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Abstract

We consider the problem of uniformly sampling a vertex of a transportation polytope with
m sources ana destinations, where: is a constant. We analyse a natural random walk on the
edge-vertex graph of the polytope. The analysis makes use of the multi-commaodity flow technique
of Sinclair [30] together with ideas developed by Morris and Sinclair [24, 25] for the knapsack
problem, and Cryagt al.[3] for contingency tables, to establish that the random walk approaches
the uniform distribution in time,© ("),

1 Introduction

In this paper we study the mixing time behaviour of a natural random walk on the edge-vertex graph
of atransportation polytopavith m sources ana destinations. We are able to show that this walk
converges to the uniform distribution on the vertex set in tisHe™*). Therefore the random walk
mixes rapidly whenever the number of soureess a constant. As far as we are aware, this is the
first result proving rapid mixing of a random walk on the graph of any non-trivial class of polytopes.
Very little is known about the mixing times of random walks on polytope graphs in general. In fact,
it is not even known whether the diameter of the graph is polynomially bounded in the dimension and
number of facets of the polytope. (See Kalai [19] and Ziegler [32].) In consequence, Markov chain
Monte Carlo (MCMC) has not been well explored as a means of sampling, or approximately counting,
vertices of general polytopes. Even for special classes of polytopes, such as arbitrary transportation
polytopes, approximate counting algorithms are not known to exist, either by MCMC or by other
means (see, for example, Pak [28]). This is despite the fact that the diameter of any transportation
polytope is bounded above by a linear functiomint+ n (see Brightwell et al. [2]; an earlier paper by
Dyer and Frieze [13] gave a polynomial upper bound). In fact, the only previous mixing results known
for random walks on the edge-vertex graph of a polytope are for very special, and highly symmetric
polytopes, such as thecube [7] and the Birkhoff polytope [27].

Our approach to proving rapid mixing for our random walk on the transportation polytope is
inspired by that of Cryan, Dyer, Goldberg, Jerrum and Matrtin [3] for sampling contingency tables.
This was itself based on the “balanced permutation” ideas of Morris and Sinclair [24, 25] for the
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knapsack problem. However, following the line of proof given in [3], and usingrihgimensional
balanced permutations of [24], would lead inevitably to a mixing time bound6f"’ for our random
walk. To obtain our improvement in the exponent, from exponential to polynomial, it is necessary to
sharpen the tools of [24, 25] using the special structure of the problem at hand. Our improvement
then results principally from the fact that we can prove thatrangly O(mZ)—baIancean(mQ)—
uniform permutation exists for this problem. Note that it is unknown whether a strongly-balanced
almost-uniform permutation exists for an arbitrary setotlimensional vectors, when is variable.
(See [24] for further information.)

Our paper is organised as follows: 38 we give basic information and background concerning
the transportation polytope and the natural random walk on that polytop8. vir list results about
the structure of vertices and edges of the transportation polytope, and prove upper and lower bounds
on the number of adjacent edges of any vertex (the ratio of the upper bound to the lower bound is a
key parameter in our definition of the random wald.introduces a new Markov chain called a heat-
bath chain, which can make larger moves on the edge-vertex graph than the natural random walk, but
which also converges to the uniform distribution on the vertices of the transportation polytope. This
heat-bath chain is then analysed in the next two section§5,lwe present our improved balanced
almost-uniform permutations (based on the permutations of Morris and Sinclair [25]), which will be
used in the analysis of the heat-bath chain.§6nwe prove that the heat-bath chain mixes rapidly,
when the number of sources is constant§Tnwe prove, by comparison to the heat-bath chain, that
the natural random walk also mixes rapidly in this case.§8rwe show how to use our sampling
algorithm to obtain a polynomial-time algorithm to approximately count vertices of the transportation
polytope whenn is constant.

2 Background

The transportation problem (TP) is a classic problem in operations research. The problem was posed
for the first time by Hitchcock in 1941 [18] and independently by Koopmans in 1947 [21], and ap-
pears in any standard introductory course on operations research. It is the combinatorial optimization
problem of assigning shipments of some commodity from sources to destinations so that the total
transportation cost is minimized. We are giversources and a list = (rq, ..., r,,) of supplies for
these sources{ is the supply at sourcg. We are givem destinations and a list = (ci,...,¢y)
of demands for these destinatiors is the demand at destinatigh. Without loss of generality, we
assume thay ;" r; = Y7, ¢;, and defineV = >~ | 7;. Lett} denote the cost of transporting one
unit from sourcei to destinationy, for1 < i < m,1 < j < n. We use the somewhat uncommon
notationt;i to denote thé, j element of a matrix.

We will represent an assignment to the variables of the transportation problenmby a-
dimensional matrixX, and write X; to denote thej-th column of X (XJZI denotes the-th entry
of column X;). For integerp < ¢, let [p, q] denote the set of integef®, ..., ¢}. Similarly (p, q]
denotes the sdp + 1, ..., q} etc. Also[p] denoted1, p] for p > 0. The TP, satisfying all supplies
and demands at minimum total transportation costs, is formulated by the following linear program:
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min t: X
> X

i=1 j=1

X; >0 foralli € [m],j € [n] (1)
dSXi=m for all i € [m] 2)
j=1
Y Xi =g forall j € [n] (3)
=1

The set of feasible solutions of the TP, tieasible regionis a convex polytop®(r, ¢) in R™"
called thetransportation polytopeThe existence of a strongly polynomial time algorithm for the TP
follows directly from the seminal work of Tardos [31]. Orlin [26] gave a strongly polynomial time
primal simplex algorithm for the more general minimum cost flow problem.

The integer feasible solutions for the TP arise in another context. Given a list of non-negative
integer row sums and column sumsg@ntingency tablés defined to be anyr x n matrix of non-
negative integers with the given row and column sums. Therefore the set of integer feasible solutions
to the TP corresponds exactly to the set of contingency tables with row(syms. , r,,,) and column
sums(cy, . - ., ¢,) [6]. The problem of generating contingency tables almost uniformly at random has
been widely studied, for example, by Dyer, Kannan and Mount [15], Diaconis and Saloff-Coste [9],
Dyer and Greenhill [14], Morris [23], Cryan et al. [3] and Dyer [12]. In particular, it was shown in [3]
that a2 x 2 “heat-bath” Markov chain is rapidly mixing when the number of rows is constant.

The minimum cost for a TP is always attained at a vertex. Therefore counting and enumerating the
vertices of transportation polytopes is of interest. Some results on the complexity of enumerating the
vertices of a polytope appeared in Dyer [11], where it was shown to be #P-complete to count exactly
the number of vertices of 2 x n transportation polytopéand that it is NP-complete to decide if a
2 x n transportation polytope is degenerate.

In this paper we consider the problem of sampling the verticeB(ofc) almost uniformly at
random, when the number of soureess a constant. We define a Markov chadon the sef? of all
vertices ofP(r, ¢) and prove it is rapidly mixing. Our chai is a random walk on thedge-vertex
graph of the polytopeP(r,c¢). This graph, also called thekeletonof the transportation polytope,
contains a verte¥ for every vertex ofP(r, ¢), and an edgéZ, W) for every pair of verticesZ, W
that form an edge dP(r, ¢). We denote the edge-vertex graph (see Definition 1 belovgy By).

