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ABSTRACT: It is now known that many properties of the objects in certain combinatorial structures
are equivalent, in the sense that any object possessing any of the properties must of necessity possess
them all. These properties, termed quasirandom, have been described for a variety of structures such
as graphs, hypergraphs, tournaments, Boolean functions, and subsets of Zn, and most recently, sparse
graphs. In this article, we extend these ideas to the more complex case of graphs which have a given
degree sequence. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 32, 1–19, 2008
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1. INTRODUCTION

During recent years there has been increasing interest in investigating the following phe-
nomenon. For a given finite collection C of “objects,” suppose we have some probability
distribution given on C. Typically, there are many properties which are satisfied by most
(or almost all) of the objects in C as seen in [4]. It turns out, however, that in many cases
there is a large subclass Q of these properties which are strongly correlated, in the sense that
any object in C which satisfies any of the properties in Q must in fact necessarily satisfy
all the properties in Q. Such properties are called “quasi-random.” Specific cases where
this behavior is investigated can be found in [14, 15, 21] (for graphs), [12, 13, 16, 17] (for
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2 CHUNG AND GRAHAM

hypergraphs), [19] (for tournaments), [18] (for sequences), [25] (for permutations), and
[20] (for sparse graphs), for example.

In this article we will take C to be the class Gn(d) of all graphs on n vertices having
some given degree sequence d. This is rather different from the classical model of a random
graph, in which all vertices have the same expected degree. Special cases of such graph
families include the so-called power law graphs in which the number of vertices of degree k
is proportional to k−β for some positive real β. Such graphs arise in a variety of applications
such as Web connectivity [2,5,6,9,24,26,28,29], communication networks [1,3], biological
networks [22], collaboration graphs [27], etc.

In this article, we will introduce a class of quasi-random properties for Gn(d) and establish
quantitative bounds on the strength of correlation between these properties. In particular,
these results generalize and strengthen those in [20, 21].

2. NOTATION

We will consider graphs G = (V , E) where V denotes the set of vertices of G and E denotes
the set of edges of G. (For undefined graph theory terminology, see [33].) Our graphs will
be undirected, having no loops or multiple edges. We will let |V |, the cardinality of V , be
denoted by n.

If {x, y} ∈ E is an edge of G, we say that x and y are adjacent, and write this as x ∼ y.
The neighborhood nd(x) of a vertex x ∈ V is defined by

nd(x) := {y ∈ V : y ∼ x in G}.
For x ∈ V , the degree dx of x, denotes |nd(x)|. The degree sequence d = dG of G is given
by

d = (dx : x ∈ V),

or equivalently, d can be viewed as a mapping d : V → Z
+ ∪ {0}. For X, Y ⊆ V , define

e(X , Y) := |{(x, y) : x ∈ X, y ∈ Y and x ∼ y}|.
For X ⊆ V , define vol(X), the volume of X, by

vol(X) =
∑
x∈X

dx.

A walk P = Pt(x, y) from x to y is a sequence P = (x0, x1, . . . , xt), where x0 = x, xt = y
and xi ∼ xi+1 for 0 ≤ i < t. Such a walk is said to have length t. Here we do not require all
xi’s to be distinct. If all xi’s are different, we say the walk is a path.

In this article, we consider graphs with every vertex having positive degree. The weight
w(P) of such a walk P is defined to be

w(P) =
∏

0<i<t

1

dxi

(thus, both endpoints are excluded in the product). If P has length 1 (and therefore is an
edge of G), then w(P) is defined to be 1.

A circuit C of length t is a sequence of t vertices (x1, x2, . . . , xt)where xi ∼ xi+1, 1 ≤ i < t,
and xt ∼ x1. (We remark that in this definition, a circuit can be viewed as a rooted closed
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QUASI-RANDOM GRAPHS WITH GIVEN DEGREE SEQUENCES 3

walk.) The weight w(C) of such a circuit is defined by

w(C) =
∏

1≤i≤t

1

dxi

.

The weighted adjacency matrix M = M(G) is an n × n matrix with rows and columns
indexed by V , defined by

M(x, y) =
{

1√
dxdy

if x ∼ y,

0 otherwise.
(1)

Note that M can be written as M = I − L where I is the identity matrix and L denotes the
(normalized) Laplacian (see [11]). The eigenvalues of M are denoted by ρi, 0 ≤ i ≤ n − 1,
indexed so that

1 = ρ0 ≥ |ρ1| ≥ |ρ2| ≥ . . . ≥ |ρn−1|
using the Perron-Frobenius theorem. Note that ρ0 = 1 has as its eigenvector (

√
dx)x∈V .

