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Abstract. Consider the following problem: For given graphs G and F1, . . . , Fk, find a coloring
of the edges of G with k colors such that G does not contain Fi in color i. Rödl and Ruciński
studied this problem for the random graph Gn,p in the symmetric case when k is fixed and
F1 = · · · = Fk = F . They proved that such a coloring exists asymptotically almost surely (a.a.s.)
provided that p ≤ bn−β for some constants b = b(F, k) and β = β(F ). This result is essentially
best possible because for p ≥ Bn−β , where B = B(F, k) is a large constant, such an edge-

coloring does not exist. Kohayakawa and Kreuter conjectured a threshold function n−β(F1,...,Fk)

for arbitrary F1, . . . , Fk.
In this paper we address the case when F1, . . . , Fk are cliques of different sizes and propose
an algorithm that a.a.s. finds a valid k-edge-coloring of Gn,p with p ≤ bn−β for some constant
b = b(F1, . . . , Fk). This algorithm also extends to the symmetric case. We also show that there
exists a constant B = B(F1, . . . , Fk) such that for p ≥ Bn−β the random graph Gn,p a.a.s. does
not have a valid k-edge-coloring provided the so-called K LR-conjecture holds.
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1. Introduction

It follows from Ramsey’s celebrated result [16] that every k-coloring of the edges of the complete
graph on n vertices contains a monochromatic copy of F if n is sufficiently large. While this
seems to rely on the fact that Kn is a very dense graph, Folkman [2] and, in a more general
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visiting the University of São Paulo.
The second author was partially supported by NSF grants INT-0072064, INT-0305793, NSA grant H98230-
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setting, Nešetřil and Rödl [15] showed that there also exist locally sparse graphs G = G(F ) with
the property that every k-coloring of the edges of G contains a monochromatic copy of F . By
transferring the problem into a random setting, Rödl and Ruciński [18] showed that in fact such
graphs G are quite frequent. More precisely, they proved the following result. Let

G→ (F )e
k

denote the property that every edge-coloring of G with k colors contains a monochromatic copy
of F . Recall that in the binomial random graph Gn,p on n vertices, every edge is present with
probability 0 ≤ p = p(n) ≤ 1 independently of all other edges.

Theorem 1 ([13], [17], [18]). Let k ≥ 2 and F be a non-empty graph that is not a forest. Then
there exist constants b, B > 0 such that

lim
n→∞

P [Gn,p → (F )e
k] =

{
0 if p ≤ bn−1/m2(F )

1 if p ≥ Bn−1/m2(F )
,

where

m2(F ) := max
{
|E(H)| − 1
|V (H)| − 2

: H ⊆ F ∧ |V (H)| ≥ 3
}

. (1)

Functions like n−1/m2(F ) in Theorem 1 are called thresholds or threshold functions. In Theo-
rem 1, this function can be motivated as follows. For the sake of simplicity, suppose that m2(F ) =
(|E(F )| − 1)/(|V (F )| − 2). Then, for p = cn−1/m2(F ), the expected number of copies of F con-
taining a given edge of Gn,p is a constant depending on c. If this constant is close to zero, the
copies of F in Gn,p are loosely scattered and a valid coloring should thus exist. On the other
hand, if this constant is large, the copies of F in Gn,p highly intersect with each other, and the
existence of a valid coloring becomes unlikely.

In Theorem 1 the same graph F is forbidden in every color class. We can generalize this setup
by allowing for k different forbidden graphs, one per color. Within classical Ramsey theory
the study of these so-called asymmetric Ramsey properties led to many interesting questions
(see e.g. [1]) and results, most notably the celebrated paper of Kim [7] where he established an
asymptotically sharp bound on the Ramsey number R(3, t).

Within the random setting only very little is known about asymmetric Ramsey properties. Let

G→ (F1, . . . , Fk)e

denote the property that in every edge-coloring of G with k colors, there exists a color i such
that Fi is contained in the subgraph of G spanned by the edges which are assigned to i. In [9]
Kohayakawa and Kreuter proved the following result for cycles C` of length `.

Theorem 2 ([9]). Let k ≥ 2 and 3 ≤ `1 ≤ · · · ≤ `k be integers. Then there exist constants
b, B > 0 such that

lim
n→∞

P [Gn,p → (C`1 , . . . , C`k
)e] =

{
0 if p ≤ bn−1/m2(C`2

,C`1
)

1 if p ≥ Bn−1/m2(C`2
,C`1

) ,

where

m2(C`2 , C`1) :=
`1

`1 − 2 + 1/m2(C`2)
.

In [9] Kohayakawa and Kreuter also formulated the following conjecture that generalizes their
result to general graphs.

Conjecture 3 ([9]). Let H and F be graphs with 1 < m2(H) ≤ m2(F ). Then there exists a
constant b > 0 such that for all ε > 0, we have

lim
n→∞

P [Gn,p → (H,F )e] =

{
0 if p ≤ (1− ε)bn−1/m2(H,F )

1 if p ≥ (1 + ε)bn−1/m2(H,F )
,
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where

m2(H,F ) := max
{

|E(J)|
|V (J)| − 2 + 1/m2(H)

: J ⊆ F ∧ |V (F )| ≥ 2
}

. (2)

The threshold function in Conjecture 3 can be justified as follows. The expected number of
copies of F in Gn,p with p = Θ

(
n−1/m2(F,H)

)
is

Θ
(
n|V (F )|p|E(F )|

)
= Ω

(
n2−1/m2(H)

)
.

Since every edge-coloring of Gn,p must avoid monochromatic copies of F in color 2, there is
at least one edge of color 1 in every subgraph of Gn,p isomorphic to F . Select one such edge
from each copy of F arbitrarily. It is plausible that these edges span a graph G′ with edge
density Ω

(
n−1/m2(H)

)
that satisfies certain pseudo-random properties. As it turns out, that

seems just about the right density in order to embed a copy of H into G′, no matter which edges
were selected from the original graph.

We remark that Ramsey properties of random graphs were first studied with respect to vertex
colorings in [13]. In the asymmetric setup with respect to vertex colorings, very general results
were obtained in [12]. To the best of our knowledge, besides Theorem 2, no progress has been
made towards proving Conjecture 3 since its publication in [9].

1.1. Our results

We study Conjecture 3 in the case when all graphs are cliques and prove a threshold result in
the flavor of Theorem 2.

Theorem 4 (Main Result). Let k ≥ 2 and 3 ≤ `k ≤ · · · ≤ `1 be integers. Then there exist
constants b, B > 0 such that

lim
n→∞

P [Gn,p → (K`1 , . . . ,K`k
)e] =

{
0 if p ≤ bn−1/m2(K`2

,K`1
)

1 if p ≥ Bn−1/m2(K`2
,K`1

) ,

where

m2(K`2 ,K`1) :=

(
`1
2

)
`1 − 2 + 1/m2(K`2)

,

and the 1-statement holds provided Conjecture 23 in [10] is true for K`2.

As is typical for threshold phenomena, the result consists of two separate statements, the so-
called 0- and 1-statement, respectively. For the 0-statement one needs to show that for p below
the threshold, Gn,p allows a k-edge-coloring that avoids every forbidden clique K`i

, 1 ≤ i ≤ k,
in the corresponding color class i. For the 1-statement one has to show that for p above the
threshold, every k-edge-coloring of Gn,p contains at least one of the forbidden monochromatic
cliques.

The main contribution of this paper is the proof of the 0-statement. The way of proving it
that was pursued in [17] and [9] is by contradiction. This approach shows the existence of a
coloring, but provides no efficient way of obtaining the coloring from the proof. Our approach
is constructive. We provide a (polynomial-time) algorithm that computes a valid coloring for
graphs that satisfy certain properties. We employ techniques similar to those in [17] and [9] in
order to prove that these properties a.a.s. hold in Gn,p with p sufficiently small. Indeed, the
results in [17] yield that our algorithm also computes valid colorings of Gn,p in the symmetric
case, unless the forbidden graph is one of a few special cases, e.g., a triangle. In fact, the
symmetric case of triangles was solved in [13] by different methods.

A standard way of attacking the 1-statement, which was also pursued in [9], is via the sparse
version of Szemerédi’s regularity lemma, which was independently developed by Kohayakawa [8]
and Rödl (unpublished, see [11]). Using properties of regularity, one can find a monochromatic
copy of a forbidden subgraph in the colored graph Gn,p. Unfortunately, generalizing this argu-
ment from cycles to cliques requires a proof of Conjecture 23 in [10] (cf. Conjecture 30 below)
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of Kohayakawa,  Luczak, and Rödl. This so-called K LR-Conjecture formulates a probabilistic
version of the classical embedding lemma for dense graphs. It implies many interesting extremal
results for random graphs. Despite recent progress [4], the conjecture is, in its full generality,
still wide open. As we shall show, a proof of the 1-statement is routinely obtained assuming that
the K LR-Conjecture holds. For a comprehensive overview on the status quo of that conjecture,
the interested reader is referred to [5].

1.2. Organization of this paper

We start by collecting some definitions and useful facts in Section 2. Section 3 is the main body
of our work. We present an algorithm Asym-Edge-Col and prove that it a.a.s. computes a
valid coloring of Gn,p with p as claimed. The proofs of two major technical lemmas are omitted
from the main line of argument and deferred to Sections 3.1 and 3.2, respectively. A considerable
amount of technicalities in this section is specifically needed to deal with the case `2 = 3. For a
simpler account of the case `2 ≥ 4, the reader is referred to [14]. Lastly, in Section 4, we explain
how the 1-statement follows from the results in [9] and the K LR-Conjecture.

2. Preliminaries and Notation

Our notation is mostly adopted from [6]. All graphs are simple and undirected. Let G = (V,E)
be a graph. We denote the number of vertices in G by v(G) = vG := |V (G)|. Similarly, we
denote the number of edges in G by e(G) = eG := |E(G)|. For disjoint sets U,W ⊆ V (G),
we denote the set of all edges having one end in U and the other one in W by EG(U,W ) and
abbreviate |EG(U,W )| by eG(U,W ). The neighborhood of a vertex v is denoted by Γ(v) and
its degree by deg(v) := |Γ(v)|.
For any graph H, the most well-known density measure is

d(H) :=

{
eH/vH if v(H) ≥ 1
0 otherwise

,

that is, exactly the half of the average degree of H. Maximizing over all subgraphs of H defines
the measure

m(H) := max {d(J) : J ⊆ H} .

A graph H is balanced w.r.t. d or simply balanced if we have d(H) = m(H). It is strictly
balanced if for all proper subgraphs H ′ ( H, we have d(H ′) < m(H). In [17] the so-called
2-density measure was introduced:

d2(H) :=


(eH − 1)/(vH − 2) if H is nonempty with v(H) ≥ 3
1/2 if H ∼= K2

0 otherwise
.

Analogously to the standard density d, the maximization over the 2-density of all subgraphs J ⊆
H is denoted by m2(H) (cf. (1)). The notion of (strict) 2-balancedness is defined similarly. It
is easily verified that every graph satisfies m(H) ≤ m2(H), and that every 2-balanced graph is
also balanced.

