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PROOF OF THE LOCAL REM CONJECTURE FOR NUMBER

PARTITIONING I: CONSTANT ENERGY SCALES

CHRISTIAN BORGS1, JENNIFER CHAYES1, STEPHAN MERTENS2, CHANDRA NAIR3

Abstract. The number partitioning problem is a classic problem of combina-
torial optimization in which a set of n numbers is partitioned into two subsets
such that the sum of the numbers in one subset is as close as possible to the
sum of the numbers in the other set. When the n numbers are i.i.d. vari-
ables drawn from some distribution, the partitioning problem turns out to be
equivalent to a mean-field antiferromagnetic Ising spin glass. In the spin glass
representation, it is natural to define energies – corresponding to the costs of
the partitions, and overlaps – corresponding to the correlations between parti-
tions. Although the energy levels of this model are a priori highly correlated,
a surprising recent conjecture asserts that the energy spectrum of number
partitioning is locally that of a random energy model (REM): the spacings
between nearby energy levels are uncorrelated. In other words, the properly
scaled energies converge to a Poisson process. The conjecture also asserts that
the corresponding spin configurations are uncorrelated, indicating vanishing
overlaps in the spin glass representation. In this paper, we prove these two
claims, collectively known as the local REM conjecture.

1. Introduction

The study of typical properties of random instances of combinatorial problems
has recently been the focus of much interest in the theoretical computer science,
discrete mathematics and statistical physics communities. Many of these problems
turn out to be closely related to disordered problems in statistical physics [DMSZ01,
Mez03] – a connection which has motivated a host of interesting conjectures. In
this paper, we establish one of these conjectures: the local REM property of the
random number partitioning problem (Npp).

The non-random Npp is one of the classic NP-complete problems of combi-
natorial optimization, closely related to other classic problems such as bin pack-
ing, multiprocessor scheduling, quadratic programming and knapsack problems
[GJ97, ACG+99]. In addition to its theoretical significance, the Npp has many ap-
plications including task scheduling and the minimization of VLSI circuit size and
delay [CL91, Tsa92], public key cryptography [MH78, Odl91], and, more amusingly,
choosing teams in children’s baseball games [Hay02].

A fixed instance of the Npp is defined as follows: Given n numbers X1, X2,
. . . , Xn, we seek a partition of these numbers into two subsets such that the sum
of numbers in one subset is as close as possible to the sum of numbers in the other
subset. Each of the 2n partitions can be encoded as σ ∈ {−1,+1}n, where σi = 1 if
Xi is put in one subset and σi = −1 if Xi is put in the other subset; in the physics
literature, such partitions σ are identified with Ising spin configurations. The cost
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function to be minimized over all spin configurations σ is therefore the energy

E(σ) =
1√
n

∣

∣

∣

∣

∣

n
∑

s=1

σsXs

∣

∣

∣

∣

∣

, (1.1)

where we have inserted a factor 1/
√
n to simplify the equations in the rest of the

paper.
Note that the spin configurations σ and −σ correspond to the same partition

and therefore of course have the same energy. Thus there are N = 2n−1 distinct
partitions and at most N distinct energies. The lowest of these N energies is the
ground state energy of the model. The energy spectrum is the sorted increasing se-
quence E1, ..., EN of the energy values corresponding to these N distinct partitions.
Let σ(1), . . . ,σ(N) be configurations corresponding to these ordered energies. The
overlap between the configurations σ(i) and σ(j) is defined as

q(σ(i),σ(j)) =
1

n

n
∑

s=1

σ(i)
s σ(j)

s . (1.2)

One often studies random instances of the Npp where the n numbers X1, . . . , Xn

are taken to be independently and identically distributed according to some density
ρ(X). In most cases studied so far, the Xi are taken to be drawn uniformly from
a bounded domain, say integer values drawn uniformly from {1, . . . , 2m} or real
values drawn uniformly from [0, 1]. The statistical mechanics of this model has
been discussed by several authors [Fu89, FF98, Mer98, STN01].

When ρ(X) is the uniform distribution on {1, . . . , 2m}, it turns out that the
typical properties of random instances depend on the ratio κ = m/n. Numerical
simulations suggested that in the limit n,m → ∞ with κ fixed, this system had a
sharp transition at κ = 1 between a phase in which there are exponentially many
optimal solutions with energy 0 or 1, and a phase where the optimal solution is
unique (except for trivial symmetry) and has energy scaling with 2n [GW96]. This
was supported by a statistical physics approach [Mer98] and confirmed by rigorous
analysis [BCP01].

For the random Npp, the costs of two partitions σ and σ′ are a priori highly
correlated random variables. In [Mer00], one of the authors made a rather surprising
“random cost approximation,” in which the correlations of energies near the ground
state were neglected. Within this approximation, it is easy to calculate the statistics
of the ground state and the first excitations. Remarkably, the results of these
calculations were later confirmed by rigorous analysis [BCP01], which therefore
suggested that there might be a mathematical basis for this approximation.

Numerical simulation and heuristic arguments led to an even stronger conjec-
ture, namely that the statistical independence of nearby levels is not restricted
to energies close to the ground state but extends to all fixed “typical” energies
[BFM04]. These authors also conjectured that the overlaps corresponding to these
energies are uncorrelated. These two claims were collectively called the local REM
conjecture [BFM04], since the proposed behavior of nearby energies was analogous
to that of the random energy model (REM) in spin glass theory [Der81]. In this
paper, we prove the local REM conjecture for the Npp with a general distribution
of the Xi.



PROOF OF THE LOCAL REM CONJECTURE FOR NUMBER PARTITIONING I 3

In physical terms, the optimal partitions of the Npp are precisely analogous to
the ground states of a mean-field antiferromagnetic Ising spin system with Mattis-
like couplings Jij = −XiXj defined by the Hamiltonian

H(σ) = E2(σ) =
1

n

∑

ij

XiXjσiσj =: − 1

n

∑

ij

Jijσiσj . (1.3)

Similarly, the energy spectrum and overlaps of the Npp are analogous to those
of the mean-field antiferromagnetic Mattis spin glass. Our results therefore also
establish the REM conjecture for this spin glass.

2. Statement of Results

Let X1, ..., Xn be independent random variables distributed according to the
common density function ρ(x). We assume that X has finite second moment and
ρ(x) satisfies the bound

∫ ∞

−∞
ρ(x)1+ǫ dx < ∞ (2.1)

for some ǫ > 0. Note that this includes, in particular, all bounded density functions
with finite second moment. We use the symbol Pn(·) to denote the probability with
respect to the joint probability distribution of X1, ..., Xn .

As in the introduction, we represent the 2n partitions of the integers {1, .., n} as
spin configurations σ ∈ {−1,+1}n, define the energy of σ as in (1.1), and denote
by E1, . . . , EN the increasing spectrum of the energy values corresponding to the
N = 2n−1 distinct partitions. We also denote by σ(1), . . . ,σ(N) the configurations
corresponding to these ordered energies.

