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Abstract

In this paper we study the one dimensional random geometric (random interval)
graph when the location of the nodes are independent and exponentially distributed.
We derive exact results and limit theorems for the connectivity and other properties
associated with this random graph. We show that the asymptotic properties of a graph
with a truncated exponential distribution can be obtained using the exponential random
geometric graph.
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1 Introduction

We consider random geometric graphs (RGGs) in one dimension, Gn(λ, r), with vertex set
Vn = {X1, . . . , Xn} and edge setE = {(Xi, Xj) : |Xi − Xj| ≤ r}, whereXi are i.i.d.
exponential with meanλ−1 andr is called the “cutoff range”. HereXi is used to denote the
ith vertex and its location.Gn(λ, r) will be called an exponential RGG. We derive formulas
and recursive algorithms when the number of nodesn and cutoffr are fixed. We then derive
asymptotic results for the probability of connectivity, and weak law results for the number
of components, total uncovered area etc. Strong law asymptotics are derived for the connec-
tivity and largest nearest neighbor distances. We also obtain strong law results when theXi

are i.i.d. truncated exponential.

1.1 Previous Work and Background

The topological properties of RGGs have applications in wireless communication and sensor
networks (e.g., [12]), cluster analysis (e.g., [9, 10]), classification problems in archaeological
findings, traffic light phasing, and geological problems (e.g., [11]), and also in their own right
(e.g., [17]).

The following are some results motivated by random wirelessnetworks. For a network of
n nodes distributed unformly inside the unit circle, [12] obtains the asymptotic threshold

function for the critical transmission range to be
√

logn
n

. More precisely, they show that with

cutoff rn =
√

logn+cn
n

, the graph onn uniform points in the unit circle will be connected
with probability approaching one iffcn → ∞. A result that enables the nodes to control
local topological properties and work towards obtaining a connected network is derived in
[22]. Here it is shown that for a static network withn nodes uniformly distributed over the
unit circle, if each node is connected to(5.1774 logn) nodes, then the network is asymptoti-
cally connected. This problem has also been studied empirically in the context of multi-hop
slotted Aloha networks [14]. The transmission radius for connectivity of a network when the
placement of the nodes follows a Poisson process in dimensionsd ≤ 2 is derived in [6].

The following is a sample of the results from the study of RGGsin their own right. When
n nodes are uniformly distributed in thed-dimensional unit cube, the following is shown in
[16] for anylp metric. Start with isolated points and keep adding edges in order of increasing
length. Then, with a very high probability, the resulting graph becomes(k + 1)-connected
at the same edge lengthr∗(n) at which the minimum degree of the graph becomesk+1, for
k ≥ 0. With k = 0, this result means that the graph becomes connected with high probability
at the same time that the isolated vertices disappear from the graph. [1, 2] is a similar study
for the l∞ norm. The best introduction to the study of RGGs via their asymptotic properties
is [17].

Observe that the results cited above are all for the asymptotic case withn → ∞. Exact
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analysis of finite networks is important because the asymptotes may be approached very
slowly. Exact analysis of finite networks have been considered in [7, 8, 11]. The probabil-
ity of a connected network whenn nodes are uniformly distributed in[0, 1], with all nodes
having the same transmission ranger was derived in [7, 11]. In [11], algorithms for vari-
ous connectivity properties of a one dimensional RGG with uniform distribution of nodes
on the unit interval are derived. The probability of a specified labeled subgraph with edge
setE = {(Xi, Xj) : |Xi − Xj| ≤ wi,j} was obtained in [8]. This is then used to calcu-
late exact probabilities for many network properties. Thisgeneralization dispenses with the
requirement that the cutoff range be the same for all node pairs.

While the results described above are all for the case of an RGG when the nodes are dis-
tributed uniformly in a finite operational area, they can be extended to RGGs where the den-
sity of the node locations is arbitrary but has bounded support. The asymptotic behaviour
here is similar to that of a graph with uniform distribution of nodes [17].

If the region of deployment is large, it makes sense to consider distributions with unbounded
supports. As in other applications, this would offer us a wide variety of nice distributions
which can be used to answer many interesting questions regarding the RGGs. Most interest-
ing results for such densities depend on the tail behavior ofthe underlying distribution.

In this paper we primarily consider RGGs where the distribution of the node locations are
i.i.d. exponential. The motivation is from random wirelesssensor networks. Consider the
deployment of intrusion detection sensors along a border. The cost of the sensors is expected
to be significantly less than the cost of a ‘regular’ deployment. We remark here that a class of
such relatively inexpensive devices calledsmart dust[18] are actually available! Hence, it is
not unreasonable to expect that the sensors will be deployedby a random dispersion onto the
border line. If the point from where they are dispersed is treated as the origin, it is reasonable
to expect that the distribution of the sensor nodes will be dense near the origin and sparse
away from it. Thus it is important to consider non-uniform distribution of the nodes. Further,
analysis of networks with a finite number of nodes would also be very useful.

We remark here that the asymptotic results that are governedby the clustering of the nodes
near the mode, e.g., maximum vertex degree, are obtained as in the case of RGGs with
finite support [17]. In contrast, characteristics such as the largest nearest-neighbor distance,
connectivity distance, minimum vertex degree etc. for densities with unbounded support are
dependent on the tail-behavior and connectivity distancesfor normally distributed nodes are
obtained in [17].

1.2 Summary of Results and Outline of Paper

Consider the exponential RGG,Gn(λ, r) with node locations{X1, . . . , Xi, . . . , Xn}. Let
X(i), denote the distance of theith node from the origin or theith order statistics of the
random sample{Xi}. LetX0 = 0 and defineYi := X(i+1) −X(i) i = 0, 1, . . . (n− 1). The
following is a key result that we will use quite often in the remainder of this paper. From [4],
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we have the following lemma.

Lemma 1. Y1, Y2, . . . , Yn−2, Yn−1 are independent exponential random and the means are
((n− 1)λ)−1, ((n− 2)λ)−1, . . . (2λ)−1, (λ)−1 respectively.

The lemma follows from the fact that the minimum ofm i.i.d. exponentials of mean1/λ
is an exponential of mean(mλ)−1 and from the memoryless property of the exponential
distribution.

The rest of the paper is organized as follows. In Section 2, wederive the exact expression for
the probability of connectivityP c

n of the one dimensional exponential RGG withn nodes.
In Theorem 1 we show thatP c

n → Pc asn → ∞, where0 < Pc < 1. This limit and
all other asymptotics hold under the condition thatλr is fixed or converges to a constant.
This is in contrast to the limiting results for the uniform and the normal case where the
limiting results under the condition thatrn → 0 (see [17]). In Section 3, we first give a
recursive formula for the distribution of the number of components for finiten. In Theorem 2
we show that this distribution converges asn → ∞ and in Theorem 3 we obtain limiting
distribution for the number of components of sizem. Section 4 provides a recursive formula
for computing the distribution of the number of redundant nodes, nodes that can be removed
without changing the connectivity of the network. In Section 5 we characterize the degree
of a node by obtaining the asymptotic expectation of the degree in Theorem 4. Section 6
deals with the span and the uncovered part of the network. In Theorem 5, we show that
the span of the network converges to∞ with probability1. However, the total number of
holes (gaps between ordered nodes of length greater thanr) and the total length of the holes
converge in distribution. An interesting upshot of this result is that though the span of the
network diverges, the probability of connectivity converges to a non-zero constant. Thus we
can achieve (by takingn large) an arbitrarily large coverage with high probability, without
diminishing the probability of connectivity. Theorem 6 derives the asymptotic distribution
of the span of the network.

