
Sampling Binary Contingency Tables with a Greedy Start

Ivona Bezáková∗ Nayantara Bhatnagar† Eric Vigoda†

October 31, 2006

Abstract

We study the problem of counting and randomly sampling binary contingency tables. For
given row and column sums, we are interested in approximately counting (or sampling) 0/1 n×m
matrices with the specified row/column sums. We present a simulated annealing algorithm with
running time O((nm)2D3dmax log5(n + m)) for any row/column sums where D is the number
of non-zero entries and dmax is the maximum row/column sum. In the worst case, the running
time of the algorithm is O(n11 log5 n) for an n× n matrix. This is the first algorithm to directly
solve binary contingency tables for all row/column sums. Previous work reduced the problem
to the permanent, or restricted attention to row/column sums that are close to regular. The
interesting aspect of our simulated annealing algorithm is that it starts at a non-trivial instance,
whose solution relies on the existence of short alternating paths in the graph constructed by a
particular Greedy algorithm.

1 Introduction

Counting and randomly sampling binary contingency tables is an important problem in Statistics.
Various methods have been proposed in the literature (e.g., see [5, 2, 4, 19] for recent work related
to the classical problem of “Darwin’s finches”), but the desired theoretical work on the efficiency of
these approaches is lacking.

The problem can be formalized as follows. Given a pair of non-negative integer sequences
r(1), . . . , r(n) and c(1), . . . , c(m), our goal is to generate a random n × m 0/1 matrix where the
i-th row sums to r(i) and the j-th column sums to c(j), for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. An efficient
(approximate) sampling scheme then yields an approximation algorithm to count the number of ta-
bles with the desired row/column sums. Graph theoretically, we are generating a random bipartite
graph with vertex set u1, . . . , un and v1, . . . , vm where ui has degree r(i) and vj has degree c(j). We
will primarily use the graph theoretic view in the presentation and analysis of our algorithm.

Our emphasis is on algorithms that are provably efficient for arbitrary degree sequences. More
precisely, we are seeking an algorithm which approximates the number of tables within a multiplica-
tive factor 1±ε with probability at least 1−δ and runs in time polynomial in n,m, 1/ε and log(1/δ).
The problem of counting the number of binary contingency tables is not known to be #P -complete,
hence it is possible that there is an algorithm which counts the number of tables exactly, not just
approximately. However, until now, the only method known for approximating the number of contin-
gency tables was by reducing the problem to approximating the permanent [12, 10]. The reduction

∗Department of Computer Science, University of Chicago, Chicago, IL 60637. Email: ivona@cs.uchicago.edu.
†College of Computing, Georgia Institute of Technology, Atlanta, GA 30332. Email: {nand,vigoda}@cc.gatech.edu.

Supported by NSF grant CCR-0455666.

1

results in a permanent computation of an `×` matrix where ` = Ω((n+m)2). The quadratic increase
in the size of the instance is particularly unappealing in light of the large running time for permanent
algorithms. The best known algorithm for the permanent of an n×n 0/1 matrix runs in O(n7 log4 n)
time [3] and thus results in an O∗(n14) algorithm for generating random binary contingency tables.

We present a new algorithm for binary contingency tables with arbitrary degree sequences, by di-
rectly exploiting the combinatorial structure of the problem. The resulting algorithm is considerably
faster than permanent based algorithms, although our new algorithm is still far from practical.

Before giving a high level description of our results, it is important to highlight several alternative
approaches for binary contingency tables. Two popular approaches are a Markov chain, known as
the Diaconis chain, which walks on the set of tables with the desired row/column sums [8], and
importance sampling, e.g., see [5].

The Diaconis chain is known to converge to a random table for regular degree sequences (i.e.,
r(i) = c(j) for all i, j) and sequences sufficiently close to regular, see Kannan, Tetali and Vempala
[14], and Cooper, Dyer and Greenhill [6]. An alternative (non-Markov chain) approach for regular
degree sequences with degree O(n1/3) was presented by Kim and Vu [15]. No theoretical results
are known for either of these approaches for arbitrary degree sequences. The importance sampling
approach appears to work well in practice, and recently Bayati and Saberi [1] proved that a variant
can be used to sample efficiently when the maximum degree is at most O(D1/4−ε), where D is the
number of edges in the graph. We refer the reader to [16] for a discussion of importance sampling,
and [5] for recent refinements of the approach.

Our new algorithm is inspired by the permanent algorithm of Jerrum, Sinclair, and Vigoda [12],
but requires an interesting algorithmic twist. The new algorithmic idea relies on a combinatorial
property of bipartite graphs satisfying a given degree sequence.

The basis of our algorithm is a Markov chain which walks on bipartite graphs with the desired
degree sequence and graphs with exactly two deficiencies. We say a graph has a deficiency at vertices
ui and vj if they have degree r(i)−1 and c(j)−1, respectively, and all other vertices have the desired
degree. The number of graphs with the desired degree sequence might be exponentially fewer than
the number of graphs with two deficiencies. Thus, we need to weight the random walk defined
by the Markov chain so that graphs with the desired degree sequence are likely in the stationary
distribution.

Let w(i, j) denote the ratio of the number of graphs with the desired degree sequence versus
the number of graphs with deficiencies at ui and vj . It turns out that given rough approximations
to w(i, j), for all i, j, the Markov chain weighted by these ratios quickly reaches its stationary
distribution, and samples from the stationary distribution can then be used to get arbitrarily close
estimates of w(i, j). This type of bootstrapping procedure for recalibrating the ratios w(i, j) was
central to the algorithm for the permanent.

For the permanent there is an analogous Markov chain on perfect matchings and matchings
with at most two unmatched vertices (or holes) where the corresponding ratios, denoted as ŵ(i, j),
are the number of perfect matchings divided by the matchings with holes at ui, vj . In the case
of the permanent, a bootstrapping algorithm for computing the ratios ŵ yields a natural simulated
annealing algorithm. Consider an unweighted bipartite graph G that we wish to compute the number
of perfect matchings of. In the complete bipartite graph, denoted as G0, it is trivial to exactly
compute the ratios ŵ(i, j) for every i, j. From G0, we then slightly decrease the weight of edges not
appearing in G, giving a new weighted graph G1. Using ŵ for G0 we use the bootstrapping to closely
estimate ŵ for G1. Then we, alternately, decrease (slightly) the weight of non-edges of G creating a
new graph Gi, and then use the estimates of ŵ for Gi−1 to bootstrap ŵ for Gi. A crucial element

2

of this algorithmic approach is that the quantities ŵ(i, j) are trivial to compute in the initial graph,
which in this case is the complete bipartite graph.

For contingency tables, what is a starting instance where we can easily estimate the ratios
w(i, j)’s? Recall that our final goal is to sample subgraphs of the complete bipartite graph with
given degree sequence. It is not clear that there is some trivial graph which we can use to start the
simulated annealing algorithm. This is the key problem we overcome.

We prove that if we construct a graph G∗ with the desired degree sequence using a particular
Greedy algorithm, we can estimate the ratios w(i, j) in the weighted complete bipartite graph where
edges of G∗ have weight 1 and non-edges have sufficiently small weight. The algorithm to estimate
the ratios follows immediately from the following property of G∗. For every pair of vertices ui, vj ,
there is a short alternating path between ui and vj , or there is no graph with the degree sequence
with deficiencies at ui, vj . (An alternating path is a path which alternates between edges and non-
edges of G∗.) Moreover, the alternating path is of length at most 5, which implies an easy algorithm
to count the number of minimum length alternating paths. This combinatorial fact is the main
result of this paper. It is interesting to note that this combinatorial property fails to hold for many
natural variants of Greedy and max-flow algorithms for constructing a graph with a specified degree
sequence. To the authors’ knowledge, this is the first example of a simulated annealing algorithm
which starts with a non-trivial instance.

The algorithmic consequence of our work is an O((nm)2D3dmax log5(n + m)) time algorithm
to approximately count the number of bipartite graphs with the desired degree sequence, where
D =

∑
r(i) =

∑
c(j) is the total degree and dmax = max{maxi r(i),maxj c(j)} is the maximum

degree. In the worst case this translates to an O(n11 log5 n) algorithm for an n × n matrix since
D = O(n2) and dmax = O(n). Moreover, we can count subgraphs of any input graph with the
given degree sequence (see Section 2.5 for a discussion of this extension). The following is a precise
statement of our main result.

Theorem 1. For any bipartite graph G = (U ∪V,E) where U = {u1, . . . , un} and V = {v1, . . . , vn},
any degree sequence r(1), . . . , r(n); c(1), . . . , c(m), and any 0 < ε, η < 1, we can approximate the
number of subgraphs of G with the desired degree sequence (i.e., ui has degree r(i) and vj has degree
c(j), for all i, j) in time O((nm)2D3dmax log5(nm/ε)ε−2 log(1/η)) where D =

∑
i r(i) =

∑
j c(j) is

the total degree and dmax = max{maxi r(i),maxj c(j)} is the maximum degree. The approximation is
guaranteed to be within a multiplicative factor (1± ε) of the correct answer with probability ≥ 1− η.

The permanent is a special case of the problem statement in Theorem 1 when m = n and for
1 ≤ i ≤ n, ri = ci = 1. In fact, the problem statement in Theorem 1 can be reduced to computing the
permanent in a similar manner as binary contingency tables. However, as mentioned, the reduction
causes a quadratic increase in the size of the instance. The running time of our algorithm when the
degrees are all constant is O(n7 log5 n) which matches the running time of the fastest algorithm for
the permanent [3].

The paper is organized as follows. In Section 2 we give the basic definitions and present a high
level description of our simulated annealing algorithm. This section aims to motivate our work on the
Greedy algorithm. We prove our main result about short alternating paths in the graph constructed
by a particular variant of Greedy in Section 3. In Section 4 we analyze the mixing time of the
Markov chain which is used in the simulated annealing algorithm. We conclude with the details of
the simulated annealing algorithm in Section 5. For completeness we sketch the standard reduction
from counting to sampling in Section 6. Finally we give a breakup of the running time stated in
Theorem 1 in Section 7.

3

2 Preliminaries

2.1 Definitions

We use U and V to denote the partitions of vertices of the bipartite graph on n+m vertices. Thus,
the desired degree sequence is denoted by r and c where r : U → N0, c : V → N0, and N0 is the set
of non-negative integers.

For every vertex v ∈ V (G), let N(v) denote its neighborhood set and let N(v) = V \ N(v) if
v ∈ U , and N(v) = U \N(v) if v ∈ V . We will use a and u to denote vertices in U and b and v to
denote vertices in V .

Definition 2. We say that a bipartite graph with partitions U , V corresponds to the degree sequences
r : U → N0, c : V → N0 if deg(a) = r(a) for every a ∈ U and deg(b) = c(b) for every b ∈ V . A pair
of degree sequences r, c is feasible if there exists a corresponding bipartite graph.

Let P be the set of all graphs corresponding to r, c. Recall, our overall aim is to approximate |P|.
By a standard reduction [13] this can be done by sampling almost uniformly at random from P.

It is easy to construct a graph with the desired degree sequence, or determine that no such graph
exists, using a Greedy algorithm (there are many valid variants) or a max-flow algorithm. We study
one such variant of Greedy in Section 3. Hence, we can assume that r, c defines a feasible degree
sequence.

In our simulated annealing algorithm, graphs with the desired degree sequence, except at two
vertices, called holes (or deficiencies), will play a central role. This is akin to the role of near-perfect
matchings in algorithms for the permanent.

Definition 3. Let u ∈ U, v ∈ V and let r, c be a pair of degree sequences on U , V . We define degree
sequences with holes at u, v as follows:

r(u)(a) :=

{
r(a) if a 6= u
r(a) − 1 if a = u

c(v)(b) :=

{
c(b) if b 6= v
c(b) − 1 if b = v

We say that u, v is a pair of feasible holes for the degree sequences r, c if the pair of sequences r(u),
c(v) is feasible.

Let N (u, v) be the set of all graphs corresponding to r(u), c(v) where u ∈ U , v ∈ V , and let
N = ∪u,vN (u, v). Let Ω = P ∪N .

2.2 High-level Algorithm Description

We give a rough description of the simulated annealing algorithm for binary contingency tables. This
is not the novel aspect of our paper, the algorithmic approach is very much inspired by algorithms
for the permanent. Our emphasis in this section is to motivate our main result about the graph
constructed by the Greedy algorithm.

The simulated annealing algorithm will consider a sequence of activities on edges of the complete
bipartite graph, i.e., for all pairs (x, y) where x ∈ U, y ∈ V . There will be a subgraph corresponding
to the Greedy algorithm which always has activity 1 on each edge, and the other edges will initially
have activities λ ≈ 0, and these edges will slowly increase their activities to λ = 1. More precisely,
let G∗ denote the graph with the desired degree sequence constructed by Greedy algorithm which

4

is formally defined in Section 3. (The details of this graph are not relevant at this stage.) For a
positive parameter λ, we define the activity of edge e = (x, y), x ∈ U , y ∈ V , as:

λ(e) =

{
1 if e ∈ E(G∗)
λ if e 6∈ E(G∗)

The activity of a graph G ∈ Ω is then defined as:

λ(G) =
∏

e∈E(G)

λ(e) = λ|E(G)\E(G∗)|

Finally, the activity of a set of graphs is λ(S) =
∑

G∈S λ(G).

2.3 Bootstrapping

A key quantity are the following ideal weights:

w∗
λ(u, v) =

λ(P)

λ(N (u, v))

It turns out that given close approximations of these weights, there is a Markov chain which can be
used to efficiently generate samples from P weighted by λ. Thus, using these ideal weights for λ = 1
we can efficiently sample graphs with the desired degree sequence. Given rough approximations of the
ideal weights w∗ (say within a constant factor), samples from the Markov chain can be used to boost
these weights into an arbitrarily close approximation of the ideal weights. This is the bootstrapping
procedure. The same approach is used for the approximation of the permanent. Further details of
the bootstrapping procedure can be found in Section 5.1.

Using the bootstrapping procedure to refine rough estimates of the ideal weights we can obtain
a simulated annealing algorithm for sampling binary contingency tables. We start with λ0 close to 0
(specifically with λ0 = ε(nm)−D), where, for a particular choice of G∗, it turns out to be possible to
compute a (1± ε) approximation of the ideal weights w∗

λ0
in a straightforward manner. We will then

raise λ slightly to a new value λ1. For example, suppose we set λ1 =
(
1 + 1/ ln(2−1/4)D

)
λ0 where D

is the total number of edges in the graph. Then for any graph G, λ1(G) is within a factor of 21/4 of
λ0(G). This implies that λ1(P) and λ1(N (u, v)) will be within a factor of 21/4 respectively of λ0(P)
and λ0(N (u, v)). Then, the ideal weights w∗

λ0
for λ0 will be a

√
2-approximation of the ideal weights

for λ1. We use the bootstrapping procedure to boost these to get arbitrarily close estimates of w∗
λ1

.