Finally, we introduce the rescaled overlaps as follows. Consider the random
variable rn defined by the condition Ern < α ≤ Ern+1. For j > i > 0, the rescaled
overlap is defined by

Qij =
1√
n

n
∑

s=1

σ(rn+i)
s σ(rn+j)

s . (2.2)

On the basis of both heuristic arguments and numerical evidence, Bauke, Franz
and Mertens [BFM04] conjectured the following behavior for the energy level and
overlap statistics of the Npp with the Xi uniformly distributed in [0, 1]:

Conjecture 2.1. Let X1, X2, . . . , Xn be i.i.d. random variables distributed uni-
formly in [0, 1], let α ≥ 0 be a fixed real number, and let l be a fixed positive integer.
Define r by Er < α ≤ Er+1. Then

√

6

π
2n−1e−3α2/2(Er+1 − α,Er+2 − α, ..., Er+l − α)

w⇒ (w1, w1 + w2, ..., w1 + w2 + · · ·+ wl),

(2.3)

where wi are i.i.d. random variables each distributed exponentially with mean 1,

and
w⇒ denotes weak convergence as n → ∞. In addition, spin configurations

corresponding to different energy levels become asymptotically uncorrelated in the
sense that, for all j > i > 0, the rescaled overlap Qij converges to a standard
normal.

For α = 0, the part of the conjecture concerning the energies was already rig-
orously established in [BCP01]. In this paper we prove that the full Conjecture
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2.1 for fixed α > 0 holds not only for the uniform distribution, but also for any
distribution which has finite second moment and satisfies (2.1).

Theorem 2.2. Let ρ be a probability density on [−∞,∞] with finite second moment
τ2. Assume that ρ satisfies the condition (2.1) for some ǫ > 0, let l be a fixed positive
integer, and let α be a fixed real number. If X1, ..., Xn are independent random
variables distributed according to ρ, and rn is defined so that Ern < α ≤ Ern+1,
then

√

2

πτ2
2n−1e−α2/(2τ2)(Ern+1 − α,Ern+2 − α, ..., Ern+l − α)

w⇒ (w1, w1 + w2, ..., w1 + w2 + · · ·+ wl)

(2.4)

where wi are i.i.d. random variables each distributed exponentially with mean 1,

and
w⇒ denotes weak convergence as n → ∞. In addition, spin configurations

corresponding to different energies become asymptotically uncorrelated in the sense
that for any fixed j > i > 0, the rescaled overlap Qij converges in distribution to a
standard normal, i.e.,

lim
n→∞

Pn(Qij ≥ β) =

∫ ∞

β

1√
2π

e−
x2

2 dx. (2.5)

Remark 2.3.

(1) Substituting τ2 = 1
3 for the case when Xi is distributed as U [0, 1], observe

that Theorem 2.2 reduces to Conjecture 2.1.
(2) Having established the original REM Conjecture 2.1, the question naturally

arises whether analogous results hold for energy scales α which grow with n.
Indeed, the authors of [BFM04] said that they believe that the conjecture
might extend to values of α that grow slowly enough with n, although
computational limitations prevented them from supporting this stronger
claim by simulations. In a second paper [BCMN05], we will show that,
under suitable additional assumptions on the distribution ρ, the conjecture
does indeed hold provided α = o(n1/4).

In addition to immediately implying the analogous results for the mean-field
antiferromagnetic Mattis spin glass (see equation (1.3)), our theorem on the en-
ergy spectrum of the Npp also gives the energy spectrum of the one-dimensional
Edwards-Anderson (1-d EA) spin glass model away from the ground state. The
1-d EA model has energy E(σ) =

∑

i Jiσiσi+1. Consider the transformation
τi = σiσi+1 and take the boundary condition σn+1 = 1. Then E(σ) =

∑

i Jiτi, so
that, up to a multiplicative factor of

√
n, the energy of the Npp with random vari-

ablesXi is the same as the absolute value of the energy of the the 1-d EA model with
random variables Ji. Note that the energy spectrum of the Npp lies in [0, Emax],
with Emax = θ(

√
n), while that of the 1-d EA model lies in [−√

nEmax,
√
nEmax].

Our theorem says that properly scaled energies of the Npp converge to a Poisson
process. By the above transformation, this result obviously applies also to the
1-d EA model except for energies about zero, which are correlated by symmetry.
In particular, the result applies to the 1-d EA model in energy intervals of the
form [

√
nα,

√
n(α + θ(e−n))] for any bounded α ≥ 0 or their reflection about 0.

If the interval includes the origin as an internal point, the positive and negative
energies separately converge to Poisson processes, with the two obviously related
by a spin-flip symmetry.
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3. Proof of Theorem 2.2

3.1. Outline of the Proof. Before we proceed with our proof, note that we may
assume without loss of generality that the second moment τ2 is equal to 1 and that
ρ is symmetric, ρ(x) = ρ(−x). Indeed, considering the rescaled random variables

X̃i = τ−1Xi, we immediately see that the statements of theorem for general τ follow
from those for τ = 1. Next, consider the random variables Y1, ..., Yn where each Yi

is obtained as Xi w.p.
1
2 or −Xi w.p.

1
2 . It is easy to see that the energy spectrum

of the Y1, ..., Yn is identical to that of the X1, ..., Xn. Further, from convexity of

|x|1+ǫ
and Jensen’s inequality, it follows that ρY (y) =

1
2 (ρ(x)+ρ(−x)) also satisfies

(2.1). Therefore, w.l.o.g. we can assume that ρ(x) = ρ(−x) as claimed, and in
particular that Xi has zero first moment. For simplicity of notation, we omit the
subscript n, and denote the probability with respect to the joint distribution of
X1, . . . , Xn by P(·), and the expectation with respect to this distribution by E(·).

Let Zn(a, b) be the number of points of the energy spectrum that lie in the
interval [a, b], and let Nn(t) be the number of points in the energy spectrum that
fall into the (shifted and) re-scaled interval [α, α+ tξn], where

ξn =

√

π

2
2−(n−1)eα

2/2. (3.1)

We must show that Nn(t) converges to a Poisson process with parameter one. To
this end, we will show that for any family of non-overlapping intervals [c1, d1], . . . ,
[cm, dm] with di > ci ≥ 0, the rescaled variables Zn(a

i
n, b

i
n) with ain = α+ ciξn and

bin = α+ diξn converge in distribution to the increments of a Poisson process with
parameter one. We prove this by showing the convergence of the multidimensional
factorial moments, i.e., by proving the following theorem.

Theorem 3.1. Let α ≥ 0, let m be a positive integer, and let [c1, d1], . . . , [cm, dm]
be a family of non-overlapping intervals. For ℓ = 1, . . . ,m, set aℓn = α + cℓξn and

bℓn = α+dℓξn, where ξn =
√

π
2 2

−(n−1)eα
2/2. Given an arbitrary m-tuple (k1, .., km)

of positive integers, we then have

lim
n→∞

E[

m
∏

ℓ=1

(Zn(a
ℓ
n, b

ℓ
n))kℓ

] =

m
∏

ℓ=1

(dℓ − cℓ)
kℓ , (3.2)

where, as usual, (Z)k = Z(Z − 1) . . . (Z − k + 1).

Theorem 3.1 establishes that Nn(t) converges to a Poisson with rate one. As
we will see below, the asymptotic independence of configurations corresponding to
nearby energy levels is an immediate corollary to the proof of this theorem.

3.2. Integral Representation. Following the general strategy employed in Sec-
tion 6 of [BCP01], we base the proof of Theorem 3.1 on an integral representation
of the factorial moments. The derivation of this integral representation uses the
Fourier transform of rect(x), where as usual rect(x) is defined by

rect(x) =

{

1 − 1
2 ≤ x ≤ 1

2
0 otherwise.

