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Abstract

To solve frequency assignment problems in cellular telephone networks,
Even, Lotker, Ron, and Smorodinsky (FOCS 02) introduced the notion of
conflict-free colorings in various geometrically defined hypergraphs. They
initiated the investigation of the special case when the vertex set of the hyper-
graph is a set P of n points in the plane, and the hyperedges are those subsets
of P that can be obtained by intersecting P with an axis-parallel rectangle.
The 2-element subsets of P satisfying this condition form (the edge set of)
the Delaunay graph D(P ) associated with P . The problem of estimating the
minimum number of colors in a conflict-free coloring leads to the following
question: Does there exist a constant c > 0 such that the Delaunay graph of
any set of n points in the plane contains an independent set of size at least
cn? We answer this question in the negative. We also show that for a set P
of n randomly and uniformly selected points in the unit square, D(P ) has an
independent set of size at least cn/ log n, with probability tending to 1. We
generalize these results to solve a problem in geometric discrepancy theory.

1 Delaunay graphs and conflict-free colorings

The Delaunay graph associated with a set of points P in the plane is a graph D(P )
whose vertex set is P and whose edge set consists of those pairs {p, q} ⊂ P for
which there exists a closed disk that contains p and q, but does not contain any
other element of P . The Delaunay graph of P is a planar graph and its dual is
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the Dirichlet–Voronoi diagram of P (see, e.g., [BKOS00]). As any other planar
graph, D(P ) contains an independent set of size at least |P |/4. It was discovered
by Even, Lotker, Ron, and Smorodinsky [ELRS03] that this fact easily implies that
any set P of n points in the plane has a conflict-free coloring with respect to discs,
which uses at most O(log n) colors, that is, a coloring with the property that any
closed disk C with C ∩ P 6= ∅ has an element whose color is not assigned to any
other element of C ∩ P . Here, the logarithmic bound is tight for every point set
[PaT03].

The question was motivated by a frequency assignment problem in cellular
telephone networks. The points correspond to base stations interconnected by a
fixed backbone network. Each client continuously scans frequencies in search of
a base station within its (circular) range with good reception. Once such a base
station is found, the client establishes a radio link with it, using a frequency not
shared by any other station within its range. Therefore, a conflict-free coloring of
the points corresponds to an assignment of frequencies to the base stations, which
enables every client to connect to a base station without interfering with the others.
For many results on conflict-free colorings, consult [AlS06], [FiLM05], [HaS05].

The same scheme can be used to construct conflict-free colorings of point sets
with respect to various other families of geometric figures. In general, let P be a set
of points in Rd, and let C be a family of d-dimensional convex bodies. Define the
Delaunay graph DC(P ) of P with respect to C on the vertex set P by connecting
two elements p, q ∈ P with an edge if and only if there is a member of C that
contains p and q, but no other element of P . The existence of large independent
sets in such graphs implies that P has a conflict-free coloring with respect to C,
which uses a small number of colors. That is, a coloring with the property that any
member C ∈ C with C ∩P 6= ∅ has an element whose color is not assigned to any
other element of C ∩ P .

In this note, we consider this problem in the special case when C is the family
of axis-parallel boxes. The maximum size of an independent set of vertices in a
graph G is called the independence number of G, and is usually denoted by α(G) in
the literature. Smorodinsky et al. [ELRS03], [HaS05] asked whether the Delaunay
graph of every set of n points in the plane with respect to axis-parallel rectangles
has independence number at least cn, for an absolute constant c > 0. In Section 3,
we give a negative answer to this question. More precisely, we establish

Theorem 1. There are n-element point sets in the plane such that the independence
numbers of their Delaunay graphs with respect to axis-parallel rectangles are at
most O

(
n log2 log n

log n

)
.

In fact, a randomly and uniformly selected set of n points in the unit square
will meet the requirements with probability tending to 1.
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For randomly selected point sets, this result is not far from being best possible.
In Section 2, we prove

Theorem 2. The expected value of the independence number of a randomly and
uniformly selected n-element point set in the units square is Ω

(
n

log n

)
.

For general point sets, we know only a very weak bound: the independence
number of the Delaunay graph of any set of n points in the plane with respect to
axis-parallel rectangles is at least Ω

(√
n log n

)
. This only implies that any set of

n points in the plane admits a conflict-free coloring using O(
√

n/ log n) colors,
with respect to the family of all axis-parallel rectangles.

In discrepancy theory [BeCh87], [Ch00], [Ma99], there are plenty of results
that indicate some unavoidable irregularities in geometric configurations. In Sec-
tion 3, we generalize Theorem 1. Our results immediately imply

Theorem 3. For any constants c, d > 1, a randomly and uniformly selected set
P of n points in the unit square almost surely has the following property. For any
coloring of the elements of P with c colors, there always exists an axis-parallel
rectangle with at least d points in its interior, all of which have the same color.