We can then continue to alternately raise λ by a factor
(
1 + 1/ ln(2−1/4)D

)
, and then bootstrap new

estimates of the ideal weights. In O(D2 log(mn)) steps, λ becomes 1 and we will have a suitable
approximation of the ideal weights for λ = 1. It turns out that we can use a more efficient algorithm
for updating λ, so that the ideal weights are still constant factor approximations for the successive
ideal weights, see Section 5.2.

Algorithms for the permanent use a similar simulated annealing approach, but instead start at
the complete bipartite graph and slowly remove edges not appearing in the input graph. We instead
start at a graph which depends on the desired degree sequence. We then slowly add in non-edges
until we reach the complete bipartite graph. In some sense we are doing a reverse annealing.

5

2.4 Estimating Initial Weights

Now we can address how we estimate the ideal weights for λ sufficiently small. Note, λ(P) and
λ(N (u, v)) are polynomials in λ. In particular,

λ(P) =

D∑

k=0

pkλ
D−k,

where pk denotes the number of graphs corresponding to r, c which contain exactly k edges of G∗.
Similarly,

λ(N (u, v)) =

D−1∑

k=0

pu,vk λD−1−k,

where pu,vk is the number of graphs corresponding to r(u), c(v) which contain exactly k edges of G∗.
For λ sufficiently small, to approximate λ(N (u, v)) it suffices to determine the leading non-

zero coefficient, i.e., pu,vj such that pu,vk = 0 for k > j. Note that the sum of all the coefficients

in the polynomial is at most (nm)D. Then, for λ ≤ ε/(nm)D, for some ε > 0, we claim that
xu,v = pu,vj λD−1−j is a (1 + ε) approximation of λ(N (u, v)). Formally,

xu,v ≤ λ(N (u, v)) = xu,v +

j−1∑

k=0

pu,vk λD−1−k ≤ xu,v + λD−j
j−1∑

k=0

pu,vk ≤ xu,v + ελD−j−1 ≤ (1 + ε)xu,v

The second last inequality follows because λ(nm)D ≤ ε. The last inequality follows since xu,v ≥
λD−1−j.

The graph G∗ constructed by Greedy has degree sequence r, c, and hence it has exactly one
subgraph (G∗ itself) that has this degree sequence. Thus, the absolute coefficient of λ(P) is 1 and
we can approximate λ(P) by 1. For u ∈ U, v ∈ V , if (u, v) ∈ E(G∗), then the subgraph with edges
E(G∗) \ (u, v) has holes at u, v, and this is the only subgraph with degree sequence r(u), c(v). In this
case we can also approximate λ(N (u, v)) by 1.

If (u, v) 6∈ E(G∗), then there is no subgraph of G∗ with holes at u, v, i.e., degree sequence r(u), c(v)

so that pu,vD−1 = 0. Note, we cannot approximate λ(N (u, v)) by 0, since we need an approximation
that is close within a multiplicative factor. We instead need to determine a non-zero coefficient of
lowest degree in the polynomial. Since pu,vk is the number of graphs corresponding to r(u), c(v) with
exactly k edges of G∗, the degree of the leading non-zero term in λ(N (u, v)) is ` where 2`+ 1 is the
length of the shortest (de-augmenting) alternating path between u and v in G∗. We prove that for
our particular choice of G∗, for every u, v there is an alternating path from u to v of length at most
5, or u, v are infeasible holes (in which case we do not need to consider their polynomial). Since these
alternating paths are so short, in polynomial time we can simply enumerate all possible such paths,
and exactly determine the leading non-zero coefficient, thereby obtaining a good approximation of
λ(N (u, v)).

This will result in the following lemma:

Lemma 4. Let r, c be a feasible degree sequence and let ε > 0 and λ ≤ ε
(nm)D

. There exists a graph

G∗ (independent of ε and λ) such that for any pair of feasible holes u, v we can compute a weight
w(u, v) satisfying

(1 − ε)w(u, v) ≤ w∗
λ(u, v) ≤ (1 + ε)w(u, v).

6

in time O(nmd2
max). Overall, the construction of G∗ together with the computation of w(u, v) for all

feasible holes u, v takes time O((nmdmax)
2).

2.5 Subgraphs of Arbitrary Input Graph

The above high-level algorithm description applies to the contingency tables problem, where we
are generating a random subgraph of the complete bipartite graph Kn,m with the desired degree
sequence. Our approach extends to subgraphs of any bipartite graph G = (V,E).

The general algorithm proceeds as in Section 2.2. Thus, regardless of G, we construct G∗ using
the Greedy algorithm and approximate the initial weights. For non-edges of G∗, their activity is
slowly raised from λ ≈ 0 to λ = 1. At this stage all edges have activity λ = 1, and thus we can
generate random subgraphs of Kn,m with the desired degree sequence. Then for non-edges of G, i.e.,
(u, v) 6∈ E, we slowly lower their activity from λ(u, v) = 1 to λ(u, v) ≈ 0.

Lowering the activities is analogous to raising the activities, and simply requires that the weights
w∗ at the previous activities can be used to bootstrap the weights w∗ at the new activities. Finally,
the algorithm ends with close approximations to the weights w∗ for the graph with activities of
λ(u, v) = 1 for all (u, v) ∈ E and λ(u, v) ≈ 0 for all (u, v) 6∈ E. Therefore, we can generate random
subgraphs of G with the desired degree sequence.

2.6 Analysis Details

The analysis of the Markov chain underlying the simulated annealing algorithm requires considerable
technical work. It combines many of the ideas in the recent works of Cooper, Dyer and Greenhill
[6], Kannan, Tetali and Vempala [14], Jerrum, Sinclair and Vigoda [12], and Bezáková et. al. [3].
This analysis is contained in Section 4. In Section 5 we give the details of the simulated annealing
algorithm and analyze its running time. In the next section we prove Lemma 4.

3 Greedy graph

In this section we prove that in the graph constructed by Greedy, a standard greedy algorithm with
a specific rule to break ties which will be described shortly, for all u, v there is a short alternating
path from u to v or there is no graph with holes at u, v. This immediately implies Lemma 4.

Definition 5. Let G = (U, V,E) be a bipartite graph with partitions U, V and edge set E, and let
u ∈ U , v ∈ V . We say that there exists an alternating path from u to v of length 2k + 1, if there
exists a sequence of vertices u = w0, w1, . . . , w2k, w2k+1 = v such that w2i ∈ U,w2i+1 ∈ V and
(w2i, w2i+1) ∈ E for every i ∈ {0, . . . , k}, and (w2i−1, w2i) /∈ E for every i ∈ {1, . . . , k}.

The Greedy algorithm depends on an ordering of the vertices. We need an ordering which is
consistent with the degree sequence in the following sense.

Definition 6. Fix c : V → N0 and let π be a total ordering on V . We say that π is consistent with
c, if for every b1, b2 with c(b1) > c(b2), vertex b1 precedes b2 in π (i.e. b1 ≺π b2).

We now define the Greedy algorithm which is the focus of our analysis. It can be viewed as
a recursive procedure which matches the highest degree vertex in U , say x, to r(x) highest degree
vertices in V . Then the procedure recurses on the residual degree sequence obtained from the original
sequence by setting the degree of x to zero and decrementing the degrees of all its neighbors, until

7

all residual degrees equal zero. However, we need to specify how to break ties when two vertices
have the same residual degree. This turns out to be the crucial aspect of our algorithm. For this
purpose we introduce an additional parameter of the algorithm, a preference relation π which is
initially consistent with c. For the recursive call we use a relation π̂ induced by π on the residual
sequence ĉ. Here is the formal description of the algorithm:

Procedure Greedy(r, c, π),
where r : U → N0, c : V → N0 are degree sequences and π is a total ordering on V consistent with c

• Let G = (U, V, ∅) be a bipartite graph with partitions U , V and no edges.
• If

∑
a∈U r(a) 6=

∑
b∈V c(b), return “Sequences not feasible”.

• If
∑

a∈U r(a) = 0, return G.
• Let x ∈ U be a vertex for which r(x) is maximum (if there is more than one, choose arbitrarily).
• Let Y ⊆ V be the first r(x) vertices in the ordering π.
• If Y contains a vertex of degree 0, return “Sequences not feasible”.
• For every y ∈ Y , add the edge (x, y) to G.
• Let Ĝ := Greedy(r̂, ĉ, π̂), where

r̂(a) =

{
r(a) a ∈ U \ x
0 a = x

ĉ(b) =

{
c(b) − 1 b ∈ Y

c(b) b ∈ V \ Y

and π̂ is a total ordering on V defined by: b1 ≺π̂ b2 if and only if ĉ(b1) > ĉ(b2) or
ĉ(b1) = ĉ(b2) and b1 ≺π b2.

• Add the edges of Ĝ to G and return G.

For completeness we prove that the Greedy algorithm does indeed output a graph correspond-
ing to the desired degree sequence iff it is feasible, see Lemma 17 in Section 8. The correctness
of the algorithm appears to be a folklore result. A related, standard algorithmic result is a max-
flow characterization for the existence of graphs satisfying a given bipartite degree sequence in [9, 18].

Now we are ready to present our main result. We claim that in the graph constructed by
Greedy there is a short (constant-length) alternating path between any two feasible holes. One such
graph is depicted in Figure 1. It shows a pair of feasible vertices a5, b5 and an alternating path
a5, b2, a6, b6, a2, b5 between them of length 5. Notice that the holes a7, b7 are infeasible, thus there
is no alternating path between them. In contrast with our main result, in Lemma 18 in Section 8
we construct a family of graphs which require alternating paths of linear length for certain pairs of
holes. Each graph in this family is an output of a greedy algorithm which breaks ties arbitrarily.

Theorem 7. Let r, c be a pair of feasible degree sequences and let π be a total ordering on V consistent
with c. Let G = (U, V,E) be the graph constructed by Greedy(r, c, π). Then for any pair of feasible
holes u ∈ U , v ∈ V in G there exists an alternating path from u to v of length ≤ 5.

Proof. We prove the Lemma by induction on the number of non-zero entries in r. In the base case,
there is a single non-zero entry in r. For any pair of feasible holes u, v, the non-zero entry is r(u)
and G contains the edge (u, v). Thus u, v forms an alternating path of length 1.

For the inductive hypothesis, assume that the Lemma is true for every triple (r′, c′, π′), where
r′, c′ are feasible degree sequences, r′ contains fewer non-zero entries than r, and π′ is a total ordering
consistent with c′. Let u ∈ U , v ∈ V be a pair of feasible holes for r, c. Suppose that U = {a1, . . . , an}
and the edges adjacent to ai ∈ U are added in the i-th iteration (or recursive call) of Greedy(r, c, π).

8

2

44

=

= =

=11

5

7

3

2

2

5

7

3

2

1c(b)

7c(b)7r(a)

1r(a)

Figure 1: The Greedy
graph on the se-
quence (1, 2, 2, 3, 4, 5, 7),
(1, 2, 2, 3, 4, 5, 7).

v

Y

u = a1

Figure 2: u = a1 and
v ∈ Y

v

z

w

1u = a

Y

Figure 3: u = a1 and
v ∈ V \ Y

v’

b

1a

v

u

Y

Figure 4: u has a neighbor b ∈
V \ Y

Y

u

a

a1

b

y

v

Figure 5: Vertex b ∈ V \ Y of
residual degree ≥ 1

a’

Y

u

v

v’

a

y

Figure 6: Neighborhoods of v,
v′ are identical

We say that this is the recursive call when ai is processed. In the first recursive call x = a1. Recall
that Y denotes the set of a1’s neighbors.

• If u = a1, we construct a short alternating path from u to v as follows (Figures 2,3).

– If v ∈ Y , then (u, v) is an edge in G and thus u, v forms an alternating path of length 1.

– If v /∈ Y , let w be any neighbor of v. Such a neighbor exists since deg(v) > 0, since u, v are
feasible holes. Since u is the vertex of the highest degree, deg(w) ≤ deg(u). Hence there
exists a vertex z ∈ Y which is not a neighbor of w. (If not, then deg(w) ≥ 1+|Y | > deg(u),
a contradiction.) Then u, z, w, v forms an alternating path of length 3.

• Suppose u 6= a1. Recall that r̂, ĉ are the reduced degree sequences corresponding to the graph
Ĝ obtained from G by removing all edges adjacent to a1.

– If u, v are also feasible holes for r̂, ĉ, then we may use the inductive hypothesis to conclude
that there exists an alternating path from u to v in Ĝ of length ≤ 5. Note that the
correctness of Greedy and the assumption that r, c are feasible imply that r̂, ĉ are feasible
sequences, and π̂ is consistent with ĉ by definition. Hence we can indeed apply induction.
Since G and Ĝ differ only in edges adjacent to a1 and the path in Ĝ does not use a1

(because ĉ(a1) = 0), the path is also an alternating path of length ≤ 5 in G.

9

Y

u

v

v’

a

a1

Figure 7: Every y ∈ Y is ad-
jacent to a

v

Y

a

u = au = a vj

ka

1a

Y

j max

ka

b

1

bmax

Figure 8: Constructing G and G(u,v) in k-th iteration

– Suppose that u, v are not feasible holes for r̂, ĉ. We use the following claim:

Claim 8. If u, v are not feasible holes for r̂, ĉ, then v ∈ Y is of degree c(v) = 1 and there
exists v′ ∈ V \ Y also of degree c(v′) = 1.

Before we prove the claim, we check what it implies about the existence of a short alter-
nating path between u and v.

By the claim, v ∈ Y and there exists another v′ ∈ V \ Y with c(v) = c(v′) = 1. If u
has an edge to a vertex b ∈ V \ Y , then u, b, a1, v forms an alternating path of length 3
(see Figure 4). Therefore, we may assume that all of u’s neighbors lie in Y . Let rj , cj be
the residual degree sequences just before the greedy algorithm for r, c starts adding edges
adjacent to u = aj (i.e., rj , cj are Greedy’s inputs to the recursive call in which u is
processed). In other words, rj, cj are the parameters of the j-th recursive call originated
from Greedy(r, c, π). Let b be a vertex of the highest remaining degree in V \ Y at the
start of the j-th recursive call (notice that V \Y is nonempty since v′ /∈ Y). The existence
of a short alternating path follows from this claim:

Claim 9. If u, v are feasible, then cj(b) = 1.

