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1 Introduction

1.1 Motivation

The simplex algorithm is widely used to solve linear programs. It works well in practice,

though often one cannot prove that it will. A parameter in the algorithm is the rule that

selects one move among possible moves (“pivots”) that decrease the objective function. De-

terministic pivot rules are known to be possibly very far from optimal. For example, consider

problems with the number m of constraints of the same order as the dimension, n. For vir-

tually every deterministic pivot rule there is a problem for which the algorithm will take

exponential time, although it is conjectured that there exists a descent path whose length

O(n). Variants of the original argument by Klee and Minty [KM72] are cited in [GHZ98,

page 2].

Randomized pivot rules appear to do better. According to [GHZ98], several of the

most popular randomized pivot rules appear to have polynomial – even quadratic – running

time. Rigorous and general results on these, however, have been hard to come by. When

one restricts to a narrow class of test problems, it becomes possible to obtain some rigorous

results. Gärtner, Hank and Ziegler [GHZ98] consider three randomized pivot rules. Relevant

to the present paper are their results on the random edge rule, in which the next move is

chosen uniformly among edges leading to decrease the objective function. They analyze

the performance of this rule on a class of linear programs, the feasible polyhedra for which

are called Klee-Minty cubes, after [KM72]. Such cubes are good benchmarks because they

cause some pivot rules to pass through a positive fraction of the vertices. They prove that

the expected run time is quadratic, up to a possible log factor in the lower bound:

Theorem 1 (GHZ) The expected number, En of steps taken by the random edge rule,

started at a random vertex of a Klee-Minty cube, is bounded by

n2

4Hn+1 − 1
≤ En ≤

(

n+ 1

2

)

.

Here, Hn =
∑n

j=1
1
j
∼ log n is the nth harmonic number.

Their lower bound rules out the possibility that En ∼ n polylog(n) which was twice conjec-

tured by previous researchers [PS82, page 29], [Kel81]. They guess that the upper bound is
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the correct order of magnitude, and state an improvement in the upper bound from (1/2)n2

to 0.27 . . . n2, whose proof is omitted.

The method of analysis in [GHZ98] is via a combinatorial model due to [AC78] which

describes the progress of the algorithm as a random walk on an acyclic directed graph. In

their model, vertices are bijectively mapped to sequences of 0’s and 1’s of length n, and

each move consists of flipping a 1 (chosen uniformly at random) to a 0, and simultaneously

flipping all bits to the right of the chosen bit. It was in this form that the problem came

to our attention. Indeed, the remainder of the paper is framed in terms of a variant of this

model, which we find to be an intrinsically interesting model. Our main result, Theorem 2,

closes the gap left open in [GHZ98], proving that the upper bound is sharp to within a

constant factor and obtaining upper and lower bounds differing by a factor of less than 2.

We have moved the model to continuous time and made n infinite, since from our view as

probabilists this is the most natural way to frame such a model. Nevertheless, our results

apply to the setting of [GHZ98] as well (Corollary 3). Although the model seems simple,

we remark that we were unable to prove many things about the model, including whether

certain limits exist.

1.2 Statement of the model

The one-dimensional integer lattice is decorated with 0’s and 1’s, arbitrarily except that

there must be some point to the left of which lie only 0’s. Each site has a clock that goes

off at times distributed as independent mean-one exponentials. When a clock rings, if there

is a 0 there nothing happens, but if there is 1 there, then it and all (infinitely many) of the

sites to the right flip as well – 0’s become 1’s and 1’s become 0’s. Later arguments will use

random variables involved in the construction of this continuous time Markov chain, so we

give a formal construction as follows.

Let S be the subset of {0, 1}Z consisting of sequences of 0’s and 1’s that have a leftmost

1 (equivalently, have finitely many 1’s to the left of the origin). Let {N(j, t) : t ≥ 0}j∈Z

be a collection of IID Poisson counting processes, that is, step functions increasing by

1 at random times, which we denote ξj,i, having independent increments distributed as

exponentials of mean 1. As usual, the filtration is defined by letting Ft denote the σ-field

generated by {N(j, s) : s ≤ t}. For any ω ∈ S, we define a Markov chain starting from ω as

follows. If ω is the zero string, the chain remains at ω. Otherwise, let i be the position of
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the leftmost 1 in ω. First, fix j > i ∈ Z and define a Markov chain on configurations on the

index set {i, i+ 1, . . . , j} in the finitary model: each site s attempts to flip at times ξs,r for

all r ≥ 0. The flip is successful if and only if there is a 1 in position s at time ξ−s,r, in which

case sites s+1, . . . j flip as well. This is a well defined process because for each T there are

only finitely many jump times ξs,r with i ≤ s ≤ j and r ≤ T . It is clear that for j′ > j the

Markov chain thus defined on configurations on [i, j′] projects down to the Markov chain

on configurations on [i, j] by ignoring the bits to the right of j. By Kolmogorov’s Extension

Theorem there is an inverse limit as j → ∞. This is a Markov chain, which we denote {ωt},

taking values in trajectories ω : [0,∞) → S, and having jumps at a countable set of times

ξs,r, at which a 1 flips to a 0 and all bits to its right flip as well.