In the context of asymmetric Ramsey properties, the following generalization of d2 with two
arguments was introduced in [9]. Let H and F be any graphs, and define

d2(H,F ) :=

{
eF /(vF − 2 + 1/m2(H)) if H is nonempty and v(F ) ≥ 2
0 otherwise

.

As in (2), it is useful to denote the maximization of this generalized 2-density over all sub-
graphs J ⊆ F with respect to some graph H by m2(H,F ). The graph F is balanced w.r.t. d2(H, ·)
if we have d2(H,F ) = m2(H,F ). It is readily verified that every clique Kr is balanced
w.r.t. d2(K`, ·) for all r ≥ ` ≥ 3 and, in particular, that every clique is 2-balanced.
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The function m2 is not symmetric in both arguments. Although we shall not use it, the fol-
lowing statement sheds more light on the asymmetric 2-density. It is routinely proved using
Proposition 6 below.

Proposition 5. Suppose H an F are graphs with m2(H) ≤ m2(F ). Then we have

m2(H) ≤ m2(H,F ) ≤ m2(F ) ,

which implies that m2(H) = m2(H,F ) = m2(F ) whenever m2(H) = m2(F ). Moreover, if F is
2-balanced, it is also balanced w.r.t. d2(H, ·), but the converse does not hold in general.

All our logarithms have base e. In our proofs we frequently use the following observation, which
we state separately for further reference.

Proposition 6. For a, c, C ∈ R and b, d > 0, we have

a

b
≤ C ∧ c

d
≤ C ⇒ a + c

b + d
≤ C and

a

b
≥ C ∧ c

d
≥ C ⇒ a + c

b + d
≥ C

and similarly, if also b > d,

a

b
≤ C ∧ c

d
≥ C ⇒ a− c

b− d
≤ C and

a

b
≥ C ∧ c

d
≤ C ⇒ a− c

b− d
≥ C .

3. An algorithm for computing valid edge colorings

Suppose G = Gn,p with p ≤ bn−1/m2(K`2
,K`1

) is given. In order to provide a valid coloring of G,
it suffices to compute a 2-coloring of E(G) such that there is neither a copy of K`1 in color 1
nor a copy of K`2 in color 2. That implies the 0-statement of Theorem 4 also for k-colorings.
Hence, we focus on 2-colorings and abbreviate `1 by r and `2 by ` in the following. For the sake
of completeness, we include the symmetric cases r = ` ≥ 4 in our setup. For the rest of this
section, suppose r ≥ ` ≥ 3, (r, `) 6= (3, 3) are fixed. As mentioned before, our approach does not
carry over to the symmetric triangle case. We also fix the constant ε0 := 0.01 in what follows.

We describe an algorithm that finds a valid edge-coloring of G a.a.s. The basic idea of the
algorithm is to remove edges from the graph successively. An edge e is deleted from G if there
are no two cliques of size ` and r respectively that intersect exactly on e. When this deletion
process stops, the remaining graph G∗ a.a.s. satisfies strong structural properties and can be
colored easily by a local argument. Any coloring of G∗ can then be extended to a coloring of G
by inserting the removed edges in the reverse order one by one, always assigning a valid color
instantly. The actual algorithm is more complex since sometimes one has to ‘forget’ about the
existence of certain cliques in order to remove enough from G. As we shall see, we can easily
deal with those cliques later.

In order to simplify notation, for any graph G we define the families

LG := {L ⊆ G : L ∼= K`} and RG := {R ⊆ G : R ∼= Kr}

of all `-cliques and r-cliques in G respectively. Furthermore, we introduce the family

L∗G :=
{
L ∈ LG : ∀e ∈ E(L) ∃R ∈ RG s.t. E(L) ∩ E(R) = {e}

}
⊆ LG .

We define families C and A ⊆ C of graphs as follows. Recall that ε0 = 0.01.

Definition 7. For r ≥ ` ≥ 3, let

C = C(`, r) :=
{
G = (V,E) : ∀e ∈ E(G) ∃(L,R) ∈ LG ×RG s.t. E(L) ∩ E(R) = {e}

}
and

A = A(`, r) := {A ∈ C(`, r) : m(A) ≤ m2(K`,Kr) + ε0 ∧ A is 2-connected} .
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Intuitively, the graphs in A are the building blocks of the graphs G∗ which may remain after the
edge deletion process. We shall see that these families are very small (in fact, they are empty for
r > ` ≥ 4). Finding their explicit representation is quite technical and deferred to Section 3.2.
However, this representation immediately implies the following Lemma, which is all we need for
the proof of Theorem 4.

Lemma 8. For every r ≥ ` ≥ 3, (r, `) 6= (3, 3), the family A(`, r) is finite, and all its members
permit a valid edge coloring avoiding K` in one and Kr in the other color.

Remark 9. Lemma 8 is false for r = ` = 3. This is the reason why our approach does not carry
over to the symmetric triangle case.

For any given graph G, the family SG identifies all maximal subgraphs of G isomorphic to a
member of A, i.e.,

SG := {S ⊆ G : S ∼= A ∈ A ∧ @S′ ) S with S′ ∼= A′ ∈ A} .

Note that there are no two members S1, S2 ∈ SG such that S1 ( S2. For any edge e ∈ E(G), let

SG(e) := {S ∈ SG : e ∈ E(S)} .

We call G an A-graph if, for all e ∈ E(G), we have

|SG(e)| = 1 .

In particular, an A-graph is an edge-disjoint union of graphs from A.

In an A-graph G, there are two types of triangles: triangles that are subgraphs of an S ∈ SG,
and triangles that have edges in at least two different graphs SG. We call the former trivial
triangles and define

TG :=

T ⊆ G : T ∼= K3 ∧

∣∣∣∣∣∣
⋃

e∈E(T )

SG′(e)

∣∣∣∣∣∣ ≥ 2


as the family of all non-trivial triangles in G. We call an A-graph G triangle-sparse if TG = ∅.
The next lemma asserts that triangle-sparse A-graphs are easily colorable.

Lemma 10. There exists a procedure A-Color that returns for any triangle-sparse A-graph a
valid edge coloring.

Proof. Lemma 8 asserts that there exists a valid edge coloring of every A ∈ A. Using this we
define the procedure A-Color(G) as follows: Assign a valid coloring to every subgraph S ∈ SG

locally, that is, regardless of the remaining structure of G. Since G is an A-graph, we thus assign
a color to all edges of G without creating conflicts. As G is triangle-sparse, this procedure cannot
produce non-trivial monochromatic triangles, let alone larger monochromatic cliques with edges
in different subgraphs S ∈ SG. �

The algorithm Asym-Edge-Col is given in Figure 1. Note that edges are removed from and
inserted into a working copy G′ = (V,E′) of G. The local variable L is identical to the family LG′

until the first execution of line 13. Generally, we have L ⊆ LG′ .

Lemma 11. Algorithm Asym-Edge-Col either terminates with an error in line 14 or finds a
valid edge coloring of G.

Proof. Let G∗ denote the argument in the call to A-Color in line 15. By Lemma 10, there is
an edge coloring of G∗ with neither a blue `-clique nor a red r-clique. It remains to show that
no forbidden monochromatic cliques are created when this coloring is extended to a coloring of
G in lines 16–24.

First, we argue that the algorithm never creates a blue copy of K`. Observe that every copy
of K` that does not lie entirely in G∗ is pushed on the stack in the first loop. Therefore, in the
execution of the second loop, the algorithm checks the coloring of every such copy. By the order
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Asym-Edge-Col(G = (V,E))
1 s← empty-stack()
2 E′ ← E
3 L ← LG

4 while G′ = (V,E′) is no triangle-sparse A-graph
5 do if ∃ e ∈ E′ s.t. @(L,R) ∈ L ×RG′=(V,E′) : E(L) ∩ E(R) = {e}
6 then for each L ∈ L : e ∈ E(L)
7 do s.push(L)
8 L.remove(L)
9 s.push(e)

10 E′.remove(e)
11 else if ∃L ∈ L \ L∗G′=(V,E′)

12 then s.push(L)
13 L.remove(L)
14 else error “stuck”
15 A-Color(G′ = (V,E′))
16 while s 6= ∅
17 do if s.top() is an edge
18 then e← s.pop()
19 e.set-color( blue )
20 E′.add(e)
21 else L← s.pop()
22 if L is entirely blue
23 then f ← any e ∈ E(L) s.t. @R ∈ RG′=(V,E′) : E(L) ∩ E(R) = {e}
24 f.set-color( red )

Figure 1. The implementation of algorithm Asym-Edge-Col.

of the elements on the stack, each such test is performed only after all edges of the corresponding
clique were inserted and colored. For every blue copy of K`, one particular edge f (see line 23 of
the algorithm) is recolored to red. Since red edges are never flipped back to blue, no blue copy
of K` can occur in the coloring found by the algorithm.

We need to show that the edge f in line 23 always exists. Since the second loop inserts edges
into G′ in the reverse order in which they were deleted during the first loop, when we select f
in line 23, G′ has the same structure as at the time when L was pushed on the stack. This
happened either in line 7 when there exists no r-clique in G′ that intersects with L on some
particular edge e ∈ E(L), or in line 12 when L satisfies the condition of the if-clause in line 11.
In both cases we have L /∈ L∗G′ , and hence there exists an edge e ∈ E(L) such that all currently
existing copies of Kr do not intersect with L exactly in e.

It remains to prove that changing the color of some edges from blue to red by the algorithm
never creates an entirely red copy of Kr. By the condition on f in line 23 of the algorithm, at
the moment f is recolored there exists no copy of Kr in G′ that intersects L exactly in f . So
there is either no Kr containing f at all, or every such copy contains also another edge from L.
In the latter case, those copies cannot become entirely red since L is entirely blue.

�

It remains to prove the following lemma.

Lemma 12. There exists a constant b = b(`, r) > 0 such that for p ≤ bn−1/m2(K`,Kr), a.a.s.
algorithm Asym-Edge-Col terminates on Gn,p without error.

We prove Lemma 12 by means of an auxiliary algorithm Grow. If Asym-Edge-Col fails on
some graph G, Grow explicitly computes a subgraph F ⊆ G which is either too large or too
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Grow(G′ = (V,E))
1 if ∀e ∈ E : |SG′(e)| = 1
2 then T ← any member of TG′

3 return
⋃

e∈E(T ) SG′(e)
4 if ∃e ∈ E : |SG′(e)| ≥ 2
5 then S1, S2 ← any two distinct members of SG′(e)
6 return S1 ∪ S2

7 e← any e ∈ E : |SG′(e)| = 0
8 F0 ← any R ∈ RG′ : e ∈ E(R)
9 i← 0

10 while i < log(n) ∧ ∀F̃ ⊆ Fi : λ(F̃ ) > −γ
11 do if ∃R ∈ RG′ \ RFi s.t. |V (R) ∩ V (Fi)| ≥ 2
12 then Fi+1 ← Fi ∪R
13 else e← Eligible-Edge(Fi)
14 Fi+1 ← Extend-L(Fi, e,G

′)
15 i← i + 1
16 if i ≥ log(n)
17 then return Fi

18 else return Minimizing-Subgraph(Fi)

Extend-L(F, e,G′)
1 L← any L ∈ L∗G′ : e ∈ E(L)
2 F ′ ← F ∪ L
3 for each e′ in E(L) \ E(F )
4 do Re′ ← any R ∈ RG′ : E(L) ∩ E(R) = {e′}
5 F ′ ← F ′ ∪Re′

6 return F ′

Figure 2. The implementation of algorithm Grow.

dense to appear in Gn,p with p as in the lemma. More precisely, we shall show that for any graph
F that Grow may return, the probability that F appears in Gn,p is small compared to the size
of F , the class of all graphs that Grow may possibly return. It follows that Gn,p a.a.s. does not
contain any of these graphs, which implies Lemma 12 by contradiction. Note that we employ
algorithm Grow only for proving the lemma. It does not contribute to the running time of
algorithm Asym-Edge-Col.