By Lemma 4 of§3, we know that any verteX of P(r, ¢) has at most,,, incident edges, where
d,, = n™ is polynomially bounded im. A single step of our Markov chain is performed as follows:
if Z is the current vertex, we walk along any incident edge ofiith probability 1 /2d,,. If deg(Z)
denotes the vertex degreesin G(V), then the probability of remaining @tis 1 —deg(Z2)/2d,,. A
well-known result of Balinski [1] states that the edge-vertex graph of any convex polytope of dimen-
sionk is k-connected. Thereforé& (W) is connected, and the Markov chaivi is irreducible. Also,
at any given step, the probability of remaining at the current vertex is atl¢2sso)V is aperiodic
Hence)V is ergodic and therefore has a unique stationary distribution. Also, for any two vertices
W of P(r, c) such thatZ # W, Pry[Z, W] = Pry[W, Z] (this has the valug/2d,, if Z is adjacent
to W, and0 otherwise), which implies that the unique stationary distribution/éiis the uniform
distribution. Observe that all “null” steps at, where)V remains atZ, can be simulated by updating

YIn fact, [11] only claims NP-hardness, but the proof establishes #P-completeness.



the clock with a single geometrically distributed random variable, and then moving to a neighbour of
Z chosen uniformly at random, provided that the end time has been reached.

We will show thatVV is rapidly mixing by first showing that a “heat bath chain”, which can make
much larger moves in the edge-vertex graph, mixes rapidly. This cidifg, is described irg4,
and analysed i§5-6. Subsequently, i§i7, we use the comparison technique of Diaconis and Saloff-
Coste [8] (see also Randall and Tetali [29]) to lift the mixing result ftbtag to WW. Finally, in§8, we
outline how sampling can be used to count approximately the number of vertices of a transportation
polytope. However, first of all i§3 we present structural results concerning the vertices and edges
of P(r, ¢), and justify our definition ofl,,,.

3 Vertices and Edges

For basic information about polytopes we refer the reader to Ziegler [32], and for specific details about
transportation polytopes to Klee and Witzgall [20]. For basic information on the linear programming
formulation and a simplex algorithm for the transportation problem we refer to any introductory text-
book on operations research, e.g. [17]. We mention a few highlights here. It is shown in [20] that
P(r, ¢) has dimensiotim — 1)(n — 1).

Now we give a formal definition of the edge-vertex graph of a polytope:

Definition 1 Let P C R" be any polytopeF' C P is afaceof P iff
F = Pn{Z:cZ=co},

for somec € R" and somey € R such thatcZ < ¢ holds for all Z € P.

The face iswon-trivialif F # () and F' # P.

Afacetof P is a non-trivial faceF’ such thatdim(F') = dim(P) —1=r — 1.

Anedgeof P is a non-trivial faceF' such thatdim(F') = 1.

Avertexof P is a non-trivial faceF' such thatdim(F) = 0 (F' = {X } for someX < P).
Theedge-vertex grapbf P is the graphG which contains a verteX for every vertex of? and an
edge connectin to Y iff {aX + (1 — )Y : « € [0, 1]} is an edge of the polytop@.

All facets of the polytopéP(r, ¢) correspond toX¢ > 0 for somei € [m],j € [n], and therefore
every face ofP(r, ¢) corresponds to settingj’ﬁ = 0 (when X is represented in tabular format) for
some number ofi, j)-pairs. The following lemma is due to Dantzig [5] and others (see Klee and
Witzgall [20] for a history).

Lemma 2 If (r1,...,7m) and(c1, . .., c,) are lists of positive values such that” , r; = %, ¢;,
then for every vertex d?(r, ¢), the (i, j)-pairs corresponding to non-zero coordinates of that vertex
form a spanning forest on the bipartite graptym| W [n]. This implies that each vertex B{r, c) has
no more tham + m — 1 non-zero coordinates.

A non-degenerateertex hagexactlyn +m — 1 hon-zero coordinates, corresponding to a spanning
tree on[m| W [n].
Any (m — 1)(n — 1)-dimensional transportation polytope has at mest='n"=! < (em)*+m~!
vertices (forn > m > 2). O

We note that any vertex @f(r, ¢) must have at least non-zero coordinates, and therefore any vertex
has betweem andn + m — 1 (inclusive) non-zero coordinates. ¥(r, ¢) is non-degenerate, then
every vertex will have: + m — 1 non-zero coordinates in one-to-one correspondence with the basic
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variables of @asic feasible solutioof the linear program (1)-(3) (see e.g. [17])Athasn+m—1—q
non-zero coordinates in toté) < ¢ < m — 1), we say it haglegeneracy;. We sometimes refer to
co-ordinates asells (of the tabular representation 4f). The spanning forest, of [m] W [n] of a
vertex Z with degeneracy; consists ofg + 1 vertex disjoint trees. A spanning fore&; together
with any set ofg edges which creates a spanning treémof & [n], corresponds uniquely to a basic
feasible solution of (1)-(3), where the + n — 1 basic variables of this solution are the cellsf
corresponding to the edges of this spanning treeqémdded edges correspond to basic variables with
value0). Thus, any degenerate vertgxof the polytope corresponds to a humber of basic feasible
solutions of (1)-(3), and each such basic feasible solution corresponds to a unique spanning tree of

We define a pivot operation from one basic feasible solution to another one as an operation on
the corresponding spanning trees. It can be found in any elementary textbook on operations research
(see e.g. [17]), though it is usually described in terms of the tabular representation of basic feasible
solutions. Consider any basic feasible solutibrwith spanning tree/;, and consider any edge
(a,b) & E(Tz). ThenE(7z) U {(a,b)} contains a single unique simple cyde SinceC is an even
cycle we can label its edges alternatelyand —, giving (a, b) the label+. Let E*(C) and E~(C)
be the edges af with label+ and — respectively, and lefc, d) = argmin{ZJi» : (i,5) € E-(C)}.
(if (c,d) is not unique, any choice will give a pivot). Bivot operation (on(a, b)) then consists
of increasing the value of aﬂi; for (i,j) € E1(C) by Z5 and decreasing the value of ﬂ; with
(i,7) € E~(C) by Zj. Observe that in particular, the, b) cell of the new table now has the val@§
(and becomes a basic variable), while tlaed) cell obtains the valu@ (and becomes a non-basic
variable). The new spanning tree is th@z U{(a, b)})\{(c, d)}. In the case wherg} is originally0,
the only effect of the pivot operation is th&f becomes a basic variable instead4jf The vertex of
the polytope does not change in this case.

A pivot on any edg€a, b) satisfying(a,b) ¢ E(7z) corresponds to an edge of the edge-vertex
graph of the transportation polytope if and onl)ﬁj > (O forall (i,7) € E~(C). Formulated in terms
of the vertices of the polytope this gives the following Lemma:

Lemma 3 LetZ be a vertex of?(r, ¢), and letF, denote the forest opn|w [n] given by the non-zero
cells ofZ (see Lemma 2). L&E}, . .. ,TZ"“ be the maximal trees constitutitfg;. LetW be another
vertex of P(r, c) and letC = {(i, 7) : Z} # Wj}.