We are interested in the speed at which the leftmost 1 drifts to the right. Because this

chain converges weakly to the zero state, it is convenient to renormalize by shifting to the

leftmost 1. Consequently, we define the space Ξ to be the space of those sequences of 0’s

and 1’s indexed by the nonnegative integers that begin with a 1. We define two functionals

ßzeros and ßones on Ξ by letting ßones(x) ≥ 1 be the number of leading 1’s:

ßones(x) := inf{j ≥ 1 : x(j) = 0}

and letting ßzeros(x) ≥ 0 be the number of successive 0’s after the first 1:

ßzeros(x) := −1 + inf{j ≥ 1 : x(j) = 1} .

Let ßonesj denote the set {x : ßones(x) = j} which form a partition of Ξ, and let {ßzerosj}

denote the analogous partition with respect to the values of ßzeros.

We now define a Markov chain on the space Ξ whose law starting from x ∈ Ξ is denoted

Qx. Pick ω ∈ S such that the leftmost 1 of ω is in some position i and ω(i + j) = x(j)

for all j ≥ 0. We construct the Markov chain {Xt} on Ξ as a function of {Mt} as follows.

First, define σ0 to be 0, and i0 to be the position of the leading 1 in ω. Now recursively

we let σn be the first time after σn−1 for which N(in−1, ·) increases. For σn−1 ≤ t < σn we

let Xt be Mt shifted so that in−1 is at the origin (and ignoring negative indices). We let

ßjumpn denote ßones(σ−
n ) and we let in = in−1 + ßjumpn.

Sometimes, it is convenient to look at the chain sampled at times σn. Thus we let

Yn := Xσn
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which is now a discrete-time Markov chain. We let Px denote the law of this chain starting

from x.

Since the conditional distribution of σn − σn−1 given Fσn−1 is exponential of mean 1, it

follows that σn/n → 1. The distance the leading 1 has moved to the right by time t is the

sum
∑

n:σn≤t ßjumpn, and therefore the average speed ßspd(n) up to time σn is the random

quantity

ßspd(n) := σ−1
n

n
∑

j=1

ßjumpj ∼ n−1
n
∑

j=1

ßjumpj . (1)

It is not a priori clear, nor in fact can we prove that ßspd(n) has a limit as n → ∞.

Consequently we define

ßinf-spd := liminfnßspd(n) ;

ßsup-spd := limsupnßspd(n) .

Problem 1: Show that the limiting speed exists.

The Markov chain {Yn} is a time-homogeneous process on a compact space, so taking cesaro

averages of the marginals, we see these must have at least one weak limit. Any weak limit

is a stationary distribution.

Problem 2: Show that there is a unique stationary distribution for the chain

{Yn}.

This would imply a positive solution to Problem 1. In particular, it would imply that

n−1
n
∑

j=1

ßjumpj →

∫

ßjump1 dπ

where π is the unique stationary measure; hence the speed would not only exist but would

be almost surely constant independent of the starting state. Although we do not have a

solution to Problem 2, we believe something stronger may hold.

4



Problem 3a: Let T jπ denote the composition of the measure π with a trans-

lation by j bits, e.g., if A is the event that there is a 1 in position r, then

T jπ(A) = π(Aj), where Aj is the event that there is a 1 in position r+ j. Prove

that T jπ → M where π is the stationary measure andM is IID fair coin flipping.

Problem 3b: Prove or disprove that the unique stationary measure π is equiv-

alent (mutually absolutely continuous) to M .

To see why we believe (3a) to be true, consider a window of positions of any size k,

located far to the right of the initial 1. Between each time a clock rings in this window

there are many times a 1 turns to a 0 to the left of the window. Each time this happens, the

bits in the window all flip. Projecting configuration space onto what is visible in the window,

and again onto a space of half the size by identifying each configuration with its complement,

it seems reasonable to approximate the projection by a Markov chain. Specifically, from

a state {x, xc}, for each position i ∈ [1, . . . , k], exactly one of x or xc will be able to flip

the bit in position i, so one may imagine the pair {x, xc} as flipping at rate 1/2 in every

position. This chain has the uniform distribution as the unique stationary distribution.

2 Statement of main result and lemmas

In this section we state the results that we do know how to prove, namely bounds on the

lim inf and lim sup speeds. The following theorem is to be interpreted as referring to the

lim inf and lim sup speeds (until we have proved the speed exists).

Theorem 2 The speed of the drift of the leftmost 1 satisfies

1.646 < ßinf-spd < ßsup-spd < 2.92 .

