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Abstract

We consider the problem of uniformly sampling a vertex of a transportation polytope with
m sources andn destinations, wherem is a constant. We analyse a natural random walk on the
edge-vertex graph of the polytope. The analysis makes use of the multi-commodity flow technique
of Sinclair [30] together with ideas developed by Morris and Sinclair [24, 25] for the knapsack
problem, and Cryanet al.[3] for contingency tables, to establish that the random walk approaches
the uniform distribution in timenO(m2).

1 Introduction

In this paper we study the mixing time behaviour of a natural random walk on the edge-vertex graph
of a transportation polytopewith m sources andn destinations. We are able to show that this walk
converges to the uniform distribution on the vertex set in timenO(m2). Therefore the random walk
mixes rapidly whenever the number of sourcesm is a constant. As far as we are aware, this is the
first result proving rapid mixing of a random walk on the graph of any non-trivial class of polytopes.
Very little is known about the mixing times of random walks on polytope graphs in general. In fact,
it is not even known whether the diameter of the graph is polynomially bounded in the dimension and
number of facets of the polytope. (See Kalai [19] and Ziegler [32].) In consequence, Markov chain
Monte Carlo (MCMC) has not been well explored as a means of sampling, or approximately counting,
vertices of general polytopes. Even for special classes of polytopes, such as arbitrary transportation
polytopes, approximate counting algorithms are not known to exist, either by MCMC or by other
means (see, for example, Pak [28]). This is despite the fact that the diameter of any transportation
polytope is bounded above by a linear function inm + n (see Brightwell et al. [2]; an earlier paper by
Dyer and Frieze [13] gave a polynomial upper bound). In fact, the only previous mixing results known
for random walks on the edge-vertex graph of a polytope are for very special, and highly symmetric
polytopes, such as then-cube [7] and the Birkhoff polytope [27].

Our approach to proving rapid mixing for our random walk on the transportation polytope is
inspired by that of Cryan, Dyer, Goldberg, Jerrum and Martin [3] for sampling contingency tables.
This was itself based on the “balanced permutation” ideas of Morris and Sinclair [24, 25] for the
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knapsack problem. However, following the line of proof given in [3], and using them-dimensional
balanced permutations of [24], would lead inevitably to a mixing time bound ofn2O(m)

for our random
walk. To obtain our improvement in the exponent, from exponential to polynomial, it is necessary to
sharpen the tools of [24, 25] using the special structure of the problem at hand. Our improvement
then results principally from the fact that we can prove that astrongly O(m2)-balancednO(m2)-
uniform permutation exists for this problem. Note that it is unknown whether a strongly-balanced
almost-uniform permutation exists for an arbitrary set ofm-dimensional vectors, whenm is variable.
(See [24] for further information.)

Our paper is organised as follows: In§2 we give basic information and background concerning
the transportation polytope and the natural random walk on that polytope. In§3 we list results about
the structure of vertices and edges of the transportation polytope, and prove upper and lower bounds
on the number of adjacent edges of any vertex (the ratio of the upper bound to the lower bound is a
key parameter in our definition of the random walk).§4 introduces a new Markov chain called a heat-
bath chain, which can make larger moves on the edge-vertex graph than the natural random walk, but
which also converges to the uniform distribution on the vertices of the transportation polytope. This
heat-bath chain is then analysed in the next two sections. In§5, we present our improved balanced
almost-uniform permutations (based on the permutations of Morris and Sinclair [25]), which will be
used in the analysis of the heat-bath chain. In§6 we prove that the heat-bath chain mixes rapidly,
when the number of sources is constant. In§7 we prove, by comparison to the heat-bath chain, that
the natural random walk also mixes rapidly in this case. In§8 we show how to use our sampling
algorithm to obtain a polynomial-time algorithm to approximately count vertices of the transportation
polytope whenm is constant.

2 Background

The transportation problem (TP) is a classic problem in operations research. The problem was posed
for the first time by Hitchcock in 1941 [18] and independently by Koopmans in 1947 [21], and ap-
pears in any standard introductory course on operations research. It is the combinatorial optimization
problem of assigning shipments of some commodity from sources to destinations so that the total
transportation cost is minimized. We are givenm sources and a listr = (r1, . . . , rm) of supplies for
these sources (ri is the supply at sourcei). We are givenn destinations and a listc = (c1, . . . , cn)
of demands for these destinations (cj is the demand at destinationj). Without loss of generality, we
assume that

∑m
i=1 ri =

∑n
j=1 cj , and defineN =

∑m
i=1 ri. Let t i

j denote the cost of transporting one
unit from sourcei to destinationj, for 1 ≤ i ≤ m, 1 ≤ j ≤ n. We use the somewhat uncommon
notationt i

j to denote thei, j element of a matrix.
We will represent an assignment to the variables of the transportation problem by am × n-

dimensional matrixX, and writeXj to denote thej-th column ofX (Xi
j denotes thei-th entry

of columnXj). For integersp ≤ q, let [p, q] denote the set of integers{p, . . . , q}. Similarly (p, q]
denotes the set{p + 1, . . . , q} etc. Also[p] denotes[1, p] for p > 0. The TP, satisfying all supplies
and demands at minimum total transportation costs, is formulated by the following linear program:
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min
m∑

i=1

n∑
j=1

t i
jX

i
j

Xi
j ≥ 0 for all i ∈ [m], j ∈ [n] (1)

n∑
j=1

Xi
j = ri for all i ∈ [m] (2)

m∑
i=1

Xi
j = cj for all j ∈ [n] (3)

The set of feasible solutions of the TP, thefeasible region, is a convex polytopeP(r, c) in Rmn

called thetransportation polytope. The existence of a strongly polynomial time algorithm for the TP
follows directly from the seminal work of Tardos [31]. Orlin [26] gave a strongly polynomial time
primal simplex algorithm for the more general minimum cost flow problem.

The integer feasible solutions for the TP arise in another context. Given a list of non-negative
integer row sums and column sums, acontingency tableis defined to be anym × n matrix of non-
negative integers with the given row and column sums. Therefore the set of integer feasible solutions
to the TP corresponds exactly to the set of contingency tables with row sums(r1, . . . , rm) and column
sums(c1, . . . , cn) [6]. The problem of generating contingency tables almost uniformly at random has
been widely studied, for example, by Dyer, Kannan and Mount [15], Diaconis and Saloff-Coste [9],
Dyer and Greenhill [14], Morris [23], Cryan et al. [3] and Dyer [12]. In particular, it was shown in [3]
that a2× 2 “heat-bath” Markov chain is rapidly mixing when the number of rows is constant.

The minimum cost for a TP is always attained at a vertex. Therefore counting and enumerating the
vertices of transportation polytopes is of interest. Some results on the complexity of enumerating the
vertices of a polytope appeared in Dyer [11], where it was shown to be #P-complete to count exactly
the number of vertices of a2 × n transportation polytope,1 and that it is NP-complete to decide if a
2× n transportation polytope is degenerate.

In this paper we consider the problem of sampling the vertices ofP(r, c) almost uniformly at
random, when the number of sourcesm is a constant. We define a Markov chainW on the setΩ of all
vertices ofP(r, c) and prove it is rapidly mixing. Our chainW is a random walk on theedge-vertex
graph of the polytopeP(r, c). This graph, also called theskeletonof the transportation polytope,
contains a vertexZ for every vertex ofP(r, c), and an edge(Z,W ) for every pair of verticesZ,W
that form an edge ofP(r, c). We denote the edge-vertex graph (see Definition 1 below) byG(W).

By Lemma 4 of§3, we know that any vertexZ of P(r, c) has at mostdm incident edges, where
dm = nm is polynomially bounded inn. A single step of our Markov chain is performed as follows:
if Z is the current vertex, we walk along any incident edge ofZ with probability1/2dm. If deg(Z)
denotes the vertex degree ofZ in G(W), then the probability of remaining atZ is 1−deg(Z)/2dm. A
well-known result of Balinski [1] states that the edge-vertex graph of any convex polytope of dimen-
sionk is k-connected. Therefore,G(W) is connected, and the Markov chainW is irreducible. Also,
at any given step, the probability of remaining at the current vertex is at least1/2, soW is aperiodic.
HenceW is ergodic and therefore has a unique stationary distribution. Also, for any two verticesZ,
W of P(r, c) such thatZ 6= W , PrW [Z,W ] = PrW [W,Z] (this has the value1/2dm if Z is adjacent
to W , and0 otherwise), which implies that the unique stationary distribution forW is the uniform
distribution. Observe that all “null” steps atZ, whereW remains atZ, can be simulated by updating

1In fact, [11] only claims NP-hardness, but the proof establishes #P-completeness.
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the clock with a single geometrically distributed random variable, and then moving to a neighbour of
Z chosen uniformly at random, provided that the end time has been reached.