In Section 7, we derive strong law results for connectivity and largest nearest neighbor dis-
tances in Theorem 7. Finally, in Section 8 we consider RGGs where the node locations
are drawn from a truncated exponential distribution, i.e.,the exponential restricted to(0, T ).
show that the asymptotic results for the truncated exponential RGG can be derived using
properties of the exponential RGGGn(λ, r). We first define monotone properties and the
strong and weak thresholds for the cutoff distancer for monotone properties. In Theo-
rem 8 we show the equivalence of strong and weak thresholds for monotone properties in
a truncated exponential RGG and an RGG constructed by considering the firstn nodes of
an exponential RGG. Using this, in Theorem 9 we obtain the cutoff thresholds for the RGG
to be connected. Theorem 10 obtains the strong law for the connectivity and largest nearest
neighbor distances.

We remark here that many of the results that we derive for the one dimensional exponential
network can also be extended to the case of the nodes being distributed according to the
double exponential distribution which is just the exponential density defined on the entire
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real line. It has the densityλ
2
e−λ|x| for −∞ < x < ∞. We will derive only the probability

of connectivity for the double exponential case.

2 Connectivity Properties

Let P c
n denote the probability that a network ofn nodes each with a transmission ranger

is connected. For the network to be connected we must haveYi = X(i+1) − X(i) ≤ r,
∀ i = 1, 2, . . . , (n− 1). From Lemma 1, the following is straightforward.

Property 1. P c
n is given by

P c
n =

n−1
∏

i=1

Pr (Yi ≤ r) =
n−1
∏

i=1

(1− e−(n−i)λr) =
n−1
∏

i=1

(1− e−iλr). (1)

We now derive the probability that a network constructed using the double exponential dis-
tribution is connected. We condition on the event that of then nodes,k nodes are in(0,∞)
andn − k are in(−∞, 0). Label the positive observations asUi, i = 1, . . . , k, and the ab-
solute values of the negative observations asVi, i = 1, . . . , (n − k). Then theUi andVi are
independent exponential variables with mean1/λ. If the network ofU values is connected
and the network ofV values is connected and the distance between theU(1) and−V(1) is
less thanr, then the network will be connected. Note that from Lemma 1, it follows that
U(1) andV(1) are independent of whether the networks on the positive and negative halves
are connected or not. Thus, the probability that the networkis connected,P c

n(D), will be

P c
n(D)=

n−1
∑

k=1

(

n

k

)

(1/2)nPr
(

U(1) + V(1) ≤ r | X(k) < 0, X(k+1) > 0
)

P c
kP

c
n−k +

P c
n

2n−1
. (2)

The densities ofU(1) andV(1) conditioned on the event{X(k) < 0, X(k+1) > 0} will be

fU(1)
(u) = kλe−kλu 0 < u <∞,

fV(1)
(v) = (n− k)λe−(n−k)λv −∞ < v < 0.

The density of
(

U(1) + V(1)
)

, gU(1)+V(1)
(z), and hence the probability thatU(1) andV(1) are

connected, is now straightforward;

gU(1)+V(1)
(z) =

{

k(n−k)λ
n−2k

(

e−kλz − e−(n−k)λz
)

if 2k 6= n

(kλ)2ze−kλz if 2k = n,

and

Pr
(

U(1) + V(1) ≤ r
)

=

{

1 + 1
n−2k

(

ke−(n−k)λr − (n− k)e−kλr
)

if 2k 6= n

1− e−kλr(1 + kλr) if 2k = n.
(3)

Using (1) and (3) in (2) we obtain the following.
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Property 2. If theXi are i.i.d. double exponential with zero mean, then the probability that
the network is connected,P c

n(D), is given by

P c
n(D) =

1

2n

n
∑

k=0
k 6=n/2

(

n

k

)

P c
k P

c
n−k

(

1 +
1

n− 2k

(

ke−(n−k)λr − (n− k)e−kλr
)

)

+
(P c

n/2)
2

2n
(1− e−nλr/2(1 + nλr/2)). (4)

In (4), we have definedP c
0 = 1. Also, the last term will be necessary only whenn is even.

Theorem 1. Let P c
n andP c

n(D) denote the probability that the exponential and double ex-
ponential random geometric graphs respectively, withn vertices, parameterλ, and cutoffr
are connected. Then, for some real numberPc, 0 < P c < 1,

1. limn→∞ P c
n = P c,

2. limn→∞ P c
n(D) = (P c)2

Proof. Consider the first part of the theorem. Taking logarithms on both sides of (1) we get

lim
n→∞

ln(P c
n) =

∞
∑

i=1

ln(1− e−iλr) =
∞
∑

i=1

∞
∑

j=1

−(e−iλr)j

j

= −

∞
∑

j=1

1

j

∞
∑

i=1

(e−jλr)i = −

∞
∑

j=1

1

j

e−jλr

1− e−jλr
. (5)

Applying the ratio test we see that the series converges to a finite valuelnP c. Since−∞ <
ln(P c) := limn→∞ ln(P c

n) < 0 we get0 < P c < 1.

Now consider the second part of the theorem statement. LetLn be the number of nodes to
the left of the origin whenn nodes are distributed on the real line. By the strong law of large
numbers,Ln

n

a.s
→ 1

2
. This implies that for anyǫ > 0, there exists a finitem(ǫ) such that

Pr

(

sup
n≥m(ǫ)

∣

∣

∣
Ln −

n

2

∣

∣

∣
> nǫ

)

< ǫ. (6)

To make the notation below simpler, we will assume thatn is odd. Letn > m(ǫ). Define

An,k :=

(

1 +
1

n− 2k

(

ke−(n−k)λr − (n− k)e−kλr
)

)

, k = 1, . . . , (n− 1).

(7)
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Using the preceding definition forAn,k, we can write (4) as

P c
n(D) =

n−1
∑

k=1

(

n

k

)

1

2n
P c
kP

c
n−kAn,k +

P c
n

2n−1

=

n−1
∑

k: |k−n/2|≤nǫ

(

n

k

)

1

2n
P c
kP

c
n−kAn,k +

n−1
∑

k: |k−n/2|>nǫ

(

n

k

)

1

2n
P c
kP

c
n−kAn,k +

P c
n

2n−1
.

We first consider the second term in the above equation;

n−1
∑

|k−n/2|>nǫ

(

n

k

)

1

2n
P c
k P

c
n−k An,k ≤

n−1
∑

|k−n/2|>nǫ

(

n

k

)

1

2n
< ǫ. (8)

The last inequality is derived by first observing that sincek is the number of nodes to the left
of the origin, the summation corresponds to the probabilityof {|Ln − n/2| > nǫ} and then
applying (6). Now consider the first sum,

n−1
∑

|k−n/2|≤nǫ

(

n

k

)

1

2n
P c
kP

c
n−kAn,k ≤

(

P c
n/2−nǫ

)2
n−1
∑

k=1
|k−n/2|≤nǫ

(

n

k

)

1

2n
<
(

P c
n/2−nǫ

)2
. (9)

The first inequality is true becauseP c
n is decreasing inn andAn,k ≤ 1 (An,k is a probability).

The last inequality is true since the sum is less than 1. Also,note thatlimn→∞ P c
n/2−nǫ = Pc.

We can also write the following inequality.

n−1
∑

|k−n/2|≤nǫ

(

n

k

)

1

2n
P c
k P

c
n−k An,k ≥

(

P c
n/2+nǫ

)2
n−1
∑

|k−n/2|≤nǫ

(

n

k

)

1

2n
An,k≥P

2
c (1− ǫ)2. (10)

The first inequality is true becauseP c
n is decreasing inn. To see why the second inequality is

true, we first note thatlimn,k→∞An,k = 1. Hence for large|k−n/2| > nǫ and largen An,k >
(1− ǫ). Combining this observation with (6) and noting thatP c

n converges monotonically to
Pc we can write the second inequality in (10). Thus, from (9) and(10), we get

lim
n→∞

n−1
∑

|k−n/2|≤nǫ

(

n

k

)

1

2n
P c
k P

c
n−k An,k = (Pc)

2 .