Relating back to the performance of the random edge rule on Klee-Minty cubes, we

have:

Corollary 3 For sufficiently large n, starting from a uniform random vertex of the Klee-

Minty cube,

0.086n2 ≤ En ≤ 0.152n2 .
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Proof: Gärtner, Henk and Ziegler consider another way of counting steps, where instead of

choosing an edge at random among all those decreasing the objective function, they choose

an edge at random from among all edges, but suppress the move if the edge increases the

objective function. For a vector x of 0’s and 1’s of length n, let L∗(x) = L∗(x, n) denote the

expectation of the number N (r) of moves starting from xr, including the suppressed moves,

before the minimum is reached. They prove the following identity [GHZ98, Lemma 4].

En =
1

2n

n
∑

r=1

L∗(xr, n) (2)

where xr is the vector of length r consisting of all 1’s. Including suppressed moves in the

count corresponds in our infinite, continuous-time model to counting the number of clock

events (only among the first r vertices). Let T (r) be the time it takes starting from xr to

reach the minimum. By the strong law of large numbers, N (r)/T (r) ∼ r as r → ∞. Also by

the strong law, if the liminf and limsup speed are known to be in the interval (a, b), then

r

b
< T (r) <

r

a

for sufficiently large r. Hence, for sufficiently large r,

nr

b
< N (r) <

nr

a

and plugging into (2) and summing from r = 1 to n gives

n2

4b
< En <

n2

4a

for sufficiently large n. Plugging in a = 2.92 and b = 1.646 proves the corollary. �

The lower bound of Theorem 2 is proved in Section 4. The lower bound may in principle

be improved so as to be arbitrarily near the actual speed. For the upper bound, we state

some lemmas. Let

Hk :=

k
∑

j=1

1

j

denote the kth harmonic number. Let {Sn} be a random walk whose increments are equal

k with probability 2/((k + 1)(k + 2)) for each integer k ≥ 1. Let S := SG−1 where G is an

independent geometric random variable with mean 2. Let Θ be a random variable satisfying

P(Θ ≥ j) = 1− FΘ(j − 1) =

∞
∑

k=1

1

k

1

k + j
=

Hj

j
.
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Assume {Sn} and Θ are independent of each other and of {Ft}; denote expectation with

respect to Px by Ex and let E denote expectation with respect to the laws of S and Θ.

Analogously with ßzeros(x) we define the quantity

ßzeros∗(x) := −1 + inf{j > ßones(x) : x(ßones(x)− 1 + j) = 1}

to be the number of zeros after the first block of ones; thus ßzeros∗(x) ≥ 1, ßzeros∗(x) =

ßzeros(x) if and only if ßzeros(x) ≥ 1 and ßzeros(x) = 0 if and only if ßones(x) ≥ 2.

Lemma 4 For any x ∈ ßonesj ,

Exßjump1 =

j
∑

k=1

1

k
.

Equivalently, for any x ∈ Ξ,

Exßjump1 = Hßones(x) .

Lemma 5 For any j ≥ 1, any x ∈ ßzerosj, and any integer L ≥ 1,

Px(ßones(Y1) ≥ L) ≤ P(S + j ≥ L) .

When ßzeros(x) = 0 then

Px(ßones(Y1) ≥ L) ≤ P(Θ + ßzeros∗(x) ·B + S ≥ L)

where B is a Bernoulli with mean 1/2, and Θ, B and S are all independent.

Since S + Θ + ßzeros∗(x) is an upper bound for both quantities S + ßzeros∗(x) and

S + Θ + Bßzeros∗(x) appearing as stochastic upper bounds in Lemma 5, and since Hn

increases in n, we may put this together with Lemma 4 to obtain

Corollary 6 For any x,

Exßjump2 ≤ EH
Θ+ßzeros

∗

(x)+S
.

�
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Lemma 7 The conditional distribution of ßzeros∗(Yn) given Fσn−1 is always bounded above

stochastically by the law of Θ. In other words, for all j,

P(ßzeros∗(Yn) > j | Fσn−1) ≤ 1− FΘ(j) .

Proof of Theorem 2 from the lemmas: It suffices to show that for any x ∈ Ξ,

Exßjump3 ≤ 2.92 .

We simply iterate conditional expectations and compute. By the Markov property, and

Corollary 6,

Exßjump3 = ExEY1ßjump2

≤ Ex

(

EyHS+Θ+ßzeros∗(y)

)
∣

∣

∣

y=Y1

.

Since Hn is increasing in n we may use the stochastic upper bound in Lemma 7 for any x

to see that this is at most EHS+Θ(2) where Θ(2) is the sum of two independent copies of Θ.

The upper bound in Theorem 2 is completed by computing an upper bound for this.