We will show thatW is rapidly mixing by first showing that a “heat bath chain”, which can make
much larger moves in the edge-vertex graph, mixes rapidly. This chain,MHB, is described in§4,
and analysed in§5–6. Subsequently, in§7, we use the comparison technique of Diaconis and Saloff-
Coste [8] (see also Randall and Tetali [29]) to lift the mixing result fromMHB toW. Finally, in§8, we
outline how sampling can be used to count approximately the number of vertices of a transportation
polytope. However, first of all in§3 we present structural results concerning the vertices and edges
of P(r, c), and justify our definition ofdm.

3 Vertices and Edges

For basic information about polytopes we refer the reader to Ziegler [32], and for specific details about
transportation polytopes to Klee and Witzgall [20]. For basic information on the linear programming
formulation and a simplex algorithm for the transportation problem we refer to any introductory text-
book on operations research, e.g. [17]. We mention a few highlights here. It is shown in [20] that
P(r, c) has dimension(m− 1)(n− 1).

Now we give a formal definition of the edge-vertex graph of a polytope:

Definition 1 LetP ⊆ Rr be any polytope.F ⊆ P is a faceof P iff

F = P ∩ {Z : cZ = c0},

for somec ∈ Rr and somec0 ∈ R such thatcZ ≤ c0 holds for allZ ∈ P .
The face isnon-trivial if F 6= ∅ andF 6= P .
A facetof P is a non-trivial faceF such thatdim(F ) = dim(P )− 1 = r − 1.
Anedgeof P is a non-trivial faceF such thatdim(F ) = 1.
A vertexof P is a non-trivial faceF such thatdim(F ) = 0 (F = {X} for someX ∈ P ).
Theedge-vertex graphof P is the graphG which contains a vertexX for every vertex ofP and an
edge connectingX to Y iff {αX + (1− α)Y : α ∈ [0, 1]} is an edge of the polytopeP .

All facets of the polytopeP(r, c) correspond toXi
j ≥ 0 for somei ∈ [m], j ∈ [n], and therefore

every face ofP(r, c) corresponds to settingXi
j = 0 (whenX is represented in tabular format) for

some number of(i, j)-pairs. The following lemma is due to Dantzig [5] and others (see Klee and
Witzgall [20] for a history).

Lemma 2 If (r1, . . . , rm) and(c1, . . . , cn) are lists of positive values such that
∑m

i=1 ri =
∑n

j=1 cj ,
then for every vertex ofP(r, c), the(i, j)-pairs corresponding to non-zero coordinates of that vertex
form a spanning forestF on the bipartite graph[m]] [n]. This implies that each vertex ofP(r, c) has
no more thann + m− 1 non-zero coordinates.

A non-degeneratevertex hasexactlyn+m−1 non-zero coordinates, corresponding to a spanning
tree on[m] ] [n].
Any (m − 1)(n − 1)-dimensional transportation polytope has at mostmn−1nm−1 ≤ (em)n+m−1

vertices (forn ≥ m ≥ 2). 2

We note that any vertex ofP(r, c) must have at leastn non-zero coordinates, and therefore any vertex
has betweenn andn + m − 1 (inclusive) non-zero coordinates. IfP(r, c) is non-degenerate, then
every vertex will haven + m − 1 non-zero coordinates in one-to-one correspondence with the basic

4



variables of abasic feasible solutionof the linear program (1)-(3) (see e.g. [17]). IfZ hasn+m−1−q
non-zero coordinates in total(0 ≤ q ≤ m − 1), we say it hasdegeneracyq. We sometimes refer to
co-ordinates ascells (of the tabular representation ofZ). The spanning forestFZ of [m] ] [n] of a
vertexZ with degeneracyq consists ofq + 1 vertex disjoint trees. A spanning forestFZ together
with any set ofq edges which creates a spanning tree of[m] ] [n], corresponds uniquely to a basic
feasible solution of (1)-(3), where them + n − 1 basic variables of this solution are the cells ofZ
corresponding to the edges of this spanning tree (theq added edges correspond to basic variables with
value0). Thus, any degenerate vertexZ of the polytope corresponds to a number of basic feasible
solutions of (1)-(3), and each such basic feasible solution corresponds to a unique spanning tree of
[m] ] [n].

We define a pivot operation from one basic feasible solution to another one as an operation on
the corresponding spanning trees. It can be found in any elementary textbook on operations research
(see e.g. [17]), though it is usually described in terms of the tabular representation of basic feasible
solutions. Consider any basic feasible solutionZ with spanning treeTZ , and consider any edge
(a, b) 6∈ E(TZ). ThenE(TZ) ∪ {(a, b)} contains a single unique simple cycleC. SinceC is an even
cycle we can label its edges alternately+ and−, giving (a, b) the label+. Let E+(C) andE−(C)
be the edges ofC with label+ and− respectively, and let(c, d) = argmin{Zi

j : (i, j) ∈ E−(C)}.
(if (c, d) is not unique, any choice will give a pivot). Apivot operation (on(a, b)) then consists
of increasing the value of allZi

j for (i, j) ∈ E+(C) by Zc
d and decreasing the value of allZi

j with
(i, j) ∈ E−(C) by Zc

d. Observe that in particular, the(a, b) cell of the new table now has the valueZc
d

(and becomes a basic variable), while the(c, d) cell obtains the value0 (and becomes a non-basic
variable). The new spanning tree is then(TZ∪{(a, b)})\{(c, d)}. In the case whereZc

d is originally0,
the only effect of the pivot operation is thatZa

b becomes a basic variable instead ofZc
d. The vertex of

the polytope does not change in this case.
A pivot on any edge(a, b) satisfying(a, b) 6∈ E(TZ) corresponds to an edge of the edge-vertex

graph of the transportation polytope if and only ifZi
j > 0 for all (i, j) ∈ E−(C). Formulated in terms

of the vertices of the polytope this gives the following Lemma:

Lemma 3 LetZ be a vertex ofP(r, c), and letFZ denote the forest on[m]][n] given by the non-zero
cells ofZ (see Lemma 2). LetT 1

Z , . . . , T q+1
Z be the maximal trees constitutingFZ . LetW be another

vertex ofP(r, c) and letC = {(i, j) : Zi
j 6= W i

j}.
ThenZ andW are joined by an edge ofP(r, c) if and only ifC is a simple cycle of the form

(i1, j1), p1, (i2, j2), . . . , (iκ, jκ), pκ

where cellZik
jk

= 0 for everyk ∈ [κ], wherepk is a path in someT h
Z ∈ FZ fromjk ∈ [n] to ik+1 ∈ [m]

for everyk ∈ [κ] (identifyingiκ+1 with i1), and where theT h
Z are all distinct.

Moreover, for every vertexZ of P(r, c), and every set of cellsC of Z forming this type of cycle
in Z, there is exactly one vertexW in P(r, c) which is adjacent toZ such that{(i, j) : Zi

j 6= W i
j} = C.

2

Lemma 4 Any vertex of the polytopeP(r, c) has at least(m − 1)(n − 1) and at mostnm incident
edges.

Proof: We first prove the Lemma in the non-degenerate case.
First consider any non-degenerate vertexZ ∈ P(r, c), corresponding to a spanning treeTZ in

[m] ] [n]. In this case, if we perform a pivot operation on any of thenm − n − m + 1 edges of
[m] ] [n] \ TZ (each of these is a non-basic variable), we create another vertex ofP(r, c) adjacent to
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Z. Each of these vertices is distinct. By Lemma 3 these are the only vertices adjacent toZ. Therefore
the Lemma holds in the non-degenerate case (withdeg(Z) = (m− 1)(n− 1)).