Combining this with (8), the second part of the theorem is proved. �

Numerical evaluation shows that bothP c
n andP c

n(D) converge rapidly.

3 Components in the Network

A sequence of connected nodes which are followed and preceded by a disconnected node or
no nodes is called aconnected component. In this section we derive the distribution of the
number of components in the network.

7



Let {≥ j} denote the network comprising of the ordered nodesX(j), . . . , X(n). Letψn(j, k),
j = 1, . . . , n, k = 1, . . . , n − j + 1, denote the probability that in ann-node network
there arek components in{≥ j}, k = 1, . . . , n − j + 1. To simplify the notation let
ζi(n) := Pr (Yi ≤ r) = (1− e−λ(n−i)r). The following can be easily verified;

ψn(j, n− j + 1) =
n−1
∏

i=j

(1− ζi(n)), ψn(j, 1) =
n−1
∏

i=j

ζi(n). (11)

Note thatk components in{≥ j} can occur in one of two ways;k components in{≥ (j+1)}
and nodesj andj+1 are connected, or(k−1) components in{≥ (j+1)} andj not connected
to j + 1. This leads us to state the following.

Property 3. The probability that there are exactlyk components in the graph,ψn(1, k), is
obtained by the recursion

ψn(j, k) = ζj(n)ψn(j + 1, k) + (1− ζj(n))ψn(j + 1, k − 1). (12)

The initial conditions for the recursion will be given by Eqn. 11.

We next investigate the convergence in distribution of the number of components. From
Property 3 we observe that asn → ∞, the number of components will essentially be deter-
mined by the last few nodes. To derive the limiting distribution of the number of components,
consider the last node of the first component. Letθn,m denote the probability that nodem is
the last node of the first component in ann-node network,1 ≤ m ≤ n.

For any fixedm, the probability that the last node of the first component is themth from the
origin goes to 0 asn→ ∞, but form = n− s we can obtain the following.

θs := lim
n→∞

θn,n−s

= lim
n→∞

m−1
∏

i=1

(1− e−rλ(n−i))e−rλ(n−m)

= lim
n→∞

P c
ne

−rλs

∏s−1
i=1 (1− e−irλ)

=
Pce

−rλs

∏s−1
i=1 (1− e−irλ)

, (13)

where the last equality follows from Theorem 1. Ass → ∞, the denominator decreases
monotonically toPc andθs goes to zero ase−λrs. To obtain the limiting probability of hav-
ing k components in the network, conditional on the first component ending atm = n − s,
we needk − 1 components for the network composed of nodesn − s + 1, . . . , n. The
distribution of the internodal distance between the ordered nodesn − s + 1, . . . , n is expo-
nential with parameters,sλ, (s−1)λ, . . . , λ. This is the same internodal distribution obtained
whens nodes are distributed by choosing their distances from the origin to be exponentially
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distributed with mean1/λ. Thus we can write the following recursive expression for the
limiting probability of the network havingk components.

ψ(1, k) := lim
n→∞

ψn(1, k) =
∞
∑

s=k

θsψs(1, k − 1).

Pc/(
∏s−1

i=1 (1− e−irλ)) andψs(1, k) are both bounded sequences. Hence, the series on the
right hand side above converges. We have thus proved the following result.

Theorem 2. For fixedλr, the number of components in the graph converges in distribution,
i.e., the probability mass function for the number of components in the network converges as
n→ ∞.

The sizeof a component is the number of nodes in that component. We nowderive an
expression for the distribution of the number of componentsof sizem. In a network with
n nodes, letP n

m(i, k) denote the probability that, in{≥ i}, there arek components, each of
sizem. We are interested inP n

m(1, k). It is clear that ifmk > n− i+ 1, P n
m(i, k) = 0. Else,

P n
m(n−m+ 1, 0) = 1− Pr (Yn−m+1 ≤ r, . . . , Yn−1 ≤ r) ,

P n
m(n−m+ 1, 1) = Pr (Yn−m+1 ≤ r, . . . , Yn−1 ≤ r) .

Conditioning on the location of the firstj ≥ i such thatYj > r, we obtain a recursive relation
for P n

m(i, k) as

P n
m(i, k) =

n−km+1
∑

j=i+1,j 6=m+i

Pr (Yi ≤ r, . . . , Yj−2 ≤ r, Yj−1 > r)P n
m(j, k)

+ Pr (Yi ≤ r, . . . , Yi+m−2 ≤ r, Yi+m−1 > r)P n
m(m+ i, k − 1). (14)

Whenm = 1, the first factor in the second term above should be interpreted asPr (Yi > r) .
The boundary conditions for the above recursion will be given by

P n
m(i, 0) =

n−m
∑

j=i,j 6=i+m−1

Pr (Yi ≤ r, . . . , Yj−1 ≤ r, Yj > r)P n
m(j + 1, 0),

and

P n
m(n− km+1, k) = P n

m(n− (k− 1)m+1, k− 1)Pr
(

Yn−km+1 ≤ r, . . . , Yn−(k−1)m > r
)

.

Following the same arguments as in the proof of Theorem 2, we can derive the limiting
distribution of the number of sizem components.

Theorem 3. For a fixedλr, the limiting distribution of the number of sizem components is
given by the following equation.

Pm(k) = lim
n→∞

P n
m(1, k) =

∞
∑

s=mk

θsP
s
m(1, k), (15)

whereP s
m(1, k) are as given by (14).
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By takingm = 1 in (15), we obtain the asymptotic distribution of the numberof isolated
nodes in the network.

4 Completely Covered Nodes

If there arek nodes in the interval(X(i), X(i) + r), then(k − 1) are redundant while thekth

one is necessary for connectivity and we will say thatk − 1 nodes are ‘covered’ by nodei.
From a sensor network perspective, the firstk−1 nodes in the range of nodei to its right may
be said to be redundant. We now determine the distribution ofthe number of such covered
or redundant nodes in the network. Letφ(j, k), j = 1, 2, . . . , n andk = 0, 1, . . . , n− j − 1,
denote the probability that there arek redundant nodes in the network after thej th node,
given that then-node network is connected. The network being connected is denoted by
eventC. We derive a recursive formula forφ(j, k) by conditioning on the location of the last
node within the range of thej−th node. Our interest is inφ(1, k), k = 1, 2, . . . , n− 2.

φ(j, k) =

j+k+1
∑

i=j+1

Pr
(

X(i) ≤ X(j) + r < X(i+1)|C
)

φ(i, k − i+ j + 1),

with boundary condition

φ(j, n− j − 1) = Pr
(

X(n) −X(j) ≤ r|C
)

.

Pr
(

X(i) ≤ X(j) + r < X(i+1)|C
)

is obtained as follows.