Finally, define for X , Y ⊆ V , and t ≥ 1,

et(X , Y) =
∑

P∈Pt (X,Y)

w(P)

where Pt(X, Y) denotes the set of all walks of length t between x ∈ X and y ∈ Y . This
is a weighted version of the number of walks of length t between X and Y . Note that
e1(X, Y) = e(X , Y). In particular, e1(V , V) = ∑

x dx = vol(G). It is not difficult to check
that for t ≥ 1, we have et(V , V) = vol(G).

3. THE QUASI-RANDOM PROPERTIES

In this section we will state various properties that the G ∈ Gn(d) might satisfy. Each of
these properties will depend on a parameter ε, which we will always assume to satisfy
0 < ε < 1. The closer ε is to 0, the more the graph in question behaves like a random graph
with respect to the property in question, that is, the more the value of the corresponding
parameter is closer to its expected value for a random graph in Gn(d).

DISC(ε):
For all X , Y ⊆ V , ∣∣∣∣e(X , Y) − vol(X)vol(Y)

vol(G)

∣∣∣∣ ≤ ε vol(G).

DISCt(ε):
For all X, Y ⊆ V , ∣∣∣∣et(X , Y) − vol(X)vol(Y)

vol(G)

∣∣∣∣ ≤ ε vol(G).

Note that DISC1(ε) is just DISC(ε).

EIG(ε):
With the matrix M = M(G) = (M(x, y))x,y∈V as defined in (1) and with eigenvalues

satisfying
1 = ρ0 ≥ |ρ1| ≥ |ρ2| ≥ . . . ≥ |ρn−1|,
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4 CHUNG AND GRAHAM

we have
|ρi| < ε for all i ≥ 1.

TRACE2t(ε):
The eigenvalues of M satisfy ∑

i≥1

ρ2t
i ≤ ε.

CIRCUITt(ε):
The weighted sum of the t-circuits Ct in G satisfies∣∣∣∣∣

∑
Ct :t−circuit

w(Ct) − 1

∣∣∣∣∣ ≤ ε.

We will prove the following implications in Section 4:

Theorem 1. For t ≥ 2, the following implications hold.

Fig. 1. Implications of several properties of Gn(d).

Here the notation A
δ⇒ B is shorthand for A(ε) ⇒ B(δ). We say A implies B, denoted

by A ⇒ B, if for every β > 0, there exists α > 0 such that A(α) ⇒ B(β).
There are several one-way implications in the above Fig. 1. A natural question is which,

if any, of the reverse directions hold for any of these implications. In Section 5, we will give
counterexamples which show that EIG 
⇒ Trace2t for any t ≥ 1.

In Section 6, we introduce an additional property Ut . Then we show that if a graph
satisfies Ut−1 for some t ≥ 2, then DISC ⇒ CIRCUIT2t . Using property Ut , we will prove
the following result.

Theorem 2. If G satisfies Ut−1 for some t ≥ 2, then CIRCUIT2t , TRACE2t , EIG, DISC,
DISC2, DISCt are all equivalent.

4. THE IMPLICATIONS

Lemma 1. EIG(ε) =⇒ DISC(ε).

Proof. For S ⊆ V , define

fS(x) =
{ √

dx if x ∈ S,
0 otherwise.

Then, for X, Y ⊆ V ,
e(X , Y) = 〈fX , MfY 〉

where 〈f , g〉 = ∑
x∈V f (x)g(x) denotes the usual inner product.

Random Structures and Algorithms DOI 10.1002/rsa
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Now, write
fX =

∑
i

aiφi

where the φi’s form an orthonormal basis of eigenvectors with

φ0(v) =
√

dv

vol(G)
,

for all v ∈ V . Hence,

a0 = 〈fX , φ0〉
=

∑
x∈X

dx√
vol(G)

= vol(X)√
vol(G)

.

Similarly, we write
fY =

∑
i

biφi.