Now consider a vertexZ ∈ P(r, c) of degeneracyq > 0. We first prove the lower bound.
Suppose the non-zero cells ofZ correspond to a forestFZ with q+1 maximal treesT 1

Z , . . . , T q+1
Z .

We create two basic feasible solutionsX andY by extendingFZ to spanning treesTX andTY of
[m] ] [n] as follows: For every1 ≤ i ≤ q + 1, we arbitrarily fixui

Z ∈ [m] ∩ T i
Z andvi

Z ∈ [n] ∩ T i
Z .

We then defineTX andTY as follows:

TX = FZ ∪MX with MX = {(ui+1
Z , vi

Z) | i = 1, . . . , q},
TY = FZ ∪MY with MY = {(ui

Z , vi+1
Z ) | i = 1, . . . , q}.

Now considerTX and consider a pivot on any of thenm−m− n + 1 edges(u, v) ∈ [m] ] [n] \
E(TX). If u ∈ T i

Z andv ∈ T i
Z for some1 ≤ i ≤ q+1, then there is a unique pathpu,v betweenu andv

consisting entirely of edges ofT i
Z (and of non-zero edges ofTX ). Hence{(u, v)}∪pu,v forms a cycle

where all cells except(u, v) are strictly positive inZ. Therefore in this case the pivot corresponds
to an edge of the polytope, and performing the pivot operation creates a neighbouring vertexW with
W u

v > 0. Alternativelyu ∈ T h
Z andv ∈ T k

Z for someh, k such thath 6= k. First assume thath < k. In
this caseTX ∪ (u, v) contains a unique cycleCX(u, v) in which the only edges fromE(TX) \E(FZ)
are the edges(uh

Z , vh+1
Z ), h = i, . . . , k − 1. Moreover, these are all inE+(CX(u, v)). Hence,

E−(CX(u, v)) \ E(FZ) = ∅, and thereforemin{Zi
j : (i, j) ∈ E−(CX(u, v))} > 0. Therefore the

pivot on(u, v) corresponds to an edge of the polytopeP(r, c), leading to a vertexW with W u
v > 0. In

particular this holds for theq edges(ui
Z , vi+1

Z ) ∈ MY (in which casek = h + 1), leading to a vertex
W which has a non-zero value for(ui

Z , vi+1
Z ) and(ui+1

Z , vi
Z), and which satisfiesW u

v = 0 for all other
(u, v) ∈ [m] ] [n] \ E(FZ). Similarly, if u ∈ T h

Z andv ∈ T k
Z andh > k thenTY ∪ (u, v) contains

a unique cycle. Then applying the pivot operation for(u, v) on the spanning treeTY generates a
neighbour vertex withW u

v > 0.
Now recall thatE(TX) = E(FZ) ∪ E(MX) andE(TY ) = E(FZ) ∪ E(MY ). In total, there are

(m− 1)(n− 1) (zero)-cells in[m]× [n] \ E(TX). Define the following three subsets of[m]× [n]:

E1 = {(u, v) : (u, v) 6∈ TX , u, v ∈ T h
Z for someh.}

E2 = {(u, v) : (u, v) 6∈ TX , u ∈ T h
Z , v ∈ T k

Z , for someh, k such thath < k.}
E3 = {(u, v) : (u, v) 6∈ TY , u ∈ T h

Z , v ∈ T k
Z , for someh, k such thath > k.}

Observe that the setsE1, E2 andE3 are disjoint and|E1∪E2∪E3| = |E1∪E2∪E3∪MX ∪MY | =
(m − 1)(n − 1) + q (usingMX ⊆ E3 andMY ⊆ E2). For i = 1, 2, let Vi be the neighbouring
vertices ofZ that can be obtained by a pivot operation onTX for some cell inEi. Let V3 be the
neighbouring vertices ofZ obtained by a pivot operation onTY for some cell inE3. Recall that
for every(u, v) ∈ E1, the neighbour vertex ofZ constructed by a pivot operation on(u, v) is unique
among all pivots on cells ofE1 (no other pivot for(u, v) ∈ E1 induces a non-zero value for cell(u, v)).
Hence|V1| = |E1|. Moreover,(u, v) is the only zero-cell ofZ which becomes positive as a result
of this pivot, henceV1 ∩ (V2 ∪ V3) = ∅. For every cell(u, v) ∈ E2, the pivot operation on(u, v)
with respect to the spanning treeTX constructs a neighbouring vertex toZ with a non-zero value
for (u, v). This is unique among all pivot operations on cells ofE2, hence|V2| = |E2|. Similarly,
we know that|V3| = |E3|. We now show that|V2 ∪ V3| ≥ (m − 1)(n − 1) − |V1|. Suppose
(u, v) ∈ E3 \MX . Then(u, v) 6∈ E(TX), and therefore the neighbour obtained by a pivot operation
on (u, v) with respect toTY is not an element ofV2. Hence|V2 ∩ V3| ≤ |MX | = q. Therefore
|V1 ∪ V2 ∪ V3| ≥ |V1|+ |V2|+ |V3| − q = |E1|+ |E2|+ |E3| − q ≥ (m− 1)(n− 1), as required.
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Next we prove the upper bound for the degenerate case.
Assume again thatZ is a vertex ofP(r, c) of degeneracyq ≥ 1, and the the non-zero cells ofZ

correspond to the forestFZ on[m]][n], where we writeFZ = {T 1
Z , . . . , T q+1

Z }. For everyh ∈ [q+1],
let Ih ⊆ [m] denote the set of source indices inT h

Z , andJh ⊆ [n] denote the set of destination indices
in T h

Z ; {Ih : h ∈ [q + 1]} is a partition of[m] and{Jh : h ∈ [q + 1]} is a partition of[n]. Let
mk = |Ik| andnk = |Jk|, for k ∈ [q + 1].

By Lemma 3, a vertexW with W i
j 6= 0 is a neighbour ofZ iff the differing edges ofFZ andFW

form a simple cycleC = (i, j), p1, (i2, j2), p2, . . . , pκ such that

• The cells(i, j), (i2, j2), . . . (iκ, jκ) are the cells which are zero inZ and non-zero inW .

• For everyk ∈ [κ], pk is a path of odd length from destinationjk ∈ [n] to sourceik+1 ∈ [m] in
some treeT k

Z ∈ FZ (assuming(i1, j1) = (i, j) andiκ+1 = i1).

• TheT k
Z are all distinct trees ofFZ .

Also by Lemma 3, there is exactly one neighbouring vertexW to Z for this cycleC. Each such
cycle is completely characterised by an ordered list of pathsp1, . . . , pκ, where each path is from some
destinationjk ∈ [n] to some sourceik+1 ∈ [m] in some treeTk ∈ F , and theTk are distinct trees.
Two different ordered lists of paths only correspond to the same set of zero cells ofZ if one ordered
list is a cyclic rotation of the other list.

Therefore the number of neighbouring vertices ofZ can be expressed as the number of simple
cycles consisting ofκ simple paths fromκ different trees ofFZ , summed overκ ∈ [q + 1]. If κ = 1,
the number of zero cells with both endpoints in a treeT k

Z ∈ FZ is (mk−1)× (nk−1). If κ > 1, then
we must count the cycles defined ofκ simple paths fromκ different trees ofFZ . Hence the number
of vertices adjacent toZ is given by the following expression:

deg(Z) =
∑

S⊆[q+1],|S|≥2

(|S| − 1)!
∏
k∈S

mk × nk +
∑

k∈[q+1]

(mk − 1)× (nk − 1), (4)

which depends only on the values ofmk andnk for k ∈ [q +1]. Let apair of partitions (of sizeq +1)
be any two lists of numbers~m = m1, . . . ,mq+1 and~n = n1, . . . , nq+1 such thatmk ≥ 1, nk ≥ 1
for all k ∈ [q + 1], and such that

∑q+1
k=1 mk = m and

∑q+1
k=1 nk = n. Thus,deg(Z) is a function of

(~mZ , ~nZ). We bounddeg(Z) by bounding the maximum of the righthand side of (4) over all possible
pairs of partitions.