In order to formulate algorithm Grow, we need some definitions. Let

γ = γ(`, r) :=
1

m2(K`,Kr)
− 1

m2(K`,Kr) + ε0
> 0 .

For any graph F , let
λ(F ) := v(F )− e(F )/m2(K`,Kr) .

The definition of λ(F ) is motivated by the fact that the number of copies of F in Gn,p with
p = bn−1/m2(K`,Kr) has the order of magnitude

nv(F )pe(F ) = be(F )nλ(F ) .

For any graph F , we call an edge e ∈ E(F ) eligible for extension if it satisfies

@(L,R) ∈ LF ×RF s.t. E(F ) ∩ E(F ) = {e} .

Note that F is in C (as defined in Definition 7) if and only if it contains no edge that is eligible
for extension.
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The implementation of algorithm Grow is shown in Figure 2. The input is the graph G′ ⊆ G
after Asym-Edge-Col got stuck. It proceeds as follows: Before entering the while-loop, it tests
for two simple special cases. If neither of those special cases occurs, it chooses a suitable seed F0

for the actual growing procedure. In every iteration i of the while-loop, the procedure extends Fi

to Fi+1 by adding new vertices and edges to it. As long as there are copies of Kr in G′ that
intersect with Fi in at least two vertices but not in all edges, it greedily adds those to Fi. If there
are no such copies, it calls a function Eligible-Edge that maps Fi to an edge e ∈ E(Fi) eligible
for extension, provided such an edge exists. Crucially, this edge is unique up to isomorphism of
Fi, i.e., for any two isomorphic graphs F and F ′, there exists an isomorphism ϕ with ϕ(F ) = F ′

such that

Eligible-Edge(F ′) = ϕ(Eligible-Edge(F )) .

Note that this implies in particular that e depends only on the graph Fi and not on the sur-
rounding graph G′. One possible way of implementing Eligible-Edge is to keep a large table
of representatives for all isomorphism classes of graphs with up to n vertices. Since we only
want to show the existence of a certain structure in G′ and do not care about complexity issues
here, the actual implementation of Eligible-Edge is irrelevant. Procedure Extend-L then
adds a graph L ∈ L∗G′ that contains the edge e returned by Eligible-Edge to Fi. To each new
edge e′ ∈ E(L) \ E(Fi), it glues a graph Re′ ∈ RG′ that intersects L only in e′. (We will argue
that this is always possible later.) The algorithm stops as soon as i ≥ log(n) or λ(F̃ ) ≤ −γ for
some F̃ ⊆ Fi. In the former case, it returns Fi, in the latter case, a subgraph F̃ ⊆ Fi that mini-
mizes λ(F̃ ). We assume that, for each graph F , the function Minimizing-Subgraph(F ) returns
such a minimizing subgraph that is unique up to isomorphism. Similarly to Eligible-Edge,
Minimizing-Subgraph could be implemented using a huge lookup-table.

We shall argue that Grow terminates without error, i.e., that Eligible-Edge always finds an
edge eligible for extension, and that all ‘any’-assignments in Grow and Extend-L are always
successful.

Let us consider the properties of G′ when Asym-Edge-Col gets stuck. Since the condition
in line 5 of Asym-Edge-Col fails, G′ is in the family C. In particular, every edge of G′ is
contained in a copy L ∈ L, and, since the condition in line 11 fails as well, we know that this L
belongs to L∗G′ . That is, G′ is even in the smaller family

C∗ = C∗(`, r) :=
{
G = (V,E) : ∀e ∈ E(G) ∃L ∈ L∗G s.t. e ∈ E(L)

}
⊆ C .

Lastly, G′ is not a triangle-sparse A-graph because Asym-Edge-Col terminated with an error.

Claim 13. Algorithm Grow terminates without error on any input graph G′ ∈ C∗ that is no
triangle-sparse A-graph. Moreover, for every iteration i of the while-loop, we have e(Fi+1) >
e(Fi).

Proof. We first show that nothing can go wrong if one of the two special cases in lines 1 to 6
occurs. The first case occurs if and only if G′ is an A-graph. By assumption, G′ is not triangle-
sparse, that is, the family TG′ is not empty. Hence the assignment in line 2 is successful. Clearly,
the assignment in line 5 is always successful due to the if-condition in line 4.

It is also easily seen that the assignments in lines 7 and 8 are successful: none of the two special
cases occurred, therefore there must be an edge e ∈ E(G′) that is not contained in any S ∈ SG′ .
Also, there must be a member of RG′ that contains e because G′ is a member of C∗ ⊆ C.
Next, we show that the call to Eligible-Edge in line 13 is always successful. Suppose there is
no edge in Fi that is eligible for extension for some i ≥ 0. Then we have Fi ∈ C by definition.
Moreover, it is easily seen that Fi is 2-connected by construction. However, the choice of
F0 in line 8 guarantees that Fi is not in A, because the edge e that was selected in line 7
satisfies |SG′(e)| = 0 and is contained in F0 ⊆ Fi ⊆ G′. It follows from the definition of A that
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m(Fi) > m2(K`,Kr) + ε0. Thus, there exists a graph F̃ ⊆ Fi with d(F̃ ) = m(Fi) that satisfies

λ(F̃ ) def= v(F̃ )− e(F̃ )
m2(K`,Kr)

= e(F̃ )
(

1
m(Fi)

− 1
m2(K`,Kr)

)
≤ e(F̃ )

(
1

m2(K`,Kr) + ε0
− 1

m2(K`,Kr)

)
def= −γe(F̃ ) ≤ −γ .

Consequently, Grow terminates in line 10 without calling Eligible-Edge. Hence, each call to
Eligible-Edge in Grow is successful and returns an edge e. The subsequent call to Extend-L(Fi, e, G

′)
is successful since we have G′ ∈ C∗ and hence there exist suitable graphs L ∈ L∗G′ with e ∈ E(L)
and Re′ for each e′ ∈ E(L) \ E(Fi).

Finally, we show that for every iteration i of the while-loop, we have e(Fi+1) > e(Fi). Since an
R found in line 12 is a clique in G′ but not in Fi, it is clear that Fi+1 = Fi ∪R has at least one
more edge than Fi.

Hence we assume that lines 13 and 14 are called. Let e denote the edge chosen in line 13 and
L the subgraph chosen in line 1 of Extend-L(Fi, e, G

′). By the definition of L∗G′ , there exists
Re ∈ RG′ such that e is the intersection of Re and L. When Extend-L(Fi, e, G

′) is called, we
must have Re ∈ RFi because the condition on line 11 of Grow failed. Hence, the graph L is
not contained in Fi, since otherwise e would not be eligible for extension. Consequently, we
have e(Fi+1) ≥ e(Fi ∪ L) > e(Fi). �

Now, we look at the evolution of Fi in more detail. We say that iteration i of the while-loop in
procedure Grow is non-degenerate if all of the following assertions hold:

• The condition in line 11 evaluates to false and consequently Extend-L is called.
• In line 2 of Extend-L, we have V (F ) ∩ V (L) = e.
• In every execution of line 5 of Extend-L, we have V (F ′) ∩ V (Re′) = e′.

Otherwise, we call iteration i degenerate. In non-degenerate iterations, Fi+1 is uniquely defined
up to isomorphism for any given Fi. The structure of Fi+1 depends solely on the implementation
of the subroutine Eligible-Edge, which determines the position where to attach the next copy
of K`. Observe that the structures which are added in every step are isomorphic. A graph F2

that results from two non-degenerate iterations is depicted in Figure 3 for r = 6 and ` = 4. The
little dashed circle identifies F0. The greater dotted circle circumscribes F1.

Claim 14. If iteration i of the while-loop in procedure Grow is non-degenerate, we have

λ(Fi+1) = λ(Fi) .

Proof. In a non-degenerate iteration, the graph L added in line 1 of Extend-L contributes `−2
new vertices and

(
`
2

)
− 1 new edges to F . Each of these new edges then is replaced by a copy

of Kr. Hence, using the definition of m2(K`,Kr) in Theorem 4, we obtain

λ(Fi+1)− λ(Fi) = `− 2 +
((

`
2

)
− 1
)

(r − 2)−
((

`
2

)
− 1
) (

r
2

)
m2(K`,Kr)

=
((

`
2

)
− 1
)( `− 2(

`
2

)
− 1

+ r − 2−
(

r − 2 +
1

m2(K`)

))
= 0 .

�

In a degenerate iteration i, the structure of Fi+1 is not just a function of Fi, but varies with the
structure of G′. Suppose that Fi is extended with an r-clique R in line 5. This R can intersect
Fi in virtually every possible way. Moreover, there may be several copies of Kr that satisfy
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Figure 3. A graph F2 resulting from two non-degenerate iterations for r = 6
and ` = 4. The two central copies of K4 are shaded.

the condition in line 11. The same is true for the graphs added in lines 2 and 5 of Extend-L.
Thus, degenerate iterations cause difficulties since they enlarge the family of graphs that algo-
rithm Grow can return. However, we will show that at most a constant number of degenerate
iterations can occur before the algorithm terminates. This allows us to control the number of
non-isomorphic graphs that Grow may return. The key for proving this is the next claim.

Claim 15. There exists a constant κ = κ(`, r) > 0 such that if iteration i of the while-loop in
procedure Grow is degenerate, we have

λ(Fi+1) ≤ λ(Fi)− κ .

The proof of Claim 15 is the main technical part of this work and postponed to Section 3.1. In
combination, Claims 14 and 15 yield the next claim, which in turn leads to a polylogarithmic
bound on the number of non-isomorphic graphs that Grow can return.

Claim 16. There exists a constant m0 = m0(`, r) such that algorithm Grow performs at
most m0 degenerate iterations before it terminates, regardless of the input instance G′.

Proof. An easy calculation yields that λ(F0) = λ(Kr) = 2−2/(`+1). The value of the function λ
remains unchanged in every non-degenerate iteration due to Claim 14. However, Claim 15 yields
a constant κ, which depends solely on ` and r, such that

λ(Fi+1) ≤ λ(Fi)− κ

for every degenerate iteration i. Hence, after at most

m0 :=
λ(F0) + γ

κ

degenerate iterations, we have λ(Fi) ≤ −γ, and the algorithm terminates. �

Let F̃ = F̃(`, r, n) denote a family of representatives for the isomorphism classes of all graphs
that can be the output of Grow with parameters n and γ(`, r) on any input instance G′ for
which it enters the while-loop.
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Claim 17. There exists a constant C = C(`, r) such that |F̃(`, r, n)| ≤ log(n)C for n sufficiently
large.