Thus,

〈fX , M fY 〉 = a0b0 +
∑
i≥1

ρiaibi

= vol(X)vol(Y)

vol(G)
+

∑
i≥1

ρiaibi

Therefore, ∣∣∣∣e(X , Y) − vol(X)vol(Y)

vol(G)

∣∣∣∣ =
∣∣∣∣∣
∑
i≥1

ρiaibi

∣∣∣∣∣
≤ max

i≥1
|ρi|

(∑
i≥1

|ai|2
)1/2 (∑

i≥1

|bi|2
)1/2

≤ ε‖fX‖ ‖fY‖
= ε

√
vol(X)vol(Y)

≤ ε vol(G)

by using EIG and the Cauchy-Schwarz inequality where ‖·‖ denotes the L2-norm. Therefore,
the proof is complete.

In a similar way, we prove

Lemma 2. EIG(ε) =⇒ DISCt(ε
t) for any t ≥ 1.

Proof. In this case we observe that for X , Y ⊆ V ,

et(X , Y) = 〈fX , Mt fY 〉
Random Structures and Algorithms DOI 10.1002/rsa
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(using the notation of Lemma 1). Thus, writing

fX =
∑

i

aiφi, fY =
∑

i

biφi,

we find ∣∣∣∣〈fX , Mt fY 〉 − vol(X)vol(Y)

vol(G)

∣∣∣∣ = ∣∣〈fX , MtfY 〉 − ρ t
0a0b0

∣∣
≤ max

i≥1
|ρi|t

∑
i≥1

|aibi|

≤ max
i≥1

|ρi|t‖fX‖ ‖fY‖
≤ εt

√
vol(X)vol(Y)

≤ εt vol(G)

and Lemma 2 is proved.

Lemma 3. CIRCUIT2t(ε) ⇐⇒ TRACE2t(ε).

Proof. Let C∗
2t(u) denote a rooted 2t-circuit with starting and ending point u. Then,

M2t(u, u) =
∑

C∗
2t (u)

w
(
C∗

2t(u)
)
.

Thus, the trace of the matrix M2t can be expressed as:

Tr(M2t) =
∑

u

∑
C∗

2t (u)

w
(
C∗

2t(u)
)

=
∑
C2t

w(C2t).

On the other hand, the same trace can be evaluated using eigenvalues:

Tr(M2t) =
∑

i

ρ2t
i

= 1 +
∑
i≥1

ρ2t
i .

Thus, we have ∣∣∣∣∣∣
∑
C2t

w(C2t) − 1

∣∣∣∣∣∣ = |Tr(M2t) − 1|

=
∑
i≥1

ρ2t
i

and Lemma 3 is proved.

Random Structures and Algorithms DOI 10.1002/rsa



QUASI-RANDOM GRAPHS WITH GIVEN DEGREE SEQUENCES 7

Lemma 4. TRACE2t(ε) =⇒ EIG(ε1/2t), for any t ≥ 1.

Proof. By hypothesis, we have∣∣∣∣∣
∑

i

ρ2t
i − 1

∣∣∣∣∣ =
∑
i≥1

ρ2t
i ≤ ε.

Therefore,
max

i≥1
|ρi| ≤ ε1/2t .

Lemma 5. TRACE2t(ε) =⇒ TRACE2t+2(ε).

Proof. Since |ρi| ≤ 1 for all i, we have∑
i≥1

ρ2t+2
i ≤

∑
i≥1

ρ2t
i ≤ ε

by hypothesis.

Lemma 6. For t ≥ 1, DISC2t(ε) =⇒ DISCt(
√

ε).

Proof. For X ⊆ V ,

e2t(X , X) =
∑

x,x′∈X

∑
y

et(x, y)et(y, x′)
dy

(2)

=
∑

y

et(y, X)2

dy
.

By applying DISC2t(ε) to e2t(X , X), we have

∑
y

et(y, X)2

dy
≤ vol(X)2

vol(G)
+ ε vol(G).

Note that ∑
y

et(y, X) = et(V , X) =
∑
x∈V

dx = vol(X).

Therefore,

∑
y

(
et(y, X) − dyvol(X)

vol(G)

)2 1

dy

=
∑

y

et(y, X)2

dy
− 2et(V , X)

vol(X)

vol(G)
+ vol(X)2

vol(G)

=
∑

y

et(y, X)2

dy
− vol(X)2

vol(G)

≤ ε vol(G).

Random Structures and Algorithms DOI 10.1002/rsa



8 CHUNG AND GRAHAM

by (2) and DISC2t(ε). But

∑
y

(
et(y, X) − dyvol(X)

vol(G)

)2 1

dy

≥
∑
y∈Y

(
et(y, X) − dyvol(X)

vol(G)

)2 1

dy

≥
(∑

y∈Y

(
et(y, X) − dy

vol(X)

vol(G)

))2
1∑

y∈Y dy

=
(

et(Y , X) − vol(Y)vol(X)

vol(G)

)2

/vol(Y)

by applying the Cauchy-Schwarz inequality. Thus,∣∣∣∣et(Y , X) − vol(Y)vol(X)

vol(G)

∣∣∣∣ ≤ √
ε vol(Y)vol(G)

≤ √
ε vol(G).