2 Delaunay graphs of random point sets

The aim of this section is to prove Theorem 2.
Let P = {(xi, yi) : 1 ≤ i ≤ n} be a point set in the unit square, whose

no two elements share the same x-coordinate or y-coordinate. Clearly, the De-
launay graph D(P ) with respect to axis-parallel rectangles depends only on the
relative position of the points in P and not on their actual coordinates. That is,
there exists a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} such that for the
set P ′ = {(i, π(i)) : 1 ≤ i ≤ n} we have D(P ) = D(P ′). Moreover, for a
random set of points in the square, the corresponding permutation π is uniformly
random. With a slight abuse of notation, we write D(π) for the Delaunay graph
D(P ) = D(P ′). In our arguments about Delaunay graphs of randomly selected
point sets in the square, it will be convenient to consider the graph D(π) for a
random permutation π.

Lemma 1. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a random permutation, and
let deg(D(π)) denote the average degree of the vertices of the Delaunay graph
D(π). The expected value of the average degree satisfies

E(deg(D(π))) = Θ (log n) .
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Proof. Two points pi = (i, π(i)) and pj = (j, π(j)) with i < j are connected
by an edge in D(P ) if and only if π(i) and π(j) are consecutive elements in the
natural ordering of the set S = {π(k)|i ≤ k ≤ j}. Among all

(
j−i+1

2

)
pairs of

elements in this set, precisely j − i consist of consecutive elements. Clearly, after
fixing π(k) for k < i or k > j, the pair {π(i), π(j)} is equally likely to be any one
of the pairs in S. Therefore, the probability that pi and pj are connected is equal to

j − i(
j−i+1

2

) =
2

j − i + 1
.

Thus, the expected number of edges in D(P ) is

n−1∑
l=1

2(n− l)
l + 1

= (2n + 2)
n∑

l=1

1
l
− 4n = Θ(n log n).

Obviously, Theorem 2 is equivalent to

Theorem 2’. Let π be a random permutation of {1, 2, . . . , n}. The expected value
of the independence number of the Delaunay graph D(π) with respect of axis-
parallel rectangles satisfies

E[α(D(π))] = Ω
(

n

log n

)
.

Proof. According to Turán’s theorem, any graph with n vertices and average de-
gree d has an independent set of size at least n

d+1 . Thus, we have

α(D(π)) ≥ n

deg(D(π)) + 1
.

By the convexity of the x → n/(x + 1) function for x ≥ 0, we have

E[α(D(π))] ≥ n

E[deg(D(π)) + 1

and the theorem follows by Lemma 1.
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3 Proof of Theorem 1

We reformulate and prove Theorem 1 in a more precise form.

Theorem 1’. Let P be a set of n randomly and uniformly selected points in the
square [0, 1]2. Then there exists a constant c such that

Probn→∞

(
α(D(P )) < c

n log2 log n

log n

)
→ 1.

Proof. The points pi ∈ P will be defined in two steps. First we select the x-
coordinates from the interval [0, 1] uniformly at random. With probability 1, all
the x coordinates are distinct. Let us relabel the points so that

0 ≤ x1 < x2 < · · · < xn ≤ 1.

In the second step, we select the y-coordinates of pi = (xi, yi) uniformly and
independently from [0, 1]. Note that, after the xi’s have been fixed, the edge set of
the Delaunay graph D(P ) depends only on the relative order of the yi’s.

The coordinates yi are generated as follows. Fix an integer L ≥ 2 to be speci-
fied later. We write the numbers yi ∈ [0, 1] in base L:

yi = (0.d
(1)
i d

(2)
i . . . )L.

The digits d
(t)
i of yi are chosen independently and uniformly from the set

{0, . . . , L − 1}. For t ≥ 1, denote by y
(t)
i the truncated L-ary fraction of yi,

consisting of t− 1 digits after 0:

y
(t)
i = (0.d

(1)
i . . . d

(t−1)
i )L.

The digits of yi will be chosen one by one. At stage t, we determine d
(t)
i (and,

hence, y
(t+1)
i ), for all i. Note that before stage t, the truncated fractions y

(t)
i have

already been fixed. As soon as we complete stage t, we know the y-coordinates of
the points pi up to an error of at most L−t. If y

(t+1)
i = y

(t+1)
j , then the relative

order of yi and yj has not yet been decided. Otherwise, if we have y
(t+1)
i < y

(t+1)
j ,

say, then yi < yj holds in the final configuration.
Let 1 ≤ i < j ≤ n be fixed. Suppose that for some t, the following two

conditions are satisfied:

1. y
(t+1)
i = y

(t+1)
j ,
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2. y
(t+1)
k 6= y

(t+1)
i holds for all k satisfying i < k < j.