(3.3)
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Let tℓn =
aℓ
n+bℓn
2 denote the center of the interval [aℓn, b

ℓ
n], let γℓ = dℓ − cℓ, and let

qn,ℓ = γℓξn
√
n. Then Zn(a

ℓ
n, b

ℓ
n) can be written as

Zn(a
ℓ
n, b

ℓ
n) =

∑

σ

I(ℓ)(σ) (3.4)

where

I(ℓ)(σ) =
1

2

[

rect(

∑n
s=1 σsXs − tℓn

√
n

qn,ℓ
) + rect(

∑n
s=1 σsXs + tℓn

√
n

qn,ℓ
)

]

. (3.5)

Note the factor 1
2 , which arises from the fact that each partition is counted only

once in Zn(a
ℓ
n, b

ℓ
n), while the two configurations σ and −σ correspond to the same

partition of {1, . . . , n}.
Next we write the kth factorial moment of Zn(a

ℓ
n, b

ℓ
n) as a sum over sequences of

k distinct configurations σ(1), . . . ,σ(k). To this end, let us first note that I(ℓ)(σ) is
either 0 or 1/2, implying that

I(ℓ)(σ) = I(ℓ)(σ)(I(ℓ)(σ) + I(ℓ)(−σ)) (3.6)

for all σ ∈ {−1,+1}n. Using this fact, we now rewrite the kth factorial moment as

E[(Zn(a
ℓ
n, b

ℓ
n))k] =

∑

±σ(1) 6=···6=±σ(k)

E[I
(ℓ)
k (σ(1), . . . ,σ(k))] (3.7)

where the sum runs over distinct configurations and

I
(ℓ)
k (σ(1), . . . ,σ(k)) =

k
∏

j=1

I(ℓ)(σ(j)), (3.8)

with I(ℓ)(·) given by (3.5).
To obtain a formula for the multi-dimensional factorial moments, let us con-

sider two disjoint intervals [aℓn, b
ℓ
n] and [aℓ

′
n , b

ℓ′
n ], and two sequences of configurations

σ(1), . . . ,σ(kℓ) and σ̃
(1), . . . , σ̃(kℓ′) contributing to (Zn(a

ℓ
n, b

ℓ
n))kℓ

and (Zn(a
ℓ′
n , b

ℓ′
n ))kℓ′ ,

respectively. Recall that the energy of the configuration σ is equal to the energy
of the configuration −σ, E(σ) = E(−σ). Since I(ℓ)(σ) = 0 unless E(σ) ∈ [aℓn, b

ℓ
n]

and I(ℓ
′)(σ̃) = 0 unless E(σ̃) ∈ [aℓ

′
n , b

ℓ′
n ], we see that I(ℓ)(σ)I(ℓ

′)(σ̃) = 0 if σ and

σ̃ are not distinct. The combined sequence σ(1), . . . ,σ(kℓ), σ̃(1), . . . , σ̃(kℓ′) there-

fore only contributes to the product (Zn(a
ℓ
n, b

ℓ
n))kℓ

(Zn(a
ℓ′
n , b

ℓ′
n ))kℓ′ if σ(j) 6= ±σ̃

(ℓ′)

for all ℓ 6= ℓ′. As a consequence, the multi-dimensional factorial moment in The-
orem 3.1 is itself given as sum over sequences of pairwise distinct configurations.
More explicitly, let k =

∑m
ℓ=1 kℓ, and for j = 1, . . . , k, let ℓ(j) = 1 if j = 1, . . . , k1,

ℓ(j) = 2 if j = k1 + 1, . . . , k1 + k2, and so on. Then

E[

m
∏

ℓ=1

(Zn(a
ℓ
n, b

ℓ
n))kℓ

] =
∑

±σ(1) 6=···6=±σ(k)

E[Ik(σ
(1), . . . ,σ(k))] (3.9)

where

Ik(σ
(1), . . . ,σ(k)) =

k
∏

j=1

I(ℓ(j))(σ(j)). (3.10)
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Using the Fourier inversion theorem and the fact that the Fourier transform of
the function rect(x) is equal to

sinc(f) =
sinπf

πf
,

we then rewrite I(ℓ)(σ) as

I(ℓ)(σ) = qn,ℓ

∫ ∞

−∞
sinc(fqn,ℓ) cos(2πft

ℓ
n

√
n)e2πif

∑

n
s=1 σsXsdf, (3.11)

leading to the representation

E[Zn(a
ℓ
n, b

ℓ
n)] = qn,ℓ

∑

σ

E

[

∫ ∞

−∞
sinc(fqn,ℓ) cos(2πft

ℓ
n

√
n)e2πif

∑

n
s=1 σsXsdf

]

(3.12)
and a similar representation for the factorial moments. As we will see, the expec-
tation and the integral in (3.12) can be interchanged, leading to a representation
of the first moment, E[Zn(a

ℓ
n, b

ℓ
n)], in terms of the Fourier transform

ρ̂(f) = E[e2πifX ]. (3.13)

In a similar way, the factorial moments can be expressed in terms of the Fourier
transform ρ̂ of of the distribution function ρ.

We will use several properties of the Fourier transform in our proof, which we
summarize now. All of them follow from the fact that the density ρ(x) has finite
second moment, satisfies equation (2.1), and is symmetric under the transformation
x → −x.

(i) For any µ1 > 0, there exists c1 > 0, possibly depending on µ1, such that
whenever |f | ≥ µ1, we have |ρ̂(f)| < e−c1 .

(ii) For any n ≥ no, where n0 is the solution of 1
1+ǫ +

1
no

= 1 with ǫ as in (2.1),
we have

∫ ∞

−∞
|ρ̂(f)|n ≤

∫ ∞

−∞
|ρ̂(f)|n0 = C0 < ∞. (3.14)

(iii) ρ̂(f)→0 as |f |→∞ .
(iv) There exists a c2 > 0 such that, for µ1 > 0 small enough, whenever |f | ≤ µ1,

we have |ρ̂(f)| ≤ e−c2f
2

.

3.3. First Moment. In this subsection, we calculate the first moment of the ran-
dom variable Zn(a

ℓ
n, b

ℓ
n). To avoid very cumbersome notation, we omit the index ℓ

in this subsection, and write an, bn, γ and qn for aℓn, b
ℓ
n, γℓ and qn,ℓ, respectively.

We first show that we can exchange the expectation with respect to ρ with the
integral in (3.12). This is the content of the following lemma.

Lemma 3.2. For all n ≥ 1,

E[Zn(an, bn)] = 2nqn

∫ ∞

−∞
sinc(fqn) cos(2πftn

√
n)ρ̂n(f)df. (3.15)

Proof. We use truncation to justify the interchange of the integral and the expec-
tation in equation (3.12). For any B > 0, define

Z(≤B)
n (an, bn) = qn

∑

σ

∫ B

−B

sinc(fqn) cos(2πftn
√
n)e2πif

∑

n
s=1 σsXsdf. (3.16)
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Observe that this corresponds to computing the inverse Fourier transform after
truncating the Fourier transform in the region [−B,B]. Thus we can write

Z(≤B)
n (an, bn) =

1

2

∑

σ

fB(

∑n
s=1 σsXs − tn

√
n

qn
)+fB(

∑n
s=1 σsXs + tn

√
n

qn
), (3.17)

where fB(x) is the appropriately defined inverse Fourier transform for the truncated
integral. It is known that fB(x)→ rect(x) as B→∞ for all x 6= ± 1

2 . At x = ± 1
2 ,

fB(x)→ 1
2 . Since Z

(≤B)
n (an, bn) is a finite sum we see that Z

(≤B)
n (an, bn) converges

almost surely to Zn(an, bn). The bounded convergence theorem then implies

E[Zn(an, bn)] = lim
B→∞

E[Z(≤B)
n (an, bn)]. (3.18)

Using Fubini’s theorem, independence of the Xi and the fact that σiXi has the
same distribution as Xi, we may express the expectation of the right hand side of
(3.16) as

E[Z(≤B)
n (an, bn)] = 2nqn

∫ B

−B

sinc(fqn) cos(2πftn
√
n)E[e2πifX ]ndf

= 2nqn

∫ B

−B

sinc(fqn) cos(2πftn
√
n)ρ̂n(f)df.