Observe that for any pair of partitions~m,~n and anyS ⊆ [q + 1],
∏

k∈S mknk ≤
∏

k∈[q+1] mknk.

Also for any valueκ < q + 1, there are exactly
(
q+1
κ

)
setsS ⊆ [q + 1] such that|S| = κ. Therefore

by (4),

deg(~m,~n) ≤
q+1∑
κ=1

(κ− 1)!
∑

S⊆[q+1],|S|=κ

∏
k∈[q+1]

mknk

=
q+1∑
κ=1

((q + 1) · . . . · (q − κ + 2))/κ
∏

k∈[q+1]

mknk

≤ (q + 1)q+1(
∏

k∈[q+1]

mk)(
∏

k∈[q+1]

nk)

≤ (q + 1)q+1(
m

q + 1
)q+1(

n

q + 1
)q+1 = mq+1nq+1/(q + 1)q+1.
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For everym ≥ 2 (always the case in the context of transportation polytopes) and every1 ≤ q+1 ≤ m,
mq+1nq+1/(q + 1)q+1 ≤ nm: the case forq + 1 ≤ m/2 follows from the fact that ifq + 1 ≥ m/2,
thenmq+1nq+1/(q + 1)q+1 ≤ mq+1nq+1 ≤ n2(q+1) ≤ nm; the case forq + 1 = m is simple to
check; and the case form/2 ≤ q + 1 ≤ m − 1 follows by (m/(q + 1))q+1nq+1 = (1 + (m − q −
1)/(q + 1))q+1nq+1 = ((1 + (m− q − 1)/(q + 1))(q+1)/(m−q−1))m−q−1nq+1 < em−q−1nq+1. This
value is at mostmm−q−1nq+1 ≤ nm if m ≥ 3, and ifm = 2, we can check correctness directly.2

4 The heat-bath chain

We now define our auxiliary “heat-bath” Markov chainMHB, which operates on am × bm-sized
window of the matrix representing the current vertexZ, wherebm = 47m2. Define

ΓZ = {j : Zj has more than one non-zero}.

Then|ΓZ | ≤ m− 1. A single step ofMHB is performed as follows: a set of columnsB ⊆ [n], with
|B| = bm, is chosen uniformly at random from the columns of the matrix representingZ, subject to
ΓZ ⊆ B. ThenZ is replaced by a vertexW chosen uniformly at random from all vertices which can
be obtained fromZ by modifying only the columnsZj (j ∈ B).

TheMHB chain is ergodic because it includes all moves ofW. To see this we only need to observe
that by Lemma 3, any pair of vertices which are connected by an edge inP(r, c) can differ in at mostm
columns (of the matrix representation of the vertices). Clearlybm ≥ m. ThereforeMHB is ergodic
and converges to a stationary distribution$ onΩ. By definition,PrMHB

[Z,W ] = PrMHB
[W,Z] for

any two verticesZ,W . Therefore the stationary distribution$ must be the uniform distribution onΩ.
To show rapid mixing ofMHB in §6, we will use the multicommodity flow approach of Sin-

clair [30] (see also Diaconis and Stroock [10]), together with a construction based on ideas of Morris
and Sinclair [25] which we develop in§5 below. Some definitions are necessary at this point.

For any ergodic Markov chainM on state spaceΩ, a multicommodity flow can be defined on the
underlying graphG(M) of the chainM. The vertex set ofG(M) is Ω, and there is an edge(u→ v)
for every pair of states such thatPrM[u, v] > 0 in M (observe that for our original chainW, this
“underlying graph” of the chain is exactlyG(W)). Forx, y ∈ Ω, aunit flow from x to y is a setPx,y

of simple directed paths inG(M) from x to y, such that each pathp ∈ Px,y has positive weightαp,
and the sum of theαp over all p ∈ Px,y is 1. A multicommodity flowis a family of unit flows
F = {Px,y : x, y ∈ Ω} containing a unit flow for every pair of states fromΩ. ThelengthL(F) of the
multi-commodity flowF isL(F) = maxx,y max{|p| : p ∈ Px,y}, where|p| denotes the edge length
of p. For any edgee of G(M), we defineF(e) to be the sum of theαp weights over allp such that
e ∈ p andp ∈ Px,y for somex, y ∈ Ω. Then the following theorem holds:

Theorem 5 (Sinclair [30]) LetP be the transition matrix of an ergodic, reversible Markov chainM
onΩ whose stationary distribution is the uniform distribution. LetF be a multicommodity flow on the
graphG(M). Then the mixing time of the chain is bounded above by

τ(ε) ≤ 2|Ω|−1L(F) max
e

F(e)
PrM[e]

(ln |Ω|+ ln ε−1) 2

In §5 we will present some techniques which we will use to define a multicommodity flow on the
graphG(MHB). In §6 we will prove that our construction does not overload any edge of the graph,
and then prove thatMHB mixes rapidly. Finally, in§7, we apply a comparison technique of Diaconis
and Stroock [10] to extend our analysis to the random walkW.
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5 Balanced permutations

In order to construct a multicommodity flow on the graphG(MHB), we follow the example of Morris
and Sinclair [24, 25] for multidimensional knapsack and of Cryanet al. [3] for contingency tables and
think of defining a path from a vertexX to a vertexY by changing the value of a single columnj
(of the matrix representing the current vertex) fromXj to Yj at each step. The procedure of changing
columns ofX to columns ofY will not ensure that the points along the path are vertices ofP(r, c), or
even that they lie insideP(r, c). However, in§6 we will show that if we define the path appropriately
(using balanced almost-uniform permutations), each interim point on our path can be transformed to
a vertex ofP(r, c) by changing the values of a constant, but large, number of columns. This is why
we originally analyse the heat-bath chain, which can modifybm columns in one step.

To spread out the flow fromX to Y , we will use a random permutationσ of the columns of the
vertex, to determine the (random) order in which we change the columns of the vertex. We will spread
flow along a particular path according to the probability with which a particular permutation of the
columns is generated. Before we construct the particular (random) permutation which we will use to
define the multicommodity flow forMHB, we list some relevant definitions from the work of Morris
and Sinclair [25, 24]. One of the properties that we will require of our random permutation is that it
should approximate the uniform permutation in the following way:

Definition 6 (Morris & Sinclair[25]) Letσ be a random permutation on[n]. Letλ ∈ R be such that
λ > 0. We say thatσ is λ-uniform if for everyk ∈ [n] and everyU ⊆ [n] with |U | = k,

Pr[σ{1, . . . , k} = U ] ≤ λ ·
(

n

k

)−1

.

The second property that will be important for our random permutation is that ofbalance:

Definition 7 (Morris & Sinclair[25]) Letw1, . . . , wn be realm-dimensional weights (columns) with
the meanµ ∈ Rm. Let W =

∑n
j=1 wj . We say that a permutationσ on the set of columns is

`-balancedfor somè ∈ R, ` ≥ 1, if for everyk ∈ [n], and for everyi ∈ [m],∣∣∣∣∣∣
∑
j∈[k]

wi
σ(j) − kµi

∣∣∣∣∣∣ ≤ `max
j∈[n]
|wi

j − µi|.

This in turn implies the following:

min{W i, 0} − 2`max
j
|wi

j | ≤
k∑

j=1

wi
σ(j) ≤ max{W i, 0}+ 2`max

j
|wi

j |.

A variant of balance is strong balance:

Definition 8 (Morris & Sinclair[25]) Let w1, . . . , wn ∈ Rm and letµ ∈ Rm be the mean of these
weights. A permutationσ is strongly`-balancedfor ` ∈ R, if for everyk ∈ [n], and for everyi ∈ [m],
there is some setS ⊆ [n] with |S ⊕ σ{1, . . . , k}| ≤ ` such that the following two quantities have
different signs (or either is0):

k∑
j=1

wi
π(j) − kµi

∑
j∈S

wi
j − kµi

9



In the work of Morris & Sinclair [25, 24], an explicit distinction is made between`-balance and
strong`-balance. This distinction is highlighted because strong`-balance is a constructive property,
which allows the sign of

∑k
j=1 wi

j−kµi to be altered by adding or deleting a fixed number of weights.
We will see in Lemma 10 that in the case of one-dimensional weights, we can always convert a0-
balancedλ-uniform permutation into a strongly-balanced almost-uniform permutation, at the cost of
making some constants worse. We will then construct a strongly-balanced almost-uniform permuta-
tion σ for them-dimensional weights which appear in the vertices of the transportation polytope, by
interleavingm(m− 1)/2 of these strongly balanced one-dimensional permutations.