The proof of the claim is included in Section 3.1. By the claim, for feasible u, v there
is a vertex a ∈ U adjacent to b which is processed after u (see Figure 5). This follows
from the fact that all of u’s neighbors are in Y . Hence, deg(a) ≤ deg(u), and therefore,
there exists y ∈ Y which is a neighbor of u but it is not a neighbor of a. (If not, then
deg(a) ≥ 1+deg(u), a contradiction.) Then u, y, a, b, a1, v is an alternating path of length
5.

3.1 Proofs of Claims 8 and 9 and Lemma 4

To finish the proof of the Theorem 7, it remains to prove the two claims. We re-state both claims,
together with their assumptions.

Claim 8. Recall that r̂, ĉ denote the residual sequences after the greedy algorithm matches the first
vertex a1 ∈ U . Assume that u, v are feasible holes for r, c, where u 6= a1. If u, v are not feasible for
r̂, ĉ, then v ∈ Y = N(a1) and there exists a vertex v′ ∈ V \ Y such that c(v) = c(v′) = 1.

10

Proof of Claim 8. Since u, v are feasible for r, c, there exists a graph with degree sequence r(u), c(v)

(the sequence with holes at u, v). Let G(u,v) be the graph returned by Greedy(r(u), c(v), π(u,v))
where π(u,v) is the total order obtained from π by repositioning v right after all the vertices of degree
c(v) (thus v comes before all vertices of degree c(v)− 1). We will compare G(u,v) with G to establish
conditions under which u, v are feasible for r̂, ĉ.

Notice that if v 6∈ Y or if v ∈ Y but c(v) > c(b) for every b ∈ V \ Y , then the neighborhoods
of a1 in G and G(u,v) are identical (because the first r(a1) = |Y | elements of π and π(u,v) are the

same). Thus, in this case, ĉ(v) (the sequence ĉ with hole at v) is identical to the sequence ĉ(v), the
residual sequence used in the recursive call of Greedy(r(u), c(v), π(u,v)). Moreover, since u 6= a1, we

have r̂(u) = r̂(u). By the correctness of the greedy algorithm, r̂(u), ĉ(v) are feasible. Therefore, if a1

has the same neighbors in G and G(u,v), we can conclude that u, v are feasible holes for r̂, ĉ.
We are left with the case when v ∈ Y and there exists v′ ∈ V \Y of the same degree c(v′) = c(v).

We will show that if c(v) > 1, the holes u, v are feasible for r̂, ĉ. This implies the claim.
Suppose c(v) = c(v′) > 1 for v ∈ Y and v′ ∈ V \ Y . Since u, v are feasible for r, c, by symmetry

u, v′ are also feasible for r, c. However, v′ 6∈ Y and thus, as before, we can conclude that r̂(u), ĉ(v
′)

are feasible and there exists a corresponding graph H. Notice that ĉ(v
′) = c(v′) − 1 (because v′ 6∈ Y

is a hole) and that ĉ(v
′) = c(v) − 1 (because v ∈ Y). Since c(v′) = c(v) > 1, vertices v and v′ have

the same non-zero degree in H. We will modify H to obtain H ′, a graph corresponding to r̂(u), ĉ(v).
This will prove the feasibility of u, v for r̂, ĉ. To get H ′, we need to decrease the degree of v and
increase the degree of v′ by one while keeping the other degrees intact.

If there is a vertex a ∈ U which is adjacent to v but not v′ in H, we may simply set H ′ =
H ∪ (a, v′) \ (a, v). If there is no such a, then the neighborhood sets of v and v′ in H are identical
(see Figure 6). If there is a vertex y ∈ Y for which there exists a neighbor a of v′ (and v) in H which
is not adjacent to y, then we construct H ′ as follows. Since y ∈ Y , and v′ /∈ Y is of the same degree
in G as v ∈ Y , by the definition of Y we have c(y) ≥ c(v) = c(v′). Therefore the degree of y in H is
not smaller than the degree of v′ in H, i.e. ĉ(v

′)(y) ≥ ĉ(v
′)(v′). Thus there must exist y’s neighbor

a′ in H which does not neighbor v′. It suffices to set H ′ = H ∪ {(a, y), (a′, v′)} \ {(a, v), (a′ , y)} (see
Figure 6).

The last case happens when v and v′ share the same set of neighbors in H and every y ∈ Y is
adjacent to every neighbor of v′ (see Figure 7). By contradiction we will show that this case never
happens. Notice that since r(a) ≤ r(a1) for every a ∈ U and the degree of a in H remains r(a)
except for u 6= a1 which decreases by one, the degree of every a ∈ U in H is upper bounded by
r(a1), i.e. for all a ∈ U , r̂(u)(a) ≤ |Y |. Let a be any neighbor of v′ (by the assumption c(v′) > 1, the
neighborhood set of v′ is non-empty). Then a is adjacent to every vertex in Y ∪ {v′} and therefore
r̂(u)(a) > |Y |, a contradiction.

Claim 9. Let u 6= a1 and v ∈ Y be such that c(v) = c(v′) = 1 for some v′ ∈ V \ Y . Suppose
Greedy(r, c, π) processes vertices from u in order a1, . . . , an. Let ri, ci, πi be the parameters to the
i-th recursive call of Greedy, i.e. the call when ai is processed. Let u = aj . If cj(b) = 0 for all
b ∈ V \ Y , then u, v are not feasible for r, c.

Proof of Claim 9. Since c(v) = 1, for every b ∈ V \ Y we have c(b) ≤ 1. Let bmax ∈ V \ Y be the
vertex of degree 1 ordered last in π (there is at least one such vertex, since c(v′) = 1). We create
π′ by swapping the positions of v and bmax in π. Notice that this ordering is consistent with c(v),
the sequence obtained from c by decreasing the degree of v by one. We will compare the execution
of Greedy(r, c, π) and Greedy(r(u), c(v), π′) (see Figure 8). The idea is that both executions will

11

behave similarly, with the roles of v and bmax reversed. Once Greedy(r, c, π) gets to matching bmax

to a vertex ak from U , Greedy(r(u), c(v), π′) will attempt to match ak to a vertex in V of residual
degree zero and it will fail. Thus, by the correctness of Greedy, u, v cannot be feasible holes for
r, c. We describe the idea in detail below.

Notice that Greedy(r, c, π) and Greedy(r(u), c(v), π′) process all vertices ai for i < j in the
same order (assume that if the second execution has multiple choices for x, it chooses the same x
as the first execution, if possible). This follows from the fact that the only vertex whose degree is
changed is vertex aj and its degree only decreased. Moreover, the order of processing vertices of U
is independent of c (or c(v)), assuming the executions do not fail.

Let ri, ci, πi and r
(u)
i , c

(v)
i , π′i be the parameters of the i-th recursive call originated from Greedy(r, c, π)

and Greedy(r(u), c(v), π′), respectively. Let ak ∈ U be the vertex matched to bmax by Greedy(r, c, π).
By the assumption of the claim, cj(bmax) = 0, and hence k < j, i.e. ak is processed before u = aj .
By induction on i one can verify that for i < k the following hold:

1. r
(u)
i (a) = ri(a) for a ∈ U \ {u} and r

(u)
i (u) = ri(u) − 1.

2. c
(v)
i (b) = ci(b) for b ∈ V \ {v, bmax}, c(v)i (bmax) = ci(v), ci(bmax) = 1 and c

(v)
i (v) = 0.

3. Let supp(f) = {x | f(x) 6= 0}.

• If v ∈ supp(ci), then supp(ci) = supp(c
(v)
i)∪{v}. The total order πi restricted to supp(ci)

and the total order π′i restricted to supp(c
(v)
i)∪{v} are identical except that the positions

of v, bmax are reversed.

• If v /∈ supp(ci), then supp(ci) \ {bmax} = supp(c
(v)
i), and the orderings πi restricted to

supp(ci) and π′i restricted to supp(c
(v)
i)∪ {v} are identical except that bmax appears in πi

where v appears in π′i.

4. For every b �πi bmax, ci(b) = 0. In words, bmax is the last vertex of degree 1 in πi, if it is indeed
of degree 1.

For the induction, the base case i = 1 is clear in each case. The case of i = 2 also follows in each
case, and it can be checked that it holds for the second claim in 3. Now assume the claims are true
up to some 2 ≤ i ≤ k − 2. We show that they hold for (i+ 1).

1. Since only the degree of ai 6= u decreases in both sequences by ri(ai) = r
(u)
i (ai).

2. Since bmax is matched only in the k-th recursive call, ci+1(bmax) = ci(bmax) = 1. Also, c
(v)
i+1(v) =

c
(v)
i (v) = 0. For i = 1, when v is matched by the outermost recursive call of Greedy(r, c, π),

bmax is matched by Greedy(r(u), c(v), π′), hence c
(v)
i+1(bmax) = ci+1(v). It follows that c

(v)
i+1(b) =

ci+1(b) for b ∈ V \ {v, bmax} since if the statement is true for i and the orderings are identical
on vertices of non-zero residual degree other than v, bmax by 3., then exactly the same set of
vertices are used by both in the i-th recursive call.

3. This part is true by the definitions πi+1 = π̂i and π′i+1 = π̂′i and the fact that 1, 2, and 3 hold
for i.

4. This is clear by the definition of the orderings πi+1 and π′i+1 and the fact that ci(bmax) = 1.

12

Therefore ak is joined to the first r(ak) elements in πk by Greedy(r, c, π), and by 4. the last
of them is bmax. However, by 3., the execution of Greedy(r(u), c(v), π′) will attempt to connect

ak to v (or some vertex with remaining degree 0), which is impossible since c
(v)
k (v) = 0. Thus,

Greedy(r(u), c(v), π′) fails to construct a corresponding graph, and hence u, v are not feasible holes
for r, c.

This finishes the proof of the Theorem 7. As mentioned earlier, Lemma 4 is a corollary of the
Theorem.

Proof of Lemma 4. We will prove that for the greedy graph G∗ for any ε > 0 and any λ ≤ ε
(nm)D

we can efficiently estimate w∗(u, v) = λ(P)/λ(N (u, v)) (within a 1 ± ε factor) for every feasible
u, v. We have already observed that λ(P) and λ(N (u, v)) are polynomials in λ. We will show how
to approximate λ(P) and λ(N (u, v)). First we observe, that each of λ(P) and λ(N (u, v)) has a
positive small-degree coefficient. In particular, the absolute coefficient of λ(P) is 1, since G0 is the
only graph corresponding to r, c sharing exactly D edges with G∗. Moreover, by Lemma 7, there
exists a graph G′ ∈ N (u, v) which can be obtained from G∗ by swapping the edges of an alternating
path of length ≤ 5. Therefore G′ shares at least D − 3 edges with G∗ and thus the coefficient of xd

for some d ≤ 2 in λ(N (u, v)) is positive. Moreover,

|P| ≤
(
nm

D

)
≤ (nm)D,

where the first inequality follows from the fact that
(nm
D

)
counts the number of bipartite graphs (with

partitions of sizes n,m) with exactly D edges. Thus,

1 ≤ λ(P) = 1 +

D−1∑

k=0

pkλ
D−k ≤ 1 + λ

D−1∑

k=0

pk ≤ 1 + λ(nm)D ≤ 1 + ε

To approximate λ(N (u, v)), we will enumerate all graphs corresponding to r(u), c(v) which share at
least D − 3 edges with G∗. This can be done by going through all possible alternating paths from
u to v of length ≤ 5 and through all alternating cycles of length 4 (corresponding to the case when
the symmetric difference of G∗ and the graph with the degree sequence r(u), c(v) consists of the edge
(u, v) and a 4-cycle). This way, for fixed u, v, in time O(nmd2

max) we can compute

xu,v := pu,vD−1 + pu,vD−2λ+ pu,vD−3λ
2.

Then, xu,v is a (1 + ε)-approximation of λ(N (u, v)):

xu,v ≤ λ(N (u, v)) = xu,v +
D−4∑

k=0

pu,vk λD−1−k ≤ xu,v + λ3
D−4∑

k=0

pu,vk ≤ xu,v + ελ2 ≤ (1 + ε)xu,v,

where the last inequality follows from xu,v ≥ λ2 since there exists j ∈ [3] for which pu,vD−j ≥ 1.

Therefore in time O((nmdmax)
2) we can compute xu,v for every u, v and 1/xu,v is a (1 + ε)-

approximation of w∗
λ(u, v).

13

4 The Markov Chain

Our Markov chain is analogous to the chain used in algorithms for the permanent [11, 12]. Recall
that P denotes the set of graphs with the required degree sequence, and N (u, v) denotes the set of
graphs with deficiencies at u, v and N = ∪u,vN (u, v). The state space of the chain is Ω = P ∪N .

The Markov chain is characterized by an activity λ > 0 and a weight function w : U × V → R+.
The weight of a graph G ∈ Ω is defined as

w(G) =

{
λ(G) if G ∈ P
λ(G)w(u, v) if G ∈ N (u, v)

The transitions Gt = (U, V,Et) → Gt+1 = (U, V,Et+1) of the Markov chain MC are:

1. If Gt ∈ P, choose an edge e uniformly at random from Et. Set G′ = Gt \ e.

2. If Gt ∈ N (u, v), choose an edge e = (x, y) uniformly at random from the multi-set1 Et∪{(u, v)}
and choose W uniformly from U, V .

(a) If e = (u, v) and (u, v) 6∈ Et, let G′ = Gt ∪ (u, v).

(b) If W = U and (u, y) 6∈ Et, let G′ = Gt \ (x, y) ∪ (u, y).

(c) If W = V and (x, v) 6∈ Et, let G′ = Gt \ (x, y) ∪ (x, v).

(d) Otherwise, let G′ = Gt.

3. With probability min{1, w(G′)/w(Gt)}, set Gt+1 = G′; otherwise, set Gt+1 = Gt.

It is straightforward to verify that the stationary distribution π of the chain is proportional to
the weights w, i.e., for G ∈ Ω, π(G) = w(G)/Z where Z =

∑
Gw(G). The main result of this section

is to show that if the weights w(u, v) are within a constant factor of their ideal values w∗(u, v), MC
mixes in polynomial time.