Then the rectangle [xi, xj ]× [y(t+1)
i , y

(t+1)
i +L−t) contains pi and pj , but no other

element of P . Thus, in this case, pi and pj are connected in D(P ), and we say that
this edge is forced at stage t. Although D(P ) may contain many edges that are
not forced at any stage, we are going to use only forced edges in proving our upper
bound on the independence number of D(P ).

Let us fix a subset I ⊂ {1, . . . , n}, and let Q = Q(I) = {pi : i ∈ I}. We want
to estimate from above the probability that Q is an independent set in D(P ).

Let t ≥ 1, and consider stage t of our selection process. Before this
stage, y

(t)
i has been fixed for every i. For any L-ary fraction y of the form

y = (0.d(1)d(2) · · · d(t−1))L, define a subset Hy ⊆ {1, . . . , n} by

Hy = {1 ≤ i ≤ n : y
(t)
i = y}.

Obviously, these sets partition {1, . . . , n}, and hence I , into at most Lt−1

nonempty parts. If two indices i, j ∈ I are consecutive elements of the same
part Hy ∩ I , then we call them neighbors. That is, i < j are neighbors if

1. y
(t)
i = y

(t)
j = y holds for some y, and

2. Hy ∩ {k ∈ I : i < k < j} = ∅.

For any two neighbors i, j ∈ Hy (i < j), define

Si,j = {k ∈ Hy : i < k < j}.

Two neighbors i, j ∈ I (i < j) are called close neighbors if |Si,j | ≤ L.
If there are two close neighbors i, j ∈ I such that the {pi, pj} is an edge of

D(P ) forced at stage t, then Q is not an independent set in D(P ) and we say that
Q fails at stage t. Otherwise, Q is said to survive stage t, and we indicate this fact
by writing Q y t.

Let i < j be a pair of close neighbors. Note that {pi, pj} is an edge of D(P )
forced in stage t if and only if d

(t)
i = d

(t)
j , but d

(t)
i 6= d

(t)
k holds for all k ∈ Si,j .

The probability of this event is

Prob({pi, pj} is forced at stage t) =
1
L

(
1− 1

L

)|Si,j |
.

Taking into account that |Si,j | ≤ L, we obtain

Prob({pi, pj} is forced at stage t) ≥ 1
4L

.
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Notice that, assuming a fix outcome of previous stages (i.e., p
(t)
k is fixed for all

k), the presence of edges {pi, pj} forced at stage t are independent for all neigh-
bors. Thus,

Prob(Q y t|outcome of stages t′ < t) ≤
(

1− 1
4L

)m

≤ e−
m
4L ,

where m stands for the number of pairs i, j ∈ I that are close neighbors before
stage t.

Obviously, every i ∈ I , except the last element in each set Hy, has exactly
one neighbor j > i. As the sets Si,j are pairwise disjoint for different pairs of
neighbors i < j, there are fewer than n

L pairs that are neighbors but not close
neighbors. Thus, we have

m > |I| − n

L
− Lt−1.

If t ≤ log n/ log L and |I| ≥ 3n/L, we have m ≥ n/L, and thus

Prob(Q y t|outcome of stages t′ < t) ≤ e−
n

4L2 .

As the above bound applies assuming any set of choices made at previous
stages, so in particular, it applies to the conditional probability that Q survives
stage t, given that it has survived all previous stages:

Prob(Q y t|Q y t′ for all t′ < t) ≤
(

1− 1
4L

)m

≤ e−
n

4L2 .

Taking the product of these estimates for all t ≤ log n/ log L, we obtain

Prob(Q survives the first blog n/ log Lc stages) ≤ exp
(
− n

4L2

(
log n

log L
− 1

))
.

The last bound is valid for any set Q = Q(I) ⊆ P , where I ⊂ {1, . . . , n}
satisfies |I| ≥ 3n/L. Letting

L =
⌊

log n

100 log2 log n

⌋
and a =

⌈
3n

L

⌉
,

we can conclude that

Prob (α(D(P )) ≥ a) ≤
∑

Q⊂P,|Q|=a

Prob (Q survives all stages)

≤
(

n

a

)
exp

(
− n

4L2

(
log n

log L
− 1

))
→ 0,

as required.

7



4 Discrepancy in colored random point sets

In this section, we strengthen Theorem 1.

Definition 1. Given an integer d > 1 and a finite point set P in the plane, a subset
Q ⊆ P is called d-independent if there is no axis-parallel rectangle R such that
|R∩P | = d and R∩P ⊆ Q. Let αd(P ) denote the size of the largest d-independent
subset of P .

According to this definition, a subset of P is 2-independent if and only if it is
an independent set in the Delaunay graph D(P ) associated with P . In particular,
we have α2(P ) = α(D(P )).