This is exactly DISCt(
√

ε).

Lemma 7. For any t ≥ 1, DISCt(ε) =⇒ DISCt+1(6
√

ε).

Proof. For X , Y ⊆ V , ∣∣∣∣et(X , Y) − vol(X)vol(Y)

vol(G)

∣∣∣∣ ≤ ε vol(G). (3)

Consider

et+1(X , Y) =
∑

v

e(X, v)et(v, Y)

dv
.

Define

S1 :=
{

z ∈ V : et(z, Y) >
dz

vol(G)
(vol(Y) + √

ε vol(G))

}
.

Thus, ∑
z∈S1

et(z, Y) = et(S1, Y) >
vol(S1)vol(Y)

vol(G)
+ √

ε vol(S1).

Hence, by (3) applied to X = S1 and Y ,

vol(S1) <
√

ε vol(G). (4)

In the same way, if we define S2 := {z ∈ V : et(z, Y) <
dz

vol(G)
(vol(Y) − √

ε vol(G))}, then

vol(S2) <
√

ε vol(G). (5)

Now,

et+1(X , Y) =

 ∑

v 
∈S1∪S2

+
∑

v∈S1∪S2


 e(X, v)et(v, Y)

dv
.

Random Structures and Algorithms DOI 10.1002/rsa
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For the first sum, we have

∑
v 
∈S1∪S2

e(X , v)et(v, Y)

dv
≤

∑
v 
∈S1∪S2

e(X, v)

dv

dv

vol(G)
(vol(Y) + √

ε vol(G))

≤
∑

v

e(X , v)

vol(G)
(vol(Y) + √

ε vol(G))

≤ vol(X)vol(Y)

vol(G)
+ √

ε vol(G)

and ∑
v 
∈S1∪S2

e(X , v)et(v, Y)

dv
≥

∑
v 
∈S1∪S2

e(X , v)

dv

dv

vol(G)
(vol(Y) − √

ε vol(G))

≥
∑

v 
∈S1∪S2

e(X , v)

vol(G)
(vol(Y) − √

ε vol(G))

≥ (vol(X) − vol(S1) − vol(S2))

vol(G)
(vol(Y) − √

ε vol(G))

≥ (vol(X) − 2
√

ε vol(G))

vol(G)
(vol(Y) − √

ε vol(G))

≥ vol(X)vol(Y)

vol(G)
− 3

√
ε vol(G),

by using (4) and (5). Thus,∣∣∣∣∣∣
∑

v 
∈S1∪S2

e(X , v)et(v, Y)

dv
− vol(X)vol(Y)

vol(G)

∣∣∣∣∣∣ ≤ 3
√

ε vol(G).

For the second sum, we have

∑
v∈S1∪S2

e(X , v)et(v, Y)

dv
≤

∑
v∈S1∪S2

dvet(v, Y)

dv

= et(S1 ∪ S2, Y)

≤ (vol(S1) + vol(S2))vol(Y)

vol(G)
+ ε vol(G) by DISCt(ε)

≤ 2
√

ε vol(G)vol(Y)

vol(G)
+ ε vol(G)

= 2
√

ε vol(Y) + ε vol(G)

≤ 3
√

ε vol(G).

Putting these two estimates together, we obtain∣∣∣∣et+1(X , Y) − vol(X)vol(Y)

vol(G)

∣∣∣∣ ≤ 6
√

ε vol(G)

which is DISCt+1(6
√

ε).
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Lemma 8. For any integers s and t, DISCs and DISCt are related as follows:

i. If s < t, then DISCs(ε) =⇒ DISCt(36ε1/2t−s
).

As a special case, DISC(ε) =⇒ DISCt(36ε1/2t−1
).

ii. If t < s ≤ 2kt for some k, then DISCs(ε) =⇒ DISCt

(
361/2k

ε1/22k t+k−s)
.

Proof. (i) follows from Lemma 7, i.e.,

DISCs(ε) ⇒ DISCs(36ε)

⇒ DISCs+1(36ε1/2)

⇒ . . .