Proof. Since the output of function Minimizing-Subgraph is unique up to isomorphism, it
suffices to count the graphs Fi that can be generated in the while-loop of Grow. For 0 ≤
d ≤ t ≤ dlog ne, let F(t, d) denote a family of representatives for the isomorphism classes of all
graphs Ft that algorithm Grow can generate after exactly t iterations if it performs exactly d
degenerate iterations along the way. Let f(t, d) := |F(t, d)| denote its cardinality.

Observe that in every iteration, we add at most

K := `− 2 +
(

`

2

)
(r − 2)

new vertices to F , which is exactly the number of vertices added in a non-degenerate iteration.
Hence, we have v(Ft) ≤ r + Kt. It also follows that in every iteration, the new edges E(Ft+1) \
E(Ft) span a graph from GK , where GK denotes the set of all graphs on at most K vertices.
Ft+1 is uniquely defined if one specifies G ∈ GK , the number y of vertices in which G intersects
Ft, and two ordered lists of vertices from G and Ft respectively of length y, which specify the
mapping of the intersection vertices from G into Ft. Thus, the number of ways to extend Ft is
bounded from above by∑

G∈GK

v(G)∑
y=2

v(G)yv(Ft)y ≤ |GK | ·K ·KK(r + Kt)K ≤ dlog(n)eC0 ,

where the constant C0 depends only on ` and r, and n is sufficiently large.

As the selection of the edge to be extended is unique up to isomorphism of F , the evolution of
F is uniquely defined if there are no degenerate iterations along the way, regardless of the input
instance G′. This implies in particular that f(t, 0) = 1 for all t, and more generally that for
0 ≤ d ≤ t ≤ dlog ne,

f(t, d) ≤
(

t

d

)(
dlog(n)eC0

)d ≤ dlog(n)e(C0+1)d .

Here the binomial coefficient corresponds to the choice of the d degenerate iterations. Claim 16
yields a constant m0 = m0(`, r) > 0 such that

|F̃(`, r, n)| ≤
dlog(n)e∑

t=0

min{t,m0}∑
d=0

f(t, d)

≤ (dlog(n)e+ 1)(m0 + 1)dlog(n)e(C0+1)m0 ≤ log(n)C

for an appropriately chosen constant C = C(`, r) and n sufficiently large. �

Let now F = F(`, r, n) ⊇ F̃ denote a family of representatives for the isomorphism classes of all
graphs that can be the output of Grow, regardless of whether it enters the while-loop or not.

Claim 18. There exists a constant b = b(`, r) > 0 such that for p ≤ bn−1/m2(K`,Kr), Gn,p does
not contain any graph from F(`, r, n) a.a.s.

Proof. We start by considering the two special cases in lines 1 to 6. Let F0 = F0(`, r) ⊆ F
denote the class of graphs that can be the output of Grow if one of these cases occurs. Clearly,
we have F = F0 ∪ F̃ . Due to the conditions in lines 1 and 4 of Grow, any F ⊆ F0 is of the
form

F =
⋃

e∈E(T )

SG′(e)

for some triangle T ∈ TG′ , or of the form

F = S1 ∪ S2
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for some edge-intersecting S1, S2 ∈ SG′ . Either way, as all elements of SG′ are 2-connected
and in C, so is the resulting F ∈ F0. On the other hand, F ⊆ G′ is not in SG′ and thus not
isomorphic to a graph in A, as otherwise the graphs S forming F would not be in SG′ due to
the maximality condition in the definition of SG′ . It follows that m(F ) > m2(K`,Kr) + ε0. By
Lemma 8, the family F0 is finite, hence Markov’s inequality yields that Gn,p contains no graph
from F0 a.a.s.

Now, suppose that Grow enters the while-loop. Let F1 and F2 denote the classes of graphs
that algorithm Grow can output in lines 17 and 18, respectively. For all F ∈ F1, we have
that e(F ) ≥ log(n), as F was generated in dlog(n)e iterations, each of which introduces at least
one new edge by Claim 13. Moreover, Claims 14 and 15 imply that λ(Fi) is non-increasing.
Thus, we have that λ(F ) ≤ λ(F0) for all F ∈ F1. For all F ∈ F2, we have that λ(F ) ≤ −γ due
to the condition in line 10 of Grow. Since we have chosen F0 = Kr as the seed of the growing
procedure, it follows that for

b := e−λ(Kr)−γ ≤ 1 ,

the expected number of copies of graphs from F̃ in Gn,p with p ≤ bn−1/m2(K`,Kr) is bounded by

∑
F∈F̃

nv(F )pe(F ) =
∑
F∈F̃

be(F )nλ(F )

≤
∑

F∈F1

e(−λ(F0)−γ) log(n)nλ(F0) +
∑

F∈F2

n−γ

=
∑

F∈F1

n−γ +
∑

F∈F2

n−γ

≤ 2(log(n))Cn−γ = o(1) ,

where the last inequality follows from Claim 17. Consequently, Markov’s inequality implies that
Gn,p a.a.s. contains no graph from F̃ .

Combined with the earlier observation that Gn,p a.a.s. has no subgraph from F0, this proves
that Gn,p a.a.s. contains no graph from F = F0 ∪ F̃ . �

Proof of Lemma 12. Suppose that the call to Asym-Edge-Col(G) gets stuck for some graph G,
and consider G′ ⊆ G at this moment. The call to Grow(G′) returns a copy of a graph F ∈
F(`, r, n) that is contained in G′ ⊆ G. By Claim 18 this event does a.a.s. not occur in G = Gn,p

with p as claimed. This proves that Asym-Edge-Col finds a valid coloring of Gn,p with
p ≤ bn−1/m2(K`,Kr) a.a.s. �

Clearly, Lemma 12 implies the 0-statement of Theorem 4. It thus remains to prove Claim 15
and Lemma 8, which we do in Sections 3.1 and 3.2 respectively.

3.1. Proof of Claim 15

We say that Algorithm Grow encounters a degeneracy of type 1 if the condition on line 11
evaluates to true.

Claim 19. There exists a constant κ1 = κ1(`, r) > 0 such that if procedure Grow encounters a
degeneracy of type 1 in iteration i of the while-loop, we have

λ(Fi+1) ≤ λ(Fi)− κ1 .

Proof. The claim is trivial if R overlaps with Fi in r vertices since in that case we have to add
at least one edge to Fi but no vertex, and therefore κ1 ≥ 1/m2(K`,Kr). Hence, assume that R
extends Fi by x, 1 ≤ x ≤ r − 2 vertices. Then it must add at least

(
x
2

)
+ x(r − x) edges to F ,

and thus we have

λ(Fi+1)− λ(Fi) ≤ x−
(
x
2

)
+ x(r − x)

m2(K`,Kr)
=: g(x) .



14 M. MARCINISZYN, J. SKOKAN, R. SPÖHEL, AND A. STEGER

We can rewrite g(x) to

g(x) =
x

r(r − 1)(` + 1)
(
(`(r − 2) + r)x− r2 − (r(r − 4) + 2)`

)
.

The function g(x) is a quadratic parabola, which attains zero for x1 = 0 and

x2 =
r2 + (r(r − 4) + 2)`

`(r − 2) + r
.

Since

x2 − (r − 2) =
2(r − `)

`(r − 2) + r
> 0 ,

g(x) is negative in the entire interval [1, r − 2] and attains its maximum at either end of this
interval. In fact, we have

g(r − 2)− g(1) =
(r − 3)(`− 1)
(r − 1)(l + 1)

> 0 .

Hence, it is safe to choose κ1 as

κ1 = min
{

1
m2(K`,Kr)

, −g(r − 2)
}

.

�

Before tackling the degeneracies that can occur when the condition in line 11 evaluates to
false and Extend-L is called, we state a technical lemma that turns out to be crucial in our
framework. In this lemma, we will consider graphs consisting of a copy of some graph J , every
edge of which is embedded into an outer r-clique, where these outer r-cliques may overlap. We
define the following families of graphs.

Definition 20. For every graph J = (V,E) and every integer r ≥ 3, let

H(J, r) :=
{

Jr = (V
.
∪ U,E

.
∪ D) : Jr is a minimal graph such that

for all e′ ∈ E, there are sets U(e′) ⊆ U and D(e′) ⊆ D with(
e′

.
∪ U(e′), {e′}

.
∪ D(e′)

)
∼= Kr

}
.

We refer to V and E as the inner vertices and edges respectively, which form the inner copy of J .
Every edge e′ ∈ E forms together with its associated outer vertices U(e′) and outer edges D(e′)
an outer copy of Kr. Hence, |U(e′)| = r− 2 and |D(e′)| =

(
r
2

)
− 1 for all e′ ∈ E. The minimality

condition is understood w.r.t. subgraph inclusion, i.e., Jr ∈ H(J, r) does not have a subgraph
which satisfies the same properties. This ensures in particular that H(J, r) is finite. Observe
that for any nonempty graph J and integer r ≥ 3 there is a unique graph Jr∗ ∈ H(J, r) in
which the copies of the outer cliques are pairwise disjoint, i.e., which satisfies U(e1)∩U(e2) = ∅
and D(e1) ∩D(e2) = ∅ for all pairs e1, e2 ∈ E. The following lemma relates the average degree
of Jr∗ to that of all other members of the family H(J, r).

Lemma 21. Let r ≥ 3 be a fixed integer and J be a balanced nonempty graph. Let Jr∗ denote the
unique member of H(J, r) with pairwise disjoint outer cliques. Then every member Jr ∈ H(J, r)
satisfies

e(Jr)
v(Jr)

≥ e(Jr∗)
v(Jr∗)

.

Although the statement of Lemma 21 may seem unsurprising, its proof is quite involved and
deferred to Section 3.1.1.

With Lemma 21 at hand, we turn our attention back to the proof of Claim 15. We say that
algorithm Grow encounters a degeneracy of type 2 in iteration i of the while-loop if, during
the call to Extend-L(Fi, e,G

′), the graph L found in line 1 overlaps in more than two vertices
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with Fi, or if there exists an edge e′ ∈ E(L) \ E(F ) such that the graph Re′ found in line 4
overlaps in more than two vertices with F ′.

Claim 22. There exists a constant κ2 = κ2(`, r) > 0 such that if procedure Grow encounters a
degeneracy of type 2 in iteration i of the while-loop, we have

λ(Fi+1) ≤ λ(Fi)− κ2 .

Proof. Consider the graph F := Fi that is passed to Extend-L and the output of this proce-
dure F ′ := Fi+1. We need to show that there exists a constant κ2 > 0 such that

λ(F )− λ(F ′) = v(F )− v(F ′)− e(F )− e(F ′)
m2(K`,Kr)

≥ κ2 . (3)

As we have argued before, the structure of F ′ would be uniquely defined up to isomorphism
just by the structure of F if iteration i was non-degenerate. Let F ∗ denote the output of such
a virtual non-degenerate iteration. We transform any degenerated outcome F ′ into F ∗ in three
steps

F ′ = F 0 (i)→ F 1 (ii)→ F 2 (iii)→ F 3 = F ∗ ,

each time carefully resolving certain kinds of degeneracies. By Claim 14 we have λ(F )−λ(F ∗) =
0, and, using a telescoping summation, we may rewrite λ(F )− λ(F ′) to

λ(F )− λ(F ′) = λ(F ∗)− λ(F ′) =
3∑

j=1

(
λ(F j)− λ(F j−1)

)
=

3∑
j=1

(
v(F j)− v(F j−1)− e(F j)− e(F j−1)

m2(K`,Kr)

)
.