We continue with some standard definitions before formally stating the main result on the con-
vergence time of the Markov chain. The total variation distance between two distributions µ, ν on
Ω is given by

dtv(µ, ν) =
1

2

∑

x∈Ω

|µ(x) − ν(x)|

Let P denote the transition matrix of the chain MC, and thus P t(x, ·) denotes the distribution after
t steps of the chain, with starting state x. The mixing time τx(δ) of MC starting at state x ∈ Ω is
defined as

τx(δ) = min{t ≥ 0 | dtv(P t(x, ·), π) ≤ δ}

We can now state our main result on the mixing time of MC.

Theorem 10. Assuming the weight function w satisfies inequality

w∗(u, v)/2 ≤ w(u, v) ≤ 2w∗(u, v) (1)

for every feasible hole pattern u ∈ U, v ∈ V , then the mixing time of the Markov chain MC started
at G is τG(δ) = O(nmD2dmax(ln(1/π(G)) + log δ−1)), where dmax = max{maxi r(i),maxj c(j)}.

1It may be that (u, v) is already in the set of edges Et.

14

4.1 Analyzing the mixing time

We bound the mixing time of MC using the multicommodity flow method, which is an extension
of the canonical path technique [21]. Let K denote the Markov kernel (i.e., the transition graph)
underlying MC so that T = (M,M ′) is an edge of K if P (M,M ′) > 0. Let PIF be the set of all

directed paths from I to F in K. A flow in the Markov kernel is a function g :
⋃

I,F∈Ω,I 6=F

PIF → R
+
0

such that
∑

p∈PIF
g(p) = π(I)π(F). The congestion of the flow g is defined as:

ρ(g) = `(g) max
T=(M,M ′)





1

π(M)P (M,M ′)

∑

p3T

g(p)





where `(g) is the length of the longest path p such that g(p) > 0, Note, the summation is over all
p ∈ ∪I,FPIF , and T is restricted to be an edge of the Markov kernel so that P (M,M ′) > 0.

This implies the following bound on the mixing time, which was proved by Sinclair [21],

τx(δ) ≤ ρ(g)(log π(x)−1 + log δ−1)

To define the flow g, for each I, F ∈ Ω×Ω we must specify how to route the flow along directed
paths going from I to F . As in [12] it is convenient to first define a flow f between all pairs I ∈ Ω
and F ∈ P. The flow f can be extended to a flow g between all pairs by routing the flow between
a pair of near-perfect tables I, F through a random perfect table. Extending the flow from f to g
causes only a modest increase in the congestion. If ρ̂(f) denotes the congestion restricted to pairs
(I, F) ∈ Ω × P, then

ρ(g) ≤ 2
π(N)

π(P)
ρ̂(f) ≤ 8nmρ̂(f) (2)

The first inequality follows by a result of Schweinsberg, Corollary 3 in [20]. The second inequality
follows assuming by (1) that the weights w(u, v) approximate the ideal weights w∗(u, v) up to a factor
of 2. Hence it will suffice to define the flow f , which we do in the next section, and bound ρ̂(f) to
bound the mixing time.

4.2 Defining the Canonical Flow

We use the flows defined by Cooper, Dyer and Greenhill [6]. Therefore, we follow their notation. Let
I, F be perfect or near-perfect contingency tables. We wish to define a set of canonical paths between
them by decomposingH = I⊕F into a sequence of edge-disjoint alternating circuits. Different circuit
decompositions will correspond to distinct paths. A circuit of H is a sequence of vertices w0, · · · , w`,
such that (wi, wi+1), (w`, w0) ∈ EH , and each of these edges is distinct, though the vertices may be
repeated. The set EH = (EF \ EI) ∪ (EI \ EF). Let the edges in EF \ EI be red and the edges
in EI \ EF be blue. At each vertex, we will choose a pairing of the red and blue edges. A pairing
of I ⊕ F consists of a pairing at every vertex. Let Ψ(I, F) be the set of all such pairings of I ⊕ F .
For each pairing in Ψ(I, F), we will construct a canonical path from I to F , carrying a total flow of
π(I)π(F)/|Ψ(I, F)|. We define the pairings and the corresponding circuit decompositions below.

I, F ∈ P : In this case, at each vertex of H, the red degree is equal to the blue degree. A pairing
is constructed by pairing up the red edges at a vertex with the blue edges at each vertex. Hence, if

15

the red (and blue) degree in H of a vertex v is γv, |Ψ(I, F)| = Πvγv!. Fix a pairing ψ ∈ Ψ(I, F).

We define an edge disjoint circuit decomposition of H, Cψ = (Cψ1 , · · · , Cψs), and then define how to
“unwind” each circuit to go from I to F . To simplify notation, we omit the superscript henceforth.
Let the lexicographically smallest edge in EH be (w0, w1). Choose the (wi, wi+1) to be the next edge
of the circuit if (wi, wi+1) is paired with (wi−1, wi) at wi by ψ (so that we choose (w1, w2) if it is
paired with (w0, w1) by ψ at w1). This procedure terminates with the circuit C1 = w0, · · · , wk−1, wk
when the edge (wk, w0) is paired with (w0, w1) at w0. If EH = C1, set C = (C1). Otherwise, generate
C2 by starting with the lexicographically smallest edge not in C1. Continue until EH = C1∪· · ·∪Cs.
Then set C = (C1, · · · , Cs). Note that the circuits C1, · · · , Cs are edge disjoint by construction and
the edges of the circuits are alternately blue and red.

The canonical path pψ corresponding to the pairing ψ is defined by the concatenation of the
sequence of moves which unwind C1, · · · , Cs. Let Cr = a0, b0, . . . , a`, b` be a circuit whose lexico-
graphically smallest blue edge is (a0, b0). First remove the edge (a0, b`). Then for i = 0, . . . , ` − 1,
slide the edge (ai+1, bi) into (ai, bi). Finally, add (a`, b`). Since the set of circuits correspond-
ing to different pairings are distinct, the corresponding canonical paths are distinct as well. Set
f(pψ) = π(I)π(F)/|Ψ(I, F)| for each path pψ.

I ∈ N and F ∈ P : Suppose I ∈ N (u, v). Then, in the graph H = I ⊕ F , every vertex except u, v
is incident with an equal number of red and blue edges. The vertices u, v are each adjacent to one
more red edge than the number of blue edges. Let the number of red edges adjacent to the vertex
v in H be γv. Define the pairing ψ as follows. At each vertex other than u, v choose a pairing of
red and blue edges. At each of u, v choose one red edge which remains unpaired, and pair up the
remaining red and blue edges. If Ψ(I, F) is the set of such pairings then, |Ψ(I, F)| =

∏
v∈V γv!. For

each pairing ψ ∈ Ψ(I, F) we decompose H into a set of circuits C and a walk W as follows. Let
(w0, w1) be the red edge adjacent to u = w0 which is unmatched by ψ. Choose the edge (wi, wi+1)
to be the next edge of the walk if (wi, wi+1) is paired with (wi−1, wi) at wi by ψ. The procedure
terminates with the walk W , given by u = w0, · · · , w` = v when the red edge (w`−1, w`) which is
unpaired by ψ at v is paired with (w`−2, w`−1) at w`−1. If EH = W , we are done, otherwise, start
with the lexicographically smallest unused edge of EH and define the circuits C1, · · · , Cs. To define
the canonical path corresponding to ψ, we unwind the walk W and then the circuits C in their
canonical order. To augment the walk a0, b0, . . . , a`, b`, we slide the edges (ai+1, bi) to (ai, bi) for
i = 0, . . . , `− 1. Then we add the edge (a`, b`). Set f(pψ) = π(I)π(F)/|Ψ(I, F)| for each path pψ.

This completes the definition of the flow f between pairs I, F in Ω × P.

4.3 Analyzing the Flow

To prove Theorem 10, we analyze the mixing time of the Markov chain which uses the ideal weights
w∗(u, v). We will see that the Theorem then follows immediately from the condition (1). By the
construction of the flow, `(f) ≤ D and `(g) ≤ 2D. Hence

ρ̂(f) ≤ 2D max
T=(M,M ′)





1

π(M)P (M,M ′)

∑

p3T

f(p)





where the sum is over paths p ∈ Ψ(I, F) for I, F in Ω × P. Moreover, by the definition of the
Markov chainMC, for any transition T = (M,M ′) which has non-zero probability, π(M)P (M,M ′) ≥

16

1
2D min{π(M), π(M ′)}. Hence,

ρ̂(f) ≤ 4D2 max
T=(M,M ′)





1

min{π(M), π(M ′)}
∑

p3T

f(p)



 (3)

Thus to bound ρ̂(g), it is enough if we bound

max
T=(M,M ′)





1

π(M)

∑

p3T

f(p)





for every transition (M,M ′), since then the bound holds for the reverse transition (M ′,M) as well.
Let T = (M,M ′) be any transition of the Markov chain so that P (M,M ′) > 0. Let

fT = {(I, F) ∈ Ω × P : ∃ ψ ∈ Ψ(I, F) s.t. pψ 3 T}.

We will show that for every transition T = (M,M ′) of the Markov kernel,

∑

(I,F)∈fT

π(I)π(F)

π(M)

|ΨT (I, F)|
|Ψ(I, F)| = O(dmax) (4)

By equations (2),(3), and (4), this implies ρ(g) = O(mnD2dmax). This then implies the bound on
the mixing time. We divide the proof of (4) into two cases according to the type of transition, in the
following two subsections.

We will use the following notation. For y, u ∈ U and x, v ∈ V distinct, let

N̂ (y, x, (y, v), (x, u)) = {M ∈ N (y, x) : (y, v), (x, u) 6∈M}

Also, let
P̂(u, v) = {P ∈ P : (u, v) 6∈ P}

We also require notation for tables with up to 4 deficiencies. For y, u ∈ U and v, x ∈ V (not
necessarily distinct), let N (y, x, u, v) denote the set of tables with deficiencies at u, v, x, y. If any of
the vertices y, u, v, x are the same, this means the degree at that vertex is two less than its required
degree.

Recall, for a transition T , fT denotes the set of (I, F) ∈ Ω ×P which use T for some of its flow.
Let

fu,vT = {(I, F) ∈ fT : I ∈ N (u, v)}

4.3.1 Transitions of Type 2b or 2c.

Lemma 11. For a transition T of type 2b or 2c,

∑

(I,F)∈fT

π(I)π(F)

π(M)

|ΨT (I, F)|
|Ψ(I, F)| = O(dmax)

To prove the lemma, we use results analogous to the combinatorial lemmas proved in [3], tailored
to the canonical flows in this case. We first state and prove the combinatorial results and then show
how the lemma follows.

17

Lemma 12. Let T be a transition between near-perfect tables, so that M ∈ N (u, v), M ′ ∈ N (u′, v)
where u, u′ ∈ U , v ∈ V and M ′ = M \ (u′, x) ∪ (u, x) for some x ∈ V .

i)
∑

(I,F)∈fT
I∈P

|ΨT (I, F)|
|Ψ(I, F)| λ(I)λ(F) ≤

∑

y∈U

(y,v)6=(u,x)

λ(u, x)λ(y, v)λ(N̂ (y, x, (y, v), (x, u)))λ(M)

ii) For all s ∈ U

∑

(I,F)∈fs,v
T

|ΨT (I, F)|
|Ψ(I, F)| λ(I)λ(F) ≤ λ(u, x)λ(N̂ (s, x, (x, u)))λ(M)

iii) For all s ∈ U and z ∈ V ,

∑

(I,F)∈fs,z
T

|ΨT (I, F)|
|Ψ(I, F)| λ(I)λ(F) ≤

∑

y∈U

(y,v)6=(u,x)

λ(u, x)λ(y, v)λ(N̂ (s, z, y, x, (y, v), (x, u)))λ(M)

Proof. i) Let I ∈ P (blue), and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F) (at x, the edge (u, x) is always paired with (u′, x)), which gives a
decomposition of I ⊕ F into red-blue alternating circuits. Since the pairing corresponds to a path
from I to F through the transition T , the vertices u, v, x lie on some circuit C. Let y be the vertex
adjacent to v in C so that the edge (v, y) is blue (for the first sliding transition in the unwinding
of C, y is the vertex u so that the order of vertices on the circuit is v, y, x, u′). Clearly, since (u, x)
is an edge of the transition, and (y, v) is the first removed edge, (y, v) 6= (u, x). In M , the circuits
ordered before C agree with F , while the circuits after C agree with I.

Define the graph Eψ(I, F) = I ⊕F ⊕ (M ∪M ′) \ {(v, y)}. Then Eψ(I, F) ∈ N̂ (y, x, (y, v), (x, u)).
Given M and (u, x), we can recover M∪M ′ = M∪(u, x), and from this, given Eψ(I, F) and (y, v), we
can recover I⊕F = (Eψ(I, F)∪(y, v))⊕(M∪M ′). We have that I ∪F = M∪Eψ(I, F)∪{(u, x), (y, v)},
and hence

1

|Ψ(I, F)|λ(I)λ(F) =
1

|Ψ(I, F)|λ(M)λ(Eψ(I, F))λ(u, x)λ(y, v) (5)

Let Ψ′(Eψ(I, F)) be defined as the set of triples (I ′, F ′, ψ′) with ψ′ ∈ Ψ(I ′, F ′) such that
E′
ψ(I ′, F ′) = Eψ(I, F). We claim that |Ψ′(Eψ(I, F))| ≤ |Ψ(I, F)|. Assuming this, we claim the

lemma follows. If we add up (5) for each (I, F) ∈ fT such that I ∈ P, and each ψ ∈ ΨT (I, F), then
on the left hand side, each term λ(I)λ(F) is counted |ΨT (I, F)| times. On the right hand side of
(5), for every graph E ∈ N̂ (y, x, (y, v), (x, u)) such that E = Eψ(I, F) for some I, F, ψ, the term
λ(E)λ(M)λ(u, x)λ(v, y) is counted |Ψ′(E)| times. Formally,

∑

(I,F)∈fT
I∈P

|ΨT (I, F)|
|Ψ(I, F)| λ(I)λ(F) =

∑

E∈ bN (y,x,(y,v),(x,u))

E=Eψ′(I′,F ′)

|Ψ′(Eψ′(I′,F ′))|
|Ψ(I ′, F ′)| λ(u, x)λ(y, v)λ(E)λ(M)

18

≤
∑

E∈ bN (y,x,(y,v),(x,u))

E=Eψ′(I′,F ′)

λ(u, x)λ(y, v)λ(E)λ(M)

≤
∑

y∈U

(y,v)6=(u,x)

λ(u, x)λ(y, v)λ(N̂ (y, x, (y, v), (x, u)))λ(M)

Suppose that from Eψ and T we recover H = I⊕F . Then H has even degree at every vertex. Color
an edge of H green if it is in M and yellow if it is in Eψ. To bound the number of triples |Ψ′(Eψ)|, we
use the fact that the pairing ψ of red and blue edges is a pairing of yellow and green edges at most
vertices. A pairing of the yellow and green edges defines a decomposition of I ⊕ F = I ′ ⊕ F ′ into
alternating circuits, and further, using the transition T we can recover I ′ and F ′. Thus the number
of triples |Ψ′(Eψ)| is bounded by the number of yellow-green pairings.