(3.19)

We now combine Hölder’s inequality with the bound (3.14) and the fact that
sinc(fqn) is in L1+ǫ for all ǫ > 0 to bound
∫ B

−B

| sinc(fqn) cos(2πftn
√
n)ρ̂n(f)|df ≤

∫ ∞

−∞
| sinc(fqn)||ρ̂(f)|df

≤
(

∫ ∞

−∞
| sinc(fqn)|1+ǫdf

)1/(1+ǫ) (
∫ ∞

−∞
|ρ̂(f)|n0df

)1/n0

< ∞.

(3.20)

By dominated convergence, the integral in (3.19) therefore converges as B→∞,
giving

E[Zn(an, bn)] = lim
B→∞

E[Z(≤B)
n (an, bn)]

= 2nqn

∫ ∞

−∞
sinc(fqn) cos(2πftn

√
n)ρ̂n(f)df,

(3.21)

as required. �

Having established the integral representation (3.15) for E[Zn(an, bn)], we are
now ready to prove the convergence of the first moment.

Lemma 3.3.

lim
n→∞

E[Zn(an, bn)] = γ. (3.22)

Proof. The proof is a standard application of well-known techniques from asymp-
totic analysis. However, for the convenience of the reader, and due to the fact that
our later proof for higher factorial moments relies on some of the techniques used
here, we present the full details.

The proof proceeds in two steps. In the first step we show that, at the cost of
an error which is negligible as n → ∞, the integral in (3.15) can be restricted to a
small neighborhood of 0 with the sinc factor replaced by 1, and in the second step
we expand ρn(f) around 0 to get a Gaussian approximation for the integral.
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We first show that, given any sequence ωn with ωn → ∞ and ωn/
√
n → 0 as

n → ∞, we have

E[Zn(an, bn)] = 2nqn

∫ ωn/
√
n

−ωn/
√
n

cos(2πfα
√
n)ρ̂n(f)df + o(1). (3.23)

To this end, let us first restrict the integral in (3.15) to |f | ≤ µ1. Since |ρ̂n(f)| ≤
|ρ̂n0(f)|e−c1(n−n0) when n > n0 and |f | > µ1, the contribution from |f | > µ1 to the
integral on the right hand side of (3.15) is exponentially small in n for large n. In
the interval |f | ≤ µ1, we can replace sinc(fqn) by 1 + O((fqn)

2) as n → ∞, since
qn → 0 as n → ∞. Observing that tn

√
n = α

√
n + O(

√
nξn) = α

√
n + O(qn), we

can also replace cos(2πftn
√
n) by cos(2πfα

√
n) +O(fqn). Replacing sinc(fqn) by

1 and cos(2πftn
√
n) by cos(2πfα

√
n), we thus incur an error that can be bounded

by 2nO(q2n) = o(1), giving the bound

E[Zn(an, bn)] = 2nqn

∫ µ1

−µ1

cos(2πfα
√
n)ρ̂n(f)df + o(1). (3.24)

To complete the proof of (3.23), we have to show that

lim
n→∞

2nqn

∫

µ1>|f |> ωn√
n

cos(2πfα
√
n)ρ̂n(f)df = 0.

Recall by property (iv) following (3.14) that ρ̂(f) ≤ e−c2f
2

, which implies

∣

∣

∣

∫

µ1>|f |> ωn√
n

cos(2πfα
√
n)ρ̂n(f)df

∣

∣

∣
≤

∫

|f |> ωn√
n

e−c2nf
2

df = O(
1√
n
e−c2ω

2
n).

Since 1√
n
2nqne

−c2ω
2
n → 0 as n → ∞, this completes the proof of (3.23).

To evaluate the integral in (3.23), we make a Gaussian approximation in a neigh-
borhood near origin. While this is standard if one assume that the density ρ has
a sufficiently high moment (anything more than the second moment is enough), a
little care is needed due to the fact that we only assume existence of the second
moment.

We start by choosing the sequence ωn. Since ρ has a finite second moment,
its Fourier transform is twice continuously differentiable, implying that ρ̂(f) =

1− 2π2(1 + o(1))f2 = e−2π2f2(1+o(1)). In other words, for µ1 sufficiently small and

|f | ≤ µ1, we can write ρ̂(f) in the form ρ̂(f) = e−2π2f2+g(f)f2

where g(f) → 0 as
f → 0. Choose a sequence which goes to zero as n → ∞, say logn/

√
n. We then

define

ǫn = sup
f :|f |≤logn/

√
n

|g(f)| and ωn = min{logn, ǫ−1/3
n }.
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For |f | ≤ ωn/
√
n, we then have |nf2g(f)| ≤ ω2

nǫn ≤ ǫ
1/3
n , implying that ρ̂n(f) =

e−2π2nf2+o(1) = e−2π2nf2

(1 + o(1)). As a consequence,

2nqn

∫

|f |< ωn√
n

cos(2πfα
√
n)ρ̂n(f)df

= 2nqn

∫

|f |< ωn√
n

cos(2πfα
√
n)e−2π2nf2

df + o(2nqn)

∫

|f |< ωn√
n

e−2π2nf2

df

= 2nqn

∫

|f |< ωn√
n

cos(2πfα
√
n)e−2π2nf2

df + o(2nqnn
−1/2)

= 2nqn

∫

|f |< ωn√
n

cos(2πfα
√
n)e−2π2nf2

df + o(1).

(3.25)

By an argument similar to proof of (3.23), one can show that

lim
n→∞

∫

|f |> ωn√
n

2nqn cos(2πfα
√
n)e−2π2nf2

df = 0,

implying that

lim
n→∞

E[Zn(an, bn)] = lim
n→∞

2nqn

∫ ∞

−∞
cos(2πfα

√
n)e−2π2nf2

df

= lim
n→∞

2nqn
1√
2πn

e−
1
2α

2

= γ.

(3.26)

This completes the proof of equation (3.23). �

3.4. Higher Moments. In this subsection, we analyze the higher moments. Bear-
ing in mind the similar structure of the representations (3.7) and (3.9), we first con-
sider the one-dimensional factorial moments E[(Zn(a

ℓ
n, b

ℓ
n))k]. As in Subsection 3.3,

we omit the index ℓ, and write an, bn, γ and qn for aℓn, b
ℓ
n, γℓ and qn,ℓ, respectively.

We also write I(·) and Ik(·) instead of I(ℓ)(·) and I
(ℓ)
k (·).

We want to show that in the limit n → ∞, the factorial moment E[(Zn(an, bn))k]
is equal to γk. Since the sum in (3.7) contains (2n)k = 2nk(1 + o(1)) terms, one
might therefore try to show that E[Ik(σ

(1), . . . ,σ(k))] is asymptotically equal to
γk2−nk by generalizing our approach from the last section, which showed that
E[I(σ(1))] is asymptotically equal to γ2−n.