⇒ DISCt(36ε1/2t−s
)

To prove (ii), we have, from (i) that

DISCs(ε) ⇒ DISC2k t

(
36ε1/22k t−s)

Now apply Lemma 6 k times to get the desired implication.

By combining Lemmas 1 to 8, we have proved all the implications in Theorem 1.

5. SEPARATION OF PROPERTIES

In this section, we give an example showing that at least one of the implications in Theorem 1
cannot be reversed. Whether this is true of the others is not known at this point.

Fact 1. For any t ≥ 1,
EIG(ε) 
=⇒ TRACE2t(δ)

for any δ = δ(ε).

Proof. Choose t ≥ 1 and let G = G(n) be a random regular graph with n vertices and
vertex degree n1/t . Thus, M = M(G) has

M(u, v) =
{

1/n1/t if u ∼ v,
0 otherwise.

It was shown in [23] that the eigenvalue distribution of M(G) for a random graph G with
a given expected degree distribution satisfies the semi-circle law if the minimum degree is
greater than a power of log n. As a consequence, if 1 = ρ0 ≥ |ρ1| ≥ |ρ2| ≥ . . . ≥ |ρn−1|
are the eigenvalues of M, then

1. ρ1 = (1 + o(1))2/n1/2t ,
2. If N(x) denotes the number of ρi with ρi ≤ 2x/n1/2t , then

N(x)

n
= (1 + o(1))

2

π

∫ x

−1

√
1 − u2du.

Random Structures and Algorithms DOI 10.1002/rsa
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In particular, for x = 1/2, we have

N(1/2)

n
= (1 + o(1))

(
2

3
+

√
3

4π

)
≈ 0.8045 . . . .

Thus, ∑
i≥1

ρ2t
i ≥ 2(n − N(1/2))

(
1

n1/2t

)2t

≥ 0.391.

Hence, for any ε > 0, G satisfies EIG(ε), provided n ≥ n0, but G does not satisfy
TRACE2t(0.39).

It would be interesting to know if some of the other possible implications hold. For
example, does DISC ⇒ EIG?

Recently, Bilu and Linial [7] proved the following partial implication for regular graphs:
For a d-regular graph G on n vertices, if for all X, Y ⊂ V ,∣∣∣∣e(X , Y) − d

n
|X| |Y |

∣∣∣∣ ≤ αd
√|X| |Y |, (6)

then |ρ1| = O(α(log(1/α) + 1)).

The above property in (6) was introduced by Thomason [31] in the context of what he
called (p, α)-jumbled graphs. Of course, this property is quite a bit stronger than DISC.
Properties of random graphs based on this concept (without the equivalence relations)
are often referred as the pseudo-random properties. The reader is referred to [30, 32] for
discussions on pseudo-random graphs.

Butler [10] combines the methods in [7] and [8] to prove the following:
For a graph G with no isolated vertices, if for all X, Y ⊂ V ,∣∣∣∣et(X , Y) − vol(X) vol(Y)

vol(G)

∣∣∣∣ ≤ α
√

vol(X)vol(Y),

then |ρ1|t ≤ 18α(1 − 5
2 log α).

For t = 1, this is the best possible (up to a constant) by considering a class of regular
graphs constructed by Bollobás and Nikiforov [8]. In their example, the graphs have α =
Cn−1/6 and |ρ1| ≥ cα log n for some constants c and C.

6. REVERSING THE IMPLICATIONS

It is clear from the examples in the preceding section that in order to establish some of the
reverse implications, e.g., DISC ⇒ CIRCUIT2t , we will have to make further assumptions
for the G ∈ Gn(d). One such condition is the following:

For t ≥ 1, a graph satisfies Ut(C) if for all x, y ∈ V , et(x, y) ≤ C dxdy
vol(G)

.
We will think of C as a large positive real. We note that for t = 1 and for G with minimum

degree αn, the property U1(C) is automatically satisfied for C ≥ 1/α2.
Note that for a d-regular graph, Ut implies that n ≤ Cdt or, equivalently, the volume of

the graph is of order at least n1+1/t .

Random Structures and Algorithms DOI 10.1002/rsa



12 CHUNG AND GRAHAM

Lemma 9. For any t ≥ 1,
Ut(C) =⇒ Ut+1(C).

Proof. Observe that

et+1(x, y) =
∑

z

e(x, z)et(z, y)

dz

≤
∑

z

e(x, z)

dz
· C

dzdy

vol(G)

= C
dy

vol(G)

∑
z

e(x, z)

= C
dxdy

vol(G)
.