In H, every vertex except possibly u, v, x, y has equal yellow and green degree. Two edges of H
remain uncolored, (u, x) and (y, v).

a) Suppose u 6= y, v 6= x. The vertices y, x have one extra green degree and u, v have one extra yellow
degree. To define the pairings at each vertex of H, define the pairings as usual for all vertices
except x, y, u, v. At u, think of (u, x) as a green edge, while at x, think of it as a yellow edge. At
y, think of (y, v) as a yellow edge, while at v think of it as a green edge. This ensures that there
is a yellow-green pairing corresponding to the original red-blue pairing, because we know that
in the red-blue pairing at v, the edge (v, y) was paired with a red edge (from F), which is now
colored yellow (from Eψ). Similar arguments can be made at the vertices y, u, x. In addition, at
x, we know from T that the edge (u, x) should be paired with (u′, x). The number of yellow green
pairings is at most |Ψ(I, F)|, since if we take into account the “bicolored” edges (v, y) and (u, x),
the number of yellow green pairings at each vertex is at most the number of red-blue pairings
originally.

b) Suppose that u 6= y, v = x. Then in H at every vertex except u, y, the green degree is equal to
its yellow degree. Meanwhile, y has an extra green degree and u an extra yellow degree. The
pairings at each vertex are constructed as in the previous case, with the same rules for the edges
(u, x) and (v, y). Again, it can be seen that the number of yellow-green pairings is the same as
the number of red-blue pairings.

c) Suppose u = y. Note that this implies v 6= x. Every vertex in H except v, x has equal yellow
and green degree, but again, coloring the edges (v, y) and (u, x) as before to define the pairings
at v, y, x can be used to show that the number of yellow green pairings that we can construct are
at most |Ψ(I, F)|.

Note that once the bicolored edges are taken into account, in each of the above cases, every vertex
of H has green degree equal to yellow degree.

ii) Let I ∈ N (s, v) (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F) and define Eψ(I, F) = I ⊕F ⊕ (M ∪M ′). Then Eψ ∈ N̂ (s, x, (x, u)).
We claim |Ψ′(Eψ(I, F))| ≤ |Ψ(I, F)|. Suppose that from Eψ(I, F) and T we recover H = I ⊕ F .
Then H has even degree at every vertex except s, v. Color an edge of H green if it is in M and
yellow if it is in Eψ(I, F). The edge (u, x) of H remains uncolored.

19

We can show the bound on |Ψ′(Eψ(I, F))| by exactly the same steps as i), by substituting y in
that case, with s here. The only difference is that we no longer take into consideration the edge (s, v)
for constructing the pairings, as it is not in H. Notice that here, the fact that s and v have extra red
degree will be compensated for by considering (u, x) to be bicolored for the purposes of constructing
the yellow-green pairing. This results in s having a green edge and v having a yellow edge remaining
effectively unpaired in the yellow-green pairing of H. Note that the red edges which were adjacent
to s, v in the circuit being unwound will appear yellow adjacent to v and green adjacent to s in the
yellow-green coloring of H. Thus the pairing red-blue ψ does indeed correspond to a yellow-green
pairing in H.

iii) Let I ∈ N (s, z) (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F). Then, ψ decomposes I ⊕ F into a sequence of red-blue alternating
circuits and an alternating walk from s to z whose initial and final edges are red. Since T is a
transition along the path corresponding to ψ from I to F , u, v, x lie on some circuit C. Let y be the
vertex adjacent to v in C so that the edge (v, y) is blue.

Define the graph Eψ(I, F) = I⊕F⊕(M∪M ′)\{(v, y)}. Then Eψ(I, F) ∈ N̂ (s, z, y, x, (y, v), (x, u)).
Suppose that from Eψ(I, F) and T we recover H = I ⊕ F . Then H has even degree at every vertex
except s, z. Color an edge of H green if it is in M and yellow if it is in Eψ(I, F).

First assume that the vertices u, v, s, z, x, y are distinct. Then, every vertex except u, v, s, z, x, y
has equal yellow and green degree in H. Both s and z have one green degree more than their yellow
degree. This is because they are the endpoints of a walk which has already been unwound, and hence
the red edges adjacent to s, z which are left unpaired by ψ both appear in M and are green. Two
edges of H remain uncolored, (u, x) and (y, v). The vertices y, x have one extra green degree and
u, v have on extra yellow degree. To define the pairings at each vertex of H, define the pairings as
usual for all vertices except x, y, u, v. At u, think of (u, x) as a green edge, while at x, think of it
as a yellow edge. At y, think of (y, v) as a yellow edge, while at v think of it as a green edge. The
number of yellow green pairings that we can construct are at most |Ψ(I, F)|.

Now, in case the vertices are not distinct, there are in all 21 possibilities, taking into account the
bipartition the vertices are in and the fact that (u, x) 6= (v, y). However, in each case, suppose that
at u, we think of (u, x) as a green edge, while at x, we think of it as a yellow edge and at y, we think
of (y, v) as a yellow edge, while at v think of it as a green edge. Then, except at s, z, the yellow
degree at every vertex is equal to the green degree in H. At s, z, the green degree exceeds the yellow
degree by 1. Hence, the number of yellow green pairings we can construct are at most |Ψ(I, F)|.

Lemma 13. i) Let u, y ∈ U and v, x ∈ V such that (y, v) 6= (u, x).

λ(u, x)λ(N (u, v))
∑

y

λ(v, y)λ(N̂ (y, x, (y, v), (x, u))) ≤ 6dmaxλ(P)2

ii) Let s, u ∈ U and v, x ∈ V .

λ(u, x)λ(N (u, v))λ(N̂ (s, x, (s, u))) ≤ 4λ(P)λ(N (s, v))

iii) Fix s ∈ U, z ∈ V . Let u, y ∈ U and v, x ∈ V such that (y, v) 6= (u, x).

λ(u, x)λ(N (u, v))
∑

y

λ(v, y)λ(N̂ (s, z, y, x, (y, v), (x, u))) ≤ 2dmaxλ(P)λ(N (s, z))

20

Proof. i) Let N1 ∈ N (u, v) and N2 ∈ ⋃
y N̂ (y, x, (y, v), (x, u)). We will consider the symmetric

difference N1 ⊕ N2 and define a modified (multi)graph H ′(N1, N2) and a set of pairings of H ′,
Ψ(N1, N2). From N1, N2 and a pairing in Ψ(N1, N2) we construct graphs N3 ∈ P and N4 ∈ P,
and a pairing of H ′(N3, N4). The graphs will satisfy N1 ∪ N2 ∪ {(u, x), (v, y)} = N3 ∪ N4 where
the union takes into account multiplicities. Given N3, N4, and the pairing of H ′(N3, N4) we will be
able to reconstruct N1, N2 and the original pairing given an additional 3 × [dmax] × {0, 1} amount
of information. We then show that the number of pairings of H ′(N3, N4) is at most the number of
pairings of H ′(N1, N2), and this implies the claimed inequality.

First assume the vertices u, y and v, x are distinct. Consider the symmetric differenceH = N1⊕N2

so that the edges from N1 are blue, and those from N2 are red. Then, x, y each have blue degree
1 more than their red degree while u, v have red degree one more than their blue degree. We will
fix a pairing of the red and blue edges as follows. The graph H may or may not contain the edges
(u, x), (v, y) depending on whether or not they are present in N1. If either is present, it is colored
blue. To define pairings at each vertex, first add the uncolored edges (u, x), (v, y) to H, i.e. let
H ′ = H ∪ {(u, x), (v, y)} and retain the color of all the edges from H. Note, H ′ may have double
edges. To define the pairings at u, v, think of both the uncolored edges (u, x), (v, y) as blue and
define an exact pairing of the red and blue edges. At y, x, we think of the uncolored edges as red and
define an exact pairing of the red and blue edges at these vertices such that the red edge (x, u) (resp.
(y, v)) is always paired with the blue (x, u) (resp. (y, v)), if it is present, for example, see Figure 9
a). For all other vertices, the red degree is equal to the blue degree, and we pair them up. Call this
pairing in H ′ ψ, and let the set of pairings be Ψ(N1, N2).

Then ψ defines a decomposition of H ′ into alternating circuits of even length. These are shown for
the example in Figure 9 b). The idea of the map is to traverse the circuits and put edges alternately
in N3 ∈ P and N4 ∈ P. For each circuit not containing the uncolored edges, put edges alternately
in N3 and N4 making the convention that the blue edges are put into N4 and the red edges into
N3. There is only one way for a circuit to contain the uncolored edges; such a circuit must contain
both. (There cannot be two distinct circuits each containing one uncolored edge, since the circuit is
even, and the edges alternate red-blue, ignoring the uncolored edge). For the circuit containing the
uncolored edges, put edges alternately in N3 and N4 starting with the uncolored (y, v) in N3. Edges
which are in both N1, N2 are added to both N3, N4. Note that this set never includes the edges
(u, x), (v, y), so we never attempt to add them to N3 or N4 twice. By the definition of ψ, if H ′ has
any double edges, then both copies do not go into the same graph since they appear consecutively
in a circuit or walk. Then, N3 ∈ P and N4 ∈ P. The bit b of the map is set to 1 if the blue edge
(v, y) was present in N(u, v) and was traversed after the uncolored (v, y). The set [dmax] is used to
encode the vertex y.

To invert the map, consider two tables, N3 ∈ P and N4 ∈ P, and their symmetric difference
N3 ⊕ N4. If the pairing ψ of H ′ was known, we claim we can recover N1, N2 uniquely. We can
reconstruct H ′ as follows. If (u, x) (resp. (y, v)) appears in N3 ⊕N4, then it was not present in N1,
and hence appears once in H ′. On the other hand, if (u, x) (resp. (y, v)) does not appear in N3⊕N4,
then it was present in N1, and hence appears as a double edge in H ′. Thus, we can reconstruct H ′

from N3 ⊕N4 by adding in two copies of the edge if necessary. If ψ was known, we could partition
the edges of H ′ into N1, N2 as follows. The pairing ψ determines the decomposition of H ′ into
alternating circuits. There will be exactly one circuit which contains the edges (u, x) and (v, y). For
the other circuits and the walk, we put the edges coming from N3 into N2, and the edges from N4

into N1. If there is a circuit containing (u, x), (v, y), proceed as follows. If (y, v) does not appear as
a double edge, start with the edge in the circuit after (y, v), and put edges alternately in N1 and N2,

21

x

v
u x

x

uy

v x

u
2

b1
a

x

u

y

x

x

u

u

x

2
b1

a

y

v

2
b1

a

u

a)

2
b1

a

y

v

x

u

u
2

b1
a

y

v

b)

b

a

3
b

5
b

3
a

6
b

3
b

5
b

3
a

2
a

2
a

6

2

Blue

2
a

2
a

3
b

5
b

3
a

6
b

2
a

b

b
5

b2
a

3
a

2
a

6
b

4
b

4
b

1b

1

Red

3

4
b

1b

2
a

6
b

5
b

3
a

1b 3
b

4
b

1b

Figure 9: a) The graph H ′, b) Decompositions of H ′ into alternating circuits

22

v

y

a
1 b

2

v

y

a
1 b

2

x

u

u

x

x

u

v

y

a
1 b

2

u

u

x

x

b

a
3

b
5

b
3

b
6

a
3

b
5

b
3

a
2

2

Blue

Red

Green

a

2

Yellow

1

b
4

b
4

b
3b1

a
3

5
b

a

2
a

6
bb

4

1b

2
a

6
b

Figure 10: Graphs N1, N2 which map to a pair N3, N4 ∈ P

and also skipping one copy of the edge (u, x). If (y, v) appears twice in the circuit, we can determine
which copy was the uncolored one by looking at the bit b. If b is 1, it is the first one, and if b is 0, it
is the second one. Proceed as before, start with the edge after the uncolored (v, y), and assign edges
alternately to N1 and N2, and also skip one copy of (u, x). Finally, put all other common edges of
N3, N4 into both N1 and N2.

Color the edges of H ′ green if they come from N3, and yellow if they come from N4. Since we
do not have the pairing ψ of H ′, instead, we use the fact that a pairing of the original red and blue
edges is a pairing of the yellow and green edges of H ′ at all the vertices. We know that at x, y if
there is a double edge, they are colored yellow, and green, and must be matched. Also, at u, v the
double edges are not paired. Hence the number of valid yellow-green pairings in H ′ is at most as
the number of original red-blue pairings |Ψ(N1, N2)|, and so there cannot be too many initial pairs
of tables mapping to N3, N4. This is illustrated with an example in Figure 10.

In the case that the vertices are not distinct, there 2 other possibilities :

a) u = y, v 6= x

23

b) u 6= y, v = x

The two cases are symmetric, except that in the second case, we have to keep track of y so we only
give the argument for a). Let N1 ∈ N (u, v) (blue) and N2 ∈ N̂ (u, x, (u, v), (x, u)) (red). Then, in
H = N1 ⊕N2, the vertex u has equal red and blue degree, while v has 1 extra red degree and x has
1 extra blue degree. Also, if the edges (u, v) or (u, x) are present, they are blue. Construct H ′ as
before, and define the pairings as before. Thus at x we think of the uncolored (u, x) as red (and pair
it with the blue (u, x) if it is present), while at u we think of it as blue. At v, think of the uncolored
(u, v) as blue, while at u, we think of it as red, and always pair it with the blue (u, v) if it is present.
The remainder of the argument is the same as when the vertices are distinct.

Now, given which case we are in (there are 3 cases in all), and N3, N4 ∈ P, and the vertex y, the
inequality follows since the number of yellow-green pairings is at most |Ψ(N1, N2)|.

ii) Let N1 ∈ N (u, v) and N2 ∈ ⋃
y N̂ (s, x, (x, u)). As before, we will define a modified (multi)graph

H ′(N1, N2) and a set of pairings of H ′, Ψ(N1, N2). From N1, N2 and a pairing in Ψ(N1, N2) we will
construct graphs N3 ∈ N (s, v) and N4 ∈ P, and a pairing of H ′(N3, N4). The graphs will satisfy
N1 ∪N2 ∪ (u, x) = N3 ∪N4, taking into account the multiplicity of the edges. Given N3, N4, and the
pairing of H ′(N3, N4) we will be able to reconstruct N1, N2 and the original pairing given a constant
amount of additional information. We then show that the number of pairings of H ′(N3, N4) is at
most the number of pairings of H ′(N1, N2), and this implies the claimed inequality.