But in contrast to the expectation of I(σ(1)), the expectations of the random
variables Ik(σ

(1), . . . ,σ(k)) cannot be analyzed easily for all sequences of distinct
configurations σ(1), . . . ,σ(k). This problem already appeared in [BCP01], but here
it will be harder to overcome. First of all, even the analog of Lemma 3.2 for the
higher moments will not hold unless the configurations σ(1), . . . ,σ(k) form a set
of k linearly independent vectors in R

n. But more importantly, the expectation of
Ik(σ

(1), . . . ,σ(k)) will be hard to analyze, even if σ(1), . . . ,σ(k) are linearly indepen-
dent, unless we impose additional conditions on the configurations σ(1), . . . ,σ(k).

To overcome these problems, we use the following strategy: first we prove the
analog of Lemma 3.2 for E[Ik(σ

(1), . . . ,σ(k))] under the assumption that the con-
figurations σ(1), . . . ,σ(k) are linearly independent. Then we formulate a condition
on the sequence σ(1), . . . ,σ(k) that allows us to analyze E[Ik(σ

(1), . . . ,σ(k))] by an
extension of the proof of Lemma 3.3. Having extracted the leading behavior, we



PROOF OF THE LOCAL REM CONJECTURE FOR NUMBER PARTITIONING I 11

then estimate the contributions of all other configurations σ(1), . . . ,σ(k) and show
that they do not contribute in the limit n → ∞.

We start with the analog of Lemma 3.2 for the higher moments.

Lemma 3.4. Let k be a positive integer, and let σ(1), ..,σ(k) be linearly independent
configurations in {−1,+1}n. Then

E[Ik(σ
(1), . . . ,σ(k))] = qkn

∫∫∫ ∞

−∞

n
∏

s=1

ρ̂(vs)

k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)dfj ,

(3.27)
where

vs =

k
∑

j=1

σ(j)
s fj , 1 ≤ s ≤ n. (3.28)

Proof. Let us first rewrite Ik(σ
(1), . . . ,σ(k)) as

Ik(σ
(1), . . . ,σ(k))

= qkn

∫∫∫ ∞

−∞

n
∏

s=1

e2πiXs

∑k
j=1 σ(j)

s fj

k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)dfj

= qkn

∫∫∫ ∞

−∞

n
∏

s=1

e2πiXsvs

k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)dfj .

(3.29)

Arguing as in the proof of Lemma 3.2, we then have

E[Ik(σ
(1), . . . ,σ(k))] = lim

B→∞
E[I

(≤B)
k (σ(1), . . . ,σ(k))], (3.30)

where

I
(≤B)
k (σ(1), . . . ,σ(k)) = qkn

∫∫∫ B

−B

n
∏

s=1

e2πiXsvs

k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)dfj .

(3.31)
Using again Fubini’s theorem and independence of the Xi, we now get

E[I
(≤B)
k (σ(1), . . . ,σ(k))] = qkn

∫∫∫ B

−B

n
∏

s=1

ρ̂(vs)

k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)dfj .

(3.32)
To continue, we will use the fact that σ(1) . . . ,σ(k) are linearly independent, im-

plying that the matrix Mk = [σ
(j)
s ]j≤k,s≤n has rank k. Relabeling, if necessary,

let us assume that [σ
(j)
1 ]j≤k, . . . , [σ

(j)
k ]j≤k form a basis of the row space. Hölder’s

inequality, the fact that |ρ̂(vs)| ≤ 1, and a change of variables from f1, . . . , fk to
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v1, . . . , vk then leads to the bound

∫∫∫ B

−B

∣

∣

∣

n
∏

s=1

ρ̂(vs)

k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)
∣

∣

∣
dfj

≤
(

∫∫∫ ∞

−∞

k
∏

j=1

| sinc(fjqn)|1+ǫdfj

)1/(1+ǫ)(
∫∫∫ ∞

−∞

∣

∣

∣

k
∏

s=1

|ρ̂(vs)|n0

k
∏

j=1

dfj

)1/n0

=
(

∫∫∫ ∞

−∞

k
∏

j=1

| sinc(fjqn)|1+ǫdfj

)1/(1+ǫ)(

Jk

∫∫∫ ∞

−∞

∣

∣

∣

k
∏

s=1

|ρ̂(vs)|n0dvs

)1/n0

< ∞,

(3.33)
where n0 and ǫ are as in the proof of Lemma 3.2 and Jk is the Jacobian of the
change of variables from f1, . . . , fk to v1, . . . , vk. By dominated convergence, we
can therefore take the limit B → ∞ in (3.33). Putting everything together, this
gives (3.27). �

Next we would like to prove that for a “typical set of configurations”σ(1), ...,σ(k),

the integral on the right hand side of (3.27) is equal to (2πn)−k/2e−kα2/2(1+ o(1)).
Here the meaning of typical is best formulated in terms of the matrix formed by
the row vectors σ(1), . . . ,σ(k). More generally, for u ≤ k and σ(1), . . . ,σ(u) ∈
{−1,+1}n, let Mu be the matrix with matrix elements σ

(j)
s , where 1 ≤ j, s ≤ u.

Given this matrix and a vector δ ∈ {−1, 1}u, let

nδ = nδ(σ
(1), ...,σ(u)) = |{j ≤ n : (σ

(1)
j , ..., σ

(u))
j = δ}| (3.34)

be the number of times the column vector δ appears in the matrix Mu.
If one were to choose configurations σ(1), . . . ,σ(u) ∈ {−1,+1}n independently

and uniformly at random, then for all δ ∈ {−1,+1}u, the expectation of nδ is clearly
equal to n2−u. By a standard Martingale argument, for most configurations, the
difference between nδ and n2−u is then not much larger than

√
n, see Lemma 3.8

below. Let us therefore assume for the moment that

max
δ

|nδ(σ
(1), ...,σ(u))− n

2u
| ≤

√
nλn (3.35)

for some λn → ∞ to be chosen later. The next lemma shows that under this
condition, the right hand side of (3.27) behaves as desired, provided λn is chosen
appropriately. For concreteness, we chose λn = logn, even though the proof works
for much larger class of sequences.

Lemma 3.5. Let λn = logn, let k be a positive integer, and let σ(1), . . . ,σ(k) be a
sequence of configurations of rank k that satisfies (3.35). Then

2nkE[Ik(σ
(1), . . . ,σ(k))] = γk + o(1), (3.36)

where the constant implicit in the o-symbol depends on k.

Proof. In view of Lemma 3.4 we will have to estimate the expression

2nkqkn

∫∫∫ ∞

−∞

n
∏

s=1

ρ̂(vs)

k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)dfj . (3.37)
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Let µ1, c1, c2 and ωn be as in the proof of Lemma 3.3. In a first step, we want
to show that the contribution of the region where |vs| > µ1 for at least one s is
negligible.