The lemma is proved.

Theorem 3. If G satisfies Ut−1(C) for some t ≥ 2, then

DISC(ε) =⇒ CIRCUIT2t(η)

where η = 2C′C2ε/δ + 2C2(C′ + 1)2δ + 20
√

δ + 12δ + 16C′4δ3/2 + 8C
′2δ3/2, with C′ =

�C/δ1/4�, and δ = max{√ε, 36ε1/2t−2}. (Note that η → 0 as ε → 0.)

Proof. We are going to consider the sum

∑
u,v∈V

1

dudv

(
et(u, v) − dudv

vol(G)

)2

where, as usual, V = V(G).
Since G satisfies DISC(ε) by hypothesis, then by Lemma 8, G also satisfies DISCt−1(δ)

where δ ≥ 36ε1/2t−2
, i.e.,∣∣∣∣et−1(X , Y) − vol(X)vol(Y)

vol(G)

∣∣∣∣ ≤ δ vol(G)

for all X, Y ⊆ V .
We here choose δ = max{√ε, 36ε1/2t−2}. For a fixed vertex u, we partition the vertex set

V into the sets Wi = Wi(u), 0 ≤ i < C′, as follows. (To simplify the notation, we use Wi

instead of Wi(u) below.)

W0 =
{

v : 0 ≤ et−1(u, v) < δ1/4 dudv

vol(G)

}
,

W1 =
{

v : δ1/4 dudv

vol(G)
≤ et−1(u, v) < 2δ1/4 dudv

vol(G)

}
,

W2 =
{

v : 2δ1/4 dudv

vol(G)
≤ et−1(u, v) < 3δ1/4 dudv

vol(G)

}
,

Random Structures and Algorithms DOI 10.1002/rsa
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and, in general,

Wi =
{

v : iδ1/4 dudv

vol(G)
≤ et−1(u, v) < (i + 1)δ1/4 dudv

vol(G)

}

for 0 ≤ i < C′ = �C/δ1/4�. Since et−1(u, v) ≤ Cdudv/vol(G) by Ut−1(C), the Wi form a
partition of V .

Since

Wi ⊆
{

v :

∣∣∣∣et−1(u, v) − iδ1/4 dudv

vol(G)

∣∣∣∣ < δ1/4 dudv

vol(G)

}
,

then ∣∣∣∣∣∣
∑
v∈Wi

(
et−1(u, v) − iδ1/4 dudv

vol(G)

)∣∣∣∣∣∣ <
∑
v∈Wi

δ1/4 dudv

vol(G)

and

∣∣∣∣et−1(u, Wi) − iδ1/4 duvol(Wi)

vol(G)

∣∣∣∣ < δ1/4 duvol(Wi)

vol(G)
. (7)

Since
∑

i et−1(u, Wi) = et−1(u, V) = du, then∣∣∣∣∣
∑

i

iδ1/4 duvol(Wi)

vol(G)
− du

∣∣∣∣∣
=

∣∣∣∣∣
∑

i

iδ1/4 duvol(Wi)

vol(G)
−

∑
i

et−1(u, Wi)

∣∣∣∣∣
≤ δ1/4

∑
i

duvol(Wi)

vol(G)

= δ1/4du. (8)

Now, for each i, if vol(Wi) ≥ √
δ vol(G), then define Xi = Xi(u) and X ′

i = X ′
i (u) as follows:

Xi =
{

v : e(v, Wi) >
dvvol(Wi)

vol(G)
(1 + √

δ)

}
,

X ′
i =

{
v : e(v, Wi) <

dvvol(Wi)

vol(G)
(1 − √

δ)

}
.

If vol(Wi) <
√

δ vol(G) then define Xi = X ′
i = ∅. Also define

W ∗
u =

⋃
{Wi : vol(Wi) <

√
δ vol(G)}.

Thus,
vol

(
W ∗

u

) ≤ C′√δvol(G)

since there are just C′ possible values of i.
By DISC(ε), we have∣∣∣∣e(Wi, Xi) − vol(Wi)vol(Xi)

vol(G)

∣∣∣∣ ≤ ε vol(G),
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but from the definition of Xi, we have∣∣∣∣e(Wi, Xi) − vol(Wi)vol(Xi)

vol(G)

∣∣∣∣ ≥ √
δ

vol(Xi)vol(Wi)

vol(G)

≥ √
δ

√
δvol(G)vol(Xi)

vol(G)

= δ vol(Xi).