Pr
(

X(i)≤X(j)+r ≤ X(i+1) |C
)

=Pr
(

(X(i) −X(j)≤r)∩(X(i+1) −X(j)>r) |C
)

=Pr ((Yj + . . .+ Yi−1≤r)∩(Yj + . . .+ Yi>r) |C)

=Pr ((Zj,i ≤ r) ∩ (Zj,i + Yi > r) | C) , (16)

whereZj,i = Yj + . . . + Yi−1. SinceZj,i is the sum ofj − i + 1 exponentials, its density,
gZj,i

(z), is given by

gZj,i
(z) =

i−1
∑

h=j

i−1
∏

(m=j,m6=h)

n−m

h−m
λhe

−λhz,

whereλh = (n− h)λ ([20], Section 5.2.4). Using this and (16), we get

Pr
(

X(i) ≤ X(j) + r ≤ X(i+1) | C
)

=

∑i−1
h=j

(

n−i
h−i

(e−λhr − e−λir)− e−λh(1− e−λir)
)
∏i−1

(m=j,m6=h)
n−m
h−m

∏i
m=j(1− e−l(n−i)r)

. (17)

Using the initial condition thatφ(j, k) = 0 for k > n− j − 1, theφ(j, k) can be calculated
in the sequenceφ(n− 2, 1), φ(n− 3, 1), φ(n− 3, 2), . . ..
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5 Expected Node Degree

The degree of a node is the number of nodes lying in its range. Given a node atx, let p(x)
denote the probability that another node is located within distancer of x. While computing
the expected number of nodes of degreek, wherek is a fixed integer, we ignore the contribu-
tion to the expectation from nodes lying in[0, r], since asn→ ∞ this contribution becomes
negligible. This will happen since the number of nodes that fall in [0, r) will approach∞
and thus the vertex degrees of these nodes for fixedr will tend to∞. LetWn,k be the number
of nodes of degreek, k = 0, 1, . . . in ann−node network.

Theorem 4. For fixedλr asn → ∞, limn→∞ E (Wn,k) = c−1, wherec = (eλr − e−λr) and
the limit is independent ofk.

Proof. LetX be an exponential random variable with parameterλ. Define,

p(x) = Pr (x− r ≤ X ≤ x+ r) = ce−λx, x ≥ r.

We use the notationf(n) ∼ g(n) to indicate thatf(n)/g(n) → 1, asn → ∞. Since the
n nodes are identically distributed,E (Wn,k) will be n times the probability that any one
node in the network has degreek. Condition on this node being atx. Then, the number of
nodes lying in(x − r, x + r) is binomial with parameters(n − 1) andp(x). By the remark
preceding the statement of the theorem, we ignore the contribution coming from this node
lying in [0, r). Hence,

E (Wn,k) ∼ n

(

n− 1

k

)
∫ ∞

r

p(x)k(1− p(x))n−k−1λe−λxdx

= n

(

n− 1

k

)
∫ ∞

r

cke−λkx(1− ce−λx)n−k−1λe−λxdx

∼
nk+1

k!c

∫ ce−λr

0

yk(1− y)n−k−1dy

=
nk+1

k!c

∫ 1−e−2λr

0

yk(1− y)n−k−1dy

=
nk+1

k!c

(
∫ 1

0

yk(1− y)n−k−1dy −

∫ 1

1−e−2λr

yk(1− y)n−k−1dy

)

. (18)

We have used the fact that
(

n−1
k

)

∼ (n − 1)k/k! in deriving the second relation above.
Consider the second integral in the last equation above. Thefunctionyk(1 − y)n−k−1 has a
unique maximum in[0, 1] atk/(n− 1) which tends to zero asn→ ∞. Further, the function
is monotonically decreasing in(k/(n−1), 1) Thus the second term in the last equation above
is bounded by

nk+1

k!c
e−2λr(1− e−2λr)k(1− e−2λr)n−k−1,

11



which goes to zero asn→ ∞. The first term in (18) is

nk+1

k!c
Be(k + 1, n− k) =

nk+1

k!c

Γ(k + 1)Γ(n− k)

Γ(n+ 1)
=

nk+1

cn(n− 1) . . . (n− k)
,

which converges toc−1, and henceE (Wn,k) → c−1 asn→ ∞.

6 Span and Uncovered Segments

In Gn(λ, r), if Yi > r we can say that there is a portion between ordered nodesi and(i+ 1)
that is not ‘covered’ and that there is a hole of sizeYi − r. If we think of the nodes as
sensors with ranger deployed along a border, then an intruder passing through the hole will
go undetected. Denoting the length of the hole between the nodesi and(i + 1) by Zi we
have

Zi = max{Yi − r, 0}.

The total length of the holes in the network is thenH(n, r) :=
∑n

i=1 Zi and the number of
holes isNH(n, r) :=

∑n
i=1 I{Yi>r}.

LetSn = X(n)−X(1) be the span of the network. Since theXi are exponentially distributed,
asn → ∞, Sn → ∞ almost surely. However,H(n, r), the total length of the holes and
NH(n, r), the total number of holes in the network converge to a properrandom variable in
distribution.

Theorem 5. Asn→ ∞, H(n, r) andNH(n, r) converge in distribution to random variables
with finite mean and variance.

Proof. First, consider the mean and variance ofH(n, r) asn → ∞. The density ofZi is a
shifted exponential forz > 0 with a point mass at0. Thus the density ofZi, fZi

(z), can be
written as

fZi
(z) =

(

1− e−(n−i)λr
)

δ(z) + (n− i)λ e−(n−i)λ(z+r).

whereδ(z) is the Dirac-delta function. The mean and variance ofZi can be shown to be
given by

E (Zi) =
e−(n−i)λr

(n− i)λ
,

Var (Zi) =
e−(n−i)λr(1− e−(n−i)λr)

((n− i)λ)2
.

SinceY1, . . . , Yn−1 are independent, so are the random variablesZ1, . . . , Zn−1. The mean

12



and variance ofH(n, r) are then given by

E (H(n, r)) =

n−1
∑

k=1

e−(n−k)λr

(n− k)λ
=

n−1
∑

k=1

e−kλr

kλ
, (19)

Var (H(n, r)) =

n−1
∑

k=1

e−(n−k)λr
(

1− e−(n−k)rλ
)

((n− k)λ)2
=

n−1
∑

k=1

e−kλr
(

1− e−kλr
)

(kλ)2
. (20)

Applying the ratio test to the series in (19) and (20), we see thatE (H(n, r)) andVar (H(n, r))
converge asn → ∞. Observe that since the variance ofH(n, r) converges to a finite limit,
the usual central limit theorem will not be applicable.

To show convergence in distribution, we must show that the sequence of random variables
{H(n, r)} is tight (relatively compact) and that the Laplace transform ofH(n, r) converges
(see Lemma 2, pp. 323 in [21]). Tightness means that the probability of the H(n, r) lying
outside a compact set can be made arbitrarily small. Tightness also implies that any subse-
quenceH(nk, r) of H(n, r) will contain a subsequence that converges in distribution.We
need to show tightness because of the absence of a nice closedform expression for the char-
acteristic function ofH(n, r). Convergence of the Laplace transform implies uniqueness of
these limits thereby implying convergence in distribution.

To show tightness we need to show that for anyǫ > 0, there exists aK > 0 such that
supn≥1 Pr (H(n, r) > K) < ǫ. H(n, r) are nonnegative random variables and we can use
Markov inequality to write, for anyK > 0,

Pr (H(n, r) > K) ≤
E (H(n, r))

K
.

SinceE (H(n, r)) converges and is finite, for anyǫ, a sufficiently largeK can be found such
thatE (H(n, r)) /K < ǫ. Thus the random variablesH(n, r) are tight.

To complete the proof of convergence in distribution ofH(n, r), we have to show that the
Laplace transformLn(θ) of H(n, r), converges in some neighborhood of zero.

Ln(θ) := E
(

eθH(n,r)
)

= E

(

eθ
∑n−1

i=1 Zi

)

=

n−1
∏

i=1

E
(

eθZi
)

=

n−1
∏

i=1

(

1 +
θe−(n−i)λr

(n− i)λ− θ

)

θ < λ.

13



Taking logarithms on both sides, we get

ln (Ln(θ)) =

n−1
∑

i=1

ln

(

1 +
θe−(n−i)λr

((n− i)λ− θ)

)

=

n−1
∑

i=1

ln

(

1 +
θe−irλ

(λi− θ)

)

≤
n−1
∑

i=1

θe−iλr

(λi− θ)
.