Let X andY be any two vertices ofP(r, c), so|ΓX ∪ ΓY | ≤ 2(m− 1).
Let Γ = {j : Xj = Yj}, L = [n] \ (ΓX ∪ ΓY ∪ Γ), and` = |L|.
In Lemma 12 we will construct a permutationσ on them-dimensional columns ofX − Y for the

indices inL. Lemma 12 builds on the work of Morris and Sinclair [25, 24]. Our construction will rely
on the fact that each of the columns to be permuted will only contain two non-zero entries, as seen
below.

Let r′i = ri −
∑

j∈Γ Xi
j = ri −

∑
j∈Γ Y i

j for i ∈ [m].
For j ∈ L, define the “weight vectors”wj = Yj − Xj ∈ Rm, and letµ =

∑
j∈L wj/` with

coordinatesµi (i ∈ [m]). By definition, for allj ∈ L, we know that bothXj andYj have exactly one
non-zero and it is equal tocj . Thus eachwj (j ∈ L) contains exactly two non-zeros, and these are
of equal modulus but opposite sign. We partitionL according to the location of these two non-zeros.
For each pair of rowsi 6= i′, define

Si,i′ = Si′,i =
{
j ∈ L : {wi

j , w
i′
j } = {−cj ,+cj}

}
,

Let `i,i′ = |Si,i′ |, and letµi,i′ =
∑

j∈Si,i′
wi

j/`i,i′ be the mean overSi,i′ of the weights in rowi. Note

thatµi,i′ = −µi′,i for all i, i′ ∈ [m].
We will use results of Morris and Sinclair [24, 25] to help us define a suitable random permuta-

tion σi,i′ on each of theSi,i′ sets. The first lemma that we need is:

Lemma 9 (Morris [24]) Suppose we are given real weights{wj}hj=1 with total W =
∑h

j=1 wj . Let

M = maxh
j=1 |wj |. Suppose that|W | ≥ 21M . Then there is a random permutationπ1 of [h] that

satisfies the following two conditions: For some universal constantC > 1, and each1 ≤ k ≤ h,

(i) min{0,W} ≤
∑k

j=1 wπ1(j) ≤ max{W, 0};

(ii) for everyU ⊆ [h] with |U | = k, Pr[π1{1, . . . , k} = U ] ≤ Ch2
(
h
k

)−1
.

We sayπ1 is a0-balancedCh2-uniform permutation. 2

From this we will deduce a statement more convenient for our application (cf Morris [24, Ch. 3]).

Lemma 10 Let{wj}hj=1 be a set of real numbers with meanµ =
∑h

j=1 wj/h. LetC be the constant
from Lemma 9. Then there exists a random permutationπ of [h] such that, for each1 ≤ k ≤ h, both
of the following properties hold:

(i) there are setsD1, D2 ⊆ [h] with |D1|, |D2| ≤ 42 such that∑
j∈[k]⊕D1

wπ(j) ≤ kµ,
∑

j∈[k]⊕D2

wπ(j) ≥ kµ.

(ii) for everyU ⊆ [h] with |U | = k, Pr[π{1, . . . , k} = U ] ≤ Ch23
(
h
k

)−1
.
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We callπ a strongly42-balancedCh23-uniform permutation.

Proof: Assume, by symmetry, thatµ ≥ 0. We first show how to construct the permutationπ so that
property (i) is satisfied.
(i) If h ≤ 42 we will let π be a random permutation of[h]. Let D1 = [k] andD2 = [h] \ [k]. Clearly
property (i) is satisfied.

Otherwiseh > 42. Let Q1 contain the indices of the21 elements for which(wj − µ) is greatest
andQ2 contain the indices of the21 elements for which(wj−µ) is smallest. There are two subcases:

(a) The first case is when−
∑

j∈Q2
(wj − µ) ≥

∑
j∈Q1

(wj − µ). In this case we assume wlog
that the indices ofQ2 are the indices[h− 20, h], and we letπ be the identity permutation on these21
elements (the weightswj for j ∈ Q2 will be the last21 elements of our permutation).

We will apply Lemma 9 to the set of weights{wj − µ}j∈[h]\Q2
to construct our permutationπ on

the{wj}j∈[h]\Q2
weights. Note thatW =

∑
j∈[h]\Q2

(wj −µ) = −
∑

j∈Q2
(wj −µ) ≥

∑
j∈Q1

(wj −
µ). Also note that we are guaranteed thatW ≥ 0. For everyj ∈ [h]\(Q1∪Q2), we have21|wj−µ| ≤
W . For now, assume that21|wj − µ| ≤ W for j ∈ Q1, so that we haveW ≥ 21M , where
M = maxj∈[h]\Q2

|wj − µ|. (We will show how to remove this assumption below).
We have already constructedπ for j ∈ Q2. Let π be the permutationπ1 of Lemma 9 on the

weights{wj − µ} for j ∈ [h] \ Q2 = [h − 21]. If k ≤ 21, takeD1 = [k], D2 = ∅. Observe that
property (i) is satisfied. If21 < k ≤ h− 21, property (i) ofπ1 gives

0 ≤
k∑

j=1

(wπ(j) − µ) ≤
h−21∑
j=1

(wπ(j) − µ)

= −
h∑

j=h−20

(wπ(j) − µ).

We immediately have
∑k

j=1 wπ(j) ≥ kµ, so we can takeD2 = ∅. Also, since the above inequalities
are true for allk ≤ h− 21, we have

k−21∑
j=1

(wπ(j) − µ) +
h∑

j=h−20

(wπ(j) − µ) ≤ 0.

Then, settingD1 = [k − 20, k] ∪ [h − 20, h], we have
∑

j∈[k]⊕D1
wπ(j) ≤ kµ. Observe that in this

case we also have property (i).
If k > h− 21, the conclusion follows easily from

h−21∑
j=1

(wπ(j) − µ) ≥ 0,
h∑

j=1

(wπ(j) − µ) = 0.

Note that in all the cases above, in fact we have|D1 ∪D2| ≤ 21, except forD1 when21 < k ≤
h−21 (then|D1| ≤ 42). We now show how to deal with the possibility that there is somej ∈ Q1 such
that21|wj−µ| > W . When we construct the permutationπ1, we replace the weights{wj−µ}j∈Q1 by
{w′

j−µ}j∈Q1 , wherew′
j =

∑
j∈Q1

wj/21 for all j ∈ Q1. ThenW does not change and the condition
21M ≤W is satisfied. Whenπ1 has been constructed we replace the dummy weights by the original
weights in random order. Then we need to exchange at most11 weights (exchanging some elements
of Q1 for others) to obtainD1, D2 sets satisfying condition (i) for the original weights. Moreover, for
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21 < k ≤ h− 21, we can defineD1 = [h− 20, h] ∪ (Q1 ∩ [k]) ∪ [k − 20 + |{j : j ∈ Q1 ∩ [k]}|, k]
to ensure (i) holds. Therefore we still have|D1|, |D2| ≤ 42, as claimed.

(b) The second case occurs if−
∑

j∈Q2
(wj − µ) <

∑
j∈Q1

(wj − µ). In this case we assume
wlog that the set of indicesQ1 is the set[h − 20, h], and we letπ on [h − 20, h] be the identity
permutation. Then, when we apply Lemma 9 to the set of weights{wj − µ}j∈[h]\Q1

, the total of the
weightsW is negative. Again, assuming for now that|W | ≥ 21 maxj∈[h]\Q1

|wj−µ|, we letπ be the
permutationπ1 of Lemma 9 on[h− 21].