Therefore,
vol(Xi) ≤ ε/δ vol(G).

A similar argument shows that

vol
(
X ′

i

) ≤ ε/δ vol(G)

as well. Consequently, for each u, we consider

Xu :=
⋃ {

Xi ∪ X ′
i : Wi 
⊆ W ∗

u

}
and we have

vol(Xu) ≤ 2C′ε/δ vol(G). (9)

For v 
∈ Xu, we have, from the definition of Xu,

e
(
W ∗

u , v
) = dv −

∑
Wi 
⊆W∗

u

e(Wi, v)

≤ dv −
∑

Wi 
⊆W∗
u

(1 − √
δ)

dvvol(Wi)

vol(G)

= dv − (1 − √
δ)

dv

(
vol(G) − vol

(
W ∗

u

))
vol(G)

= √
δdv + (1 − √

δ)
vol

(
W ∗

u

)
vol(G)

dv

≤ √
δdv + (1 − √

δ)C′
√

δvol(G)

vol(G)
dv

≤ (C′ + 1)
√

δdv. (10)

We now begin considering the sum,

∑
u

∑
v

1

dudv

(
et(u, v) − dudv

vol(G)

)2

=
∑

u

(∑
v∈Xu

+
∑
v 
∈Xu

)
1

dudv

(
et(u, v) − dudv

vol(G)

)2

.

For the first sum, we use property Ut(C) and Lemma 9 to obtain the following estimate:

∑
u

∑
v∈Xu

1

dudv

(
et(u, v) − dudv

vol(G)

)2

≤
∑

u

∑
v∈Xu

1

dudv
C2

(
dudv

vol(G)

)2

= C2 vol(Xu)

vol(G)

≤ 2C′C2ε/δ (11)
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by (9). For the second sum we have

∑
u

∑
v 
∈Xu

1

dudv

(
et(u, v) − dudv

vol(G)

)2

=
∑

u

∑
v 
∈Xu

1

dudv

(∑
z

et−1(u, z)e(z, v)

dz
− dudv

vol(G)

)2

=
∑

u

∑
v 
∈Xu

1

dudv





∑

z∈W∗
u

+
∑
z 
∈W∗

u


 et−1(u, z)e(z, v)

dz
− dudv

vol(G)




2

≤
∑

u

∑
v 
∈Xu

2

dudv





∑

z∈W∗
u

et−1(u, z)e(z, v)

dz




2

+

∑

z 
∈W∗
u

et−1(u, z)e(z, v)

dz
− dudv

vol(G)




2
 .

For the first sum just above (without a factor of 2), we have

∑
u

∑
v 
∈Xu

1

dudv


∑

z∈W∗
u

et−1(u, z)e(z, v)

dz




2

≤
∑

u

∑
v 
∈Xu

1

dudv


∑

z∈W∗
u

Cdudze(z, v)

dzvol(G)




2

by Ut−1(C),

=
∑

u

∑
v 
∈Xu

C2d2
u

(
e
(
W ∗

u , v
))2

dudvvol(G)2

≤
∑

u

∑
v 
∈Xu

C2(C′ + 1)2δdudv

vol(G)2
by (10)

≤ C2(C′ + 1)2δ. (12)

For the second sum above, we have

∑
u

∑
v 
∈Xu

1

dudv


∑

z 
∈W∗
u

et−1(u, z)e(z, v)

dz
− dudv

vol(G)




2

=
∑

u

∑
v 
∈Xu

1

dudv


 ∑

Wi 
⊆W∗
u

∑
z∈Wi

et−1(u, z)e(z, v)

dz
− dudv

vol(G)




2

≤
∑

u

∑
v 
∈Xu

2

dudv





 ∑

Wi 
⊆W∗
u

∑
z∈Wi

iδ1/4dudze(z, v)

dzvol(G)
− dudv

vol(G)




2

+

 ∑

Wi 
⊆W∗
u

∑
z∈Wi

δ1/4dudze(z, v)

dzvol(G)




2


since |A − a| ≤ b ⇒ (A − B)2 ≤ 2((a − B)2 + b2) and inequalities in (7).
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For the second sum we have

∑
u

∑
v 
∈Xu

1

dudv


 ∑

Wi 
⊆W∗
u

∑
z∈Wi

δ1/4due(z, v)

vol(G)