The last inequality above is obtained from the inequalityln(1 + x) ≤ x. Observe that
∑∞

i=1
θe−iλr

(λi−θ)
converges by ratio test. This proves the convergence ofLn(θ) and hence the

second part of the theorem on the convergence ofH(n, r) in distribution.

We now consider convergence in distribution of the number ofholes. The mean and variance
of NH(n, r) are given by

E (NH(n, r)) =
n−1
∑

i=1

e−(n−i)λr =
e−rλ(1− e−(n−1)rλ)

1− e−rλ
,

Var (NH(n, r)) =
n−1
∑

j=1

e−λjr(1− e−λjr).

Application of the ratio test shows that both the above series converge. Tightness ofNH(n, r)
follows by the same argument as that used to show the tightness ofH(n, r). The Laplace
transform ofNH(n, r), Jn(θ), is given by

Jn(θ) =
n−1
∏

i=1

(

1− e−iλr(1− eθ)
)

. (21)

Convergence ofJn(θ) can be shown as forLn(θ). ThusNH(n, r) converges in distribution
asn→ ∞.

This completes the proof of the Theorem. �

Theorem 5 implies that for largen, we can increase the span of the network over any length
with a certain high probability, by adding more nodes without a corresponding increase in
the length of the holes or the number of holes.

Remark 1. Since the number of components is just one more than the number of holes, the
convergence in distribution of the number of holes follows from Theorem 2. Thus this is
an alternate proof for Theorem 2. The limit ofJn(θ) can be used to obtain the asymptotic
moments for the number of components.

The asymptotic distribution of the span is also known. From Examples 3.3 and 3.5 of [5],
we have thatλ−1X(1) log(n/(n− 1)) converges in distribution to a Weibull distribution and
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λX(n) − log(n) converges in distribution to a Gumbel distribution. This allows us to state
the following result for the asymptotic distribution of thespan.

Theorem 6. λ(X(n) −X(1))− log(n) converges in distribution to a Gumbel distribution.

Thus, the100(1−α)% confidence interval for the span based on the asymptotic distribution
will be of the formλ−1(log(n)± c(α)) wherec(α), is independent ofn.

7 Strong Law Results

In this section we derive almost sure convergence results for the connectivity and the largest
nearest neighbor distances and a limiting result for the almost surely connected part of the
exponential random geometric graph.

Definecn anddn the connectivity and largest nearest neighbor distances respectively as

cn = inf{r > 0 : Gn(λ, r) is connected}, (22)

dn := max
1≤i≤n

min
1≤j≤n,j 6=i

{|Xi −Xj|} (23)

Theorem 7. For fixedλ > 0,

1.

lim sup
n→∞

λcn
ln(n)

= lim sup
n→∞

λdn
ln(n)

= 1, almost surely. (24)

2.

lim inf
n→∞

λ ln(n)cn
c

≥ 1, lim inf
n→∞

λ ln(n)dn
c

≥ 1, almost surely. (25)

wherec =
∑∞

j=1 j
−2.

3. Letr be fixed,kn = ⌊n(1 − a ln(n)/n)⌋ where⌊·⌋ denotes the integer part anda >
(λr)−1. LetGn(kn, λ, r) denote the graphGn(λ, r) restricted to the firstkn ordered
points. Then,

Pr (Gn(kn, λ, r) is disconnected infinitely often) = 0. (26)

Proof.

Pr (cn ≥ y) = Pr
(

∪n−1
i=1 {Yi ≥ y}

)

≤

n−1
∑

i=1

e−λiy = e−λy 1− e−(n−1)λy

1− e−λy
.

Takingy = (1 + ǫ) log(n)/λ, and applying the ratio test, we see that

∞
∑

n=2

Pr (λcn ≥ (1 + ǫ) log(n)) <∞.
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By the Borel-Cantelli lemma,Pr (λcn ≥ (1 + ǫ) log(n) i.o. ) = 0. Sinceǫ > 0 is arbitrary,
we conclude thatlim sup(λcn/ log(n)) ≤ 1 a.s.

To show that thelim sup is exactly equal to one, consider the record values denoted by Rn

defined as follows: LetN(1) = 1. For n ≥ 2, defineN(n) = inf{k > N(n − 1) : Xk >
XN(n−1)}. DefineRn = XN(n). Since the exponential density has unbounded support, there
will be a.s. infinitely many record values. Consider the sequenceZn = Rn − Rn−1, n ≥ 2.
By the memoryless property of the exponential,Zn is a sequence of independent exponential
random variables with meanλ−1. Since, for anyǫ > 0,

∞
∑

n=2

Pr (λZn > (1− ǫ) log(n)) =
∞
∑

n=2

n−(1−ǫ) = ∞,

it follows from the Borel-Cantelli Lemma thatlim supλZn/ log(n) = 1 a.s. The above
result implies thatlim sup(λdn/ log(n)) ≥ 1 a.s. by considering the sequence of graphs
GN(k)(λ, r). Part 1 of the theorem now follows becausedn ≤ cn.

To prove part 2 forcn, we consider the asymptotic behavior of the probability that Gn(λ, rn)
is connected for the sequence of cutoff distancesrn = c/(λ(1 + ǫ) ln(n)), wherec is as
defined in the theorem statement.

P n
c = Pr (Gn(λ, rn) is connected) =

n−1
∏

i=1

(1− exp(−λirn)).

Taking logarithms and expanding the logarithm, we get

ln(P n
c ) = −

n−1
∑

i=1

∞
∑

j=1

e−λijrn

j
= −

∞
∑

j=1

e−λjrn(1− e−λj(n−1)rn)

j(1− e−λjrn)
.

Sincern → 0, andn rn → ∞, we havee−λjrn → 1, 1− e−λj(n−1)rn → 1, and1− e−λjrn ∼
λjrn. Hence,

ln(P n
c ) ∼ −

1

λrn

∞
∑

j=1

j−2.

Plugging in the expression forrn we getP n
c ∼ n−(1+ǫ), which is summable. The result

for cn in Part 2 now follows from the Borel-Cantelli lemma. To provepart 2 for dn let
yn = c

λ(1+ǫ) logn
, and consider,

Pr (dn ≤ yn)

= Pr
(

∩n−1
i=2 ((Yi−1 ≤ yn) ∪ (Yi ≤ yn)) ∩ (Y1 ≤ yn) ∩ (Yn−1 ≤ yn)

)

≤ Pr
(

∩
⌊n/2⌋
i=1 ((Y2i−1 ≤ yn) ∪ (Y2i ≤ yn))

)

≤

⌊n/2⌋
∏

i=1

(1− e−λ(2n−4i−1)yn).
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Take logarithms on both sides and using the Taylor expansion, we get,

ln(Pr (dn ≤ yn)) = −

∞
∑

j=0

⌊n/2⌋
∑

i=1

e−λ(2n−4i+1)jyn

j

= −

∞
∑

j=0

e−λjyn(2n+1)

j

⌊n/2⌋
∑

i=1

(e4λjyn)i

= −
∞
∑

j=0

1

j
e−λjyn(2n−3)1− e4λjyn⌊n/2⌋

1− e4λjyn

= −

∞
∑

j=0

1

j

e−λjyn(2n−3) − e4λjyn(2n−3−4⌊n/2⌋)

1− e4λjyn

∼
−1

4λyn

∞
∑

j=0

1

j2
,

where the last approximation follows sinceyn → 0 andnyn → ∞ which implies that
exp(−λjyn(2n − 3)) → 0, exp(4λjyn(2n − 3 − 4⌊n/2⌋)) ∼ exp(−12λjyn) → 1, and
1− exp(4λjyn) ∼ −4λjyn. Substituting foryn we get,

P [dn ≤
c

λ(1 + ǫ) logn
] ∼

1

n1+ǫ
, (27)

which is summable. Part 2 of the theorem fordn now follows from the Borel-Cantelli
Lemma.