For k ≤ 21, we takeD1 = ∅ andD2 = [h − 20, h]. For 21 < k ≤ h − 21, we use the fact
that condition (i) of Lemma 9 holds fork − 21 in a similar way to that described above, and we take
D1 = ∅ andD2 = [k − 20, k] ∪ [h − 20, h]. The casek > h − 21 is similar to case (a). Finally, we
treat the possibility that there existsj ∈ Q2 with 21|wj − µ| > |W | in a similar way to case (a).
(ii) We now show that property (ii) holds forπ. If h ≤ 42, the property follows from the fact thatπ is
a random permutation. Otherwise, ifk ≤ 21 or k > h− 21, the statement is trivially true. In all other

cases, property (ii) ofπ1 impliesPr[π{1, . . . , k} = U ] ≤ C(h− 21)2
(
h−21

k

)−1 ≤ Ch23
(
h
k

)−1
. 2

We remark that it would be possible to improve the constants in Lemma 10 by proving it directly,
rather than starting from Lemma 9. Moreover, even without doing this, there are many improvements
we could make if we were slightly more careful with the constants in our proofs (for example, in
Lemma 10, for everyk, we haveD1 = ∅ or D2 = ∅, even though we never use this fact). However,
we are not aiming to optimize the constants, so we have not made use of these observations.

We apply the construction of Lemma 10 to each of the non-empty setsSi,i′ separately to produce
permutationsσi,i′ . Since the entries in rowsi, i′ are equal and opposite, for anyJ ⊆ Si,i′ , we have∑

j∈J wi
j = −

∑
j∈J wi′

j . Hence
∑

j∈J wi
j ≥ kµi,i′ iff

∑
j∈J wi′

j ≤ kµi′,i. Therefore, to have both
inequalities in the same direction, we need at most42 “corrections” in exactly one of the rows.

We now consider how to interleave theσi,i′ to produce an overall permutationσ of L. For nota-
tional simplicity, suppose we are interleavingq sets of sizeνi > 0, i ∈ [q], with ν =

∑q
i=1 νi. Let

αi = νi/ν, so
∑q

i=1 αi = 1. Consider the following algorithm.

interleave
k1, k2, . . . , kq ← 0.
while k =

∑q
i=1 ki < ν do

if i∗ = arg maxq
i=1(αik − ki)

then ki∗ ← ki∗ + 1.

We now prove some useful properties ofinterleave.

Lemma 11 For all k ∈ [0, ν], ki ≤ dαike ≤ νi, i ∈ [q], and
∑q

i=1 |ki − αik| < 2(q − 1).

Proof: First note thatdαike ≤ νi. Otherwisedαike = dνik/νe > νi, giving k > ν, a contradiction.
Let γi(k) = αik − ki. Note that

∑q
i=1 γi(k) = 0, soγi∗(k) ≥ 0. Thenγi(k + 1) = γi(k) +

αi > γi(k) (i 6= i∗), but γi∗(k + 1) = γi∗(k) − (1 − αi∗) > −1. Sinceγi(0) = 0 for all i, it
follows by induction thatγi(k) > −1 for all i, k. Now ki ≤ dαike follows immediately. Also, since∑q

i=1 γi(k) = 0 andγi∗(k) ≥ 0,

q∑
i=1

|ki − αik| =
q∑

i=1

|γi(k)| = 2
∑
γi<0

|γi(k)|

This is at most2
∑

i6=i∗ 1 = 2(q − 1). 2
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We interleave theσi,i′ according to the procedure above to produce the permutationσ. The following
Lemma proves thatσ is a strongly23m2-balancedCm`14m2

-uniform permutation. Theqm-balanced
pm-uniform permutations of [24, 25] for a set of` generalm-dimensional weights only have bounds
of the formqm ∈ 2O(m) andpm ∈ `O(m2). Therefore by exploiting the special structure of the vertices
of the transportation polytope, we are able to prove better bounds on our “balance” constant. This will
positively influence the asymptotic bounds that we prove on the mixing time ofMHB in §6.

Lemma 12 For everym, there is some constantCm such thatσ has the following properties.

(i) For all i ∈ [m], k ∈ [`], there exist two setsDi
1 and Di

2 satisfying|
⋃m

i=1 Di
1| < 23m2,

|
⋃m

i=1 Di
2| < 23m2 such that∑

j∈[k]⊕Di
1

wi
σ(j) ≤ kµi,

∑
j∈[k]⊕Di

2

wi
σ(j) ≥ kµi.

(ii) For any U ⊆ [`] with |U | = k, Pr[σ{1, . . . , k} = U ] ≤ Cm`14m2(`
k

)−1
.

Proof: (i): We prove only the first inequality, the other being entirely similar. Suppose the values at
stepk in interleaveareki,i′ , andαi,i′ = `i,i′/`, for eachi′ 6= i. Definek∗i,i′ to bebkαi,i′c if µi,i′ ≥ 0,
anddkαi,i′e otherwise. Using Lemma 11, observe that

∑
i,i′ |k∗i,i′ − ki,i′ | is at most∑

i,i′

(
|k∗i,i′ − kαi,i′ |+ |ki,i′ − kαi,i′ |

)
which is less than

(
m
2

)
+ 2

(
m
2

)
= 3

(
m
2

)
.

Let Di,i′

1 be the set associated withσi,i′ , k∗i,i′ such that
∑

j∈[k∗
i,i′ ]⊕Di,i′

1

wσi,i′ (j)
≤ k∗i,i′ µi,i′ , and let

Ii,i′

1 be the interval[k∗i,i′ + 1, ki,i′ ], if k∗i,i′ < ki,i′ , or [ki,i′ + 1, k∗i,i′ ] otherwise. LetDi
1 =

⋃
i′(D

i,i′

1 ∪
Ii,i′

1 ). Then, using Lemma 10,|
⋃m

i=1 Di
1| < 42

(
m
2

)
+ 3

(
m
2

)
< 45m2/2.

Also ∑
j∈[k]⊕Di

2

wi
σ(j) ≤

∑
i′

k∗i,i′ µi,i′

≤
∑
i′

k `i,i′ µi,i′/` = kµi.

(ii): Let τ∗ be the random permutation we get when we applyinterleave to the collection of
uniform distributionsτi,i′ on Si,i′ for everyi, i′. Let τ represent the uniform distribution on[`]. We
will first boundPr[τ∗{1, . . . , k} = U ] in terms ofPr[τ{1, . . . , k} = U ] (=

(
`
k

)
), and then use the

almost-uniformity of theσi,i′ to give the result.
Let Ki,i′ be a random variable equal to the number of elements ofSi,i′ in the prefixτ{1, . . . , k}.

We will show that with high probabilityKi,i′ is not too far fromαi,i′k. Precisely, we have

Prτ

[
|Ki,i′ − αi,i′k| ≥

√
k ln(`)

]
≤ 2e

−2k(ln `)
k

= 2`−2

by a single application of the Chernoff bound (see McDiarmid [22]). Summing over allk and alli, i′

(
(
m
2

)
in total), we find that under the uniform distributionτ ,

|Ki,i′ − αi,i′k| ≤
√

k ln(`) (5)
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holds for allk, and alli, i′ with probability at least1 −m(m − 1)/`. Assume wlog that̀ ≥ 14m2,
therefore (5) holds with probability at least1/2.