We shall show that for all 1 ≤ j ≤ 3, we have

v(F j)− v(F j−1)− e(F j)− e(F j−1)
m2(K`,Kr)

≥ κ2 (4)

for a suitable κ2 = κ2(`, r) > 0, provided that F j and F j−1 are not isomorphic. In each step j,
1 ≤ j ≤ 3, we consider a different structural property of F ′ resulting from a degeneracy of
type 2. Since we do not know the exact structure of F ′, not every step j will necessarily modify
the structure of F j−1. However, at least for one j, F j is not isomorphic to F j−1 since F ′ is not
isomorphic to F ∗. This suffices to conclude (3) from (4).

Let us carefully analyze the graph that procedure Extend-L appends to F when a degeneracy
of type 2 occurs. First, it extends F by L ∼= K`. Let x denote the number of new vertices that L
contributes to F , i.e., x = |V (L) \ V (F )|. Observe that x ≤ `− 2 since L must overlap with F
in at least one edge e, which was determined by subroutine Eligible-Edge. As all edges of
L ∈ L∗G′ are covered by copies of Kr, and since the condition in line 11 of Grow evaluates to
false in iteration i, we have (

V (F ) ∩ V (L)
2

)
⊆ E(F ) . (5)

This also implies that x ≥ 1, as otherwise F would not be extended by at least one edge,
contradicting Claim 13.

Let Lx ⊆ L denote the graph where all edges in E(F )∩E(L) were removed from L. Clearly, we
have v(Lx) = ` and

e(Lx) =
(

`

2

)
−
(

`− x

2

)
=
(

x

2

)
+ x(`− x) .

To every edge e′ ∈ E(Lx), Extend-L glues a graph Re′
∼= Kr in line 5 which intersects with L

only in e′. (Recall that such a graph always exists since L ∈ L∗G′ .) Let LR
x denote the graph

Lx ∪
⋃

e′∈E(Lx)

Re′ .
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Due to (5), F ′ can be written as F ∪ LR
x , and as the condition in line 11 of Grow fails, we

have E(F ′) = E(F )
.
∪ E(LR

x ). Therefore, we have

e(F ′)− e(F ) = e(LR
x ) .

We may also conclude that |V (F ) ∩ V (Lx)| = `− x and thus

v(F ′)− v(F ) = v(LR
x )−

∣∣V (F ) ∩ V (LR
x )
∣∣

= v(LR
x )− (`− x)−

∣∣V (F ) ∩
(
V (LR

x ) \ V (Lx)
)∣∣ .

Assuming
∣∣V (F ) ∩

(
V (LR

x ) \ V (Lx)
)∣∣ > 0, we apply transformation (i) mapping F 0 to F 1. The

transformation introduces, for every vertex v ∈ V (F )∩
(
V (LR

x ) \ V (Lx)
)
, an additional vertex v′.

All edges incident to v belonging to E(F ) remain connected to v and those belonging to E(LR
x )

are redirected to v′. Thus, we disconnect the vertices in V (LR
x )\V (Lx) from the vertices in V (F ).

In LR
x we replace the vertices V (F ) ∩ (V (LR

x ) \ V (Lx)) by the new vertices. Since there are no
edges in E(LR

x )∩E(F ), the output of this operation is uniquely defined, and the structure of LR
x

is not affected. Hence, we have

v(F 1)− v(F 0)− e(F 1)− e(F 0)
m2(K`,Kr)

= |V (F ) ∩ (V (LR
x ) \ V (Lx))| ≥ 1 . (6)

By construction, F 1 satisfies V (F ) ∩
(
V (LR

x ) \ V (Lx)
)

= ∅.

Next, we shall disconnect copies of Kr in LR
x that mutually intersect. Let Kx

` denote the graph
isomorphic to Lx, i.e., a clique on ` vertices from which all edges of a clique on ` − x vertices
were removed. Since transformation (i) does not change the structure of LR

x , that graph consists
of an inner copy Lx

∼= Kx
` with every edge embedded into an r-clique, where these outer cliques

may mutually intersect. Using the notation from Definition 20, LR
x is isomorphic to a graph

(Kx
` )r ∈ H(Kx

` , r).

Transformation (ii) proceeds by replacing LR
x in F 1 by a copy LR∗

x of the unique graph (Kx
` )r∗ ∈

H(Kx
` , r) in which the outer r-cliques are disjoint. Due to the assumption that V (F )∩

(
V (LR

x ) \ V (Lx)
)

=
∅, LR

x intersects F in exactly ` − x anchor points. We obtain the graph F 2 by removing LR
x

and attaching LR∗
x
∼= (Kx

` )r∗ to the very same anchor points. F 2 is uniquely defined up to
isomorphism due to the symmetries in (Kx

` )r∗. Observe that if LR
x is not isomorphic to (Kx

` )r∗,
the minimality condition in the definition of H(Kx

` , r) yields that v(LR
x ) < v(LR∗

x ). Together
with Lemma 21, we obtain that

v(F 2)− v(F 1)− e(F 2)− e(F 1)
m2(K`,Kr)

= v(F ∪ LR∗
x )− v(F ∪ LR

x )− e(F ∪ LR∗
x )− e(F ∪ LR

x )
m2(K`,Kr)

= v(LR∗
x )− v(LR

x )− e(LR∗
x )− e(LR

x )
m2(K`,Kr)

L.21
≥ v(LR∗

x )− v(LR
x )−

e(LR∗
x )− e(LR∗

x ) v(LR
x )

v(LR∗
x )

m2(K`,Kr)

=
(
v(LR∗

x )− v(LR
x )
)(

1− e(LR∗
x )

v(LR∗
x )m2(K`,Kr)

)
(7)

≥ 1−

(
e(Lx)

(
r
2

)) (
r − 2 + 1

m2(K`)

)
(
e(Lx)(r − 2) + v(Lx)

)(
r
2

)
= 1−

e(Lx)
(
r − 2 + 2

`+1

)
e(Lx)(r − 2) + `
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=
`− e(Lx) 2

`+1

e(Lx)(r − 2) + `
x≤`−2
≥ 2((

`
2

)
− 1
)

(r − 2) + `
.

It remains to prove (4) for the last transformation (iii). We transform F 2 to F 3 by replacing
the graph LR∗

x
∼= (Kx

` )r∗ by a copy LR∗
`−2 of (K`−2

` )r∗ if x < `− 2. Note that for ` = 3 we always
have x = 1, so this step never applies. (K`−2

` )r∗ ∈ H(K`−2
` , r) consists of an inner graph K`−2

` ,
a clique on ` vertices with one missing edge, with mutually disjoint copies of Kr sitting on these
inner edges. Recall that the function Eligible-Edge determines an edge e ∈ E(F ) which is
contained in an `-clique L ∈ L∗G′ that extends F . In transformation (iii), we detach LR∗

x
∼= (Kx

` )r∗

from F 2 by removing all but the `− x vertices that join LR∗
x and F . Then, we glue a copy LR∗

`−2

of (K`−2
` )r∗ to F by identifying the edge e that was returned from Eligible-Edge(Fi) and the

edge missing in K`−2
` that complements it to a complete graph.

Since 0 < x < `− 2, we have

v(F 3)− v(F 2)− e(F 3)− e(F 2)
m2(K`,Kr)

= v(F ∪ LR∗
`−2)− v(F ∪ LR∗

x )−
e(F ∪ LR∗

`−2)− e(F ∪ LR∗
x )

m2(K`,Kr)

=
(
v(LR∗

`−2)− 2
)
−
(
v(LR∗

x )− (`− x)
)
−

e(LR∗
`−2)− e(LR∗

x )
m2(K`,Kr)

=
(
e(L`−2)− e(Lx)

)
(r − 2) + `− 2− x−

(
e(L`−2)− e(Lx)

)(
r
2

)
m2(K`,Kr)

= `− 2− x +
[(

`

2

)
− 1−

((
`

2

)
−
(

`− x

2

))][
(r − 2)−

(
r − 2 +

1
m2(K`)

)]
(8)

= `− 2− x−
((

`− x

2

)
− 1
)

2
` + 1

= `− 2− x− (`− 2− x)(` + 1− x)
` + 1

= (`− 2− x)
x

` + 1

1≤x<`−2
≥ `− 3

` + 1
.

Hence, setting κ2 to

κ2 := min

1,
2((

`
2

)
− 1
)

(r − 2) + `
,
`− 3
` + 1


satisfies (4) due to (6), (7), and (8). Note that we can ignore the last term for ` = 3. This
completes the proof of Claim 22. �

Claim 15 now follows directly from Claims 19 and 22. It remains to prove Lemma 21.

3.1.1. Proof of Lemma 21. The intuition behind our approach is the following: Jr∗ can be
transformed into any given Jr ∈ H(J, r) by successively merging outer copies of Kr. We shall
do this in eJ − 1 steps, fixing a linear ordering on the inner edges E. For every edge f ∈ E,
we merge the attached outer copy K̂(f) ∼= Kr to outer copies attached to edges preceding f in
that ordering, keeping track of the number of edges ∆e(f) and vertices ∆v(f) vanishing in the
process. One might hope that the density of Jr increases in every step of this process or, slightly
stronger, that ∆e(f)/∆v(f) ≤ e(Jr∗)/v(Jr∗) for all f ∈ E. Unfortunately, this does not hold,
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but we shall prove the existence of enough ‘good’ steps in the process to compensate for all ‘bad’
ones which may arise. To find these good steps, we will group the edges f ∈ E into appropriate
‘phases’ such that the existence of bad steps in a phase implies the existence of some good steps
earlier in that phase.

Recall that in every graph Jr = (V
.
∪ U,E

.
∪ D) ∈ H(J, r), the inner copy (V,E) is isomorphic to

J . By definition, for each inner edge f ∈ E, we can identify sets of outer vertices U(f) ⊆ U and
outer edges D(f) ⊆ D such that K̂(f) := (U(f)

.
∪ f,D(f)

.
∪ {f}) is isomorphic to Kr. While

these sets are not necessarily unique, for the rest of the proof, we fix one choice of appropriate
sets U(f) and D(f). Note that by the minimality condition in Definition 20, every vertex and
edge is included in at least one outer copy. Similarly, let K̂−(f) := (U(f)

.
∪ f,D(f)) denote

the subgraph that is obtained by removing f from K̂(f). For every outer vertex u ∈ U and for
every outer edge d ∈ D of Jr, the sets

E(u) := {f ∈ E : u ∈ U(f)}
and

E(d) := {f ∈ E : d ∈ D(f)}
indicate in which outer copies K̂(f) u and d, respectively, participate.