Thus consider the event that one of the |vs|’s, say |vt1 |, is larger than µ1. Let

δ
1 = {σ(1)

t1 , .., σ
(k)
t1 }, and let δ2, ..., δk be vectors such that the rank of {δ1, .., δk} is

k. Let {vt2 , ..., vtk} be defined by

vti =

k
∑

j=1

δjkfj

Since the vectors {δ1, .., δk} have rank k, we can change the variables of integration
from fj to vtj . Let the Jacobian of this transformation be Jk. The Jacobian Jk is
bounded above by the largest determinant, Jmax, of a matrix of size k whose entries
are ±1. We now bound the integral over the region where |vt1 | > µ1 as follows:

|I3| =

∣

∣

∣

∣

∣

∣

∫∫∫ ∞

−∞

∫

|vt1 |>µ1

Jk

n
∏

s=1

ρ̂(vs)
k
∏

j=1

sinc(fjqn) cos(2πfjtn
√
n)dvtj

∣

∣

∣

∣

∣

∣

≤ Jmax

∫∫∫ ∞

−∞

k
∏

j=2

|ρ̂(vtj )|nδj dvtj ×
∫

|vt1 |>µ1

|ρ̂(vt1 )|nδ1dvt1

≤ Jmax(C0)
k−1

∫

|vt1 |>µ1

|ρ̂(vt1)|nδ1dvt1 ≤ JmaxC
k
0 e

−c1(nδ1−n0).

(3.38)

Since 2knqkn only grows like a power of n while the number of choices for δ
t1 is

bounded by 2k and nδ1 = n2−k + o(n) by the bound (3.35), we conclude that
the contribution of the regions where at least one of the |vs|’s is larger than µ1 is
exponentially small in n.

Consider now the region where all |vs|’s are bounded by µ1. In this region, we
again would like to approximate the sinc factors in (3.37) by one. To this end, we
first note that

k
∑

j=1

|fj | = max
s≤n

|vs|. (3.39)

Indeed, by the triangle inequality, we clearly have that maxs |vs| ≤
∑

j |fj|. To

prove the opposite inequality, we use that nδ = n
2k (1 + o(1)) > 0 for every δ ∈

{−1,+1}n, implying that there exists a vs0 that is evaluated as
∑k

j=1 |fj |. In the

region where all |vs|’s are bounded by µ1, we therefore have that all fj ’s are bounded
by µ1, so that sinc(qnfj) = 1 + O(q2n). By the fact that tn

√
n = α

√
n + O(qn),

we furthermore have that cos(2πfjtn
√
n) = cos(2πfjα

√
n) +O(qn). Replacing the

sinc factors by 1, and the product of cos(2πfjtn
√
n) by cos(2πfjα

√
n), we therefore

obtain an error which can be bounded by 2nkqknO(qn), an error which again goes
to zero exponentially in n.

We thus have show that, up to an error which is exponentially small in n, the
left hand side of (3.36) is equal to

2nkqkn

∫∫∫ µ1

−µ1

n
∏

s=1

ρ̂(vs)

k
∏

j=1

cos(2πfjα
√
n)dfj . (3.40)
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Next we show that we can further restrict the range of integration to |vs| ≤ ωn/
√
n

for all s. To this end, let us consider the integral where ωn ≤ |vs1 | ≤ µ1, while vs
can be an arbitrary number in [−µ1, µ1] for all other s. We will then have to bound
the integral

Ĩ3 =

∫∫∫ µ1

−µ1

∫

ωn/
√
n≤|vt1 |≤µ1

Jk

n
∏

s=1

ρ̂(vs)

k
∏

j=1

cos(2πfjα
√
n)dvtj .

Using the fact that ρ̂(v) ≤ e−c2v
2

for |v| ≤ µ1, this can be easily accomplished,
leading to the bound

|Ĩ3| ≤
∫∫∫ ∞

−∞

k
∏

j=2

e
−n

δj
c2v

2
tj dvtj ×

∫

|vt1 |>ωn/
√
n

e−n
δ1c2v

2
t1 dvt1

= O(n−k/2e−c2ω
2
n(nδ1/n)).

(3.41)

Using the facts that ωn → ∞, nδ1/n = 2−k + o(1) and 2knqkn = O(nk/2), this
implies that over all 2nu sequences of configurations σ(1), . . . ,σ(u) ∈ {−1,+1}n, the
contribution of the regions where |vs1 | is larger than ωn/

√
n is negligible. However,

since there are at most 2k different possibilities for |vs|, we see that the contribution
of the regions where any one of the |vs|’s is larger than ωn/

√
n is negligible.

For |vs| ≤ ωn/
√
n, we approximate ρ̂(vs) by ρ̂(vs) = exp(−2π2v2s+o(1/n)). Using

the shorthand nδ for the quantity nδ(σ
(1), . . . ,σ(k)), and defining vδ as

∑k
j=1 δjfj,

we then rewrite
n
∏

s=1

ρ̂(vs) =
∏

δ

ρ̂(vδ)
nδ = exp

(

−2π2
∑

δ

nδv
2
δ + o(1)

)

.

We would like to approximate the sum in the exponent by f2 =
∑k

j=1 f
2
j . To this

end, we first note that
∑

δ∈{−1,+1}k

∑

j1,j2

δj1fj1δj2fj2 =
∑

δ∈{−1,+1}k

∑

j

f2
j = 2k

∑

j

f2
j = 2kf2.

If nδ was equal to 2−kn for all δ, the sum in the exponent would therefore be equal
to f2, but for general δ we get the bound

∣

∣

∣

∣

∑

δ

nδv
2
δ − nf2

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

δ

(nδ − 2−kn)v2δ

∣

∣

∣

∣

≤
(

max
δ

∣

∣nδ − 2−kn
∣

∣

)

∑

δ

v2δ. (3.42)

Using the condition (3.35), and the fact that |vδ| ≤ ωn/
√
n, we bound the right

hand side by λn2
kω2

n/
√
n = o(1). We thus have shown that for |vs| ≤ ωn/

√
n,

n
∏

s=1

ρ̂(vs) =
(

1 + o(1)
)

exp
(

−2π2nf2
)

.

Combining the bounds proven so far, we conclude that, up to an error which is
negligible as n → ∞, the expression in (3.37) is equal to

2nkqkn

∫∫∫ k
∏

j=1

exp(−2π2nf2
j ) cos(2πfjα

√
n)dfj , (3.43)

where the integral goes the region where |vs| ≤ ωn/
√
n for all s. Since, by an

argument very similar to the argument leading to (3.38) and (3.41), the integral
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of
∏k

j=1 exp(−2π2nf2
j ) over a region in which |vs| > ωn/

√
n for at least one s is

negligible, we therefore have shown that

2nkE[Ik(σ
(1), . . . ,σ(k))]

= 2nkqkn

∫∫∫ ∞

−∞

k
∏

j=1

exp(−2π2nf2
j ) cos(2πfjtn

√
n)dfj + o(1)

= γk + o(1),

(3.44)

as desired. �

As we will see below, the number sequences of configurations σ(1), . . . ,σ(k) that
are linearly independent and satisfy the bound (3.35) is 2nk(1 + o(1)). Restricting
the sum in (3.7) to these configurations and using Lemma 3.5 to estimate the
expectation of Ik(σ

(1), . . . ,σ(k))], we get a contribution to the kth factorial moment
that is asymptotically equal to γk. To prove Theorem 3.1, we have to bound the
contribution of the remaining terms. To this end, we first establish an upper bound
on the expectation of Ik(σ

(1), . . . ,σ(k))] that does not rely on the condition (3.35).
To formulate this bound, we introduce the following notation.

Definition 3.6. Let n0 be such that 1/n0 + 1/(1 + ǫ) = 1 where ǫ is the constant
from assumption (2.1). We say that the configurations σ

(1), ...,σ(u) has n0-rank
u0 if the maximum number of linearly independent column vectors δ ∈ {−1,+1}u
such that

nδ(σ
(1), ...,σ(u)) ≥ n0 (3.45)

is equal to u0.