ThenZ and W are joined by an edge d?(r, ¢) if and only ifC is a simple cycle of the form

(ilvjl)aplu (i27j2)7 ey (inajn)apﬁ

where ceIIZj’; = 0 for everyk € [k], wherepy, is a path in som&% € F fromji, € [n]t0i) 1 € [m]
for everyk € [x] (identifyingi,.; with4,), and where th@Zh are all distinct.

Moreover, for every verteX of P(r,c), and every set of cell§ of Z forming this type of cycle
in Z, there is exactly one vertéX in P(r, ¢) which is adjacent t& such thaf{ (i, j) : Z; # W;} = C.
O

Lemma 4 Any vertex of the polytopB(r, ¢) has at leas{m — 1)(n — 1) and at most:™ incident
edges.

Proof: We first prove the Lemma in the non-degenerate case.

First consider any non-degenerate ver#ex P(r,c), corresponding to a spanning trég in
[m] W [n]. In this case, if we perform a pivot operation on any of the — n — m + 1 edges of
[m] W [n] \ 7z (each of these is a non-basic variable), we create another verix af) adjacent to
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7. Each of these vertices is distinct. By Lemma 3 these are the only vertices adjagerititerefore
the Lemma holds in the non-degenerate case (#ithZ) = (m — 1)(n — 1)).
Now consider a verteX € P(r, c¢) of degeneracy > 0. We first prove the lower bound.
Suppose the non-zero cellsGicorrespond to a forest, with ¢+ 1 maximal trees}, . . ., TZq“.
We create two basic feasible solutioAsandY by extendingF; to spanning tree§x and 7y of
[m] & [n] as follows: For everyt < i < g + 1, we arbitrarily fixu}, € [m] N7} andvi, € [n] N 7}.
We then defin€x and7y as follows:

Tx = FzUMx WithMX:{(uiZ'l'l’UiZ)‘i:17_“’q},
Ty = Fz UMy WithMy:{(uiz’UZZJrl)|i:1’._.’q}_

Now consider7x and consider a pivot on any of then — m —n + 1 edgequ,v) € [m] W [n] \
E(Tx).fu € T, andv € T}, for somel < i < g+1, then there is a unique path ,, between: andv
consisting entirely of edges @t (and of non-zero edges @f). Hence{(u, v)} Up,, forms a cycle
where all cells exceptu, v) are strictly positive inZ. Therefore in this case the pivot corresponds
to an edge of the polytope, and performing the pivot operation creates a neighbouring/entix
W2 > 0. Alternativelyu € 7} andv € 7} for someh, k such that # k. Firstassume thdt < k. In
this caseZx U (u, v) contains a unique cycl€x (u, v) in which the only edges frolv(7x) \ E(Fz)
are the edges$uy, v™), h = i,...,k — 1. Moreover, these are all it (Cx(u,v)). Hence,
E~(Cx(u,v))\ E(Fz) =0, and thereforenin{Z]i. : (i,7) € E7(Cx(u,v))} > 0. Therefore the
pivot on (u, v) corresponds to an edge of the polytdpe, c), leading to a vertekXV with W' > 0. In
particular this holds for the edges(u’,, viz“) € My (in which caseé: = h + 1), leading to a vertex
W which has a non-zero value fou?,, v, ) and(u’ !, v%), and which satisfied’* = 0 for all other
(u,v) € [m| W [n]\ E(Fz). Similarly, if u € 7} andv € T} andh > k thenZy U (u, v) contains
a unique cycle. Then applying the pivot operation farv) on the spanning tre@,- generates a
neighbour vertex witiV* > 0.

Now recall thatE'(7x) = E(Fz) U E(Mx) andE(7Ty) = E(Fz) U E(My). In total, there are
(m —1)(n — 1) (zero)-cells iNm] x [n] \ E(7x). Define the following three subsets [@f] x [n]:

By = {(u,v):(u,v) & Tx,u,v € T} for someh.}
Ey = {(u,v):(u,v) & Tx,u € T}, v e TF, for someh, k such thath < k.}
Ezs = {(u,v): (u,v) &€ Ty,u e T}, v e TF, for someh, k such that, > k.}

Observe that the sefs;, F» andEs are disjointandE; U E; U Es| = |[E1UEyU EsUMx UMy | =
(m—1)(n—1)+ q (usingMx C Es andMy C E,). Fori = 1,2, letV; be the neighbouring
vertices of Z that can be obtained by a pivot operation B for some cell inF;. Let V3 be the
neighbouring vertices of obtained by a pivot operation ofy- for some cell inE3. Recall that
for every(u,v) € E1, the neighbour vertex of constructed by a pivot operation ¢n, v) is unique
among all pivots on cells @f; (no other pivot for(u, v) € E; induces a non-zero value for céll, v)).
Hence|V:| = |E1|. Moreover,(u,v) is the only zero-cell ofZ which becomes positive as a result
of this pivot, hencd/; N (V2 U V3) = (0. For every cell(u,v) € Es, the pivot operation offu, v)
with respect to the spanning trég constructs a neighbouring vertex g with a non-zero value
for (u,v). This is unique among all pivot operations on cellsif hence|Vs| = |Es|. Similarly,
we know that|Vs| = |Es|. We now show thatVs U V3| > (m — 1)(n — 1) — [V1|. Suppose
(u,v) € E3\ Mx. Then(u,v) ¢ E(7x), and therefore the neighbour obtained by a pivot operation
on (u,v) with respect toZy is not an element of,. Hence|V, N V3| < |Mx| = ¢. Therefore
Vi UVaUVs| > (V1| + [Va| + |Vs| — ¢ = |E1| + |Ea| + |Es| — ¢ > (m — 1)(n — 1), as required.



Next we prove the upper bound for the degenerate case.

Assume again that is a vertex ofP(r, ¢) of degeneracy > 1, and the the non-zero cells &f
correspond to the foregt; on[m]w[n], where we writeF; = {7,..., TZ"“}. For everyh € [g+1],
let I, C [m] denote the set of source indicesZift, andJ;, C [n] denote the set of destination indices
in 7} {I, : h € [qg + 1]} is a partition of[m] and{.J,, : h € [¢ + 1]} is a partition of[n]. Let
my = |Ix| andny, = |Ji|, fork € [¢ + 1].

By Lemma 3, a verteXl/ with WJ? # (0 is a neighbour of iff the differing edges ofF; and Fy
form a simple cycl&€ = (i,7),p1, (i2,J2), P2, - - - , P SUCh that

e The cells(, 5), (i2, j2), - - - (ix, jx ) are the cells which are zero #iand non-zero iV

e Foreveryk € [k], pi is a path of odd length from destinatigp € [n] to sourceix1 € [m] in
some tree7} € Fy (assuming(iy, j1) = (i,7) andi, 1 = i1).

e TheT7} are all distinct trees af ;.