To prove part 3, consider

Pr (Gn(kn, λ, r) is not connected) ≤

kn−1
∑

i=1

e−λr(n−i)

=
eλr

eλr − 1

(

e−λr(n−kn) − e−λrn
)

.

For largen, n − kn ∼ a log(n), and hence the above probability is summable. The result
now follows from the Borel-Cantelli Lemma.

8 Truncated Exponential Graph

We now consider the RGGGn(λ, r, T ) where the nodes are distributed independently ac-
cording to the density function

gλ,T (x) =
λe−λx

1− e−λT
, 0 ≤ x ≤ T,
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and have a cutoffr. This distribution allows us to consider RGGs with finite support where
the distribution of the nodes is not uniform. We derive asymptotic results for the connec-
tivity and largest nearest neighbor distances for this graph. [17] derives similar results for
dimensionsd ≥ 2 and for general densities having bounded support. [2, 3] show such strong
laws for the uniform RGG ford ≥ 1. [13] obtains strong law results for the one dimensional
uniform RGG using the graph with independent exponential spacings of [15].

In deriving our results, note that unlike in the exponentialRGG, the spacings inGn(λ, r, T )
are not independent. Our proof technique is as follows. We show that the graphGn(λ, r, T )
has the same asymptotic behavior as that of a graphG∗

n which is constructed by considering
the firstn nodes of an exponential RGG onN vertices. HereN = N(n) := ⌊n/p⌋ and
p = 1 − exp(−λT ). Spacings in the graphG∗

n are independent and hence it is possible to
derive results easily for this graph. This technique allowsus to think aboutGn(λ, r, T ) in
terms of the graphG∗

n whose properties can be more easily visualized. This is similar to the
approach of [15] for the uniform RGG.

LetX1, X2, . . . be a sequence of independent random variables with densitygλ,T . The vertex
set ofGn(λ, r, T ) is Vn = {X1, . . . , Xn}. LetN(n) be as defined above and letZ1, Z2, . . . ,
be a sequence of exponential random variables with meanλ−1. Let Z1,N , . . . , ZN,N denote
the ordered values of the firstN(n) random variablesZ1, . . . , ZN . Define the graphG∗

n(λ, r)
to be the RGG with cutoffr and vertex setV ∗

n = {Z1,N , . . . , Zn,N}.We denote byG∗
n(λ, r, t)

the graph with vertex setV ∗
n conditioned onZn+1,N = t. It is easy to see that the conditional

density of firstn ordered observationsZ1,N , . . . , Zn,N givenZn+1,N = t is given by (see
[19], pp. 175–176),

fZ1,N ,...,Zn,N |Zn+1,N
(z1, . . . , zn | t) =

n!λn

(1− e−λt)n
e−λ

∑n
i=1 zi, (28)

for 0 < z1 < . . . < zn < t. The key observation is that the above function is also the joint
density function ofn i.i.d. ordered observations fromgλ,t. Further, we have the following
lemma which states thatZn+1,N is close toT with large probability asn → ∞. Subsequent
to this lemma, we show that the graphsGn andG∗

n have the same asymptotic behavior.

Lemma 2. Zn+1,N → T in probability asn→ ∞.

Proof. We show that the mean and variance ofZn+1,N converge toT and0 respectively. The
result then follows from Chebyshev’s inequality.

E (Zn+1,N) =
n
∑

i=0

1

(N − i)λ
=

1

λ

N
∑

i=N−n

1

i
.

Hence,
∫ N+1

N−n

1

x
dx ≤ λE (Zn+1,N) ≤

∫ N

N−n−1

1

x
dx.
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Both the integrals above converge toλT asn→ ∞ by the definition ofN.

Var (Zn+1,N) =
n
∑

i=0

1

(N − i)2λ2
=

1

λ2

N
∑

i=N−n

1

i2

≤
1

λ2

∫ N

N−n−1

1

x2
dx→ 0.

Thus for anyǫ > 0, andn sufficiently large, we have| E (Zn+1,N)− T |< ǫ/2. Hence

Pr (| Zn,N+1 − T |> ǫ) ≤ Pr (| Zn+1,N − E (Zn+1,N) |> ǫ/2)

≤
4Var (Zn+1,N)

ǫ2
→ 0.

This completes the proof the lemma.

We now show that the graphsGn andG∗
n have the same thresholding behavior. To do this

we need some notations.

Definition 1. If A andB are graphs such thatA andB share the same vertices, and the
edge set ofA is a subset of the edge set ofB, we will writeA ≤ B. LetΘ be a property of a
random geometric graphs such that ifA ≤ B andA ∈ Θ, thenB ∈ Θ. (HereA ∈ Θ is used
to denote that RGGA has propertyΘ.) ThenΘ is called an “upwards-closed” property. If
B ∈ Θ impliesA ∈ Θ, thenΘ is said to be a “downwards-closed” property.

Fix an upwards-closed propertyΘ. For any two functionsδ, γ : Z+ → ℜ+, we writeδ ≪ γ
(resp. δ ≫ γ) if δ(n)/γ(n) → 0, (resp. γ(n)/δ(n) → 0) asn → ∞. In what follows we
will write δ for δ(n). LetGn(r), be any random geometric graph onn vertices with cutoffr.

Definition 2. A functionδΘ : Z+ → ℜ+ is a weak threshold function forΘ if the following
is true for every functionδ : Z+ → ℜ+,

• if δ(n) ≪ δΘ(n), thenPr (Gn(δ) ∈ Θ) = o(1), and

• if δ(n) ≫ δΘ(n) thenPr (Gn(δ) ∈ Θ) = 1− o(1).

A functionδΘ : Z+ → ℜ+ is a strong threshold function forΘ if the following is true for
every fixedǫ > 0,

• if Pr (Gn((1− ǫ)δΘ) ∈ Θ) = o(1), and

• if Pr (Gn((1 + ǫ)δΘ) ∈ Θ) = 1− o(1).

Before proceeding further, we show the following two monotonicity properties that will be
used subsequently.

Lemma 3. LetΘ be any upwards-closed property. Then,
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1. For any0 < T1 < T2, Pr (Gn(λ, δ, T1) ∈ Θ) ≥ Pr (Gn(λ, δ, T2) ∈ Θ) .

2. For any0 < λ1 < λ2, Pr (G∗
n(λ1, δ) ∈ Θ) ≤ Pr (G∗

n(λ2, δ) ∈ Θ) .

3. For anyc > 0, Pr (Gn(λ, δ, T ) ∈ Θ) = Pr (Gn(c
−1λ, cδ, cT ) ∈ Θ).

Proof. LetU(1), U(2), . . . , U(n) ben ordered uniform random variables on(0, 1). The ordered
vertex sets of the graphsGn(λ, δ, T1),Gn(λ, δ, T2), G∗

n(λ1, δ) andGn(λ2, δ) may be defined
using the ordered uniform variables as follows:V1 = {− 1

λ
ln(1−U(i)(1− e−λT1))}ni=1, V2 =

{− 1
λ
ln(1−U(i)(1−e

−λT2))}ni=1, V3 = {− 1
λ1

ln(1−U(i))}
n
i=1, andV4 = {− 1

λ2
ln(1−U(i))}

n
i=1.