Note that ∑
d∈D

|E(d)| =
∑
d∈D

∑
f∈E:

d∈D(f)

1 =
∑
f∈E

∑
d∈D:

d∈D(f)

1 =
∑
f∈E

|D(f)| = eJ

((
r

2

)
− 1
)

and analogously ∑
u∈U

|E(u)| = eJ(r − 2) .

Owing to

e(Jr)− |D| = eJ = e(Jr∗)− eJ

((
r

2

)
− 1
)

= e(Jr∗)−
∑
d∈D

|E(d)| ,

we have
e(Jr) = e(Jr∗)−

∑
d∈D

(
|E(d)| − 1

)
(9)

and analogously
v(Jr) = v(Jr∗)−

∑
u∈U

(
|E(u)| − 1

)
. (10)

Next, we impose a linear order on the vertices and edges of J . To simplify the notation we set
` := vJ for the remainder of the proof. By averaging, it is easy to see that for every balanced
graph J there exists an ordering [v1, . . . , v`] of its vertices such that for all 2 ≤ i ≤ `, vi has at
most b2d(J)c neighbors among {v1, . . . , vi−1} in J . In fact, we can compute such an ordering
by recursively removing a vertex of minimum degree. W.l.o.g. we assume that the inner vertices
V are ordered in this way. This ordering induces a mapping p : E → {2, . . . , `}, which assigns
every inner edge to the greater label of its two vertices. We call p(f) the phase of edge f . This
mapping induces a partial order on E, which can be extended to a total order ≺ by choosing an
arbitrary order on edges of the same phase.

For f ∈ E, we define

∆E(f) := D(f) ∩

 ⋃
f ′≺f

D(f ′)

 , (11)

∆V (f) := U(f) ∩

 ⋃
f ′≺f

U(f ′)

 , (12)
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and set ∆e(f) := |∆E(f)|, ∆v(f) := |∆V (f)|. Intuitively, ∆e(f) is the number of edges vanishing
from K̂−(f) when it is merged with preceding outer copies. Analogously, ∆v(f) is the number
of vertices vanishing in this merge operation.

∆E(f) contains all edges d ∈ D(f) that also belong to D(f ′) for some edge f ′ ≺ f . By definition,
both f and f ′ are in E(d). Therefore, we have∑

f∈E

∆e(f) =
∑
f∈E

∑
d∈D:

d∈D(f)
f 6=min E(d)

1 =
∑
d∈D

∑
f∈E:

d∈D(f)
f 6=min E(d)

1 =
∑
d∈D

(
|E(d)| − 1

)

and, by (9),

e(Jr) = e(Jr∗)−
∑
f∈E

∆e(f) . (13)

Analogously, we obtain from (10) that

v(Jr) = v(Jr∗)−
∑
f∈E

∆v(f) . (14)

In order to calculate the density of Jr, we introduce the following quantities. For every phase i,
2 ≤ i ≤ `, we define

∆i
e :=

∑
f∈E:

p(f)=i

∆e(f)

and
∆i

v :=
∑
f∈E:

p(f)=i

∆v(f) .

Owing to (13) and (14), we can express the density of Jr simply as

e(Jr)
v(Jr)

=
e(Jr∗)−∆2

e − . . .−∆`
e

v(Jr∗)−∆2
v − . . .−∆`

v

. (15)

We call phase i trivial if ∆i
v = 0, which implies ∆i

e = 0. By Proposition 6, to show that

e(Jr)
v(Jr)

≥ e(Jr∗)
v(Jr∗)

it suffices to prove that, in every non-trivial phase i, we have

∆i
e

∆i
v

≤ e(Jr∗)
v(Jr∗)

. (16)

To prove this, suppose a non-trivial phase i ∈ [`]\{1} is fixed. For every step f ∈ E with p(f) = i,
let

q(f) :=
∆e(f)
∆v(f)

and
T (f) :=

(
∆V (f)

.
∪ f, ∆E(f)

)
⊆ K̂−(f) .

Intuitively, the graph T (f) is formed by the edges and vertices that vanish in the merge step f .
However, we have to add the two vertices of f to guarantee that the graph is well-defined. We
say that an edge f ∈ E, p(f) = i, is bad if q(f) > d(Jr∗). Note that, by (15) and Proposition 6,
phase i trivially satisfies (16) if it does not contain bad edges. We shall demonstrate that this
is the case if J is a tree. In all other cases, our strategy is to show that there are sufficiently
many good edges in phase i that can compensate for the bad ones.
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First, let us rewrite d(Jr∗) = e(Jr∗)/v(Jr∗). Easy algebraic transformations yield

d(Jr∗) =
eJ

(
r
2

)
eJ(r − 2) + vJ

=
r + 1

2
−

r+1
2 −

eJ
vJ

eJ
vJ

(r − 2) + 1

= d2(Kr)− d2(Kr)− d(J)
d(J)(r − 2) + 1

.

(17)

Now, suppose that J is a tree. Then d(J) ≥ 1/2, and we deduce from (17) that

d(Jr∗) ≥ d2(Kr)−
d2(Kr)− 1

2
1
2(r − 2) + 1

=
r + 1

2
− 1 =

r − 1
2

.

On the other hand, since for a tree b2d(J)c = 1, phase i consists of a single edge f = {vi, vj},
j < i. Furthermore, if some edge incident to vi vanished in phase i, it would necessarily belong to
the outer edges D(f ′) of some edge f ′ ≺ f (cf. (11)). This, however, is impossible since otherwise
phase i would consist of both edges f and f ′. Therefore, the vertex vi remains isolated in T (f),
and we have

∆E(f) ⊆
(

∆V (f)
.
∪ {vj}

2

)
.

From this we obtain

q(f) ≤
(
∆v(f)+1

2

)
∆v(f)

=
∆v(f) + 1

2
≤ r − 1

2
≤ d(Jr∗)

and conclude that in the case of trees, every phase consists of just one good edge.

In the remaining part of the proof, suppose that J contains at least one cycle. As J is balanced,
we have d(J) ≥ 1 and, owing to (17),

d(Jr∗) ≥ d2(Kr)− d2(Kr)− 1
r − 1

=
r + 1

2
− 1

2
=

r

2
. (18)

Let f = {vi, vj}, j < i, be any edge in phase i. A trivial bound on ∆e(f) is

∆e(f) ≤
(

∆v + 2
2

)
− 1 , (19)

resulting from

∆E(f) ⊆
(

∆V (f)
.
∪ f

2

)
\ {f} .

We will now derive a stronger bound. Owing to (11) and (12), we have

T (f) =
(

∆V (f)
.
∪ f, ∆E(f)

)
= K̂−(f) ∩G(f) ,

where
G(f) :=

⋃
f ′≺f

K̂−(f ′) .

Intuitively, in the merge step f the outer copy K̂(f) is merged from its virtual non-merged
position onto G(f), and the graph T (f) describes the vertices and edges vanishing in the process.
We decompose G(f) into

G0 :=
⋃

f ′∈E
p(f ′)<i

K̂−(f ′) and Gi(f) :=
⋃

f ′≺f
p(f ′)=i

K̂−(f ′)

and let
U0 :=

⋃
f ′∈E

p(f ′)<i

U(f ′) and Ui(f) :=
⋃

f ′≺f
p(f ′)=i

U(f ′)
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denote the corresponding sets of outer vertices.

The crucial observation is that the neighborhood of vi in G(f) entirely lies in Ui(f) since vi is not
contained in the graph K̂−(f ′) for any edge f ′ with p(f ′) < i. Analogously, the neighborhood
of vj in G(f) entirely lies in U0 since vj is not contained in the graph K̂−(f ′) for any edge f ′ ≺ f
with p(f ′) = i.

This yields the same restrictions for the neighborhoods of vi and vj in T (f) ⊆ G(f), i.e.,

∆E(f) ⊆

[(
∆V (f)

.
∪ f

2

)
\ {f}

]
\
[
EF ′

(
{vi}, ∆V (f) \ Ui(f)

) .
∪ EF ′

(
{vj}, ∆V (f) \ U0

)]
and thus

∆e(f) ≤
(

∆v(f) + 2
2

)
− 1−

∣∣∣∆V (f) \ (U0 ∩ Ui(f))
∣∣∣ (20)

≤
(

∆v(f) + 2
2

)
− 1−∆v(f) +

∣∣U0 ∩ Ui(f)
∣∣ . (21)

Let b ∈ E, p(b) = i, denote the worst edge in phase i, i.e.,

b = argmax f∈E
p(f)=i

q(f) .

As observed before, there is nothing to prove if b is good, i.e., q(b) ≤ d(Jr∗). Using (18), it
follows from (19) that ∆v(b) = r − 2 since otherwise we had

q(b) =
∆e(b)
∆v(b)

≤
(
∆v(b)+2

2

)
− 1

∆v(b)
=

∆v(b) + 3
2

≤ r

2
≤ d(Jr∗) ,

and thus b would be good. We obtain from (21) that

∆e(b) ≤
(

r

2

)
− 1−

(
r − 2− |U0 ∩ Ui(b)|

)
and, consequently,

∆e(f) ≤ q(b)∆v(f) ≤
(

d2(Kr)− r − 2− |U0 ∩ Ui(b)|
r − 2

)
∆v(f) (22)

for all edges f of phase i.

On the other hand, observing that(
∆v(f) + 2

2

)
− 1 =

∆v(f) + 3
2

∆v(f) ≤ r + 1
2

∆v(f) = d2(Kr)∆v(f) ,

we obtain from (20) that

∆e(f) ≤ d2(Kr)∆v(f)− |∆V (f) \ Ui(f)| (23)

for all edges f of phase i.

Recall that Ui(f) is the union of all sets U(f ′) for f ′ ≺ f and p(f ′) = i. Hence, we can write

Ui(b) =
.⋃

f≺b
p(f)=i

(
U(f) \ Ui(f)

)
.

As this is a union of pairwise disjoint sets, we get

|U0 ∩ Ui(b)| =
∑
f≺b

p(f)=i

∣∣U0 ∩
(
U(f) \ Ui(f)

)∣∣ =
∑
f≺b

p(f)=i

∣∣(U0 ∩ U(f)
)
\ Ui(f)

∣∣
=
∑
f≺b

p(f)=i

∣∣∣((U0 ∪ Ui(f)
)
∩ U(f)

)
\ Ui(f)

∣∣∣ =
∑
f≺b

p(f)=i

∣∣∆V (f) \ Ui(f)
∣∣ .

(24)
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Using (23) for the edges f in phase i that satisfy f ≺ b and (22) for all remaining edges of
phase i, we obtain with (24) that

∆i
e

∆i
v

=

 ∑
f≺b

p(f)=i

∆e(f) +
∑
f�b

p(f)=i

∆e(f)

 /∆i
v

≤

 ∑
f≺b

p(f)=i

(
d2(Kr)∆v(f)− |∆V (f) \ Ui(f)|

)

+
∑
f�b

p(f)=i

(
d2(Kr)− r − 2− |U0 ∩ Ui(b)|

r − 2

)
∆v(f)

 /∆i
v

= d2(Kr)−

|U0 ∩ Ui(b)|+
r − 2− |U0 ∩ Ui(b)|

r − 2

∑
f�b

p(f)=i

∆v(f)

 /∆i
v

≤ d2(Kr)−
(
|U0 ∩ Ui(b)|+

r − 2− |U0 ∩ Ui(b)|
r − 2

∆v(b)
)

/∆i
v .