Also by Lemma 3, there is exactly one neighbouring veféxto Z for this cycleC. Each such
cycle is completely characterised by an ordered list of paths ., p., where each path is from some
destinationj, € [n] to some sourcé,; € [m]in some tree7;, € F, and the7, are distinct trees.
Two different ordered lists of paths only correspond to the same set of zero cé&ll§ ohe ordered
list is a cyclic rotation of the other list.

Therefore the number of neighbouring verticesZotan be expressed as the number of simple
cycles consisting of simple paths fromk different trees ofF;, summed overk € [¢ + 1]. If K = 1,
the number of zero cells with both endpoints in a tflgec F is (mg — 1) x (ng — 1). If & > 1, then
we must count the cycles definedoBimple paths fromx different trees ofF ;. Hence the number
of vertices adjacent t4 is given by the following expression:

deg(Z) = Y (ISI= D[ me xme + D (mr—1) x (mp = 1), (4)

SClg+1],181>2 kesS kelg+1]

which depends only on the valuesaf, andny, for k € [¢ + 1]. Let apair of partitions (of sizey + 1)
be any two lists of numberg, = m1,...,mg11 andn = ny,...,ngy1 such thatm, > 1,n;, > 1
forall k € [¢ + 1], and such tha} 7" m), = m and > 71 ny, = n. Thus,deg(Z) is a function of
(mz,7z). We boundieg(Z) by bounding the maximum of the righthand side of (4) over all possible
pairs of partitions.

Observe that for any pair of partitions, 7 and anys' C [¢ + 1], [Teg munr < [Tejgs) mame-

Also for any values < ¢ + 1, there are exactly’"") setsS C [¢ + 1] such thatS| = x. Therefore
by (4),

q+1
deg(m,n) < Z(K,— 1)! Z H MENE
k=1 SClg+1],|S|=k k€[g+1]
q+1
= Z((Q+1)-...-(q—m+2))/ff H Mg
k=1 kelg+1]
<@+ C I moC TT )
kelg+1] ke€[g+1]
< (g + 1)7T( m )at1( n )4t = patlpatl /(g 4 1)7H,

q+1 qg+1



For everym > 2 (always the case in the context of transportation polytopes) and every+1 < m,
matindtl /(g 4+ 1)1 < p™: the case for + 1 < m/2 follows from the fact that iy + 1 > m/2,
thenmdtin?t1/(q + 1)t < matinetl < p2at) < pm: the case fo + 1 = m is simple to
check; and the case for/2 < ¢+ 1 < m — 1 follows by (m/(q + 1))n™ = (1 + (m — ¢ —
1)/(q+ 1) natt = (1 + (m — g — 1) /(g + 1))@t D/(m=a=1)ym=g=1lpatl o gm=q-lpat+l Thig
value is at mostn™ 9"t < n™ if m > 3, and ifm = 2, we can check correctness directly™

4 The heat-bath chain

We now define our auxiliary “heat-bath” Markov chaMiyg, which operates on & x b,,-sized
window of the matrix representing the current veri&xwhereb,, = 47m?. Define

I'z = {j : Z; has more than one non-zéro

Then|I'z| < m — 1. A single step ofMysp is performed as follows: a set of columBsC [n], with

|B| = by, is chosen uniformly at random from the columns of the matrix represestjrsyibject to
I'y C B. ThenZ is replaced by a verte¥” chosen uniformly at random from all vertices which can
be obtained fron¥ by modifying only the columng; (j € B).

The My chain is ergodic because it includes all moveB\f To see this we only need to observe
that by Lemma 3, any pair of vertices which are connected by an ed¥fe,in) can differ in at mosin
columns (of the matrix representation of the vertices). Cleayly> m. ThereforeMyg is ergodic
and converges to a stationary distributioron 2. By definition,Pr,,, [Z, W] = Pr g, [W, Z] for
any two verticesZ, W. Therefore the stationary distributiot must be the uniform distribution dn.

To show rapid mixing ofMyp in §6, we will use the multicommodity flow approach of Sin-
clair [30] (see also Diaconis and Stroock [10]), together with a construction based on ideas of Morris
and Sinclair [25] which we develop &b below. Some definitions are necessary at this point.

For any ergodic Markov chaiM on state spacg, a multicommodity flow can be defined on the
underlying graplG (M) of the chainM. The vertex set of7(M) is €2, and there is an edde — v)
for every pair of states such thBi [u,v] > 0 in M (observe that for our original chaiV, this
“underlying graph” of the chain is exactty(W)). Forz,y € €, aunit flowfrom z to y is a setP, ,
of simple directed paths i6'(M) from z to y, such that each paghe P, ,, has positive weigh,,
and the sum of they, over allp € P, , is 1. A multicommodity flows a family of unit flows
F = {Pysy : x,y € Q} containing a unit flow for every pair of states frdm Thelength£(F) of the
multi-commodity flowF is £L(F) = max, , max{|p| : p € P4}, Where|p| denotes the edge length
of p. For any edge of G(M), we defineF(e) to be the sum of the,, weights over alp such that
e € pandp € P, , for somez,y € Q. Then the following theorem holds:

Theorem 5 (Sinclair [30]) Let P be the transition matrix of an ergodic, reversible Markov chaih
on ) whose stationary distribution is the uniform distribution. [Z2@be a multicommaodity flow on the
graphG(M). Then the mixing time of the chain is bounded above by

7(e) < 2|Q| 7 L(F) max Fle) (In|Q +Inet) O
e Prale]

In §5 we will present some techniques which we will use to define a multicommodity flow on the

graphG(Myg). In §6 we will prove that our construction does not overload any edge of the graph,

and then prove that1yp mixes rapidly. Finally, irg7, we apply a comparison technique of Diaconis

and Stroock [10] to extend our analysis to the random walk



5 Balanced permutations

In order to construct a multicommodity flow on the graphM g ), we follow the example of Morris

and Sinclair [24, 25] for multidimensional knapsack and of Crgal. [3] for contingency tables and

think of defining a path from a verteX to a vertexY” by changing the value of a single colunjin

(of the matrix representing the current vertex) fréfto Y; at each step. The procedure of changing
columns ofX to columns ofY” will not ensure that the points along the path are verticd¥(ofc), or

even that they lie insidB(r, ¢). However, in§6 we will show that if we define the path appropriately
(using balanced almost-uniform permutations), each interim point on our path can be transformed to
a vertex ofP(r, ¢) by changing the values of a constant, but large, number of columns. This is why
we originally analyse the heat-bath chain, which can mo@jfycolumns in one step.