The function H is concave and Θ(2) ≥ 1, so

H(Θ(2) + j)−H(Θ(2)) ≤ H(j + 1)− 1

and we may therefore conclude that

EHΘ(2)+S ≤ EHΘ(2) + EHS+1 − 1 . (3)

To compute the quantity EHΘ(2) , let Θ1 and Θ2 independently have the distribution of

Θ and write

EHΘ1+Θ2 = 1 +
∑

1≤j,k

1

j + k
P(Θ1 ≥ j)P(Θ2 = k)

= 1 +
∑

1≤j,k

1

j + k

Hj

j

(

Hk

k
−

Hk+1

k + 1

)

= 1 +
∑

1≤j,k

1

j + k

Hj

j

(

Hk

k
−

Hk+1

k
+

Hk+1

k
−

Hk+1

k + 1

)

= 1 +
∑

1≤j,k

1

j + k

Hj

j

Hk+1 − 1

k(k + 1)
.
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We may evaluate this numerically as just under 2.

For the last term on the RHS of (3), let φ(z) = EzS =
∑∞

n=0 z
n
P(S = n) be the

generating function for S, so zφ is the generating function for S + 1. For any positive

integer j there is an identity

∫ 1

0

1− zj

1− z
dz =

∫ 1

0
(1 + · · ·+ zj−1) dz = Hj .

Consequently, we may write

EHS+1 − 1 =

∫ 1

0

z − EzS+1

1− z
dz =

∫ 1

0
z
1− φ(z)

1− z
dz . (4)

To compute the generating function φ, first compute the generating function f for the

increments of {Sn}:

f(z) =
∞
∑

k=1

2

(k + 1)(k + 2)
zk =

2z − z2 − 2(1 − z) log 1
1−z

z2
.

Then φ = 1/(2 − f) and the integral in (4) becomes

EHS+1 =

∫ 1

0

2z(log 1
1−z

− z)

3z2 − 2z + 2(1− z) log 1
1−z

dz .

One may evaluate this numerically to approximately 0.918797. Adding this to the value for

EHΘ(2) gives a little under 2.92. Rigorous bounds may be obtained with more care. �

3 Proofs of Lemmas

Proof of Lemma 4: By definition, each x ∈ ßonesj begins with j 1’s in positions 0, . . . , j−1

followed by a zero. The evolution of {Mt} decreases the binary representation
∑

k 2
−kx(k),

whence Mßjump−

1

∈ ßonesk for some k ≤ j, that is, there is always a zero in some position

in [0, j]. Furthermore, once there is a zero in position k for some k < j, then there is always

a zero at or to the left of position k. It follows that ßjump1 is equal to the least k < j

for which ξj,1 < ξ0,1, that is, for which the clock in position k goes off before the clock at

position 0. The minimum is taken to be j if there is no such k.
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It follows that Px(ßjump1 = j) = 1/j and that for 0 < k < j,

Px(ßjump1 = j) =
1

k(k + 1)
. (5)

To see this, note that ßjump1 = k if and only if ξ0,1 is the minimum of the exchangeable

variables {ξk,1 : 0 ≤ k < j}. Similarly, for 0 < k < j, ßjump1 = k if and only if ξk,1 is

the minimum of the variables {ξr,1 : 0 ≤ r ≤ k} and ξ0,1 is the next least of the values.

Computing expectations via (5) proves the lemma. �

Proof of Lemma 7: Again let us denote q = ßones(x). We recall that P(ßjump1 = k) =

1/q for k = q and 1/(k(k + 1)) for 1 ≤ k ≤ q − 1. We claim that for any k ≤ q,

P(ßzeros∗(Y1) ≥ j | ßjump1 = k) ≤
k + 1

k + j
. (6)

If we can show this, then we will have

P(ßzeros∗(Y1) ≥ j) ≤
1

q

q + 1

q + j
+

q−1
∑

k=1

1

k(k + 1)

k + 1

k + j
.

Changing q to q + 1 increases this by

j − 1

(q + 1)(q + j)(q + j + 1)

which is nonnegative. Setting q = ∞ then yields the upper bound in the lemma, and it

remains to show (6).

Observe first that it suffices to show this for k = q. This is because when k < q, the event

{ßjump1 = k} necessitates ξk,1 = min{ξr,1 : 0 ≤ r ≤ k}. Thus to evaluate P(ßzeros∗(Y1) ≥

j | ßjump1 = k) we may wait until time ξk,1, at which point if no bit to the left of k has

flipped yet, the new conditional probability P(ßzeros∗(Y1) ≥ j | Fξk,1 , ßjump1 = k) is always

at most (k + 1)/(k + j) by applying the claim for q = k.