2

= √
δ
∑

u

∑
v 
∈Xu

1

dudv


 ∑

Wi 
⊆W∗
u

due(Wi, v)

vol(G)




2

≤ √
δ
∑

u

∑
v 
∈Xu

1

dudv


 ∑

Wi 
⊆W∗
u

du

vol(G)
(1 + √

δ)
dvvol(Wi)

vol(G)




2

by def. of Xu

≤ √
δ
∑

u

∑
v 
∈Xu

1

dudv

(
(1 + √

δ)
dudv

vol(G)

)2

≤ √
δ + 3δ (13)

(upper bounded by the sum over all u and v).
Finally, for the first sum we have

∑
u

∑
v 
∈Xu

1

dudv


 ∑

Wi 
⊆W∗
u

∑
z∈Wi

iδ1/4due(z, v)

vol(G)
− dudv

vol(G)




2

=
∑

u

∑
v 
∈Xu

1

dudv


 ∑

Wi 
⊆W∗
u

iδ1/4due(Wi, v)

vol(G)
− dudv

vol(G)




2

≤
∑

u

∑
v 
∈Xu

2

dudv





 ∑

Wi 
⊆W∗
u

iδ1/4dudvvol(Wi)

vol(G)2
− dudv

vol(G)




2

+

 ∑

Wi 
⊆W∗
u

iδ1/4dudvvol(Wi)

vol(G)2

√
δ




2
 by the def. of Xu,

≤
∑

u

∑
v 
∈Xu

2

dudv


2

(∑
i

iδ1/4dudvvol(Wi)

vol(G)2
− dudv

vol(G)

)2

+2

(∑
Wi⊆W∗

u
iδ1/4dudvvol(Wi)

vol(G)2

)2

+

 ∑

Wi 
⊆W∗
u

iδ1/4dudvvol(Wi)

vol(G)2

√
δ




2


≤
∑
u,v

1

dudv

(
4

(
dudvδ

1/4

vol(G)

)2

+ 4

(
C′2δ1/4dudvδ

1/2

vol(G)

)2

+ 2

(
C′dudvδ

3/4

vol(G)

)2
)

by (8), def. of W ∗
u and the fact that i < C′,

≤ 4
√

δ + 4C
′4δ3/2 + 2C

′2δ3/2. (14)

Now, we have to put everything together.
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First observe that

∑
u,v∈V

1

dudv

(
et(u, v) − dudv

vol(G)

)2

=
∑
u,v∈V

1

dudv
et(u, v)2 − 2

∑
u,v∈V

et(u, v)

vol(G)
+

∑
u,v∈V

dudv

vol(G)2

=
∑

C2t 2t−circuit

w(C2t) − 2
et(V , V)

vol(G)
+ 1

=
∑

C2t 2t−circuit

w(C2t) − 1

(using et(V , V) = vol(G)) so that the preceding results, including inequalities (11), (12),
(13) and (14), give∣∣∣∣∣∣

∑
C2t 2t−circuit

w(C2t) − 1

∣∣∣∣∣∣
=

∑
u,v∈V

1

dudv

(
et(u, v) − dudv

vol(G)

)2

≤ 2C′C2ε/δ + 2C2(C′ + 1)2δ + 4(
√

δ + 3δ) + 4(4
√

δ + 4C′4δ3/2 + 2C′2δ3/2)

≤ 2C′C2ε/δ + 2C2(C′ + 1)2δ + 20
√

δ + 12δ + 16C′4δ3/2 + 8C′2δ3/2.

This proves Theorem 3.

Corollary 1. If G has minimum degree αn, then

DISC(ε) =⇒ CIRCUIT2t(η)

where η depends only on ε, α and t.

Theorem 4. If G has minimum degree αn for some constant α, then CIRCUIT2t , TRACE2t ,
EIG, DISC, DISC2, DISCt are all equivalent for t ≥ 2.

7. CONCLUDING REMARKS

We can summarize the main theorems in the following:

Fig. 2. Quasi-random properties for Gn(d).
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We should note that if for our degree sequence d, we choose all di to be (approximately)
equal, so that the G ∈ G(d) are (approximately) regular, then our results specialize to the
case of sparse random graphs considered in [20], except that here we get explicit functions
of ε (as opposed to the expressions with o(1) terms occurring in [20]). What are other
properties which might be included in Theorem 1? Can condition Ut−1 be replaced by a
weaker condition to allow DISC ⇒ CIRCUIT2t to be proved (Fig. 2)? We hope to return to
this in the future.
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