To spread out the flow fronX to Y, we will use a random permutatienof the columns of the
vertex, to determine the (random) order in which we change the columns of the vertex. We will spread
flow along a particular path according to the probability with which a particular permutation of the
columns is generated. Before we construct the particular (random) permutation which we will use to
define the multicommodity flow faMyg, we list some relevant definitions from the work of Morris
and Sinclair [25, 24]. One of the properties that we will require of our random permutation is that it
should approximate the uniform permutation in the following way:

Definition 6 (Morris & Sinclair[25]) Leto be a random permutation dn]. Let A € R be such that
A > 0. We say that is A-uniform if for everyk € [n] and everyU C [n] with |U| = &,

Prlo{l,....k} =U] < X- <Z>1

The second property that will be important for our random permutation is thztlahce

Definition 7 (Morris & Sinclair[25]) Letw:, ..., w, be realm-dimensional weights (columns) with
the meanu € R™. LetW = Z?:1 w;. We say that a permutatiom on the set of columns is
¢-balancedor somef € R, ¢ > 1, if for everyk € [n], and for everyi € [m],

g wh oo —kp'| < fmax |w — utl.
a(j) el Y
jElK el

This in turn implies the following:

k
min{W",O}—%mjaﬂw}\ < wa,(j) < max{WﬂO}%—%mjax]w;\.
j=1

A variant of balance is strong balance:

Definition 8 (Morris & Sinclair[25]) Letws,...,w, € R™ and lety € R™ be the mean of these
weights. A permutatioa is strongly/-balancedor ¢ € R, if for everyk € [n], and for everyi € [m)],
there is some sef C [n] with |S @ o{1,...,k}| < ¢ such that the following two quantities have
different signs (or either i8):

k

2wy —hut D =k

j=1 jes



In the work of Morris & Sinclair [25, 24], an explicit distinction is made betwédralance and
strong/-balance. This distinction is highlighted because stréhglance is a constructive property,
which allows the sign 0E§:1 wj- — kit to be altered by adding or deleting a fixed number of weights.
We will see in Lemma 10 that in the case of one-dimensional weights, we can always cofivert a
balanced\-uniform permutation into a strongly-balanced almost-uniform permutation, at the cost of
making some constants worse. We will then construct a strongly-balanced almost-uniform permuta-
tion o for the m-dimensional weights which appear in the vertices of the transportation polytope, by
interleavingm(m — 1)/2 of these strongly balanced one-dimensional permutations.

Let X andY” be any two vertices dP(r, c¢), so|I'x UT'y| < 2(m —1).

Letl' ={j: X; =Y;},L=[n]\ TxUTyUl),andl = |L|.

In Lemma 12 we will construct a permutatieton them-dimensional columns ok — Y for the
indices inL. Lemma 12 builds on the work of Morris and Sinclair [25, 24]. Our construction will rely
on the fact that each of the columns to be permuted will only contain two non-zero entries, as seen
below.

Letr; =7 =3 jcr X; =Ti =Y jer Y; fori € [m).

Forj € L, define the “weight vectorslu; = Y; — X; € R™, and lety = >, w;/¢ with
coordinates:’ (i € [m]). By definition, for allj € L, we know that bothX; andY; have exactly one
non-zero and it is equal te;. Thus eachw; (j € L) contains exactly two non-zeros, and these are
of equal modulus but opposite sign. We partitibmccording to the location of these two non-zeros.

For each pair of rows # i/, define

Siw = Sy; ={jeL: {wj-,wj-’} = {—¢j, +¢}},

Lett; i = |S; |, and letu; ; = Zjesi w;?/&vi/ be the mean oves; ; of the weights in row. Note
thaty; » = —py ; forall ;3" € [m]. ’

We will use results of Morris and Sinclair [24, 25] to help us define a suitable random permuta-
tion o; ; on each of thes; ; sets. The first lemma that we need is:

Lemma 9 (Morris [24]) Suppose we are given real Weiglzﬁt:aj}?:1 with total W = 2?21 wj. Let
M = max?zl |lw;j|. Suppose thati?’| > 21M. Then there is a random permutatian of [h] that
satisfies the following two conditions: For some universal constapt 1, and eachl < k < A,

() min{0,W} < 320 we, () < max{W,0};

(i) foreveryU C [n] with |U| = k, Pr[m{1,...,k} = U] < Ch2(Z)_l.

We sayr; is a0-balanced”h2-uniform permutation O
From this we will deduce a statement more convenient for our applicatfavdrris [24, Ch. 3]).

Lemma 10 Let {wj}?zl be a set of real numbers with mean= Z?:l w;/h. LetC be the constant
from Lemma 9. Then there exists a random permutatiof[k] such that, for each < k < h, both
of the following properties hold:

(i) there are setd;, Dy C [h] with | D[, |D2| < 42 such that

D wegy Shu Y wag) = ki
j€k]®D1 jE[k]®D2

(i) foreveryU C [h] with |U| = k, Pr[r{1,...,k} =U] < Ch23(2)_1.

10



We callr a strongly42-balanced”h?3-uniform permutation

Proof: Assume, by symmetry, that > 0. We first show how to construct the permutatioso that
property (i) is satisfied.
() If h < 42 we will let 7 be a random permutation §f]. Let D; = [k] and Dy = [h] \ [k]. Clearly
property (i) is satisfied.

Otherwiseh > 42. Let (), contain the indices of th2l elements for whicl{w; — p) is greatest
and@, contain the indices of th2l elements for whicliw; — 1) is smallest. There are two subcases:

(a) The first case is wher ., (wj — 1) > > icq, (w; — p). In this case we assume wlog
that the indices of), are the indice$h — 20, h], and we letr be the identity permutation on the3e
elements (the weights; for j € Q2 will be the last21 elements of our permutation).

We will apply Lemma 9 to the set of weighfss; — 11} e\, t0 construct our permutationon
the{w; }jenpq, Weights. Note thatV’ = 3", o, (wj — ) = = 2 jeq, (Wi — 1) = 3 c0, (wj —
). Also note that we are guaranteed tHat> 0. For everyj € [h]\ (Q1UQ2), we have2l|w; —u| <
W. For now, assume tha&l|w; — u| < W for j € @i, so that we havéV > 21M, where
M = max;c)\@, |w; — p|. (We will show how to remove this assumption below).

We have already constructedfor j € (). Let 7 be the permutation; of Lemma 9 on the
weights{w; — p} for j € [h] \ Q2 = [h — 21]. If k < 21, takeD; = [k], D, = 0. Observe that
property (i) is satisfied. 121 < k& < h — 21, property (i) ofr; gives

0 <

(wr(j) —p) < (wr(j) — 1)

k h—21
=1 j=1

J

We immediately hav@le wr(;) > ki, SO we can také, = (). Also, since the above inequalities
are true for allk < h — 21, we have

k—21 h
Z (Wr(j) — p) + Z (wr(;) — p) < 0.
=1 j=h—20

Then, settingD; = [k — 20, k] U [h — 20, h}, we have}_ ;e p, wr(j) < ku. Observe that in this
case we also have property (i).
If £ > h — 21, the conclusion follows easily from

h—21 h
Z (Wr(jy — 1) 20, Z(wﬂ(j) —p)=0.
j=1 j=1

Note that in all the cases above, in fact we havg U D,| < 21, except forD; when21 < k <
h—21 (then|D;| < 42). We now show how to deal with the possibility that there is sgrae); such
that21|w; —p| > W. When we construct the permutation, we replace the weight{gv; —p}jco, by
{w; —u}jeq,, wherew; = > .o w;/21forall j € Q1. ThenW does not change and the condition
21M < W is satisfied. Whem; has been constructed we replace the dummy weights by the original
weights in random order. Then we need to exchange at iMosktights (exchanging some elements
of @, for others) to obtairD1, D, sets satisfying condition (i) for the original weights. Moreover, for

11



21 <k <h-—21,wecandefine; = [h —20,h]U(Q1N[k]) Uk —20+|{j: 7 € Q1NI[k]} k]
to ensure (i) holds. Therefore we still ha\, |, | D2| < 42, as claimed.