Lemma 3.7. Given a positive integer u, there exists a constant Cu such that for all
sets of linearly independent row vectors σ(1), ...,σ(u) ∈ {−1,+1}n that have n0-rank
u0, we have

∣

∣

∣
E[Iu(σ

(1), . . . ,σ(u))]
∣

∣

∣
≤ Cuq

u0+(u−u0)/n0
n . (3.46)

Proof. Let Aδ ⊂ {1, . . . , n} be the set of indices i such that the column vector

(σ
(1)
i , . . . , σ

(u)
i ) is equal to δ, and let Ỹδ be the random variable

Ỹδ =
∑

i∈Aδ

Yi. (3.47)

Recalling the definition (3.8), we then rewrite Iu(σ
(1), . . . ,σ(u)) as

Iu(σ
(1), . . . ,σ(u)) = (3.48)

= 2−u
∑

τ∈{−1,+1}u

u
∏

j=1

rect(

∑

δ∈∆ δj Ỹδ − τjtn
√
n

qn
)

where ∆ is the set of vectors δ ∈ {−1,+1} such that nδ ≥ 1.

Choose u linearly independent vectors δ
(1), . . . , δ(u) ∈ ∆ such that the vectors

δ
(1), . . . , δ(u0) satisfy the condition (3.45). Let ∆0 = {δ(1), . . . , δ(u0)}, and let

∆u = {δ(1), . . . , δ(u)}. Denoting the k-fold convolution of ρ with itself by ρk, we
then write the expectation of a typical term on the right hand side of (3.48) as

E

[

u
∏

j=1

rect(

∑

δ∈∆ δj Ỹδ − τjtn
√
n

qn
)
]

=

∫∫∫

Ku(y∆\∆0
)

∏

δ∈∆\∆u

ρnδ
(yδ)dyδ (3.49)
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where y∆\∆0
is a shorthand for the collection of variables yδ, δ ∈ ∆ \ ∆0, and

Ku(y∆\∆0
) is the integral

Ku(y∆\∆0
) =

∫∫∫ u
∏

j=1

rect(

∑

δ∈∆ δjyδ − ηjtn
√
n

qn
)
∏

δ∈∆u

ρnδ
(yδ)dyδ.

Combining the relations (3.48) and (3.49) and observing that
∫∫∫

∏

δ∈∆\∆u

ρnδ
(yδ)dyδ = 1

by the fact that nδ ≥ 1 for all δ ∈ ∆, we clearly have that
∣

∣

∣
E[Iu(σ

(1), . . . ,σ(u))]
∣

∣

∣
≤ sup

y∆\∆0
∈R|∆\∆0|

Ku(y∆\∆0
). (3.50)

It is therefore enough to bound Ku(y∆\∆0
) uniformly in y∆\∆0

.

Let αj = τjtn
√
n −

∑

δ∈∆\∆u
δjyδ. Noting that αj does not depend on the

variables which are integrated over in Ku, we then rewrite Ku as

Ku(y∆\∆0
) =

∫∫∫ u
∏

j=1

rect(

∑

δ∈∆u
δjyδ − αj

qn
)
∏

δ∈∆u

ρnδ
(yδ)dyδ

Let M̃ be the matrix with matrix elements M̃ji = δ
(i)
j . The product of the rect-

functions in the above integral then ensures that

max
j=1,...,u

∣

∣

∣

u
∑

i=1

Mjiyδ(i) − αj

∣

∣

∣
≤ 1

2
qn. (3.51)

Since the vectors in ∆u are linearly independent, the matrix M̃ is invertible. Let
βi =

∑u
j=1(M̃

−1)ijαj , and let ‖M̃−1‖ be the norm of M̃−1 as an operator from ℓ∞
to ℓ∞. The bound (3.51) then implies that

max
i=1,...,u

∣

∣

∣
y
δ(i) − βi

∣

∣

∣
≤ 1

2
q̃n, (3.52)

where q̃n = ‖M̃−1‖qn. As a consequence, the integral Ku is bounded by

Ku(y∆\∆0
) ≤

∫∫∫ u
∏

i=1

rect(
y
δ(i) − βi

q̃n
)
∏

δ∈∆u

ρnδ
(yδ)dyδ

=

u
∏

i=1

∫

rect(
y − βi

q̃n
)ρni

(y)dy

= q̃un

u
∏

i=1

∫

ρ̂ni(f) sinc(qnf)e
2πiβifdf,

(3.53)

where we used the shorthand ni = n
(i)
δ
. For i = 1, . . . , u0, we use that ni ≥ n0 to

bound the integral on the right by
∫

ρ̂ni(f) sinc(qnf)e
2πiβifdf ≤

∫

|ρ̂n0(f)|df = C0, (3.54)
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while for i = u0 + 1, . . . u, we use ni ≥ 1 and Hölder’s inequality to obtain the
bound

∫

ρ̂ni(f) sinc(qnf)e
2πiβifdf ≤

∫

|ρ̂(f) sinc(q̃nf)|df

≤
[

∫

|ρ̂n0(f)|df
]1/n0

[

∫

| sinc(q̃nf)|1+ǫdf
]1/(1+ǫ)

= C̃0q̃
−1/(1+ǫ)
n .

(3.55)

Here

C̃0 =
[

∫

|ρ̂n0(f)|df
]1/n0

[

∫

| sinc(f)|1+ǫdf
]1/(1+ǫ)

< ∞ (3.56)

is independent of u, u0 and n. Observing that 1 − 1/(1 + ǫ) = 1/n0, we thus get
the bound

Ku(y∆\∆0
) ≤ (maxC0, C̃0)

uq̃u0+(u−u0)/n0
n . (3.57)

Since there is only a finite number of choices for a set ∆ of u linearly independent
vectors in {−1,+1}u, the ratio q̃n/qn = ‖M̃−1‖ is bounded by a constant that
depends only on u, implying the existence of a constant Cu such that

Ku(y∆\∆0
) ≤ Cuq

u0+(u−u0)/n0
n . (3.58)

Combined with (3.48) and (3.49), this proves the lemma. �

In order to bound the contribution in equation (3.7) coming from the terms where

the vectors δ(1), ..., δ(k) have rank u < k or do not satisfy condition (3.35), we need
the following lemma, whose main statements were already proven in [BCP01].

Lemma 3.8.

(1) Given u ≤ k linearly independent row vectors σ
(1), . . . ,σ(u), there are

at most 2u(k−u) ways to choose σ(u+1), . . . ,σ(k) such that the matrix M
formed by the row vectors σ(1), . . . ,σ(k) has rank u.

(2) Given u and n0, there are constants c3 = c3(u, n0) and C3 = C3(u, n0)
such that there are at most C3n

c32nu0 ways to choose u linearly independent
configurations σ(1), ...,σ(u) that have n0-rank u0.

(3) Let u < ∞, let c4 = c4(u) = 2u+1, and let λn be a sequence of positive num-
ber such that λn/

√
n → 0 as n → ∞. Then the number of configurations

σ(1), ...,σ(u) that violate condition (3.35) is bounded by c42
nue−

1
2λ

2
n .

(4) Let σ(1), ...,σ(k) be distinct spin configurations, assume that rank M < k,
and let σ(1), ...,σ(u) be linearly independent. Then nδ(σ

(1), ...,σ(u)) = 0 for
at least one δ ∈ {−1,+1}u, implying in particular that, for n sufficiently
large, σ(1), ...,σ(u) violate condition (3.35).

