗ (x̂(k−1)) is also

(

2ν, d∗k, 1
)

-regular w.r.t.

P̂(k−1)(x̂(k−1)).

Summarizing the two cases, we infer that for every x̂(j−1) ∈ X̂(Λj), the (n/b1, j, j)-cylinder H(j)
∗ (x̂(j−1)),

as given in (117), is
(

2ν, d∗j , 1
)

-regular w.r.t. P̂(j−1)(x̂(j−1)) . (118)

Step 2. In this step, we apply the induction assumption (Sj−1). For every ι ∈ [j], set

Λj (ι) = (λ1, . . . , λι−1, λι+1, . . . , λj) .

We apply (Sj−1) to the (n, j, j − 1)-complex H
(j−1)
∗

[Λj(ι)] for every ι ∈ [j]. As a result, we infer that

H
(j−1)
∗

[Λj ] =
⋃

ι∈[j]

H
(j−1)
∗

[Λj (ι)] =

{

⋃

ι∈[j]

H(h)[Λj (ι)]

}j−1

h=1

is an
(

(ε′, . . . , ε′), (d∗2, . . . , d
∗

j−1), 1
)

-regular (n, j, j − 1)-complex.

Step 3. Finally, as the last step, we show that the disjoint union
⋃

x̂(j−1)
∈X̂(Λj)

H(j)
∗ (x̂(j−1)) = H(j)

∗ [Λj ]
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is
(

ε′, d∗j , 1
)

-regular w.r.t. H(j−1)
∗ [Λj ] (see (117)). Recall that H(j)

∗ (x̂(j−1)) is (2ν, d∗j , 1)-regular w.r.t.

P̂(j−1)(x̂(j−1)) for each x̂(j−1) ∈ X̂(Λj), as shown in Step 1 (cf. (118)). A moment of thought yields that
{

P̂(j−1)(x̂(j−1))
}

x̂(j−1)
∈X̂(Λj)

satisfies (112). Consequently, the assumptions of Proposition 49 are satisfied

with δ = 2ν, d = d∗j , and t =
∣

∣X̂(Λj)
∣

∣ for the families
{

P̂(j−1)(x̂(j−1))
}

x̂(j−1)
∈X̂(Λj)

and
{

H(j)
∗ (x̂(j−1))

}

x̂(j−1)
∈X̂(Λj)

.

Therefore, it follows from Proposition 49 that H(j)
∗ [Λj ] =

⋃

x̂(j−1)
∈X̂(Λj)

H(j)
∗ (x̂(j−1)) is (2

√
2ν, d∗j , 1)-regular

w.r.t.
⋃

x̂(j−1)
∈X̂(Λj)

P̂(j−1)(x̂(j−1)) = H(j−1)
∗ [Λj ]. Then (Sj) follows from 2

√
2ν < ε′ (cf. Figure 2). �

8. Concluding Remarks

In the course of writing this paper, the authors realized that the methods used here, combined with the
result of [40], yields a hypergraph regularity lemma that would be simpler to state and likely more convenient
to use. For 3-uniform hypergraphs, such a result immediately follows from Theorem 34 and the RS-Lemma
with k = 3 (equivalently, the FR-Lemma).

Theorem 50. For every positive real ν and a positive real-valued function ε(D2), there exist integers L3

and n3 such that for any 3-uniform hypergraph H(3) on n ≥ n3 vertices there exists a 3-uniform hyper-
graph F (3) and a

(

ν, ε(d2), d2, 1
)

-equitable family of partitions R = R (2,a,ϕ) = {R(1),R(2)} such that

(i) for every x̂(2) ∈ Â(2,a)

∣

∣

∣

(

H(3)4F (3)
)

∩ K(2)
3

(

R̂(2)(x̂(2))
)

∣

∣

∣
≤ νd3

2

(

n

a1

)3

, (119)

(ii) all but at most νn3 edges of K
(3)
n belong to some polyad R̂(2)(x̂(2)) where F (3) is (ε(d2), 1)-regular

w.r.t. R̂(2)(x̂(2)), and
(iii) rankR ≤ L3.

We omit the techincal details of the proof of Theorem 50 (a proof based Theorem 34 and the RS-Lemma
with k = 3 is given in [42, Chapter 10]).

There is an important single difference between Theorem 50 and the FR-Lemma (or, equivalently, RS-
Lemma with k = 3); Theorem 50 provides an environment sufficient for a direct application of the Dense
Counting Lemma, Theorem 16. Indeed, unlike the the output of the FR-Lemma where one has constants δ3,
d2, δ2(d2) and r, so that δ3 � d2 � δ2(d2), 1/r, Theorem 50 admits sufficiently small ε(d2) with ε(d2) � d2

and no formulation of r such that both the 3-uniform hypergraph F (3) and the graphs from the underlying
partition R(2) are ε(d2)-regular.

The only cost of the cleaner environment Theorem 50 renders is that our original input hypergraph H(3)

is slightly (albeit negligibly) altered to the output hypergraph F (3).
In [36] we prove a generalization of Theorem 50 to k-uniform hypergraphs. The proof of that generalization

is more technical and requires a restructuring of the arguments from [40] and this paper.
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is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.
MR 97d:05172
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