Let τ ′ be the uniform distribution on the permutations that satisfy (5) (for allk, all i, i′). Note the
probability of any event inτ ′ is at most twice its probability in the uniform distributionτ . Also, since
the integer variableKi,i′ has maximum probability of taking values{bαi,i′kc, dαi,i′ke}, we have

(a) Prτ ′ [Ki,i′ = qi,i′ ] ≥ (
√

k ln `)−1 for qi,i′ ∈ {bαi,i′kc, dαi,i′ke}

Now we are ready to boundPr[σ∗{1, . . . , k} = U ], whereU decomposes intoUi,i′ with |Ui,i′ | = ki,i′ .
We only need the following (with the binomial coefficient defined (by continuation) for non-integer
arguments):

(b)

(
`i,i′

αi,i′k

)
≤ `|ki,i′−αi,i′k|+1

(
`i,i′

ki,i′

)
Using (a) and (b) with an application of Lemma 11, we find thatPrτ [Ki,i′ = ki,i′ ∀i, i′] is

≥ (k ln `)−m2/4(
∏
i,i′

`−|ki,i′−αi,i′k|−1)/2

≥ `−m2/2`−3m2/2/2 ≥ `−2m2
/2

SoPr[σ∗{1, . . . , k} = U ] ≤ 2`2m2(`
k

)
. Then applying Lemma 9 to each of theSi,i′ , we have

Pr[σ{1, . . . , k} = U ] ≤ 2`2m2
Cm2

`23m2/2

(
`

k

)−1

and we haveCm`14m2
-uniformity. 2

6 Analysis of the heat bath

We now apply Theorem 5 to prove thatMHB is rapidly mixing.
In a similar manner to [3] (see also [25]), we use the permutationσ constructed byinterleave to

route flow fromX to Y . We applyσ to the columns inL and for everyk ∈ [`], we define the matrix
Z(k) as them× n matrix where we set

Z(k)j =
{

Yj j ∈ σ{1, . . . , k}
Xj j ∈ σ{k + 1, . . . , `} ∪ ([n] \ L)

Conceptually, we think of the sequence of matricesX = Z(0), Z(1), . . . , Z(k), . . . , Z(`), as defining
a random path fromX to Y in G(MHB), along which we assign some fraction of flow determined
by σ. However, ifZ(k) is any intermediate matrix obtained in this way, in general it will not be a
vertex ofP(r, c) (or even a point insideP(r, c)). We will presently show how to modify theZ(k)
matrices to obtainZ(k)′ matrices which are vertices ofP(r, c). For everyk ∈ [`], we also define a
mirror imageZ̄(k) of Z(k), called an “encoding”, in the following way:

Z̄(k)j =
{

Xj j ∈ σ{1, . . . , k}
Yj j ∈ σ{k + 1, . . . , `} ∪ ([n] \ L)

This matrixZ̄(k) is not used in constructing the multicommodity flow forMHB, but is a useful con-
cept when we come to bound the amount of multicommodity flow that can lie on an edge ofG(MHB).
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TheZ̄(k) matrices do not necessarily correspond to vertices ofP(r, c). We now show that if we delete
only a constant number of columns from eitherZ(k) or Z̄(k), then the matrix can be completed to a
vertex ofP(r, c), denoted byZ ′(k) andZ̄ ′(k) respectively. Moreover, bothX andY can be recon-
structed fromZ ′(k) andZ̄ ′(k) using a suitably small amount of information.

Let D1 =
⋃m

i=1 Di
1 andD2 =

⋃m
i=1 Di

2. SinceXi
j , Y

i
j ≥ 0 for all i, j, for eachi ∈ [m] we have∑

j∈(L\[k])\D1

Xi
σ(j) +

∑
j∈[k]\D1

Y i
σ(j) ≤∑

j∈L\([k]⊕Di
1)

Xi
σ(j) +

∑
j∈[k]⊕Di

1

Y i
σ(j) =

∑
j∈L

Xi
j +

∑
j∈[k]⊕Di

1

wi
σ(j).

By Lemma 12, we also have∑
j∈L

Xi
j +

∑
j∈[k]⊕Di

1

wi
σ(j) ≤

∑
j∈L

Xi
j + kµi

= `−k
`

∑
j∈L

Xi
j + k

`

∑
j∈L

Y i
j

which is at mostr′i, as defined in§5.
Hence, if we “delete” the columns inD1 ∪ ΓX ∪ ΓY , we obtain partial row sums for the deleted

columns, where each partial row sum has size at leastri − r′i, which is non-negative for everyi. Thus
Z(k) can be completed to a vertex ofP(r, c) by redefining the columns ofD1 ∪ ΓX ∪ ΓY according
to the “northwestern corner rule” [16]. Hence we can mapZ(k), for everyk ∈ [`], to a vertexZ(k)′

of P(r, c). This necessitates changing the values of some of the columns inD1 ∪ ΓX ∪ ΓY . By
Lemma 12,|D1| ≤ 23m2, henceZ(k)′ may differ fromZ(k) in at most23m2 + 2(m− 1) columns
in total, for anyk ∈ [`]. Recall that for everyk ∈ [` − 1], Z(k) andZ(k + 1) differ in one column.
HenceZ(k)′ andZ(k + 1)′ differ in at most46m2 + 2(m − 1) + 1 columns, which form ≥ 2 is at
most47m2. SoZ(k)′ → Z(k + 1)′ is a transition ofMHB for everyk ∈ [` − 1] (this justifies our
choice ofbm in §4). AlsoX → Z(0)′ andZ(`)′ → Y are transitions ofMHB. Hence we obtain a path
X = Z(0), Z(1)′, . . . , Z(`)′, Y in G(MHB) betweenX andY . The proof forZ̄(k) is identical, by
interchangingXi

j with Y i
j , wi

j with −wi
j , D1 with D2, and using the lower bound in (i) of Lemma 12.

Now suppose we are givenZ ′(k), Z̄ ′(k) and we wish to recoverX, Y . Let us assume, using
the uniformity property ofσ, that we are givenU = σ{1, . . . , k} (we will incorporate this into our
analysis later). We still need to know the “deleted” columnsD1, D2, ΓX , ΓY , but there are at most(

n
23m2

)2( n
m−1

)2
< n47m2

ways of selecting these sets. We can easily reconstruct bothX andY except
for the deleted columns. However, there are at most47m2 such columns, andX andY are both
vertices. Moreover, since the deleted columns are the only columns which may contain more than
one non-zero cell, therefore we can completeX to a vertex iff the values we choose for the deleted
columnsD1 ∪ ΓX ∪ ΓY define a vertex on the induced transportation polytope (of dimension at
most(m − 1)(24m2 − 1)) on the deleted columns. By Lemma 2, there are at most(em)24m2+m−1

possible ways of completing these columns forX. Similarly, there are at most(em)24m2+m−1 ways
of completing the deleted columnsD2 ∪ ΓX ∪ ΓY for Y . So there are at most(em)49m2

n47m2
ways

of augmenting the encoding so that we can uniquely identifyX andY from Z ′(k), Z̄ ′(k) (assuming
we have been givenU = σ{1, . . . , k}).
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We can now bound the flow through any stateZ ∈ Ω. There are|Ω| ways of choosinḡZ,
(
n
k

)
ways of choosing|U | and(em)49m2

n47m2
ways of specifying the additional information needed to

uniquely identifyX andY . However, by the uniformity ofσ, Pr(σ[k] = U) ≤ Cmn14m2(n
k

)−1
.

Hence the flow through any state may be bounded by

|Ω| ×
(
n
k

)
× (em)49m2

n47m2 × Cmn14m2(n
k

)−1 = (6)

O(n61m2
)|Ω|. (7)

Observe that in this analysis of the maximum flow through any state ofΩ, we have obtained a term
n47m2

which derives from the constant23m2 of the strongly23m2-balancedCm`14m2
-uniform per-

mutationσ. If we had used the permutations of Morris & Sinclair[24, 25] for generalm-dimensional
weights (which are strongly2O(m)-balanced), we would have obtained an2O(m)

term instead. This
was our motivation for exploiting the structure of the vertices to obtain an improved strongly-balanced
almost-uniform permutation in§5.

In order to apply Theorem 5, we must bound the flow through anyedgeof G(MHB). We observe
that for the flowF which we have constructed, for any edgee = (Z,W ), (7) implies:

F(e) ≤ O(n61m2
).

By construction of our multi-commodity flow,L(F) ≤ n. Therefore, by Theorem 5,

τMHB
(ε) ≤ 2|Ω|−1 · n ·max

e

{
O(n61m2

)|Ω|
PrMHB

[e]

}
(ln |Ω|+ ln ε−1) (8)

= O(n61m2+1) · (min
e

PrMHB
[e])−1(ln |Ω|+ ln ε−1). (9)

Now observe thate = (Z →W ) is an edge ofG(MHB) if and only if Z andW are vertices ofP(r, c)
and there is some setB of destinations such thatΓZ ⊆ B, |B| ≤ bm andZ andW only differ on
the setB. The definition ofMHB implies that this particular set of destinationsB is chosen fromB

with probability at least
(

n
bm

)−1
. Also, by definition ofMHB, once the windowB has been chosen,

we choose the next state uniformly at random, by choosing from all possible assignments toB which
give a vertex ofP(r, c). It is not difficult to show that this is the case if and only if the assignment to
the destinations ofB is a vertex of the(m− 1)× (bm − 1)-dimensional polytopeP(s, d) induced by
the set of values ofZj for the destinationsj ∈ B (see, for example, Hadley [16]). By Lemma 2 there
are at most(e ·m)bm+m−1 vertices of this smaller polytope. Therefore we can bound the probability
of a transition fromZ to anyW inMHB as follows:

PrMHB
[Z,W ] ≥

(
n

bm

)−1

(em)−bm−m+1.