First assume the vertices s, x, u, v are distinct. Consider the symmetric difference H = N1 ⊕N2

so that the edges from N1 are blue, and those from N2 are red. In H, s, x each have blue degree
1 more than their red degree while u, v have red degree one more than their blue degree. Let
H ′ = H ∪{(u, x)} and retain the color of all the edges from H leaving the new edge (u, x) uncolored.
Define a pairing ψ of H ′ as follows. At s, choose one blue edge which remains unpaired, and pair
up the remaining red and blue edges. At v, choose one red edge to remain unpaired and pair up the
others. To define the pairing at u, think of the uncolored edge (u, x) as blue and define an exact
pairing of the red and blue edges. At x, we think of the uncolored edge as red and define an exact
pairing of the red and blue edges at these vertices such that the red edge (x, u) is always paired with
the blue (x, u), if it is present. For all other vertices, the red degree is equal to the blue degree, and
we pair them up as usual. Let the set of such pairings be Ψ(N1, N2).

Then ψ defines a decomposition of H ′ into circuits of even length and a walk of odd length from
s to v whose initial edge is blue, final edge is red, and contains the uncolored edge (u, x), since the
length of the walk is odd. The idea of the map is the same as in the previous case, to put edges
from the circuits and walks alternately in N3 and N4 with the same color conventions as before.
When we traverse the walk, starting with N4 we put each edge alternately into N3 and N4. Then,
N3 ∈ N (s, v) and N4 ∈ P.

To invert the map, consider the symmetric difference N3 ⊕N4. If the pairing ψ of H ′ was known,
we can recover N1, N2 uniquely. We can reconstruct H ′ as follows. If (u, x) appears in N3 ⊕ N4,
then it was not present in N1, and hence appears once in H ′. On the other hand, if (u, x) does not
appear in N3 ⊕N4, then it was present in N1, and hence appears as a double edge in H ′. Thus, we
can reconstruct H ′ from N3 ⊕N4 by adding in two copies of the edge if necessary. If ψ was known,
we could partition the edges of H ′ into N1, N2. The pairing ψ determines the decomposition of H ′

into circuits and a walk of odd length. The walk contains (all the copies of) the edge (u, x) since the
circuits are all even length. For each circuit as well as the walk, we put the edges coming from N3

into N2, and the edges from N4 into N1. Put all other common edges of N3, N4 into both N1 and
N2.

24

Color the edges of H ′ green if they come from N3, and yellow if they come from N4. Since we
do not have the pairing ψ of H ′, instead, we use the fact that a pairing of the original red and blue
edges is a pairing of the yellow and green edges of H ′ at all the vertices. We know that at x if there
is a double edge, they are colored yellow, and green, and must be matched. Also, at u, the double
edges are not paired.

If the vertices are not distinct, there are 3 cases:

a) u = s, v 6= x. In this case, add the uncolored (u, x) to H. At u, think of the uncolored edge
as blue, and fix a pairing by leaving out one blue edge. At x, fix the pairing by always pairing
the uncolored/red (u, x) with the blue copy of (u, x) if it is present. Now in H ′, v has one extra
red degree, while u has an extra blue degree taking into account the uncolored (u, x). Hence
the pairing determines an alternating walk from s to v with initial edge blue, and final edge red,
containing the uncolored edge, and alternating circuits. Put the edges along the walk alternately
in N3 and N4. Thus we ensure N3, N4 each contain at most one copy of (u, x). Inverting the map
is easy if the pairing of H ′ is known, and we can bound the number of yellow-green pairings as
before.

b) u 6= s, v = x. In this case the argument is similar to the above, except that in H ′, to fix a red-blue
pairing, think of the the uncolored edge (u, x) as blue at u and red at x.

c) u = s, v = x. This case becomes trivial. Let N1 ∈ N (u, v) and N2 ∈ N̂ (u, v, (v, u)). Set N3 = N1

and N4 = N2 ∪ (u, x). Clearly, N4 ∈ P, N3 ∈ N (s, v), and the map is easily invertible.

Hence the number of yellow-green pairings in H ′ is at most the number of original red-blue pair-
ings |Ψ(N1, N2)|. Given which case we are in (which is a factor of 4), the inequality follows.

iii) Let N1 ∈ N (u, v) and N2 ∈ ⋃
y N̂ (s, z, y, x, (y, v), (x, u)). As before, we define a modified

(multi)graph H ′(N1, N2) and a set of pairings of H ′, Ψ(N1, N2). From N1, N2 and a pairing in
Ψ(N1, N2) we construct graphs N3 ∈ PP and N4 ∈ P, and pairing of H ′(N3, N4). The graphs will
satisfy N1 ∪N2 ∪ {(u, x), (v, y)} = N3 ∪N4, taking into account multiplicity of edges. Given N3, N4,
and the pairing of H ′(N3, N4) we will be able to reconstruct N1, N2 and the original pairing given
an additional [dmax] × {0, 1} amount of information. We then show that the number of pairings of
H ′(N3, N4) is at most the number of pairings of H ′(N1, N2), and this implies the claimed inequality.

First assume the six vertices are distinct. Consider the symmetric difference H = N1 ⊕ N2 so
that the edges from N1 are blue, and those from N2 are red. Then, s, z, x, y each have blue degree
1 more than their red degree while u, v have red degree one more than their blue degree. Define H ′

as in i). We will fix a pairing ψ of the red and blue edges in H ′ as follows. At s, z, choose one blue
edge which remains unpaired, and pair up the remaining red and blue edges. The pairing at all other
vertices is defined as in i). Let the set of such pairings be Ψ(N1, N2).

Then ψ defines a decomposition of H ′ into circuits of even length and a walk of odd length from
s to z whose initial and final edges are blue. Traverse the walk, and starting with N4 put each edge
alternately into N3 and N4. The rest of the edges of H ′ are partitioned as in i). Then, N3 ∈ N (s, z)
and N4 ∈ P. The bit b of the map is set to 1 if the blue edge (v, y) was present in N(u, v) and was
traversed after the uncolored (v, y). The set [dmax] is used to encode the vertex y.

We can reconstruct H ′ using the symmetric difference N3⊕N4 and the edges (u, x), (v, y) exactly
as in i). Since we do not have the pairing ψ of H ′, to recover N1, N2 we use the fact that a pairing
of the original red and blue edges is a pairing of the yellow and green edges of H ′ at all the vertices.
Color the edges of H ′ green if they come from N3, and yellow if they come from N4. We know that

25

Table 1: Enumeration of the cases

u 6= y, v 6= x u = y, v 6= x u 6= y, v = x

s = u • z = v • z = v • z = v = x
• z = x • z = x • z 6= v, x
• z 6= v, x • z 6= v, x

s = y • z = v • z = v
• z = x Counted in the case s = u • z 6= v, x
• z 6= v, x

s 6= u, y • z = v • z = v • z = v
• z = x • z = x • z 6= v, x
• z 6= v, x • z 6= v, x

at x, y if there is a double edge, they are colored yellow, and green, and must be matched. Also,
double edges at u or v are never paired. Hence the number of yellow-green pairings in H ′ is at most
the number of original red-blue pairings |Ψ(N1, N2)|.

Lastly, we handle the various cases in which the vertices are not distinct. There are 21 possible
distinct cases depending on which of the vertices u, y, v, x, s, z are the same. These are enumerated
in Table 1 for completeness.

In each of these cases, when we add the uncolored edges (u, x), (v, y), so that we think of them
as red at y and x and blue at u and v, in order to define the pairing of H ′, we find that each of s, z
have 1 extra blue degree, and at every other vertex, the blue degree equals the red degree. Then,
we can restrict to the same kinds of pairings as in the case when the vertices are distinct, and the
lemma follows, once we factor in which of the 22 cases we are in, and the vertex y is known in each
case.

Note that in some of the cases, the map can be defined by adding the edges (u, x), (v, y) to the
tables, but the map can be defined in this way through the pairings as well. Since the map is defined
in the same way in each case, we do not even need to retain information about which of the 22 cases
we are in, and the bound now follows.

With the above inequalities in hand, the proof of Lemma 11 is a matter of plugging them in to
the expressions which bound the congestion through a transition.

Proof of Lemma 11. When T is a transition of type 2b or 2c the flow through T can come from 3
sources. First, due to being on an alternating circuit between pairs of perfect tables. Second, the
congestion due to being on the augmenting walk between a near-perfect table and a perfect table.
Lastly, due to being on an alternating circuit between a near-perfect table and a perfect table. The
proof of the bound is similar in each of these cases, and the bottleneck is the third case. In each
case, let T = (M,M ′), where M ∈ N (u, v) and M ′ ∈ N (u′, v), with x as the pivot vertex, so that
M ′ = M ∪ (u, x) \ (u′, x).

We can bound the congestion due to (I, F) ∈ P × P through T as follows.

∑

(I,F)∈fT
I∈P

|ΨT (I, F)|
|Ψ(I, F)|

π(I)π(F)

π(M)

26

=
1

w(Ω)

∑

(I,F)∈fT
I∈P

|ΨT (I, F)|
|Ψ(I, F)|

λ(I)λ(F)

λ(M)

λ(N (u, v))

λ(P)

(By Lemma 12, i) ≤ 1

w(Ω)

∑

y

(y,v)6=(u,x)

λ(u, x)λ(y, v)
λ(N̂ (y, x, (y, v), (x, u)))λ(N (u, v))

λ(P)

(By Lemma 13, i) ≤ 6dmaxλ(P)

w(Ω)

≤ 6dmax
nm

Next, we bound the congestion due to (I, F) ∈ N × P through T when T is on the alternating
walk. Note that in this case at least one of the holes of I, v is the same as a hole of M .

∑

s∈U

∑

(I,F)∈fs,v
T

|ΨT (I, F)|
|Ψ(I, F)|

π(I)π(F)

π(M)

=
1

w(Ω)

∑

s

λ(N (u, v))

λ(N (s, v))

∑

(I,F)∈fs,v
T

|ΨT (I, F)|
|Ψ(I, F)|

λ(I)λ(F)

λ(M)

(By Lemma 12, ii) ≤ 1

w(Ω)

∑

s

λ(u, x)
λ(N (u, v))

λ(N (s, v))
λ(N̂ (s, x, (s, u)))

(By Lemma 13, ii) ≤ 4nλ(P)

w(Ω)

≤ 4

m

Lastly, we bound the congestion due to (I, F) ∈ N × P when T is on an alternating circuit.

∑

s∈U,z∈V

∑

(I,F)∈fs,z
T

|ΨT (I, F)|
|Ψ(I, F)|

π(I)π(F)

π(M)

=
1

w(Ω)

∑

s,z

λ(N (u, v))

λ(N (s, z))

∑

(I,F)∈fs,z
T

|ΨT (I, F)|
|Ψ(I, F)|

λ(I)λ(F)

λ(M)

(By Lemma 12, iii) ≤ 1

w(Ω)

∑

s,z

λ(u, x)
λ(N (u, v))

λ(N (s, z))

∑

y

(y,v)6=(u,x)

λ(y, v)λ(N̂ (s, z, y, x, (y, v), (x, u)))

(By Lemma 13, iii) ≤ 2dmaxnmλ(P)

w(Ω)

≤ 2dmax

Adding the congestion from each of these sources, the congestion through a sliding transition T
is bounded by O(dmax).

27

4.3.2 Transitions of Type 2a or 1.

Lemma 14. For a transition T of type 2a or 1,

∑

(I,F)∈fT

π(I)π(F)

π(M)

|ΨT (I, F)|
|Ψ(I, F)| = O(1) (6)

To prove the lemma, we again tailor the corresponding combinatorial inequalities of [3] for the
case of canonical flows. We first state and prove the combinatorial results and then show how the
lemma follows.

Lemma 15. Let T = (M,M ′) be a transition between a near-perfect table in N (u, v) and a perfect
table, so that the edge (u, v) is either deleted or added. Let N be the near-perfect table of M and M ′.
Then,

i)
∑

(I,F)∈fT
I∈P

|ΨT (I, F)|
|Ψ(I, F)| λ(I)λ(F) ≤ λ(u, v)λ(P̂(u, v))λ(N)

ii) For all s ∈ U and z ∈ V ,

∑

(I,F)∈fs,z
T

|ΨT (I, F)|
|Ψ(I, F)| λ(I)λ(F) ≤ λ(u, v)λ(N̂ (s, z, (u, v)))λ(N)

Proof. i) Let I ∈ P (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F). Define the graph Eψ(I, F) = I ⊕ F ⊕ (M ∪M ′). Then, Eψ(I, F) ∈
P̂(u, v). Given Eψ(I, F), T and ψ, we can recover I and F . Since I ∪ F = N ∪ E(I, F) ∪ (u, v),

1

|Ψ(I, F)|λ(I)λ(F) =
1

|Ψ(I, F)|λ(u, v)λ(Eψ(I, F))λ(N)

As before, color the edges of I ⊕ F yellow and green depending on whether they come from Eψ or
M . The number of yellow-green pairings of I ⊕F is bounded by Ψ(I, F), and the inequality follows.

ii) Let I ∈ N (s, z) (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F). Define the graph Eψ(I, F) = I ⊕ F ⊕ (M ∪M ′). Then, Eψ(I, F) ∈
N̂ (s, z, (u, v)). Given Eψ(I, F), T and ψ, we can recover I and F . Since I ∪F = N ∪E(I, F)∪ (u, v),

1

|Ψ(I, F)|λ(I)λ(F) =
1

|Ψ(I, F)|λ(u, v)λ(Eψ(I, F))λ(N)

As before, color the edges of I⊕F yellow and green depending on whether they come from Eψ or M .
The number of yellow-green pairings of I ⊕F is bounded by Ψ(I, F), and the inequality follows.

Lemma 16. i) Let u ∈ U, v ∈ V . Then,

λ(u, v)λ(P̂(u, v))λ(N (u, v)) ≤ λ(P)2

28

ii) Fix s ∈ U, z ∈ V . Let u ∈ U, v ∈ V . Then,

λ(u, v)λ(N̂ (s, z, (u, v)))λ(N (u, v)) ≤ 4λ(N (s, z))λ(P)

Proof. i) Let N1 ∈ N (u, v) (blue) and N2 ∈ P̂(u, v) (red).