If we denote the respective edge sets byEi, i = 1, . . . , 4, then it is easy to see thatE2 ⊂ E1

andE3 ⊂ E4. The result for parts 1 and 2 now follows from the definition of an upwards-
closed property. To prove part 3, observe thatΘ being an upwards-closed property depends
only on the existence of edges between certain pairs of nodesin a given configuration of
vertices(Z1, . . . , Zn) of the graphGn(λ, δ, T ). LetA ⊂ ℜn be such thatΘ holds whenever
(Z1, . . . , Zn) ∈ A at cutoffδ, then clearly, it holds at cutoffcδ if (Z1, . . . , Zn) ∈ cA. The
joint density ofn independent truncated exponential random variables on[0, T ] is given by
(28), witht replaced byT. Hence,

Pr (Gn(λ, δ, T ) ∈ Θ) =

∫

{(z1,...,zn)∈A}

n!λn

(1− e−λT )n
e−λ

∑n
i=1 zidz1 . . . dzn. (29)

From the above remarks on upwards-closed property and (29),we have

Pr
(

Gn(c
−1λ, cδ, cT ) ∈ Θ

)

=

∫

{(z1,...,zn)∈cA}

n!c−nλn

(1− e−c−1λcT )n
e−c−1λ

∑n
i=1 zidz1 . . . dzn

=

∫

{c−1(z1,...,zn)∈A}

n!c−nλn

(1− e−λT )n
e−c−1λ

∑n
i=1 zidz1 . . . dzn

Change variablescui = zi, i = 1, . . . , n.

=

∫

{(u1,...,un)∈A}

n!λn

(1− e−λT )n
e−λ

∑n
i=1 uidu1 . . . dun

= Pr (Gn(λ, δ, T ) ∈ Θ) ,

which proves part 3.

Lemma 4. Let δ : Z+ → ℜ+, T > 0 andα ∈ (0, 1). LetGn(λ, δ, T ) andG∗
n(λ, δ) be the

random geometric graphs defined above. Then for alln sufficiently large the following hold.

1. If Pr (G∗
n(λ, δ) ∈ Θ) ≤ α, thenPr (Gn(λ, (1− ǫ)δ, T ) ∈ Θ) ≤ α

1−α
.

2. If Pr (Gn(λ, δ, T ) ∈ Θ) ≤ α, thenPr (G∗
n(λ, (1− ǫ)δ) ∈ Θ) ≤ 2α.

3. If Pr (G∗
n(λ, δ) ∈ Θ) ≥ 1− α, thenPr

(

Gn(λ, (1 +
ǫ

1−ǫ
)δ, T ) ∈ Θ

)

≥ 1−2α
1−α

.
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4. If Pr (Gn(λ, δ, T ) ∈ Θ) ≥ 1− α, thenPr (G∗
n(λ, (1 + ǫ)δ) ∈ Θ) ≥ 1− 2α.

Proof. Let Z(n+1) = Zn+1,N , be the random variables defined prior to Lemma 2. For any
ǫ, α ≥ 0, from Lemma 2, there exists aM ≥ 0 such that, for alln ≥ M,

Pr
(

| Z(n+1) − T |≤ ǫ
)

≥ 1− α (30)

For the sake of simplicity we will takeT = 1 in this proof and writeGn(λ, δ) forGn(λ, δ, 1).

Pr (G∗
n((1− ǫ)λ, δ) ∈ Θ)

=

∫ ∞

0

Pr
(

G∗
n((1− ǫ)λ, δ) ∈ Θ | Z(n+1) = z

)

fZ(n+1)
(z)dz

≥

∫ 1+ǫ

1−ǫ

Pr
(

G∗
n((1− ǫ)λ, δ) ∈ Θ | Z(n+1) = z

)

fZ(n+1)
(z)dz

=

∫ 1+ǫ

1−ǫ

Pr (Gn((1− ǫ)λ, δ, z) ∈ Θ) fZ(n+1)
(z)dz

≥ Pr (Gn((1− ǫ)λ, δ, (1 + ǫ)) ∈ Θ)

∫ 1+ǫ

1−ǫ

fZ(n+1)
(z)dz.

In deriving the second inequality above we have used Lemma 3(1). Using (30), we get

Pr (G∗
n((1− ǫ)λ, δ) ∈ Θ) ≥ (1− α)Pr (Gn((1− ǫ)λ, δ, (1 + ǫ)) ∈ Θ) ,

for all n ≥M . SincePr (G∗
n(λ, δ) ∈ Θ) ≤ α, it follows from Lemma 3(2) that

Pr (G∗
n((1− ǫ)λ, δ) ∈ Θ) ≤ α,

Pr (Gn((1− ǫ)λ, δ, (1 + ǫ)) ∈ Θ) ≤
α

1− α
.

Hence, by Lemma 3(3),

Pr (Gn(λ, (1− ǫ)δ, (1 + ǫ)(1− ǫ)) ∈ Θ) ≤
α

1− α
.

Since(1+ǫ)(1−ǫ) ≤ 1, part 1 of the lemma follows from another application of Lemma 3(1).

To prove part 2, consider

Pr
(

G∗
n((1− ǫ)−1λ, (1− ǫ)δ) ∈ Θ

)

=

∫ ∞

0

Pr
(

G∗
n((1− ǫ)−1λ, (1− ǫ)δ) ∈ Θ | Z(n+1) = z

)

fZ(n+1)
(z)dz

≤ α +

∫ 1+ǫ

1−ǫ

Pr
(

G∗
n((1− ǫ)−1λ, (1− ǫ)δ) ∈ Θ | Z(n+1) = z

)

fZ(n+1)
(z)dz

= α +

∫ 1+ǫ

1−ǫ

Pr
(

Gn((1− ǫ)−1λ, (1− ǫ)δ, z) ∈ Θ
)

fZ(n+1)
(z)dz

≤ α + Pr
(

Gn((1− ǫ)−1λ, (1− ǫ)δ, (1− ǫ)) ∈ Θ
)

∫ 1+ǫ

1−ǫ

fZ(n+1)
(z)dz,

≤ α + Pr (Gn(λ, δ, 1) ∈ Θ) ,
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for all n ≥ N . The first inequality above follows from (30). The second inequality fol-
lows from Lemma 3(1) while the last inequality follows from Lemma 3(3). From the given
conditionPr (Gn(λ, δ, 1) ∈ Θ) ≤ α, it follows that

Pr
(

G∗
n((1− ǫ)−1λ, (1− ǫ)δ) ∈ Θ

)

≤ α + α = 2α.

Part 2 now follows from Lemma 3(2).

To prove part 3, proceeding as above, we get

Pr
(

G∗
n((1− ǫ)−1λ, δ) /∈ Θ

)

=

∫ ∞

0

Pr
(

G∗
n((1− ǫ)−1λ, δ) /∈ Θ | Zn+1 = z

)

fZ(n+1)
(z)dz

≥

∫ 1+ǫ

1−ǫ

Pr
(

G∗
n((1− ǫ)−1λ, δ) /∈ Θ | Zn+1 = z

)

fZ(n+1)
(z)dz

=

∫ 1+ǫ

1−ǫ

Pr
(

Gn((1− ǫ)−1λ, δ, z) /∈ Θ
)

fZ(n+1)
(z)dz

≥ Pr
(

Gn((1− ǫ)−1λ, δ, (1− ǫ)) /∈ Θ
)

∫ 1+ǫ

1−ǫ

fZ(n+1)
(z)dz,

≥ (1− α)Pr
(

Gn((1− ǫ)−1λ, δ, 1− ǫ) /∈ Θ
)

,

for all n ≥M. Since the given conditionPr (G∗
n(λ, δ) /∈ Θ) ≤ α, implies

Pr (G∗
n((1− ǫ)−1λ, δ) /∈ Θ) ≤ α, it follows that

Pr
(

Gn((1− ǫ)−1λ, δ, 1− ǫ) /∈ Θ
)

≤
α

1− α

This implies that

Pr

(

Gn(λ, (1 +
ǫ

1− ǫ
)δ) ∈ Θ

)

≥
1− 2α

1− α
,

and we have the proof for part 3.