Assuming now that k = q, we note that the event {ßjump1 = k} that we are conditioning

on is just the event

A := {ξ0,1 = min
0≤i≤k−1

ξi,1}

is the event that the clock at 0 goes off before any clock in positions 1, . . . , k−1. Conditioning

on A then makes the law of ξ0,1 an exponential of mean 1/k without affecting the joint
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distribution of {ξr,s : r > k}. Now let m1 be the position at time ξk,1 of the first 1 to the

right of k, and let t1 be the time this 1 flips. Inductively, define mr+1 to be the position of

the first 1 to the right of k after time tr and let tr+1 be the first time after tr that this 1

flips.

If the positions mr, . . . ,mr + j − 1 are not filled with ones at time tr−1 (define t0 = 0)

then it is not possible to have ßzeros∗(Y1) ≥ j and A and tr−1 < ξ0,1 < tr. That is, one

cannot get from fewer than j ones in the first block of ones to the right of k to at least j

ones at the time of the flip at 0 without having the leftmost one in this block flip. On the

other hand, if these j positions are filled with ones at time tr−1, then

P(ßzeros∗(Y1) ≥ j, ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1) ≤
k

k + j

since the event {ßzeros∗(Y1) ≥ j, ξ0,1 < tr} requires that the clock at 0 go off before the

clocks in positions mr, . . . ,mr+ j−1 (recall that conditioning on A has elevated the rate of

the clock at 0 to rate k). Similarly, P(ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1) = k/(k+1). Therefore,

P(ßzeros∗(Y1) ≥ j, ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1)

P(ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1)
≤

k + 1

k + j
.

By the craps principle, the RHS is then an upper bound for the probability of ßzeros∗(Y1) ≥

j conditioned only on ßjump1 = k. �

Proof of Lemma 5: Let x ∈ ßzerosj and first assume j ≥ 1. We prove the statement for

n = 1, the proof for greater n being identical, conditioned on Fσn−1 . It is simple to check

whether ßones(Y1) = j. The bits in positions 1, . . . , j will remain 0’s until the leading 1

flips at time σ1, so the only thing to check is whether σ1 = ξ0,1 is less than or greater than

ξj+1,1. With probability 1/2, ξ0,1 < ξj+1,1 and in exactly this case ßones(Y1) = j.

Now condition on this inequality going the other way: ξ01 > ξj+1,1. Let t1 := ξj,1. Let

j + 1+ k1 be the position of the first 0 of x to the right of position j + 1. Then at time t1,

the position of the first one to the right of j+1 is j+Z1, where Z1 is the least l ∈ [1, k1−1]

for which ξj+1+l,1 < ξj+1,1. If no such l exists, then Z1 = k1. We compute Px(Z1 = l) as

follows.

The variables {ξr,1 : r ∈ {0}∪[j+1, j+k1]} are independent exponentials. For 1 ≤ l < k1,

the event that ßones(Y1) 6= j and Z1 = l is the intersection of the event A that ξj+1,1 is less
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than ξ0,1 and ξr,1 for all j + 2 ≤ r ≤ j + l with the event B that ξj+1+l,1 < ξj+1,1. In other

words, among l+2 independent exponentials, the index of the least and second least must be

j+2 and j+1 respectively. The unconditional probability of this is 1/((l+1)(l+2)). Having

conditioned on the larger event {ξj+1,1 < ξ0,1}, the conditional probability is therefore equal

to 2/((l+1)(l+2)). This holds for l < k1, where Z1 = k1 with the complementary probability.

To sum up, Z1 is distributed as S1 ∧ k1 where S1 has the distribution of the random walk

increments described in the lemma.

The last step is to invoke the Markov property. Condition on Ft1 . The chain from here

evolves under the law PX(t1). Iterating the previous argument, there are two cases. The

first case, which happens with probability 1/2 is that the clock at the origin goes off before

the next alarm at location j + 1 + Z1. In this case, ßones(Y1) = j + Z1. In the alternative

case, we let t2 be the time at which the clock at location j + 1 + Z1 next goes off. We let

Z2 be the number of consecutive 1’s at time t−2 starting from position j + 1 + Z1. Then

conditional on Ft1 , Z2 is distributed as S1 ∧ k2 where k2 is the number of consecutive 1’s

at time t1 starting at position j + 1 + Z1.

Iterating in this way, we have the following inductive definitions. Let t0 = 0. Let τ

be the least r for which the clock at the origin goes off after time tr but before the first

alarm at location j + 1 +
∑r

i=1 Zi. For each r ≤ τ , we may define kr to be the number

of consecutive 1’s at time tr−1 starting at location j + 1 +
∑r−1

i=1 Zi. We may then define

tr to be the first time after tr−1 that the alarm at location j + 1 +
∑r−1

i=1 Zi goes off, and

we may define Zr so that j + 1 +
∑r

i=1 Zi is the location of the first zero to the right of

j + 1 +
∑r−1

i=1 Zi at time t−r .