(25)

Recall that we have ∆v(b) = r − 2 and that each phase consists of at most b2d(J)c merge
operations. Hence, we have ∆i

v ≤ b2d(J)c (r − 2). By plugging those bounds into (25), we
obtain

∆i
e

∆i
v

≤ d2(Kr)− 1
b2d(J)c

.

Comparing this to (17), we see that (16) follows if

d2(Kr)− d(J)
d(J)(r − 2) + 1

≤ 1
b2d(J)c

.

Dropping the floor function and expanding yields the quadratic inequality(
d(J)− 1

)(
2d(J)− 1

)
≥ 0 ,

which is obviously satisfied for d(J) ≥ 1. This proves that (16) holds for all non-trivial phases
i ∈ [`] \ {1}, which implies Lemma 21 owing to (15) and Proposition 6 as observed before.

3.2. Proof of Lemma 8

We readily obtain a proof of Lemma 8 from the following explicit representation of the fam-
ily A(`, r). Recall that, for all r ≥ ` ≥ 3, we defined

A(`, r) := {A ∈ C(`, r) : m(A) ≤ m2(K`,Kr) + ε0 ∧ A is 2-connected} ,

where ε0 := 0.01 is fixed (cf. Definition 7).

Lemma 23. We have

A(`, r) = ∅ for r > ` ≥ 4 or r = ` ≥ 5 ,

A(4, 4) = {K6} ,

A(3, r) = {Kr+1} for r ≥ 6 ,

A(3, 5) = {K6,K6 ∩5 K6} ,

A(3, 4) = {K5,K5 ∩4 K5,K5 ∩2 K5} ,

where Kk ∩x Kk denotes the graph consisting of two k-cliques that overlap in exactly x vertices.
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Remark 24. Lemma 8 is false for r = ` = 3, since C4∗
k , as introduced in Lemma 21, is a member

of A(3, 3) for all k ≥ 3.

First we deal with the easy case in which we have r > ` ≥ 4 or r = ` ≥ 5.

Proof of Lemma 23 (Case r > ` ≥ 4 or r = ` ≥ 5). Let A ∈ A(`, r) ⊆ C(`, r) be given. Since
every vertex of A is contained in an `-clique and an r-clique that intersect in exactly one
edge, the minimum degree in A is at least (` − 1) + (r − 1) − 1 = ` + r − 3. It follows that
d(A) ≥ (` + r − 3)/2. With m2(K`,Kr) = r(r − 1)/2(r − 2 + 2/(` + 1)), we easily obtain
that d(A) > m2(K`,Kr) + ε0 for r > ` ≥ 4 or r = ` ≥ 5, contradicting the assumption that
A ∈ A(`, r). �

We defer the case r = ` = 4 to the end of this section and fix ` = 3 for now. As an intermediate
step we define a subfamily B(r) ⊆ A(`, r) by adding more structure to A. We show that B can
be explicitly represented in the form that was given in Lemma 23 for A. Then Lemma 23 follows
by showing that we have A(3, r) ⊆ B(r).

Definition 25. For r ≥ 4, let

B(r) := {B : B is union of copies of Kr+1 ∧ B is 2-connected

∧ m(B) ≤ m2(K3,Kr) + ε0} .

Note that, for all r ≥ 4, we have B(r) ⊆ A(3, r) since any union of copies of Kr+1 is a member
of C(3, r). We can list the members of the family B(r) explicitly.

Lemma 26. We have
B(r) := {Kr+1} for r ≥ 6 ,

B(5) := {K6,K6 ∩5 K6} ,

B(4) := {K5,K5 ∩4 K5,K5 ∩2 K5} .

(26)

Proof. Suppose that r is fixed and B ∈ B(r) is given. If r ≥ 6, the copies of Kr+1 forming B
are edge-disjoint, which we see as follows. Clearly, we have

d(Kr+1 ∩x Kr+1) =
2
(
r+1
2

)
−
(
x
2

)
2(r + 1)− x

=
2r2 + 2r − x2 + x

2(2r − x + 2)
.

The second derivative
∂2

∂x2
d(Kr+1 ∩x Kr+1) =

2(r + 1)2

(x− 2(r + 1))3

is negative on the interval 2 ≤ x ≤ r. Hence, the minimum of d(Kr+1 ∩x Kr+1) is at either
boundary of the interval, i.e., at x = 2 or x = r. In fact, we have

d(Kr+1 ∩2 Kr+1) =
r2 + r − 1

2r
≥ r(r + 3)

2(r + 2)
= d(Kr+1 ∩r Kr+1) ,

and therefore

d(Kr+1 ∩x Kr+1) ≥ r(r + 3)
2(r + 2)

=
r(r − 1)
2r − 3︸ ︷︷ ︸

=m2(K3,Kr)

+
r(r − 5)

2(r + 2)(2r − 3)
r≥6
> m2(K3,Kr) + ε0 .

If r = 5, one calculates that for 2 ≤ x ≤ 4,

d(K6 ∩x K6) =
30−

(
x
2

)
12− x

2≤x≤4
> 20/7 + ε0 = m2(K3,K5) + ε0 .

Similarly, for r = 4, one obtains

d(K5 ∩3 K5) = 17/7 > 12/5 + ε0 = m2(K3,K4) + ε0 .
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This leaves exactly the cases listed in the statement of the lemma. Similar calculations show
that there cannot be a third copy of Kr+1 edge-intersecting with a graph formed by two edge-
intersecting copies of Kr+1 for r ∈ {4, 5}.
Hence every B ∈ B(r) is an edge-disjoint union of graphs listed in (26). Suppose that B itself
is not isomorphic to one of the listed graphs. Since it is 2-connected by definition, it contains
a cycle formed by edges from at least two such edge-disjoint graphs. Every edge of this cycle
is contained in a copy of Kr+1, and we may assume that all these copies are different: if one
copy of Kr+1 contains two edges of the cycle, we can shortcut through this copy to obtain a
smaller cycle which still is formed by edges from at least two edge-disjoint graphs as listed. If
the cycle that we have just found has length k, then B contains a graph Cr+1

k ∈ H(Ck, r + 1) as
in Definition 20. Lemma 21 yields that

m(B) ≥ d(Cr+1
k ) ≥ d(C(r+1)∗

k )

=
k
(
r+1
2

)
kr

=
r(r − 1)
2r − 3

+
r − 3

2(2r − 3)
r≥4
> m2(K3,Kr) + ε0 .

This is a contradiction to the definition of B(r), so Lemma 26 follows. �

We need the following technical lemma in order to derive that A(3, r) is contained in B(r).

Lemma 27. Let A ∈ A(3, r) be given, and let H ⊆ A denote the union of all copies of Kr+1 in
A. For any vertex v0 ∈ V (H) that is contained in not more than one block of H, degA(v0) >
degH(v0) implies that

degA(v0) ≥ degH(v0) + r − 1 .

Proof. Note that the blocks of H are members of the family B(r) by Definition 25. For the sake
of contradiction, assume that v0 ∈ V (H) violates the claim, and let B ⊆ H ⊆ A, B ∈ B(r), be
the unique block of H containing v0. Note that we have degH(v0) = degB(v0). Let

∆ := degA(v0)− degB(v0) .

Since there can be no edges from E(A)\E(B) connecting two vertices of B (if B ∼= Kr+1∩xKr+1,
any such edge would create a structure which is too dense to appear in A ∈ A(r)), ∆ is also the
degree of v0 into V (A) \ V (B).

The assumption that v0 violates the claim is equivalent to 1 ≤ ∆ ≤ r − 2. Let T := A[Γ(v0) \
V (B)] denote the graph induced by the ∆ neighbors of v0 that are not in B. We shall prove
that the graph

J := A[V (B) ∪ Γ(v0)] = A[V (B)
.
∪ V (T )]

satisfies d(J) > m2(K3,Kr)+ε0, contradicting the assumption that A ∈ A(3, r). Figure 4 shows
the formation of graphs A, B, T , and J .

Since A is a member of the family C(3, r), each of the ∆ many edges connecting v0 to T is covered
by at least (3 − 2) + (r − 2) = r − 1 triangles. Therefore, each vertex of T has at least r − 1
common neighbors with v0 and thus degree at least r in J . We obtain

e(J) = e(B) + e(T ) +
∑

v∈V (T )

(degJ(v)− degT (v))

≥ e(B) + e(T ) +
∑

v∈V (T )

(r − degT (v))

= e(B) + ∆r − e(T )

≥ e(B) + ∆r −
(

∆
2

)
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A B v0 T

J

Figure 4. The formation of graphs A, B, T , and J .

and, thus,

d(J) ≥ e(B) + ∆ (r + 1/2−∆/2)
v(B) + ∆

=: f(∆) .

Since
∂2f(∆)

∂∆2
=

2e(B)− v(B)2 − 2rv(B)− v(B)
(v(B) + ∆)3

≤ 0 ,

f is concave. Consequently, we have

d(J) ≥ min
{
f(1), f(r − 2)

}
= min

{
e(B) + r

v(B) + 1
,
e(B) + (r − 2)(r + 3)/2

v(B) + r − 2

}
. (27)

Recall that B is isomorphic to a graph from B(r). If B ∼= Kr+1, we have

f(1) =

(
r+1
2

)
+ r

r + 2
=

r(r − 1)
2r − 3

+
r(r − 5)

2(r + 2)(2r − 3)
r≥6
> m2(K3,Kr) + ε0 , (28)

and

f(r − 2) =

(
r+1
2

)
+ (r − 2)(r + 3)/2

2r − 1

=
r(r − 1)
2r − 3

+
2r2 − 10r + 9

(2r − 1)(2r − 3)
r≥4
> m2(K3,Kr) + ε0 .

This proves the claim for r ≥ 6.

For r ∈ {4, 5} and B ∼= Kr+1, ∆ = 1 implies that J ∼= Kr+1 ∩r Kr+1 ∈ B(r), contradicting the
assumption that B is a block of H ⊆ A. Hence we can replace (28) with

f(2) =

(
r+1
2

)
+ 2r − 1

r + 3
=

r(r − 1)
2r − 3

+
3r2 − 13r + 6

2(r + 3)(2r − 3)
r≥4
> m2(K3,Kr) + ε0 ,

which settles this case.

Lastly, it is easily verified that (27) is also strictly greater than m2(K3,Kr) + ε0 for B ∼=
Kr+1 ∩x Kr+1, (r, x) ∈ {(4, 2), (4, 4), (5, 5)}.
To summarize, we have shown that for r ≥ 4 and 1 ≤ ∆ ≤ r − 2, J ⊆ A satisfies d(J) >
m2(K3,Kr) + ε0, contradicting the assumption that A ∈ A(3, r). �

Proof of Lemma 23 (Case r > ` = 3). Let A ∈ A(3, r) be given, and, as in Lemma 27, let H ⊆
A denote the union of all copies of Kr+1 in A. Clearly by Lemma 26, we are home if we
have H = A. Hence, suppose H is a proper subgraph of A for the sake of contradiction. Since
we have A ∈ C(3, r), any two adjacent vertices have at least (3 − 2) + (r − 2) = r − 1 common
neighbors. Consequently, any vertex of degree exactly r and its neighborhood induce a clique
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of size r + 1 in A. This implies that the degree of all vertices of A that are not contained in a
copy of Kr+1 is at least r + 1. It follows that∑

v∈V (A)\V (H) degA(v)

v(A)− v(H)
≥ r + 1 > 2(m2(K3,Kr) + ε0) . (29)

In particular, A contains at least one copy of Kr+1, i.e., H is nonempty.