To prove part 4 we proceed as above to get the following inequality.

Pr (G∗
n(λ, (1 + ǫ)δ) /∈ Θ) ≤ α + Pr (Gn(λ, (1 + ǫ)δ, 1 + ǫ) /∈ Θ) ≤ 2α.

This completes the proof the lemma.

Remark 2. The above results extend to downwards-closed properties aswell.

The following theorem is now an easy corollary of the above Lemma.

Theorem 8. The sequence of random geometric graphsGn(λ, δ, T ) andG∗
n(λ, δ) have the

same weak and strong thresholds.
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Remark 3. Proceeding as in the proof of Lemma 4, we can show that

| Pr (Gn(λ, δ, T ) ∈ Θ)− Pr (G∗
n(λ, δ) ∈ Θ) |→ 0, n→ ∞.

This implies thatall the asymptotic probabilities ofGn(λ, δ, T ) satisfying any monotone
property (upward or downward closed) can be obtained by studying the corresponding prob-
abilities forG∗

n(λ, δ).

We now use Theorem 8 to derive the threshold probability for connectivity and strong law
results for the connectivity and largest nearest neighbor distance for the graphGn. We will,
without any further reference to the above theorem, work with the graphG∗

n instead ofGn.

Theorem 9. Letp = 1−exp(−λT ). Then the sequence of edge distancesδ(n) = p
λ(1−p)

ln(n)
n

is a strong (and weak) threshold for connectivity for the graphGn(λ, δ, T ).

Proof. Let rn = aδ(n), wherea ≥ 0 is a constant. Note thatrn → 0 while nrn → ∞ and
n ∼ Np. Let P ∗c

n be the probability thatG∗
n(λ, rn) is connected. Then,

ln(P ∗c
n ) =

N
∑

j=N−n

ln(1− e−λrnj).

Sincejrn → ∞ for all j = N − n, . . . , N, usingln(1− x) ∼ x asx→ 0, and summing the
resultant geometric series, we get

ln(P ∗c
n ) ∼ −e−λrn(N−n)1− e−λrn(n+1)

1− e−λrn
.

Substituting forrn = aδ(n) while noting that(N − n)/n ∼ (1 − p)/p, 1 − e−λrn(n+1) → 1
and1− e−λrn ∼ −λrn, we obtain,

ln(P ∗c
n ) ∼ −

n1−a

ln(n)
.

Thus, fora = 1 + ǫ, P ∗c
n converges to1 and converges to0 for a = 1 − ǫ. This shows that

δ(n) is a strong threshold for connectivity forGn. Similarly one can show thatδ(n) is a weak
threshold as well.

Remark 4. Note thatnδ(n)
ln(n)

= p
λ(1−p)

, where p
λ(1−p)

is the reciprocal of the minimumgλ,T (x).
Thus the behavior of the distance required to connect the graph is determined by the mini-
mum of the density since in the vicinity of this point vertices are more sparsely distributed.
The normalization n

ln(n)
is the same as in the case of uniform distribution of nodes.

We now state a strong law result for the connectivity distance (cn(λ, T )) and the largest
nearest neighbor distance(dn(λ, T )) for Gn(λ, ·, T ). In the following, we drop the reference
to parametersλ andT when referring tocn(λ, T ) anddn(λ, T ).
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Theorem 10. Let λ, T > 0. The connectivity and largest nearest neighbor distances ofthe
graphGn(λ, ·, T ) satisfy

1. limn→∞
ncn
ln(n)

= p
λ(1−p)

almost surely.

2. limn→∞
ndn
ln(n)

= p
2λ(1−p)

almost surely.

Proof. Let c∗n andd∗n be the connectivity and largest nearest neighbor distancesrespectively
of G∗

n(λ, δ). Let Yi,n be the spacings between the vertices inG∗
n. TheYi,n are independent

and exponentially distributed with mean(λ(N − i))−1, whereN = ⌊n/p⌋, andp = 1 −
exp(−λT ). Note that(1 − p)/p ∼ N/n − 1. Let y = yn := (p(1 + ǫ) ln(n))/(n(1 − p)λ).

We use the notationf(n)
<
∼ g(n) to mean thatf(n) is asymptotically bounded by a function

bh(n) whereb is a constant andh(n) ∼ g(n).

Let nk = ka, be a subsequence with constanta to be chosen later. LetNk = ⌊nk/p⌋.

Pr
(

∪nk+1
n=nk

(cn ≥ yn)
)

≤ Pr

(

cnk
≥
p(1 + ǫ) ln(nk)

nk+1(1− p)λ

)

∼ Pr

(

c∗nk
≥
p(1 + ǫ) ln(nk)

nk+1(1− p)λ

)

= Pr

(

∪
nk−1

i=1

(

Yi,nk
≥
p(1 + ǫ) ln(nk)

nk+1(1− p)λ

))

≤

nk−1
∑

i=1

exp

(

(Nk − i)p(1 + ǫ) ln(nk)

nk+1(1− p)

)

=

Nk−1
∑

j=Nk−nk+1

(

1

nk

)

jp(1+ǫ)
nk(1−p)

< nk

(

1

nk

)

(Nk−nk+1)p(1+ǫ)

nk(1−p)

∼

(

1

nk

)

(Nk/nk−1)p(1+ǫ)

(1−p)
−1

<
∼

1

kaǫ
,

where the last line follows by using the fact thatNk/nk → p−1, ask → ∞. Thus, for any
a > 1/ǫ, we get

∞
∑

k=0

Pr

(

∪nk+1
n=nk

(

cn ≥
p(1 + ǫ) ln(n)

n(1− p)λ

))

<∞ ∀ǫ > 0.

It follows from the Borel-Cantelli lemma that

lim sup
n→∞

λncn
ln(n)

≤
p

1− p
a.s.
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To establish the lower bound, we takeyn = p(1 − ǫ) ln(n)/(n(1 − p)λ), and show that
Pr (c∗n ≤ yn) is summable;

Pr (c∗n ≤ yn) =

N−1
∏

j=N−n+1

(1− e−λjyn).

Sinceyn → 0, andnyn → ∞, we have

ln(Pr (c∗n ≤ yn)
<
∼ −

(1− p)n

p(1 − ǫ) ln(n)
,

and hencePr (c∗n ≤ yn) is summable. This completes the proof of the first part.

Proof for the largest nearest neighbor distance is similar.In the proof of the upper bound we
takeyn = p(1 + ǫ) ln(n)/(2nλ(1− p)) and use the following inequalities.

Pr (d∗n ≥ yn)

= Pr
(

∪n−1
i=2 ((Yi−1,n ≥ yn) ∩ (Yi,n ≥ yn)) ∪ (Y1,n ≥ yn) ∪ (Yn−1,n ≥ yn)

)

≤
n−1
∑

i=2

Pr (Yi−1,n ≥ yn) Pr (Yi,n ≥ yn) + Pr (Y1,n ≥ yn) + Pr (Yn−1,n ≥ yn) .

To prove the lower bound setyn = p(1− ǫ) ln(n)/(2nλ(1− p)) and proceed as follows.

Pr (d∗n ≤ yn)

= Pr
(

∩n−1
i=2 ((Yi−1,n ≤ yn) ∪ (Yi,n ≤ yn)) ∩ (Y1,n ≤ yn) ∩ (Yn−1,n ≤ yn)

)

≤ Pr
(

∩
⌊n/2⌋
i=1 ((Y2i−1,n ≤ yn) ∪ (Y2i,n ≤ yn))

)

≤

⌊n/2⌋
∏

i=1

(1− e−λ(2N−4i−1)yn).

Take logarithms and use appropriate Taylor expansions and asymptotic equivalences as in
the proof of the first part. We omit the details. This completes the proof of the Theorem.�
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