The upshot of all of this is that

ßones(Y1) = j +
τ
∑

i=1

Zi

and that the joint distributions of τ and {Zi : 1 ≤ i ≤ τ} are easily described. Conditioned

on τ ≥ r and on Ftr , the probability of τ = r + 1 is always 1/2; as well, Zr+1 given

τ ≥ r + 1 and Ftr is always distributed as a truncation of S1. We conclude that ßones(Y1)

is stochastically dominated by the sum of τ independent copies of S1, hence as SG−1.

Finally, we consider the case where ßzeros∗(x) = l > ßzeros(x) = 0. Let q = ßones(x),

so that x begins with q ones, followed by l zeros, followed by a one in position q + l. A

12



preliminary observation is that if we begin with a one at the origin, the position W (t) of

the leading one at a later time t is an increasing function of t; hence, if Tµ is an independent

exponential with mean µ, the distribution of W (Tµ) is stochastically increasing in µ.

Begin by writing

Px(ßones(Y1) ≥ j) =

q
∑

k=1

P(ßones(Y1) ≥ j, ßjump1 = k) .

Let l∗ denote the number of zeros consecutively starting from position k at time ξk,1 if

ßjump1 = k < q, and l∗ = l if k = q. In other words, l∗ = ßzeros∗(x′) where x′ is the

word at the last time t that ßones changes before the leading bit flips (t = ξßjump1,1
if

ßjump1 < q and t = 0 otherwise). We may then describe ßones(Y1) as l
∗ +W , where W is

the number of consecutive positions starting from position ßjump1 + l∗ that turn to zeros

between time t and ξ0,1. Now we break into two cases.

Condition first on {ßjump1 = q}. The time ξ0,1 is now an exponential of mean 1/q,

and before this time, the bits from position q + l onward evolve independently. We may

describe ßones(Y1) as l+W (ξ0,1), where W is the number of consecutive positions starting

at q + l which have become zeros in the time from 0 to ξ0,1. The first part of this lemma

established that when ξ has rate 1, then W (ξ) � S. Our preliminary observation now

shows, conditional on {ßjump1 = q}, that W (ξ0,1) � S).

Next, let us condition on ßjump1 = k < q, obeserving that then l∗ ≤ q − k. In order to

have l∗ ≥ r, it is necessary that ξk,1 = min{ξs,1 : k ≤ s ≤ k + r − 1}. Having conditioned

on ßjump1 = k, the distribution of ξk,1 becomes an exponential of rate k + 1, so that the

conditional probability of this clock going off before r − 1 other conditionally independent

clocks of rate 1 is just (k + 1)/(k + r). Since the event {ßjump1 = k < q} has probability

1/(k(k + 1)) if k < q and zero otherwise, we may remove the conditioning and sum to get

P(l∗ ≥ r, ßjump1 < q) ≤

q−1
∑

k=1

1

k(k + 1)

k + 1

k + r
≤ P(θ∗ ≥ r) .

We also still have in this case W � S.

Putting together the cases ßjump1 = q and ßjump1 < q, we see that l∗ = l with proba-

bility 1/q and otherwise l∗ � Θ. The crude bound 1/q ≤ 1/2 gives l∗ � Θ+ ßzeros∗(x) ·B.

Since l∗ ∈ σ(Ft) and the bound W � S holds conditionally on Ft, we arrive at ßones(Y1) �

Θ+ ßzeros∗(x) ·B + S. �

13



4 Lower bound

To arrive at a lower bound, consider a tree whose vertices are positive integers, identified

with their binary expansions. The root is 1, and the children of x are 2x and 2x + 1.

Associated with each node x are a set of n(x) possible transitions, where n(x) is the number

of 1’s in the binary expansion of x. The transitions are to numbers gotten by flipping a

1 and simultaneously flipping all bits to its right. Note that all transitions from x are to

numbers less than x. Let r(x) denote the reward if the leading bit of x is flipped, namely

one less than the number of leading 1’s in the binary expansion of x. Recursively, we assign

to each x a mean reward and maturation time, (a(x), b(x)) as follows. Fix a set B of bad

nodes, to be determined later. On first reading, take B to be empty. For any x, let y1, . . . , yn

be the possible transitions from x. Let (a(x), b(x)) := (0, 0) if x ∈ B and otherwise, let

(a(x), b(x)) :=
1

n

(

(r(x), 1) +

n
∑

i=1

(a(yi), b(yi))

)

.

Let T be any finite binary rooted subtree, meaning that any vertex in the subtree has either

zero or two children in the subtree.

Lemma 8 Suppose no leaf of T is in B. Then an almost sure lower bound for the lim

inf speed from any starting configuration is given by the minimum over leaves x of T of

1 + a(x)/b(x).