Obviously, if a set is d-independent for some d > 1, then it is also d′-
independent for any d′ > d. Therefore, αd(P ) is increasing in d.

Theorem 3 is a direct corollary to

Theorem 4. A randomly and uniformly selected set P of n points in the unit square
almost surely satisfies

αd(P ) = O

(
dn log2 log n

log1/(d−1) n

)
.

Proof. We modify the proof of Theorem 1. Pick the random points pi = (xi, yi) ∈
P according to the same multi-stage model as in the previous section, and define
the truncated fractions y

(t)
i that approximate yi in exactly the same way as before.

Fix a subset I ⊆ {1, . . . , n}, and let Q = Q(I) = {pi : i ∈ I}. Just like in the
proof of Theorem 1, analyze a fixed stage t of the selection process, by introducing
the sets Hi.

Instead of using the notion of neighbors, we need a new definition. For any
two elements i, j ∈ I (i < j) such that y

(t)
i = y

(t)
j = y for some y, introduce the

sets

Ti,j = {k ∈ Hy ∩ I : i ≤ k ≤ j} and Si,j = {k ∈ Hy \ I : i < k < j}.

The numbers i and j are called d-neighbors if |Ti,j | = d. The pair {i, j} of d-
neighbors is called a pair of close d-neighbors if |Si,j | ≤ L.

We say that the pair of close d-neighbors {pi, pj} fails at stage t if at this stage
the y-coordinates of all points pk with k ∈ Ti,j receive the same new digit d

(t)
k = δ,

but the y-coordinate of no point p` with ` ∈ Si,j receives this digit. The probability
of this event is exactly

L1−d

(
1− 1

L

)|SJ |
≥ L1−d

(
1− 1

L

)L

≥ 1
4Ld−1

.
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Obviously, if any pair {pi, pj} fails at stage t, then Q cannot be d-independent. In
this case, we say that Q fails at stage t. Otherwise, Q is said to have survived stage
t, and we write Q y t.

The failures of certain pairs at a given stage are not independent events. How-
ever, they are independent for any collection of close d-neighbor pairs (i, j) with
the property that the corresponding sets Ti,j are pairwise disjoint. To find such a
collection consisting of many pairs, select at least |Hy∩I|

d−1 − 1 pairs of d-neighbors

from each Hy with pairwise disjoint sets Ti,j , and thus a total of at least |I|
d−1−Lt−1

pairs. Since the corresponding sets Si,j are pairwise disjoint, all but at most
n/L of them are close d-neighbors. Thus, as long as |I| ≥ 3(d − 1)n/L and
t ≤ log n/ log L, we obtain collection of

m ≥ |I|
d− 1

− Lt−1 − n

L
≥ n

L

close d-neighbors with the required property.
If any pair of this collection fails at stage t, then Q fails at this stage. As in the

proof of Theorem 1, we have

Prob(Q y t|Q y t′ for all t′ < t) ≤ e
− n

4Ld

and

Prob(Q survives all stages ) ≤ exp
(
− n

4Ld

(
log n

log L
− 1

))
.

Letting

L =

⌊
log1/(d−1) n

100 log2 log n

⌋
and a =

⌈
3(d− 1)n

L

⌉
,

we obtain

Prob (α(D(P )) ≥ a) <

(
n

a

)
exp

(
− n

4Ld

(
log n

log L
− 1

))
→ 0.

5 Concluding remarks, open problems

The notion of Delaunay graphs for axis-parallel boxes naturally generalizes to
higher dimensions. An easy extension of the proof of Theorem 2 proves that for
any fixed d, the Delaunay graph of randomly and uniformly selected points in the
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d-dimensional unit cube has expected average degree O((log n)d). This implies
that random Delaunay graphs have independent sets of size n1−o(1) in higher di-
mensions, too. All lower bounds that apply to dimension d also apply to every
larger dimension. This can easily be seen by projecting a d-dimensional point sets
to a coordinate hyperplane. Delaunay graphs can only lose edges under this oper-
ation.

In general, by repeated application of the Erdős-Szekeres lemma it is easy to
show that the independence number of the Delaunay graph of any set of n points in
d-dimensions, with respect to axis-parallel boxes, is at least Ω(n1/2d−1

). As far as
we know, no significant improvement on this bound is known, although the truth
may well be Ωd(n− o(1)), for any fixed d.

Returning to the plane, it is not hard show that the expected number of d-
tuples T in a randomly and uniformly selected set P of n points in the plane, for
which there exists an axis-parallel rectangle whose intersection with P is T , is
Θ(d2n log n). By a result of Spencer [Sp72], any d-uniform hypergraph with n
vertices and Θ(nk) edges has an independent set of size Ω(n/k1/(d−1)). There-
fore, P contains a d-independent subset of size Ω(n/ log1/(d−1) n). This is within
O(log2 log n) of our upper bound.
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