Therefore, substituting into (9), we have the following bound on the mixing time ofMHB:

τMHB
(ε) = O(nbm+61m2+1)(ln |Ω|+ ln ε−1) = O(n109m2

) ln ε−1, (10)

where in the last step, we use the facts that
(

n
bm

)
≤ nbm = n47m2

and|Ω| ≤ (em)n+m−1.

Remark: In the conference version of this paper [4], we omitted thePrMHB
[Z,W ] term when

boundingτMHB
. Hence we erroneously claimed a bound ofO(n62m2

) ln ε−1 for the mixing time
of MHB. However, because we are able to definebm = 47m2 in this paper (we carelessly used
bm = 94m2 in [4]), the bound we derive for the random walk in§7 is the same as in [4]. We believe
that the mixing time of both chains is far better than our bounds, but we have not attempted to optimize
the constants.
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7 Analysis of the random walk

We now show that the natural random walkW defined in§2 is rapidly mixing. We prove this using
the comparison theorem of Diaconis and Saloff-Coste [8]. For a Markov chainM on a state spaceΩ,
let ker(M) denote the set of pairs(X, Y ) ∈ Ω2 such thatPrM[X, Y ] > 0.

Theorem 13 (Diaconis and Saloff-Coste [8])Let Ω be a set of discrete structures. LetM andM′

be two ergodic and reversible Markov chains which both converge to the uniform distribution onΩ.
Suppose the mixing time ofM is bounded above byτM(ε).

Suppose we are given a setP = {pX,Y : (X, Y ) ∈ ker(M)} containing acanonical pathpX,Y

connectingX to Y on G(M′), for every pair of states(X, Y ) ∈ ker(M). For (Z,W ) ∈ ker(M′),
define

AZ,W = 1
PrM′ [Z,W ]

∑
(X,Y )∈ker(M)
(Z,W )∈pX,Y

|pX,Y |PrM[X, Y ].

Then the mixing timeτM′(ε) is

O
(
τM(ε) ln(|Ω|) max

(Z,W )∈ker(M′)
AZ,W

)
.

We now use Theorem 13 to bound the mixing time ofW in terms of the mixing time ofMHB.
We construct a canonical pathpX,Y on G(W) for every pair of vertices(X, Y ) ∈ ker(MHB).

Recall that by our definition ofMHB in §4, for any pair(X, Y ) ∈ ker(MHB), there exists a setJX,Y

of at mostbm columns such thatj ∈ JX,Y iff either Xj 6= Yj or j ∈ ΓX ∪ ΓY . Let b = |JX,Y |. Let
X̂ be the matrix consisting of the columnsXj for j ∈ JX,Y , and letŶ be the matrix consisting of the
columnsYj for j ∈ JX,Y . For everyi ∈ [m], let si be the source quantity for theith row of X̂. By
definition ofJX,Y , si is also the source quantity for theith row of Ŷ . LetP(s, c) be the(m−1)(b−1)-
dimensional transportation polytope with source quantitiessi for i ∈ [m] and destination quantities
cj for j ∈ JX,Y . X̂ andŶ are both vertices ofP(s, c).

By Lemma 2, there are at most(em)bm+m−1 vertices of the(m − 1)(b − 1)-dimensional trans-
portation polytopeP(s, c). Also by definition ofJX,Y (if j 6∈ JX,Y , thenXj has exactly one non-zero
cell) any pointẐ insideP(s, c) is a vertex ofP(s, c) iff the pointZ defined by

Zj =
{

Ẑj if j ∈ JX,Y

Xj if j 6∈ JX,Y

is a vertex of the original transportation polytopeP(r, c) (see, for example, Hadley [16]).
It is a result of Balinski [1] that the connectivity of the edge-vertex graph of a polytope is equal

to its dimension. Therefore there is a pathX̂(0) = X̂, X̂(1), . . . , X̂(` − 1), X̂(`) = Ŷ connecting
X̂ to Ŷ on the edge-vertex graph of the(m− 1)(b− 1)-dimensional transportation polytope. We use
this path to define a sequence of pointsX(0) = X, X(1), . . . , X(i), . . . , X(`) = Y in the original
polytopeP(r, c). For everyi ∈ [`], X(i) is the matrix consisting of the columnsXj for j 6∈ JX,Y

and the columnŝX(i)j for j ∈ JX,Y . Also, X(i) is a vertex ofP(r, c) for every i ∈ [`] and also
(X(i − 1), X(i)) is an edge ofP(r, c) for everyi ∈ [`] (see Hadley [16]). Therefore the pathpX,Y

given byX(0) = X, X(1), . . . , X(`) = Y is a path of length at most(em)bm+m−1 (see Lemma 2)
in the edge-vertex graphG(W).
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Let P = {pX,Y : X, Y ∈ ker(MHB)}. Now we show that this set of canonical paths does not
overload any edge(Z,W ) of G(W). Partition the elements(X, Y ) of ker(MHB) according to the
setB of bm columns used to move fromX to Y . We will write (X, Y ) ∈ MHB(B) if (X, Y ) is an
element ofker(MHB) andX andY differ only on the columns inB. Then we find thatAZ,W is at
most

1
PrW [Z,W ]

∑
B⊂[n],
|B|=bm

∑
(X,Y )∈ker(MHB(B))

(Z,W )∈pX,Y

|pX,Y |PrM[X, Y ]

which is at most

1
PrW [Z,W ]

∑
B⊂[n],
|B|=bm

∑
(X,Y )∈ker(MHB(B))

(Z,W )∈pX,Y

(em)bm+m−1PrM[X, Y ].

However, once we fix a set of columnsB, we know that there are at most(em)bm+m−1 different
vertices ofP(r, c) which agree withZ (andW ) on all columnsj 6∈ B. Using this, and the fact that
PrM[X, Y ] ≤ 1, we find

AZ,W ≤ 1
PrW [Z,W ]

∑
B⊂[n],|B|=bm

(em)3(bm+m−1)

AZ,W ≤ 2nm

(
n

bm

)
(em)3(bm+m−1)

for any(Z,W ) ∈ ker(W), usingPrW [Z,W ] = 1/2dm = 1/2nm. Usingbm = 47m2, we have

AZ,W ≤ 2nmn47m2
(em)3(bm+m−1).

Applying Theorem 13 and (10), and using|Ω| ≤ (em)n+m−1 (Lemma 2), we find that

τW(ε) ∈ O
(
τM(ε) ln(|Ω|) max

(Z,W )∈ker(M′)
AZ,W

)
.

∈ O
(
n156m2+m+1 ln(ε−1)

)
= O(n157m2

) ln(ε−1).

8 Approximate counting

It is not difficult to turn our sampling algorithm into a fully polynomial randomized approximation
scheme (fpras) for counting the number of vertices|Ω| of P(r, c). We will briefly sketch the method.

If n < 2(m + 1), determine|Ω| by complete enumeration. (See, for example, [11].) Otherwise,
at leastn − m + 1 columnsj have the single entrycj at any vertex, and each column has onlym
cells. Therefore some particular cell(i∗, j∗) containscj∗ with probability at least(n−m+1)/mn ≥
1/(2m). Identify such a cell, and estimate the proportionp of all vertices in which it containscj∗ ,
by sampling. Butp = |Ω′|/|Ω|, where|Ω′| is the number of vertices of the transportation polytope
P(r′, c′), when we definec′ = (c1, . . . , cj∗−1, cj∗+1, . . . , cn), r′i∗ = ri∗ − cj∗ , andr′i = ri, i =
[m] \ {i∗}. We estimate|Ω′| recursively, and estimate|Ω| by |Ω′|/p.
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