(b) The second case occurs+) o, (w; — p) < > icq, (wj — p). In this case we assume
wlog that the set of indice®); is the set[h — 20, k], and we letr on [k — 20, h] be the identity
permutation. Then, when we apply Lemma 9 to the set of weifits— 11} ;i)\, » the total of the
weightsl¥ is negative. Again, assuming for now that| > 21 max;c)\ o, |w; — |, we letr be the
permutationr; of Lemma 9 onfh — 21].

Fork < 21, we takeD; = () and Dy = [h — 20,h]. For21 < k < h — 21, we use the fact
that condition (i) of Lemma 9 holds fdr — 21 in a similar way to that described above, and we take
Dy =0 andDy = [k — 20,k] U [h — 20, h]. The casé > h — 21 is similar to case (a). Finally, we
treat the possibility that there existss Q2 with 21|w; — p| > || in a similar way to case (a).

(i) We now show that property (ii) holds for. If h < 42, the property follows from the fact thatis
a random permutation. Otherwisefkif< 21 or k > h — 21, the statement is trivially true. In all other

cases, property (i) of, impliesPr[r{1,... .k} = U] < C(h—21)2(";2) " <ca®(®)™. O

We remark that it would be possible to improve the constants in Lemma 10 by proving it directly,
rather than starting from Lemma 9. Moreover, even without doing this, there are many improvements
we could make if we were slightly more careful with the constants in our proofs (for example, in
Lemma 10, for every;, we haveD; = () or D, = (), even though we never use this fact). However,
we are not aiming to optimize the constants, so we have not made use of these observations.

We apply the construction of Lemma 10 to each of the non-emptySsetseparately to produce
permutationsr; ;. Since the entries in rowsi’ are equal and opposite, for adyC S; ;», we have
S e wh ==Y e wh. Henced oy wh > kpi g iff Y ;wh < kpy ;. Therefore, to have both
inequalities in the same direction, we need at masftorrections” in exactly one of the rows.

We now consider how to interleave thg; to produce an overall permutatienof L. For nota-
tional simplicity, suppose we are interleavingets of size;; > 0,4 € [¢], withv = >"7 | ;. Let
a; = v;/v,s0Y 1, ; = 1. Consider the following algorithm.

interleave

ki, ko, ... kg 0.

while k. =>"7 | k; <wvdo
if i* = argmax?_, (ik — k;)
then k;« « k;+ + 1.

We now prove some useful propertiesinterleave.
Lemma 1l Forall k € [0,v], k; < [a;k] < w4, 4 € [gq], andd 7, |ki — cik| < 2(q — 1).

Proof: First note thaf«;k| < v;. Otherwise[a;k| = [v;k/v| > v;, giving k > v, a contradiction.

Letvi(k) = a;k — k;. Note thatd 7, v:(k) = 0, sov;«(k) > 0. Thenv;(k + 1) = ~i(k) +
a; > vi(k) (@ # ©*), buty<(k + 1) = v+ (k) — (1 — =) > —1. Sincev;(0) = 0 for all 4, it
follows by induction thaty; (k) > —1 for all i, k. Now k; < [«;k] follows immediately. Also, since
> i1 7i(k) = 0 andy;« (k) > 0,

Z\ki—aik\ = Z”Y@(k)\ = 22 7i(k)|
=1 i=1

7 <0

Thisisatmose}_, .. 1 =2(¢ —1). O
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We interleave the; ; according to the procedure above to produce the permutatidhe following
Lemma proves that is a strongIy23m2-balancech€14m2-uniform permutation. The,,-balanced
pm-uniform permutations of [24, 25] for a set 6feneraln-dimensional weights only have bounds

of the formg,,, € 2°0™ andp,, € (0(m*) Therefore by exploiting the special structure of the vertices

of the transportation polytope, we are able to prove better bounds on our “balance” constant. This will
positively influence the asymptotic bounds that we prove on the mixing time@g in §6.

Lemma 12 For everym, there is some constagt,, such thats has the following properties.
(i) Forall i € [m], k € [{], there exist two set®: and D} satisfying| ", Di| < 23m?,
U™, D] < 23m? such that

D woy Skt Y why > ki
jelkleD] jekl@eDs

(i) Forany U C [¢] with |U| = &, Pr[o{1,.... k} = U] < Cpftm* ()7,
Proof: (i): We prove only the first inequality, the other being entirely similar. Suppose the values at

stepk in interleave arek; -, andey ; = ¢; /¢, for eachi’ # i. Definek}, to be|ka; ;s | if p; 7 > 0,
and[ka; ;| otherwise. Using Lemma 11, observe thaf , |k}, — k; ;| is at most

Z (|k’;k,z’ — karm’/‘ + ‘ki,i’ — kai’i/’)
which is less tharf’y) + 2('y) = 3('3).

i,i/ . . *
Let Dy be the set associated with;/, k7, such thalzje[k: Jepii Yo

I be the intervalk} ;, + 1, ki), if k7, < ki, OF [kig + 1, k7] otherwise. LetD! = J, (D% U

i, 4,3’

). Then, using Lemma 10| 7", D}| < 42(") + 3() < 45m2/2.

Also
> Woyy S D ki mi

jElkl®D}

G) < ki piir, and let

IN

Z ki pig )l = k.

(i): Let 7* be the random permutation we get when we apptgrleave to the collection of
uniform distributionsr; ;» on S; ;- for everyi,i’. Letr represent the uniform distribution dff. We
will first bound Pr[7*{1,...,k} = U] in terms ofPr[r{1,...,k} = U] (= (,‘;)) and then use the
almost-uniformity of ther; ;» to give the result.

Let K; » be a random variable equal to the number of elements pfin the prefixr{1,..., k}.
We will show that with high probabilitys; ; is not too far fromo; k. Precisely, we have

Pr; [|Km" — k| > \/m]

—2k(In &)
k

IN

(&
= 92072

by a single application of the Chernoff bound (see McDiarmid [22]). Summing ovéraaid all, 7’
((%}) in total), we find that under the uniform distribution

|K; 0 — o k| < kn(¢) 5)

13



holds for allk, and alli, i’ with probability at leastt — m(m — 1)/¢. Assume wlog that > 14m?,
therefore (5) holds with probability at least2.