Consider the symmetric difference H = N1 ⊕N2. Both u, v have red degree one more than their
blue degree. H may or may not contain the edge (u, v). If it is present, it is colored blue. We define
a red-blue pairing of H to partition the edges into two perfect tables N3, N4. To define the pairing,
we first define the multigraph H ′ = H ∪ (u, v), so that the new edge (u, v) is colored blue. Now, let
Ψgood be the set of possible pairings of H ′ so that for ψ ∈ Ψgood, the corresponding decomposition of
H ′ into alternating circuits, there is not circuit containing both copies of (u, v). In case H ′ contained
only one copy of (u, v) all pairings are ’good’. If H ′ did indeed contain two copies of (u, v), we claim
that |Ψgood| is at least 1/2 fraction of all possible pairings. To see this, take any pairing whose circuit
decomposition contains a circuit with both copies of (u, v). From this pairing, we can obtain a ’good’
pairing by switching the red edges that the blue copies of (u, v) are paired with at u. Note that two
such distinct pairings will always give distinct ’good’ pairings.

Now, fix ψ ∈ Ψgood. Let C1, C2 be the circuits containing the edge (u, v). For every other circuit,
send all the blue edges to N3 and the red edges to N4. Do the same for the circuit of C1, C2 in which
for the edge (u, v), v is adjacent to a lower numbered vertex through a red edge. For the remaining
circuit, put the red edges in N3, and the blue edges in N4. Lastly, put all edges in N1 ∩N2 into both
N3, N4. Then, N3, N4 ∈ P.

As before, we can recover the uncolored H ′ from N3, N4. If the pairing of H ′ was known, the map
can be inverted, and N1, N2 recovered. Since the pairing is not known, proceed as follows. Color the
edges of H ′ green if they are from N3 and yellow if from N4. Now the total number of yellow-green
pairings is equal to the total number of possible red-blue pairings. However, we can eliminate the
ones in which, say at u the copies of (u, v) are paired, since this would give a cycle decomposition
which was impossible for a pairing from Ψgood. If the yellow degree of u in H is d ≥ 2 (which is the
case if there were 2 (blue) copies of (u, v) in H ′), this eliminates at least (d − 1)!/(d!) ≥ 1/2 of all
yellow-green pairings. Hence not too many N1, N2 pairs can map to N3, N4.

ii) In the case that s 6= u and z 6= v, the proof is analogous to the previous case. The other cases
are:

a) s = u, z 6= v. Let N1 ∈ N (u, v) be blue and N2 ∈ N̂ (s, z, (u, v)) be red. Then, in the symmetric
difference, u has equal red and blue degree, v has 1 extra red degree, and z has one extra blue
degree. If we add an extra blue edge (u, v), then s has an extra blue degree while v get equal red
and blue degree. Hence in a pairing of H ′, there is an alternating walk from s to z whose initial
and final edges are blue. As before, to take care that the two copies of (u, v) don’t end up in the
same table, we can exchange the pairing at one end, say u (on either the walk or any circuit), to
get a pairing where the two edges are not part of the same circuit or walk.

b) s 6= u, z = v. The argument in this case is similar to a).

c) s = u, z = v. This case is trivial. If N1 ∈ N (u, v) and N2 ∈ N (s, z) such that the edge (u, v)
is not present in N2, set N3 = N1 ∈ N (s, z), and set N4 = N2 ∪ (u, v) ∈ P. The map is clearly
invertible.

Since in all, there are 4 cases, accounting for a factor of 4, given which case we are in, we obtain the
claimed bound.

29

We now plug the above bounds into the expressions for congestion through a transition of the
chain which either adds or deletes an edge.

Proof of Lemma 14. Let T be a transition which either adds or deletes an edge (a move in the Markov
chain of type 1 or 2a). In each case, let T = (M,M ′), where M ∈ N (u, v) and M ′ ∈ P (the proof in
the case that the transition deletes an edge is along the same lines, with the appropriate modification
to Lemmas 15 and 16). We bound the left hand side of (6) by bounding the contribution firstly, due
to a pair of perfect tables, and secondly due to a near perfect and a perfect table.

We bound the congestion through T due to (I, F) ∈ P × P as follows.

∑

(I,F)∈fT
I∈P

|ΨT (I, F)|
|Ψ(I, F)|

π(I)π(F)

π(M)

=
1

w(Ω)

∑

(I,F)∈fT
I∈P

|ΨT (I, F)|
|Ψ(I, F)|

λ(I)λ(F)

λ(M)

λ(N (u, v))

λ(P)

(By Lemma 15, i) ≤ 1

w(Ω)
λ(u, v)λ(P̂(u, v))

λ(N (u, v))

λ(P)

(By Lemma 16, i) ≤ λ(P)

w(Ω)

≤ 1

nm

Next, we bound the congestion through T due to (I, F) ∈ N × P.

∑

s∈U,z∈V

∑

(I,F)∈fs,z
T

|ΨT (I, F)|
|Ψ(I, F)|

π(I)π(F)

π(M)

=
1

w(Ω)

∑

s,z

λ(N (u, v))

λ(N (s, z))

∑

(I,F)∈fs,z
T

|ΨT (I, F)|
|Ψ(I, F)|

λ(I)λ(F)

λ(M)

(By Lemma 15, ii) ≤ 1

w(Ω)

∑

s,z

λ(u, v)λ(N̂ (s, z, (u, v)))
λ(N (u, v))

λ(N (s, z))

(By Lemma 16, ii) ≤ 4nmλ(P)

w(Ω)

≤ 4

Adding the congestion from each of these sources, the congestion through a transition that adds
or deletes an edge is bounded by O(1).

Lemmas 11 and 14 imply the Inequality (4). It can be seen from the proofs of the Lemmas in
this section, that if the weights w(u, v) satisfy (1), the bound holds for the weights w up to a small
constant factor. Hence, we have that ρ(f) = O(nmD2dmax). This implies that the mixing time of
the chain started at G is bounded by τG(δ) = O(nmD2dmax(ln(1/π(G)) + log δ−1)). This completes
the proof of Theorem 10.

30

5 Approximating Ideal Weights by Simulated Annealing

Recall that our goal is to find the ideal weights (or, rather, a constant factor approximation of the
ideal weights) for λ = 1.

As mentioned earlier, we will do this by progressively increasing the value of λ. We start with
λ close to 0, when it is possible to compute a (1 + ε) approximation of the ideal weights in a
straightforward manner, see Lemma 4. However, later in the algorithm we will only have a constant
factor, say 2, approximation of the ideal weights. We will use samples of the corresponding Markov
chain to obtain a better approximation of the ideal weights, what in turn allows us to increase the
value of λ slightly so that the improved approximation of the ideal weights of the old λ sufficiently
approximates the ideal weights of the new λ. Eventually, λ becomes 1 and we will have a suitable
approximation of the ideal weights for λ = 1. In this section we discuss these steps in more detail.

5.1 Bootstrapping

Suppose we have weights wλ(u, v) which are a 2-approximation to the weights w∗
λ(u, v). That is,

suppose that w∗
λ(u, v)/2 ≤ wλ(u, v) ≤ 2w∗

λ(u, v). We want to use the Markov chain to tighten this
approximation to a factor c ∈ (1, 2). The following computation closely mimics the computation of
[12, Section 3].

Recall, that πλ denotes the stationary distribution of the Markov chain. To simplify notation,
we will omit the subscript λ. Recall, that for a given activity λ the ideal weights are defined as
w∗
λ(u, v) = λ(P)/λ(N (u, v)). Note that if w(u, v) = w∗(u, v) for every u ∈ U, v ∈ V , then

w(N (u, v)) = w∗(u, v)λ(N (u, v)) = λ(P) = w(P).

Thus for the Markov chain run with weights w = w∗, the stationary distribution of the chain satisfies
π(N (u, v)) = π(P). For arbitrary weights w, note that

π(N (u, v)) =
w(u, v)λ(N (u, v))

w(Ω)
=

w(u, v)λ(P)

w(Ω)w∗(u, v)
= π(P)

w(u, v)

w∗(u, v)

Rearranging terms, we have

w∗(u, v) = w(u, v)
π(P)

π(N (u, v))
(7)

This implies a bootstrapping procedure to boost rough approximations to w∗ into arbitrarily close
approximations. By sampling from the stationary distribution of the chain with weights w, we can
estimate π(P)/π(N (u, v)), and thus using (7) we can estimate w∗(u, v).

Here are the details. The idea is to obtain a c1/2-approximation of both π(P) and π(N (u, v)).
Then we will have a c-approximation, say z, of π(P)/π(N (u, v)) = w∗(u, v)/w(u, v). In other words,

z/c ≤ w∗(u, v)

w(u, v)
≤ cz

and thus it suffices to set the weight approximations wnew(u, v) := w(u, v)z to get c-approximations
of w∗(u, v).

We can use the indicator random variables X and Xu,v for the events “a sample from π is in P”
and “a sample from π is in N (u, v)” as estimators of π(P) and π(N (u, v)). However, by running
the MC we cannot obtain a sample from π, rather a sample from π̂ which is δ-close to π in total

31

variation distance. Thus, E[X] = π̂(P) and E[Xu,v] = π̂(N (u, v)). It is sufficient to set δ so that
π̂(P) and π̂(N (u, v)) approximate π(P) and π(N (u, v)), respectively, by a factor of c1/4. Then we
can use several samples of X and Xu,v to approximate π̂(P) and π̂(N (u, v)) within a factor of c1/4.
Thus, overall we obtain a c-approximation of the ratio π(P)/π(N (u, v)).

First we sketch how to set δ so that π̂ is within a factor of c1/4 of π. Recall that the distribution
π is defined by a weight function w which is a 2-approximation of the ideal weights w∗. Thus,
4/(nm) ≥ π(P), π(N (u, v)) ≥ 1/(4nm) and we can set δ = Θ(1/(nm)) so that π̂(P), π̂(N (u, v)) =
Θ(1/(nm)) and π̂(P) and π̂(N (u, v)) are c1/4-approximations of π(P) and π(N (u, v)).

To obtain a c1/4 approximation of π̂(P) we approximate E[X] within a factor of c1/4 by averaging
s random variables X1, . . . ,Xs. By the Chernoff bounds, since E[X] = Θ(1/(nm)), it suffices to take
s = O(nm log ζ−1) samples to approximate E[X] = π̂(P) with probability ≥ 1 − ζ. Analogous
arguments hold for E[Xu,v].

Putting it all together, the average of the Xi’s estimates π̂(P) within a factor of c1/4 with
probability ≥ 1 − ζ and π̂(P) is within a factor of c1/4 of π(P). Thus, we obtained estimates π(P)
within a factor of c1/2 with probability ≥ 1 − ζ. Therefore, with probability at least 1 − (nm+ 1)ζ
we obtain c1/2 approximations of all π(P), π(N (u, v)), resulting in factor of c approximations of
w∗(u, v) for every u, v. Since we do the bootstrapping for every λi, the overall probability of success
is ≥ 1 − (nm+ 1)`ζ which we want to be, say, 4/5. It suffices to set ζ = Θ(1/((nm+ 1)`)).

5.1.1 Warm Starts

For a fixed λ the improved approximation of the ideal weights includes running the Markov chain
s = O(nm log ζ−1) = O(nm log(nm)) times. By Theorem 10 the mixing time of the Markov chain
started at graph G is O(nmD2dmax(ln(1/π(G)) + log δ−1)). The term log π(G)−1 comes from the
fact that the starting distribution is concentrated on the state G. The graph G∗ seems to be a
good starting point since λ(G∗) = 1 and thus log π(G∗)−1 = O(D log(nm)). If we start the chain
at G∗ we need to take O(nmD2dmax(ln(1/π(G∗)) + log δ−1)) steps of the chain per sample. The
standard method of warm starts can be used to avoid the log π(G∗)−1 term in the running time.
The idea is to obtain the first sample by taking O(nmD2dmax(ln(1/π(G∗)) + log δ−1)) steps, but all
subsequent samples are obtained by running the Markov chain started at the previous sample. This
way, the chain is effectively started from a distribution close to the stationary distribution and thus
the subsequent samples each take only O(nmD2dmax(log δ

−1)) steps. The same idea is used in [12].

5.2 Total Number of Phases

We specify a sequence ε(nm)−D = λ1 ≤ · · · ≤ λ` = 1 such that

1√
2
≤

w∗
λi

(u, v)

w∗
λi+1

(u, v)
≤

√
2 for every i ∈ [`− 1] and every u, v

Then, if wnew(u, v) is a
√

2-approximation (remember that we are free to choose any constant
c ∈ (1, 2)) of w∗

λi
(u, v), by the above wnew(u, v) is also a 2-approximation of w∗

λi+1
(u, v). Therefore

we can increase λ from λi to λi+1 and still be able to use Theorem 10.
We obtain the above λ sequence by reversing the output produced by the algorithm of [3] for

computing the cooling schedule λ. It constructs a λ-sequence of length ` = O(D logD log(nm))
with the additional property that λi+1(P) is within a factor of 21/4 of λi(P) and λi+1(N (u, v)) is
within a factor of 21/4 of λi(N (u, v)) for every u, v and i ∈ [` − 1] (see Lemmas 2 and 3 of [3],

32

notice that in our case s = D and γ = (nm)D since we may assume that ε ≥ 1/(nm)D). Thus,
1/
√

2 ≤ w∗
λi

(u, v)/w∗
λi+1(u,v) ≤

√
2, as required.

6 Counting by Sampling

We will sketch a standard reduction from counting to sampling, due to Jerrum, Valiant and Vazi-
rani [13]. Our goal is to estimate |P|. For any sequence λ1, . . . , λ`,

|P| =
|P|

wλ`(Ω)

wλ`(Ω)

wλ`−1
(Ω)

wλ`−1
(Ω)

wλ`−2
(Ω)

· · · wλ2
(Ω)

wλ1
(Ω)

wλ1
(Ω)

Let us fix the λ-sequence from the previous section. We first estimate

wλ1
(Ω) = λ1(P) +

∑

u,v

wλ1
(u, v)λ1(N (u, v))

where 1 ≤ λ1(P) ≤ 1 + ε and xu,v ≤ λ1(N (u, v)) ≤ (1 + ε)xu,v for every u, v, see Lemma 4.
Since wλ1

(u, v) = 1/xu,v, we get that nm + 1 is a (1 + ε) approximation of wλ1
(Ω). We define

s∗ := |P|/wλ`(Ω) and si := wλi(Ω)/wλi−1
(Ω) and we will use samples of the Markov chain to estimate

each si within a factor of eε/(2`) and s∗ within a eε/2 factor. Then, if s′∗ and s′i denote the estimates
for s∗ and the si, the quantity (nm+ 1)s′∗s

′
2 . . . s

′
` estimates |P| within a factor (1 + ε)eε = 1 + ε′, as

required.
Recall that with probability ≥ 4/5 the weights wλi correctly approximate the ideal weights w∗

λi
for every i, see Section 5.1. In what follows we will assume that the weights w are correct estimates
of w∗ for every λi.