Consider any fixed connected component C of H. If C is 2-connected, it follows from the 2-
connectedness of A that C contains two vertices with degA(v) > degC(v) to which Lemma 27
is applicable. Otherwise consider the block structure of C. It is tree-like, and all blocks that
correspond to leaves contain some non cut-vertex v satisfying degA(v) > degC(v). (If not,
then such a block of C would also be a block of A, contradicting the assumption that A is
2-connected.) As there are at least two leaf blocks, again there are at least two vertices to which
Lemma 27 is applicable.

This yields the following lower bound on the average degree of the vertices in C.∑
v∈V (C) degA(v)

v(C)
≥
∑

v∈V (C) degC(v) + 2(r − 1)

v(C)

= 2

∑
B⊆C e(B) + r − 1∑

B⊆C(v(B)− 1) + 1
,

where the sum runs over all blocks B of C. By easy case checking, we see that

e(B)
v(B)− 1

> m2(K3,Kr) + ε0

for all r ≥ 4 and B ∈ B(r). Moreover, since r − 1 > m2(K3,Kr) + ε0, using Proposition 6 we
obtain that ∑

v∈V (C) degA(v)

v(C)
> 2(m2(K3,Kr) + ε0) .

Summing over all connected components C of H and applying Proposition 6 again yields that∑
v∈V (H) degA(v)

v(H)
> 2(m2(K3,Kr) + ε0) . (30)

By Proposition 6, we conclude from equations (29) and (30) that

2d(A) =

∑
v∈V (A) degA(v)

v(A)
> 2(m2(K3,Kr) + ε0) ,

contradicting A ∈ A(3, r). Thus, the assumption H ( A is false. Consequently, A = H is a
union of copies of Kr+1. By definition, it is also 2-connected and thus in B(r). Lemma 23 now
follows from Lemma 26. �

Proof of Lemma 23 (Case r = ` = 4). For the calculations, note that m2(K4,K4) = m2(K4) =
5/2. Let A ∈ A(4, 4) be given. Similarly to the case r > ` = 3, let H ⊆ A denote the union of
all copies B ∼= K6 in A, and assume for the sake of contradiction that H ( A.

Since every vertex of A is contained in two 4-cliques that intersect in exactly one edge, the
minimum degree in A is at least (4− 1) + (4− 1)− 1 = 5. Moreover, any two adjacent vertices
have at least (4 − 2) + (4 − 2) = 4 common neighbors. Consequently, any vertex of degree
exactly 5 and its neighborhood induce a clique of size 6 in A. This implies that the degree of
all vertices of A that are not contained in a copy of K6 is at least 6. Consequently, we have∑

v∈V (A)\V (H) degA(v)

v(A)− v(H)
≥ 6 > 2(m2(K4) + ε0) . (31)
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On the other hand, trivial calculations yield that the 6-cliques B forming H must be mutually
vertex-disjoint. As A is 2-connected, we obtain similarly to the case r > ` = 3 that∑

v∈V (H) degA(v)

v(H)
≥

∑
B⊆H

(∑
v∈V (B) degB(v) + 2

)
v(H)

= 2

∑
B⊆H(e(B) + 1)∑

B⊆H v(B)

= 2 · 16/6 > 2(m2(K4) + ε0) .

(32)

As before, we conclude with Proposition 6 from equations (31) and (32) that

2d(A) =

∑
v∈V (A) degA(v)

v(A)
> 2(m2(K4) + ε0) ,

which implies the claim by contradiction. �

4. The 1-statement

Suppose that k ≥ 2 and 3 ≤ `k ≤ · · · ≤ `1 are integers. We shall argue that there exists a
constant B > 0 such that a.a.s. we have

Gn,p → (K`1 , . . . ,K`k
)e

provided p ≥ Bn−1/m2(K`2
,K`1

), and Conjecture 23 in [10] is true for K`2 . For `2 = . . . = `k = 3,
this statement follows from a theorem of Kohayakawa and Kreuter [9]. Note that we have K3 =
C3, and that every clique is strictly 2-balanced.

Theorem 28 ([9]). Let k ≥ 2 and 3 ≤ `2 ≤ · · · ≤ `k be integers and suppose H is a strictly
2-balanced graph with m2(H) ≥ m2(C`2). Then there is a constant B such that, for p = p(n) =
Bn−1/m2(C`2

,H), we have

P [Gn,p → (H,C`2 , . . . , C`k
)e] = 1− o(1) .

In fact, the result proved in [9] is stronger showing that even subgraphs of Gn,p with sufficiently
many edges satisfy the same conclusion. A careful inspection of the proof of Theorem 28 given
in [9] reveals that only Lemma 17 from there actually depends on the structure of cycles. All
other statements and arguments also hold when the cycles C`2 , . . . , C`k

are replaced by arbitrary
graphs H2, . . . ,Hk with m2(H) ≥ m2(H2) ≥ . . . ≥ m2(Hk). Instead of reproducing the proof,
we sketch the necessary alterations for the sake of conciseness. The interested reader is referred
to [9], which also contains an excellent outline of the proof in the introductory section explaining
the main ideas.

Lemma 17 in [9] states an upper bound on the number of graphs satisfying certain pseudo-
random properties. We need to introduce several notions so as to define this family of graphs
precisely. Let F be a graph and V = V (F ) denote its set of vertices. Suppose 0 < p̄ ≤ 1
and 0 < ε ≤ 1 are real numbers, and U and W are disjoint nonempty subsets of V . Define
the p̄-density of F between U and W by

dF,p̄(U,W ) :=
eF (U,W )
p̄|U ||W |

.

We say that the pair (U,W ) is (ε, F, p̄)-regular if for all U ′ ⊆ U and W ′ ⊆ W with |U ′| ≥ ε|U |
and |W ′| ≥ ε|W |, we have ∣∣dF,p̄(U ′,W ′)− dF,p̄(U,W )

∣∣ ≤ ε .

Let J be a graph of order v(J) = ` on the vertex set {v1, . . . , v`} and let also V = (Vi)`
i=1 be a

family of ` pairwise disjoint sets, each of cardinality m. Suppose that reals 0 < γ ≤ 1, D ≥ 1,
and an integer T are given. We shall be interested in finding the size of the family, denoted by

F(J, ε, p̄, γ,D; V, T ) ,
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consisting of all `-partite graphs F with partition classes Vi, 1 ≤ i ≤ `, and with exactly T edges
that satisfy the following properties:

(i) (Vi, Vj) is (ε, F, p̄)-regular and has p̄-density γ ≤ dF,p̄(Vi, Vj) ≤ D whenever vivj ∈ E(J).
(ii) F does not contain J as a subgraph.

Let
F ′(J, ε, p̄, γ,D; V, T ) ⊆ F(J, ε, p̄, γ,D; V, T )

be the family of graphs that additionally satisfy that, for all U ⊆ Vi−1 and W ⊆ Vi, 2 ≤ i ≤ `,
with

|U | ≤ |W | ≤ d̄|U | ≤ d̄`−2 ,

where d̄ = p̄m, we have
eF (U,W ) ≤ C|W | .

Then Lemma 17 from [9] reads as follows.

Lemma 29 ([9], Lemma 17). Let an integer ` ≥ 3 be fixed and let constants 0 < α ≤ 1,
0 < γ ≤ 1, C ≥ 1 and D ≥ 1 be given. Then there are constants 0 < ε ≤ 1, B̄ ≥ 0, and m0 that
depend only on `, α, γ, C, and D such that, if p̄ = p̄(m) ≥ B̄m−1/m2(C`), for all integers m ≥ m0

and T ≥ 1, we have ∣∣F ′(C`, ε, p̄, γ,D; V, T )
∣∣ ≤ αT

(
(` + 2)m2

T

)
.

This lemma is a special case of the following conjecture that appeared in [10].

Conjecture 30 ([10], Conjecture 23). Let J be a graph on ` ≥ 3 vertices and and let con-
stants 0 < α ≤ 1, 0 < γ ≤ 1, and D ≥ 1 be given. Then there are constants 0 < ε ≤ 1, B̄ ≥ 0,
and m0 that depend only on J , α, γ, and D such that, if p̄ = p̄(m) ≥ B̄m−1/m2(J), for all
integers m ≥ m0 and T ≥ 1, we have

|F(J, ε, p̄, γ,D; V, T )| ≤ αT

((`
2

)
m2

T

)
.

Note that the factors (` + 2) and
(

`
2

)
respectively in the binomial coefficients are negligible since

they contribute only a factor of O(1)T to the total expression, which may be suppressed by
choosing α sufficiently small. Moreover, the constant D was arbitrarily set to 2 in the original
formulation of Conjecture 30. Conjecture 30 has been verified for cycles of fixed length in [3],
which clearly implies the bound on the size of the family F ′(C`, ε, p̄, γ,D; V, T ) in Lemma 29.

The following generalized version of Theorem 28 can be proved by substituting Lemma 29 by
Conjecture 30 and every occurrence of the cycles C`2 , . . . , C`k

by the graphs H2, . . . ,Hk in the
proof of Theorem 28 presented in [9].

Theorem 31. Let k ≥ 2 be an integer and H1, . . . ,Hk be graphs such that H1 is strictly 2-
balanced with m2(H1) ≥ m2(H2) ≥ . . . ≥ m2(Hk). Suppose Conjecture 30 holds for all H2, . . . ,Hk.
Then there is a constant B such that, for p = p(n) = Bn−1/m2(H2,H1), we have

P [Gn,p → (H1, . . . ,Hk)e] = 1− o(1) .

Furthermore, if Hk ⊆ . . . ⊆ H2 holds, the conclusion of Theorem 31 follows even if Conjecture 30
is only known for H2. All we need to observe is that

G→ (H1,H2,H2, . . . ,H2)e

implies
G→ (H1,H2,H3, . . . ,Hk)e ,

and that the order of magnitude of p = p(n) in Theorem 31 depends only on H1 and H2.
Therefore, the 1-statement of Theorem 4 follows from Theorem 31 since K`k

⊆ . . . ⊆ K`2 .
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[1] F. Chung and R. Graham. Erdős on graphs. A K Peters Ltd., Wellesley, MA, 1998. His legacy of unsolved
problems.

[2] J. Folkman. Graphs with monochromatic complete subgraphs in every edge coloring. SIAM J. Appl. Math.,
18:19–24, 1970.
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[11] Y. Kohayakawa and V. Rödl. Regular pairs in sparse random graphs. I. Random Structures Algorithms,
22(4):359–434, 2003.

[12] B. Kreuter. Threshold functions for asymmetric Ramsey properties with respect to vertex colorings. Random
Structures Algorithms, 9(3):335–348, 1996.
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