Let 7’ be the uniform distribution on the permutations that satisfy (5) (fok adll 7, i'). Note the
probability of any event irr’ is at most twice its probability in the uniform distributien Also, since
the integer variablé; ;; has maximum probability of taking valu¢$c; ; k|, [a; #k]}, we have

(a) PI"T/ [K@il = Qi,i’] > (\/ kln 6)71 for Qi & {{Ckm/kJ, [Ctm’/l{l}

Now we are ready to bourttkr[c*{1, ..., k} = U], whereU decomposes intt; ; with |U; /| = k; ;.
We only need the following (with the binomial coefficient defined (by continuation) for non-integer
arguments):

0 Vi
b bt < plki o k[ +1 [ F0s
®) (ai,i’k’) B Kiir

Using (a) and (b) with an application of Lemma 11, we find at[K; ; = k; i+ Vi, 7] is

> (klno)"™ A e Fer—enrk=1y 2

gfm2/2673m2/2/2 > 672m2/2

v

SoPrlo*{1,...,k} = U] < 2¢>™(%). Then applying Lemma 9 to each of tlig;/, we have

-1
Prio{l,...,k} =U] < og2m? rm? §23m? /2 <Ii>

and we have,, (14™* -uniformity. O

6 Analysis of the heat bath

We now apply Theorem 5 to prove th&typ is rapidly mixing.

In a similar manner to [3] (see also [25]), we use the permutatioconstructed bynterleave to
route flow fromX to Y. We applyo to the columns in and for everyk € [¢], we define the matrix
Z (k) as them x n matrix where we set

Y, jed{l,... k}
Z(k)g{;éj jeo{k+1,....03U(n]\ L)

Conceptually, we think of the sequence of matrides- Z(0), Z(1), ..., Z(k), ..., Z(¢), as defining

a random path fronX to Y in G(Mgyg), along which we assign some fraction of flow determined
by o. However, if Z(k) is any intermediate matrix obtained in this way, in general it will not be a
vertex of P(r, ¢) (or even a point insid®(r, c)). We will presently show how to modify th& (k)
matrices to obtair¥Z (k)" matrices which are vertices &f(r, c). For everyk € [¢], we also define a
mirror imageZ (k) of Z(k), called an “encoding”, in the following way:

o X; jea{l,.. k)
Z(k)J—{yjj jeo{k+1,...,01U([n]\ L)

This matrixZ (k) is not used in constructing the multicommodity flow fotyg, but is a useful con-
cept when we come to bound the amount of multicommodity flow that can lie on an edga6fis ).
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The Z (k) matrices do not necessarily correspond to verticéyefc). We now show that if we delete
only a constant number of columns from eitli#(k) or Z(k), then the matrix can be completed to a
vertex of P(r, c), denoted byZ’(k) and Z’ (k) respectively. Moreover, botl andY can be recon-
structed fromZ’(k) and Z' (k) using a suitably small amount of information.

Let D, = |J;2, Di andDy = |J;, D5. SinceX},Y; > 0 for all 4, j, for eachi € [m] we have

Y. Xept X Yy <
JE(ANR\D: JElRND:

Yo Xt > Yy =
jeL\(KaDi) jeleDi

DXiE Y Wi,

JeL jElkl®DI

By Lemma 12, we also have

DX+ D owhgy = D Xk
JeL jE[k|®D: JeL

- EY Yy

jeL JeEL

which is at most, as defined ir§5.

Hence, if we “delete” the columns i, U 'y U Ty, we obtain partial row sums for the deleted
columns, where each partial row sum has size at lgast-;, which is non-negative for every Thus
Z (k) can be completed to a vertex Bfr, c) by redefining the columns dP; U I'x U I'y according
to the “northwestern corner rule” [16]. Hence we can nddp), for everyk € [/], to a vertexZ (k)’
of P(r,c). This necessitates changing the values of some of the columbs inT'x U I'y. By
Lemma 12|D,| < 23m?, henceZ (k) may differ fromZ (k) in at most23m? + 2(m — 1) columns
in total, for anyk € [¢]. Recall that for every: € [¢ — 1], Z(k) andZ(k + 1) differ in one column.
HenceZ (k) and Z(k + 1)’ differ in at most46m? + 2(m — 1) + 1 columns, which forn > 2 is at
most47m?2. SoZ (k)" — Z(k + 1) is a transition ofMyg for everyk € [¢ — 1] (this justifies our
choice ofb,,, in §4). AlsoX — Z(0)' andZ(¢)’ — Y are transitions ofMyp. Hence we obtain a path
X =2Z(0),ZQ1),...,Z({),Y in G(Myup) betweenX andY. The proof forZ (k) is identical, by
interchangingX} with Y/, w’ with —w?, D; with D, and using the lower bound in (i) of Lemma 12.

Now suppose we are givedd' (k), Z'(k) and we wish to recovek, Y. Let us assume, using
the uniformity property otr, that we are givel/ = o{1,...,k} (we will incorporate this into our
analysis later). We still need to know the “deleted” colunihg Do, T'x, I'y, but there are at most
(o 5)? (™) < n*™ ways of selecting these sets. We can easily reconstructbathdy” except
for the deleted columns. However, there are at md@st? such columns, and andY are both
vertices. Moreover, since the deleted columns are the only columns which may contain more than
one non-zero cell, therefore we can compl&teo a vertex iff the values we choose for the deleted
columnsD; U I'x U T'y define a vertex on the induced transportation polytope (of dimension at
most(m — 1)(24m? — 1)) on the deleted columns. By Lemma 2, there are at rfros24m*+m—1
possible ways of completing these columns_for Similarly, there are at moﬁtam)24m2+m—1 ways
of completing the deleted columid®, UT x U Ty for Y. So there are at mogtm )%™ n4™* ways
of augmenting the encoding so that we can uniquely ideifgndY from Z'(k), Z'(k) (assuming
we have been giveti = o{1,...,k}).
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We can now bound the flow through any statec 2. There arg| ways of choosingZ, (})
ways of choosingU| and (em)**™*n4™m* ways of specifying the additional information needed to
uniquely identify X andY. However, by the uniformity o, Pr(c[k] = U) < Cy,n4™’ (Z)_l.

Hence the flow through any state may be bounded by

190 () x ()0t x Cmttre® (1) ™ = (6)

O(nf1m*)|]. (7)

Observe that in this analysis of the maximum flow through any staf® @fe have obtained a term
n*™™* which derives from the consta@8m? of the strongly23m?2-balanced”,,,¢14™*-uniform per-
mutationo. If we had used the permutations of Morris & Sinclair[24, 25] for generalimensional
weights (which are stronglg®(™ -balanced), we would have obtainech® ™ term instead. This
was our motivation for exploiting the structure of the vertices to obtain an improved strongly-balanced
almost-uniform permutation i§b.