Notice that since λ` = 1 and each w(u, v) is within a factor of 2 of w∗(u, v), we have that
|P| = wλ`(P) is within a constant factor of wλ`(Ω)/(nm+ 1). Thus, s∗ = Θ(1/(nm)). By a similar
argument, si = Θ(1) for each i. Therefore we can estimate the si as follows. We take a random
sample X of the Markov chain for λi and consider the value of est(X) := wi(M)/wi−1(M). The
expectation of this value is exactly si. Then we take O(`ε−2) samples of the Markov chain for λi
with the variation distance δ = O(ε/`) and average their esti(X) values, obtaining esti. By the
Chebyshev’s inequality,

∏`
i=2 esti estimate

∏`
i=2 si within an eε/2 factor with a probability ≥ 11/12

(for suitable constants within the O notation).
Similarly, we sample X by the Markov chain for λ` and δ = O(ε) and define est∗(X) to be

indicator variable for the event X ∈ P. Then the expectation of est∗(X) is s∗ and we average
the values of O(nmε−2) samples to get within a factor eε/2 of s∗ with probability ≥ 11/12. Then,
(nm+ 1)est∗

∏`
i=2 esti approximates |P| within a factor of (1 + ε)eε with probability ≥ 5/6.

Thus, with probability ≥ 4/5 we have correct estimates w of the ideal weights w∗ and conditioned
on the correct weight estimates the algorithm outputs a (1+ε′)-approximation of |Ω| with probability
≥ 5/6. Unconditionally, with probability ≥ 2/3 the algorithm produces an answer within (1 + ε′)
factor of |Ω|.

See [12] and [3] for details of the computation.

7 Proof of Theorem 1

We now recall the statement of our main theorem, and conclude its proof.

33

Theorem 1. For any bipartite graph G = (U ∪V,E) where U = {u1, . . . , un} and V = {v1, . . . , vn},
any degree sequence r(1), . . . , r(n); c(1), . . . , c(m), any 0 < ε, η < 1, we can approximate the number
of subgraphs of G with the desired degree sequence (i.e., ui has degree r(i) and vj has degree c(j), for
all i, j) in time O((nm)2D3dmax log5(nm/ε)ε−2 log(1/η)) where D =

∑
i r(i) =

∑
j c(j) is the total

degree and dmax = max{maxi r(i),maxj c(j)} is the maximum degree. And, the approximation is
guaranteed to be within a multiplicative factor (1± ε) of the correct answer with probability ≥ 1− η.

The Theorem states that we can approximately count the number of bipartite graphs with a
given degree sequence which are subgraphs of any given bipartite graph G. In the previous sections
we dealt with the case when G = Kn,m, the complete bipartite graph on n + m vertices. If G is
not complete, we can perform the annealing algorithm in two stages. In the first stage, we run the
simulated annealing algorithm described previously. Thus, we estimate the ideal weights for λ = 1 for
the complete graph at the end of the first stage. In the second stage, we do the simulated annealing
starting with the weights at the end of the first stage (notice that now all edge activities are 1).
However, the annealing will decrease the activities of edges not present in G from 1 to λ ≈ 0 (hence,
we may be decreasing the activities of different edges than the ones whose activities were previously
increased). The analysis of the annealing algorithm and the mixing time of the Markov chain remain
the same. Thus, the two stage process only doubles the running time.

Now we break up the running time in the first stage. Initially, we spend O((nmdmax)
2) time

to construct the Greedy graph G∗ and to approximate the initial weights, see Lemma 4. We need
` = O(D log2(nm)) intermediate temperatures for the simulated annealing (Section 5.2). As dis-
cussed in Section 5.1, at each temperature we need to generate O(nm log(nm)) samples from the
stationary distribution of the Markov chain in order to do the bootstrapping. By Theorem 10, see
also Section 5.1.1, each sample takes O(D2nmdmax log(nm) steps of the Markov chain (recall that
we set δ = Θ(1/(nm)), Section 5.1). Thus, as discussed in Section 5.1, with probability ≥ 4/5
in time O((nm)2D3dmax log4(nm)) we compute correct approximations of the ideal weights w∗ for
λ = 1. Therefore, we can generate a random bipartite graph with the desired degree sequence, from
a distribution within variation distance ≤ δ of uniform, in time O((nm)2D3dmax log4(nm/δ)). The
computation of the initial weights is absorbed by this quantity.

For the counting, see Section 6, we use O(nmε−2) samples of the Markov chain to approximate
s∗ and for every intermediate temperature we need O(`ε−2) = O(D log2(nm)ε−2) samples to approx-
imate the corresponding si. Taking into account the mixing time of the Markov chain, the counting
phase takes time O(D4nmdmax log5(nm/ε)ε−2). Thus, the final running time of the algorithm in-
cluding the weight estimation phase is O(D3(nm)2dmax log5(nm/ε)ε−2). With probability ≥ 2/3 the
algorithm outputs a (1+ ε) approximation of the number of bipartite graphs with the desired degree
sequence. This can be boosted to probability ≥ 1−η by running the algorithm O(log η−1) times and
outputting the median of the resulting values. �

8 Remaining proofs for Greedy

For completeness we include a proof of the correctness of the Greedy algorithm.

Lemma 17 (Correctness of Greedy). Let r, c be a pair of degree sequences and let π be a total or-
dering consistent with c. If the pair of sequences is feasible, Greedy(r, c, π) outputs a corresponding
bipartite graph G. If the sequences are infeasible, the algorithm returns “Sequences not feasible”.

Proof. The proof is by induction on the number of non-zero entries in r. In the base case, there
is a single non-zero entry in r, say r(u). In this case, the sequences are feasible iff c(v) ≤ 1 for

34

all v ∈ V , and
∑

v∈V c(v) = r(u). Thus, if the sequences are feasible, Greedy(r, c, π) outputs the
bipartite graph. If it is the case that

∑
v∈V c(v) 6= r(u), Greedy returns “Sequences not feasible”

in step 2. Else, it must be that the set Y ⊆ V contains a vertex of degree 0, in which case Greedy

returns “Sequences not feasible” in step 6. Assume inductively that the Lemma holds for any degree
sequences r′, c′ such that r′ has fewer non-zero entries than r, and any total ordering π′ consistent
with c′. We claim that Greedy works correctly in both of the possible cases:

• The sequences r, c are a feasible pair.
Fix any total ordering π. We show that if r, c is a feasible sequence, then there is a corresponding
bipartite graph G such that the vertex of highest degree x ∈ U is joined to the set Y , the r(x)
vertices of highest degree in V with respect to the ordering π. Let G′ be a bipartite graph with
degree sequence r, c not satisfying this property. We obtain the graph G′′, with degree sequence
r, c, with strictly fewer vertices of Y not joined to x. Let y ∈ Y , such that (x, y) /∈ E(G′). Then,
there is a vertex u ∈ V \ Y such that (x, u) ∈ E(G′). Note that c(u) ≤ c(y). Hence there is a
vertex w ∈ N(y) such that w /∈ N(u). Let E(G′′) = (E(G′) ∪ {(x, y), (w, u)}) \ {(y,w), (x, u)}.
Hence, there exists a graph such that x is matched to Y . Hence, r̂, ĉ is a feasible pair. By
induction, Greedy(r̂, ĉ, π̂) outputs a graph Ĝ. Then G = Ĝ∪⋃

y∈Y (x, y) is the required graph
corresponding to the sequence r, c.

• The sequences r, c are an infeasible pair.

– If Greedy fails while processing x, we are done.

– Assume Greedy successfully matches x to Y , then, r̂, ĉ must be infeasible, otherwise,
by induction, the algorithm produces Ĝ, and G = Ĝ ∪ ⋃

y∈Y (x, y) would be a graph
corresponding to r, c.

Finally, we present a family of graphs, each resulting from a greedy algorithm breaking ties
arbitrarily, which for some feasible holes u, v require an alternating path from u to v of linear length.

Lemma 18. For every n ≥ 0, there exist degree sequences rn, cn and corresponding graphs Gn such
for some feasible pair of holes u, v, there is no alternating path from u to v of length ≤ 2n in Gn.

Proof. Denote the vertices in the two bipartitions by U = {u1, · · · , un+1} and V = {v1, · · · , vn+1}.
For n = 0, let r0 = c0 = (1). For n ≥ 1 let rn = cn = (1, 1, 2, 3, . . . , n). Construct Gn inductively as
follows.

1. If n = 0, set E(Gn) = {(u1, v1)}.

2. If n = 1, set E(Gn) = {(u1, v2), (u2, v1)}.

3. For n ≥ 2,

i) Set E(Gn) :=
⋃

v∈U\{v1}

(un+1, v) ∪
⋃

u∈V \{u1}

(u, vn+1).

ii) The degree requirements of u2, un+1, v2, vn+1 are now satisfied. The residual degree sequence
is of the form rn−2, cn−2 on the vertices u1, u3, · · · , un and v1, v3, · · · , vn if n ≥ 3, and on
u1, v1 if n = 2.

35

• If n ≥ 3, construct the graph G′
n−2 on U ′ = {u3, u1, · · · , un} = {u′1, · · · , u′n−1} and V ′ =

{v3, v1, · · · , vn} = {v′1, · · · , v′n−1}. (Note that the order of u1, u3 and v1, v3 are reversed,
so that un, vn will be joined to all the vertices of V ′, U ′ except v3, u3 respectively.)

• If n = 2, construct the graph G′
n−2 on U ′ = {u1} and V ′ = {v1}.

iii) Set E(Gn) := E(Gn) ∪E(G′
n−2).

For every n ≥ 1, u2, v2 is a pair of feasible holes. In the base cases, we can check that , the shortest
alternating path in G0 from u2 to v2 is of length 1, u2, v2, and the shortest alternating path in G1

from u2 to v2 is of length 3, u2, v1, u1, v2. In G2, the shortest alternating path from u2 to v2 is of
length 5, u2, v3, u1, v1, u3, v2. Assume the statement is true for all k < n for n ≥ 3. We claim that
the shortest alternating path from u2 to v2 in Gn is of length ≥ 2n+ 1. Any alternating path from
u2 to v2 must begin with the sequence of vertices u2, vn+1, u1, and end with v1, un+1, v2, and consist
of an alternating path from u1 to v1, not using the vertices u2, un+1, v2, vn+1. I.e., an alternating
path in G′

n−2 from u′2 to v′2. By induction, the path in G′
n−2 has length ≥ 2n − 3, and hence any

alternating path in Gn from u2 to v2 has length 2n + 1.

9 Conclusions

We have presented an algorithm for directly solving binary contingency tables for arbitrary degree
sequences. While our algorithm has many similarities to the permanent algorithm of [12], the new
algorithm relies on a surprising combinatorial property of the greedy graph.

An interesting open problem is the efficiency of the Diaconis chain on arbitrary degree sequences.
Does there exist a degree sequence for which the chain converges slowly to the stationary distribution,
or is the mixing time polynomial for all degree sequences?

References

[1] M. Bayati and A. Saberi. Fast Generation of Random Graphs via Sequential Importance Sam-
pling. Preprint. Available as Technical Report 06-06-4123-22, Stanford University, MS&E De-
partment, 2006.

[2] J. Besag and P. Clifford. Generalized Monte-Carlo Significance Tests. Biometrika, 76:633-642,
1989.

[3] I. Bezáková, D. Štefankovič, V. Vazirani, and E. Vigoda. Accelerating Simulated Annealing for
Combinatorial Counting. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 900-907, 2006.

[4] G. Cobb and Y. Chen. An Application of Markov Chain Monte-Carlo to Community Ecology.
American Mathematical Monthly, 110:265-288, 2003.

[5] Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu. Sequential Monte Carlo Methods for Statistical
Analysis of Tables. J. Am. Stat. Assoc., 100:109-120, 2005.

[6] C. Cooper, M. Dyer, C. Greenhill. On Markov Chains for Random Regular Graphs. In Pro-
ceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 980-988,
2005.

36

[7] P. Diaconis and B. Efron. Testing for Independence in a Two-Way Table: New Interpretations
of the Chi-Square Statistic. Ann. of Stat., 13:845-874, 1985.

[8] P. Diaconis and A. Gangolli. Rectangular Arrays with Fixed Margins. In Discrete Probability
and Algorithms, eds. D. Aldous et al, New York: Springer-Verlag, 15-41, 1995.

[9] D. Gale. A theorem on flows in networks, Pacific J. Math., 7:1073-1082, 1957.

[10] M. Jerrum and A. Sinclair. Fast uniform generation of regular graphs. Theor. Comp. Sci., 73:91-
100, 1990.

[11] M. Jerrum and A. Sinclair. Approximating the permanent, SIAM Journal on Computing,
18:1149–1178, 1989.

[12] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with non-negative entries. J. ACM, 51(4):671-697, 2004.

[13] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a
uniform distribution. Theor. Comp. Sci., 43:169-188, 1986.

[14] R. Kannan, P. Tetali, and S. Vempala. Simple Markov-chain algorithms for generating bipartite
graphs and tournaments. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 193-200, 1997.

[15] J. H. Kim and V. H. Vu. Generating random regular graphs. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing (STOC), 213-222, 2003.

[16] J. S. Liu. Monte Carlo Strategies In Scientific Computing, New York: Springer-Verlag, 2001.

[17] B. McKay and N. Wormald. Uniform generation of random regular graphs of moderate degrees,
Journal of Algorithms, 11:52-67, 1990.

[18] H. J. Ryser. Combinatorial Mathematics, Carus Math. Monograph, No. 14, New York, Wiley,
1963.

[19] J.G. Sanderson. Testing Ecological Patterns. American Scientist, 88:332-339, 2000.

[20] J. Schweinsberg. An O(n2) Bound for the Relaxation Time of a Markov Chain on Cladograms.
Random Structures and Algorithms, 20:59-70, 2002.

[21] A. Sinclair. Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow.
Combinatorics, Probability and Computing, 1:351-370, 1992.

37