The lower bound in Theorem 2 will follow from Lemma 8 together with an implemen-

tation of the recursion. Below is some code written in C that implements the recursion for

a complete binary tree of depth 15, with the set B chosen to give a good bound without

much trouble.
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#include <stdio.h>

#define N 18

#define M 524288

main() {

float a[M][2];

int i , j , k, n, min_index, locmin, power[N+2], bitcount=0, lastcount=0;

float min_ratio;

float locrat;

float average;

a[0][0] = 0; a[0][1]=0; a[1][0] = 0; a[1][1] = 0; power[0] = 1; power[1]=2; average = 0;

/* the n loop stratifies the recursion by levels of the tree */

for (n=1; n <= N; n++)

{

power[n+1] = 2*power[n];

/* the i loop indexes vertices inside a level */

for (i=power[n]; i < power[n+1]; i++)

{

bitcount = 0; lastcount=0; a[i][0] = 0; a[i][1] = 0;

for (j=0; j <= n; j++)

{

k = i^(power[j]);

if (k < i)

{

/* k < i iff there is a 1 in position k */

k = power[j+1]*(i / (power[j+1])) + power[j+1] - 1 - i % power[j+1];

a[i][0] += a[k][0];

a[i][1] += a[k][1];

bitcount++;

}

else lastcount=bitcount;

/* lastcount will eventually say how many 1’s after the leftmost zero */

}

a[i][1]++;

a[i][0] += bitcount - lastcount - 1;

a[i][0] = a[i][0] / bitcount;

a[i][1] = a[i][1] / bitcount;

/* a particular choice of the set B is given in literal form */

15



if ( i==2 || i==4 || i==5 || i==8 ||

i==9 || i==10 || i==11 ||

i==18 || i==19 || i==20 || i==21 || i==22 || i==23 ||

i==36 || i==37 || i==38 ||

i==40 || i==41 || i==42 || i==43 || i==44 || i==45 || i==46 || i==47 ||

i==73 || i==74|| i==75 ||

i==80 || i==81 || i==82 || i==83 || i==84 || i==85 || i==86 || i==87 ||

i==88 || i==89 || i==90 || i==91 ||

i==160 || i==161 || i==162 || i==163 || i==164 || i==165 || i==166 || i==167 ||

i==168 || i==169 || i==170 || i==171 || i==172 || i==173 || i==174 || i==175 || i==178 ||

i==180 || i==181 || i==182 || i==183 ||

i==324 || i==325 || i==326 || i==328 || i==329 ||

i==330 || i==331 || i==332 || i==333 || i==334 || i==335 ||

i==336 || i==337 || i==338 || i==339 || i==340 || i==341 || i==342 || i==343 ||

i==344 || i==345 || i==346 || i==347 || i==348 || i==349 ||

i==350 || i==351 ||

i==361 || i==362 || i==363 ||

i==656 || i==657 || i==658 || i==659 || i==660 || i==661 || i==662 || i==663 ||

i==672 || i==673 || i==674 || i==675 || i==676 || i==677 || i==678 || i==679 ||

i==680 || i==681 || i==682 || i==683 ||

i==684 || i==685 || i==686 || i==687 || i==688 || i==689 ||

i==690 || i==691 || i==692 || i==693 || i==694 || i==695 || i==697 || i==698 || i==699||

i==1322 || i==1323 ||

i==1346 || i==1347 || i==1348 || i==1349 ||

i==1350 || i==1351 || i==1352 || i==1353 || i==1354|| i==1355 ||

i==1356 || i==1357 || i==1358 || i==1359 ||

i==1360 || i==1361 || i==1362 || i==1363 || i==1364 || i==1365 ||

i==1366 || i==1367 || i==1368 || i==1369 || i==1370 || i==1371 ||

i==1372 || i==1373 || i==1374 || i==1375 || i==1380 || i==1381 ||

i==1384 || i==1385 || i==1386 || i==1387 || i==1388 || i==1389 || i==1390 || i==1391 ||

i==2704 || i==2705 || i==2706 || i==2707 || i==2708 || i==2709 || i==2710 || i==2711 ||

i==2720 || i==2721 || i==2722 || i==2723 || i==2724 || i==2725 || i==2726 || i==2727 ||

i==2728 || i==2729 || i==2730 || i==2731 || i==2732 || i==2733 || i==2734 || i==2735 ||

i==2736 || i==2737 || i==2738 || i==2739 || i==2740 || i==2741 || i==2742 || i==2743 ||

i==2745 || i==2746 || i==2747 ||

i==5456 || i==5457 || i==5458 || i==5459 || i==5467 ||

i==5460 || i==5461 || i==5462 || i==5463 || i==5465 || i==5466 )

{

a[i][0] = 0; a[i][1] = 0;
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}

if(i == (M/2))

{

min_index = i;

min_ratio = a[i][0]/a[i][1];

}

if(i > (M/2))

{

if((a[i][0]/a[i][1]) < min_ratio)

{

min_index = i;

min_ratio = a[i][0]/a[i][1];

}

}

if (i > (M/2))

{

average = average + (a[i][0]/a[i][1]);

}

if(i == 3)