In order to apply Theorem 5, we must bound the flow througheatgeof G(Myg). We observe
that for the flowF which we have constructed, for any edge: (Z, W), (7) implies:

Fle) < O™,

By construction of our multi-commodity flowt(F) < n. Therefore, by Theorem 5,

_ O(nb1m*)|Q| -
Tmus(E) < 2|9 1 .n-mgx{Pr/v[HB[e]} (In|Q +Ine ) 8)
= O™ ) - (min Pragyple])  (In [0 + e ™). 9)

Now observe that = (Z — W) is an edge of7 (Myg) if and only if Z andWW are vertices oP (r, c)

and there is some sét of destinations such thdt; C B, |B| < b, andZ andW only differ on

the setB. The definition ofMyp implies that this particular set of destinatioBss chosen fromB

with probability at Ieas(b’;)_l. Also, by definition of Myg, once the window3 has been chosen,
we choose the next state uniformly at random, by choosing from all possible assignmBmnshich

give a vertex ofP(r, ¢). It is not difficult to show that this is the case if and only if the assignment to
the destinations oB is a vertex of thém — 1) x (b,, — 1)-dimensional polytop® s, d) induced by

the set of values af; for the destinationg € B (see, for example, Hadley [16]). By Lemma 2 there
are at moste - m)>»+tm=1 vertices of this smaller polytope. Therefore we can bound the probability
of a transition fromZz to anyW in Mypg as follows:

-1
PrMHB [Z, W] > <bn ) (em)_bm—m—i-l.
Therefore, substituting into (9), we have the following bound on the mixing tinyetgf:

Timus(€) = O+ 1|0l +Ine ) = Om ) e, (10)
where in the last step, we use the facts thaf) < n’~ = nA™* and|Q| < (em)™tmL,

Remark: In the conference version of this paper [4], we omitted ke, ,[Z, W] term when
boundingTay,,,. Hence we erroneously claimed a bound@52™*)In ! for the mixing time

of Myg. However, because we are able to defipe = 47m? in this paper (we carelessly used

b = 94m? in [4]), the bound we derive for the random walk§f is the same as in [4]. We believe

that the mixing time of both chains is far better than our bounds, but we have not attempted to optimize
the constants.
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7 Analysis of the random walk

We now show that the natural random wadk defined in§2 is rapidly mixing. We prove this using
the comparison theorem of Diaconis and Saloff-Coste [8]. For a Markov ¢hiadm a state space,
let ker(M) denote the set of paifsY, V) € Q2 such thaPr[X, Y] > 0.

Theorem 13 (Diaconis and Saloff-Coste [8]Let (2 be a set of discrete structures. L&t and M’
be two ergodic and reversible Markov chains which both converge to the uniform distributi@n on
Suppose the mixing time &ff is bounded above by (¢).

Suppose we are given a $et= {pxy : (X,Y) € ker(M)} containing acanonical pathpx y
connectingX to Y on G(M’), for every pair of state$X,Y) € ker(M). For (Z,W) € ker(M’),
define

Azw = pzw DL Ipxy[PrmlX Y]

(X,Y)€eker(M)
(Z’W)GPX,Y

Then the mixing timey (¢) is

@) (TM (e) In(|€2]) (Z,Wgrel%?r(/vl’) AZ7W).
We now use Theorem 13 to bound the mixing timé/fin terms of the mixing time oM yp.

We construct a canonical patty y on G()V) for every pair of verticegX,Y) € ker(Mpp).
Recall that by our definition aMyp in §4, for any pair(X,Y") € ker(Myg), there exists a sety y
of at mostb,,, columns such that € Jx y iff either X; # Y; or j FX UT'y. Letb = |Jxy|. Let
X be the matrix consisting of the colum#s for j € Jx y, and letY’ be the matrix con3|st|ng of the
columnsy; for j € Jx y. For every: € [m], lets; be the source quantity for théh row of X. By
definition of Jx y, s; is also the source quantity for thid row of Y. LetP(s,c) be the(m—1)(b—1)-
dimensional transportation polytope with source quantijefer i € [m] and destination quantities
cjforje Jxy. X andY are both vertices dP(s, c).

By Lemma 2, there are at mogtm )=+~ vertices of thgm — 1)(b — 1)-dimensional trans-
portation polytope(s, c¢). Also by definition ofJx y (if j & Jx vy, thenX; has exactly one non-zero
cell) any pointZ insideP(s, ¢) is a vertex ofP (s, ¢) iff the point Z defined by

Z:{Ej it j € Jxy
Xj Ifng)gy

is a vertex of the original transportation polytopér, ¢) (see, for example, Hadley [16]).

It is a result of Balinski [1] that the connectivity of the edge-vertex graph of a polytope is equal
to its dimension. Therefore there is a paftf0) = X, X(1),...,X(¢ — 1), X(¢) = Y connecting
X toY onthe edge-vertex graph of ter — 1)(b — 1)- dlmen3|onal transportation polytope. We use
this path to define a sequence of poiai$0) = X, X (1),...,X(i),...,X(¢) = Y in the original
polytopeP(r,c). For everyi € [¢], X (i) is the matrix consisting of the columds; for j & Jx y
and the columns??(z')j for j € Jxy. Also, X (i) is a vertex ofP(r, ¢) for everyi € [¢] and also
(X (i —1),X(z)) is an edge oP(r, c) for everyi € [¢] (see Hadley [16]). Therefore the paik y
given by X (0) = X, X(1),..., X (¢) = Y is a path of length at mogtm)’=*m~! (see Lemma 2)
in the edge-vertex grapf (V).
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LetP = {pxy : X,Y € ker(Mpyg)}. Now we show that this set of canonical paths does not
overload any edgéZ, W) of G(W). Partition the elementsX,Y") of ker(Mpyp) according to the
setB of by, columns used to move frol¥ to Y. We will write (X,Y) € Mugp(B) if (X,Y)is an
element ofker(Mpp) and X andY differ only on the columns irB. Then we find thatd z - is at
most

W Z Z lpx,y [Prm[X, Y]
BcC[n], (X,Y)e€ker(Mugp(B))
| Bl=br, (Z,W)epx,y
which is at most
ez D > (em)Pm TPy X, Y],
BC[n], (X.,Y)€ker(Mpugp(B))
|B|=bm (ZW)epx,y

However, once we fix a set of columis, we know that there are at mogtm)>=»+m~1 different
vertices ofP(r, ¢) which agree withZ (andW) on all columnsj ¢ B. Using this, and the fact that
Prpm[X, Y] <1, we find

1
AZ7W S m Z (em)B(bermfl)
wie BC[n],| B|=bm

forany(Z, W) € ker(W), usingPrw[Z, W] = 1/2d,, = 1/2n™. Usingb,, = 47m?, we have
AZ,W g 2nmn47m2 (em)S(bm-‘rm—l).
Applying Theorem 13 and (10), and usiffg < (em)""™~! (Lemma 2), we find that

O In(|2 A .
mwie) € O(tmle)In(| D(z,w?éiii(m Zw)

c O(n156m2+m+lln(5—1)> — O(n157m2)ln(5_1).

8 Approximate counting

It is not difficult to turn our sampling algorithm into a fully polynomial randomized approximation
schemefpras) for counting the number of verticég| of P(r, c). We will briefly sketch the method.

If n < 2(m + 1), determing(2| by complete enumeration. (See, for example, [11].) Otherwise,
at leastn — m + 1 columns; have the single entry; at any vertex, and each column has only
cells. Therefore some particular céif, j*) containsc;« with probability at leastn —m + 1) /mn >
1/(2m). Identify such a cell, and estimate the proportioof all vertices in which it contains;-,
by sampling. Bup = |©'|/|Q2|, where|Y'| is the number of vertices of the transportation polytope
P(r', ), when we define/ = (c1,...,¢j*—1,Cjr41,...,Cn), The = T3+ — ¢+, @NAT;, = 14, 1 =
[m] \ {i*}. We estimateY’| recursively, and estimat€| by |Q'| /p.
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