{

locmin = i;

locrat = a[i][0]/a[i][1];

}

if(i < (M/2))

{ if (i > 71)

{

if(a[i][1] > 0)

{ if ((a[i][0]/a[i][1]) < locrat)

{

locmin = i;

locrat = (a[i][0])/(a[i][1]);

}

}

}

}

}

printf("\n");

}
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printf("Row with minimum ratio is:\n");

printf("min_index=%i,exp. reward=%f, exp. time=%f, ratio=%f\n",min_index,

a[min_index][0], a[min_index][1], a[min_index][0]/a[min_index][1]);

printf("Row with local minimum ratio is:\n");

printf("locmin=%i,exp. reward=%f, exp. time=%f, ratio=%f\n", locmin, locrat, average, M);

}}

A look at the data shows the minimum value of a(x)/b(x) on each level to be obtained

when the binary expansion of x alternates. In particular, the global minimum is at x =

349525 and has value 0.646 . . ., which proves the lower bound.

Proof of Lemma 8: Any finite rooted binary subtree induces a prefix rule, that is, a map

η from infinite sequences beginning with a 1 to leaves of T , defined by η(x) = w for the

unique leaf of T that is a prefix of η.

Given a trajectory of the Markov chain {Xt}, define a sequence of elements of T as

follows. Let x0 := η(X0) be the prefix of the initial state of the trajectory. Let τ0 := 0. As

the definition proceeds, verify inductively that for τk ≤ t < τk+1, the string xk will be an

initial segment of Xt. The recursion is as follows. Let τk+1 be the first time after τk that

a 1 flips in the initial segment xk of Xt. Let x
′
k+1 be the string gotten from xk by flipping

this bit and all bits to its right. If x′k+1 /∈ B and x′k+1 is not the zero string then let xk+1

be x′k+1, stripped of any leading zeros. If x′k+1 ∈ B or x′k+1 is the zero string, then let

xk+1 = η(Xτk+1
).

Let ρ0, ρ1, . . . be the successive times that this latter transition occurs, that is, successive

times t in the recursion that η(Xt) is computed. Given x ∈ T , suppose we begin counting

every time the sequence {xk} hits x and stop counting at every time ρk. When we are

counting, we count how many times the leading 1 flips, and how many 1’s flip together

when this happens, or more precisely, we keep a cumulative count, each time adding one

less than the number of 1’s that have flipped together. Let this cumulative count be denoted

(A(x, t), B(x, t)), where A counts flips of the leading 1. If x ∈ B, then by convention we do

not count anything.

Claim: For each x ∈ T \B, if x is visited infinitely often then the ratio of A(x, t)/B(x, t)

converges as t → ∞ to a(x)/b(x). Proof: Conditioned on the past, each time we start

counting we are equally likely to transition to each of the n(x) possible transitions. The

claim then follows from induction on x.
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Each x defines a set of time where x is on, that is, where we are counting leading 1

flips and rewards for that x. As x ranges over the leaves of T , the on-timesets for x

partition [0,∞). In each such time set, we have shown that the mean number of recorded

simultaneous 1-flips per leading 1 flip is 1 + a(x)/b(x) in the limit, as long as the time set

is unbounded. Since the partition is finite, it follows that the lim inf speed is at least the

minimum of the values. �

We remark that the only place this computation is not sharp is when the number of 1’s

flipping together exceeds the number recorded, because the present knowledge of the prefix

was a string of all 1’s and there were more 1’s after this that also flipped. Thus by making

the tree T big enough, even without increasing B, we can get arbitrarily close to the true

value.

5 Further observations

The following argument almost solves Problem (3a), and perhaps may be strengthened to

a proof. Lemma 4 of [GHZ98] is proved by means of a duality result. The result is that the

probability, starting from a uniform random state, of finding a 1 in position r after t steps

(counting suppressed transitions), is equal to half the probability that xr has not reached

the minimum yet after t steps (again counting suppressed transitions). The argument that

proves this may be generalized by introducing a simultaneous coupling of the process from

all starting states. The probability, from a uniform starting state, of finding a 1 in every

position in a set A after t steps, is then the expectation of the function that is zero if the

column vector of all 1’s is not in the span of the columns of the matrix whose rows are the

states reached at time t starting at xr, as r varies over A, and is 2−u if the column vector

of all 1’s is in the span and the matrix has rank u. The kernel of the matrix is the set

of starting configurations that reach the minimum by time t (the simultaneous coupling is

linear). Hence, as long as A and t are such that the probability of reaching the minimum

from any xr by time t goes to zero, the rank of the matrix will be |A| and the probability

of finding all 1’s in positions in A at time t will go to 2−|A|. In particular, if a window of

fixed size moves rightward faster than the limsup speed, then what one sees in this window

approaches uniformity. This is not good enough to imply uniformity of a window a fixed

distance to the right of the leftmost 1.
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