(5) Given u, let σ(1), ...,σ(u) ∈ {−1,+1}n be an arbitrary set of row vectors
satisfying (3.35). Then

q(σ(a),σ(b)) ≤ 2u
λn√
n

(3.59)

whenever a 6= b. For n sufficiently large, condition (3.35) therefore implies
that σ(1), ...,σ(u) are linearly independent.

Proof. Except for the second statement, the lemma mainly summarizes the relevant
results from Section 6 of [BCP01]. More explicitly: statement (1) is proved in the
paragraph following (6.10), and for λ = logn, statement (3), is proved in the
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paragraphs around (6.12), statement (4) is proved in the paragraph around the
second and third unnumbered equation after (6.12), and statement (5) is equivalent
to the bound (6.14).

It is not hard to see that the arguments in Section 6 of [BCP01] can be generalized
to arbitrary sequences λn of positive number, as long as λn/

√
n → 0 as n → ∞.

Indeed, starting with statement (3), let us consider n independent trials with 2u

equally likely outcomes, and use Chebychev’s inequality to bound the probability

that |nδ(σ
(1), ...,σ(u)) − n2−u| ≥ √

nλn by 2e−
1
2λ

2
n . Combined with the union

bound for the 2u different random variables nδ(σ
(1), ...,σ(u)), δ ∈ {−1,+1}u, this

gives statement (3). The first part of (4) does not involve the value of λn, and the
second follows from the first whenever λn/

√
n → 0 as n → ∞. To prove the bound

(3.59) in statement (5), we rewrite the overlap q(σ(a),σ(b)) as

q(σ(a),σ(b)) =

=
1

n

(

∑

δ∈{−1,+1}u

δa=δb

nδ(σ
(1), ...,σ(u))−

∑

δ∈{−1,+1}u

δa 6=δb

nδ(σ
(1), ...,σ(u))

)

. (3.60)

Noting that each sum contains 2u−1 terms, we see that the bound (3.35) implies
the bound (3.59). Finally, the last statement of (5) is a direct consequence of (3.59)
and the fact that λn/

√
n → 0 as n → ∞.

We are left with the proof of (2). To this end, let us consider the matrix M̃u

obtained from Mu by omitting all columns σ
(1)
i , . . . , σ

(u)
i that are equal to a vector

δ ∈ {−1,+1}u with nδ(σ
(1), ...,σ(u)) < n0. Note that the number of columns n′ of

M̃u is at least n− 2un0 and at most n. Fixing n′, for the moment, and noting that
the rank of M̃u is u0, we now use statement (1) to conclude that there are at most

(

u

u0

)

2n
′u02u0(u−u0) ≤ 2u+u2/22nu0 (3.61)

ways to choose M̃u. Given M̃u we need to insert n − n′ columns in {−1,+1}u to
obtain the matrix Mu. Including the number of choices for the positions of these
n− n′ columns, this gives an extra factor of

(

n

n− n′

)

2(n−n′)u ≤ 1

(n− n′)!
nn−n′

2n−n′ ≤ 1

(n− n′)!
nn02

u

2n02
u

(3.62)

Combining the two factors and summing over n′ ∈ {n − n02
u, . . . , n}, we get a

bound of the form C3n
c32u0n where C3 and c3 depend only on u and n0. �

Having Lemmas 3.4, 3.5, 3.7 and 3.8 in hand, we are now ready to prove Theo-
rem 3.1.

3.4.1. Proof of Theorem 3.1. We start with the casem = 1, i.e., the one-dimensional
factorial moment E[(Zn(an, bn))k]. As in Lemma 3.5, we choose λn = log n. Con-
sider the sum over all sequences σ(1), . . . ,σ(k) ∈ {−1,+1}n that satisfy the bound
(3.35). By Lemma 3.8 (3), this sum contains 2nk(1+o(1)) terms, and by Lemma 3.8
(5), the matrix formed by the row vectors σ(1), . . . ,σ(k) has rank k if n is large
enough. With the help of Lemma 3.5, we conclude that the sum over all these
terms gives a contribution to the kth factorial moment which is equal to γk + o(1).

To prove Theorem 3.1, we have to bound the contribution of the remaining terms.
To this end, we group the remaining terms in the sum (3.7) into four classes:
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(1) Sequences of distinct configurations σ(1), . . . ,σ(k) of rank k and n0-rank
u0 < k that violate the condition (3.35);

(2) Sequences of distinct configurations σ(1), . . . ,σ(k) of rank k and n0-rank k
that violate the condition (3.35);

(3) Sequences of distinct configurations σ(1), . . . ,σ(k) of rank u < k such that

there is a subsequence of linearly independent configurations σ̃(1), . . . , σ̃(u)

of n0-rank u0 < u;
(4) Sequences of distinct configurations σ(1), . . . ,σ(k) of rank u < k such that

all subsequences of linearly independent configurations σ̃(1), . . . , σ̃(u) have
of n0-rank u0 = u;

By Lemma 3.8 (4), the configurations σ̃
(1), . . . , σ̃(u) in class (4) must violate

condition (3.35). Relaxing the constraint that the configurations in class (1) violate
condition (3.35), it is therefore enough to bound the following two error terms:

• the sum R<
n,k of all sequences of configurations σ(1), . . . ,σ(k) of rank u ≤ k

containing a subsequence of linearly independent configurations σ̃(1), . . . , σ̃(u)

of n0-rank u0 < u, and
• the sum R=

n,k of all sequences of configurations σ(1), . . . ,σ(k) of rank u ≤ k

such that all subsequence of linearly independent configurations σ̃(1), . . . , σ̃(u)

obey condition (3.35) and have n0-rank u0 = u.

Before bounding these two error terms, we note that

Ik(σ
(1), . . . ,σ(k)) =

k
∏

i=1

I(σ(i)) ≤
u
∏

i=1

I(σ̃(i)) = Iu(σ̃
(1), . . . , σ̃(u)), (3.63)

implying that

E[Ik(σ
(1), . . . ,σ(k))] ≤ E[Iu(σ̃

(1), . . . , σ̃(u))] (3.64)

whenever σ̃(1), . . . , σ̃(u) is a subsequence of σ(1), . . . ,σ(k).
In order to bound R<

n,k, we now use (3.64) and Lemma 3.7 to bound the expecta-

tion of Ik(σ
(1), . . . ,σ(k)) by Cuq

u0+(u−u0)/n0
n ≤ c5q

u0
n q

1/n0
n , where c5 = maxu≤k Cu.

Using Lemma 3.8 (2) to bound the number of sequences σ̃(1), . . . , σ̃(u) of n0-rank
u0 by C6n

c62nu0 , where C6 = maxu≤k C3(u, n0) and c6 = maxu≤k c3(u, n0), and

Lemma 3.8 (1) to bound the number of ways σ(1), . . . ,σ(k) can be obtained from

σ̃
(1), . . . , σ̃(u), we therefore obtain the following upper bound

R<
n,k ≤ C6c5n

c6
∑

u0,u:
u0<u≤k

(

k

u

)

2u(k−u)(2nqn)
u0q1/n0

n . (3.65)

Since 2nqn = O(
√
n), we get that

R<
n,k = O(nc7q1/n0

n ) (3.66)

where the constant implicit in the O-symbol depends on k, α and γ, and where
c7 = c6 + k/2. Since qn falls exponentially with n, this proves that R<

n,k = o(1).

The error term R=
n,k can be bounded in a similar way. We again use (3.64) and

Lemma 3.7 to bound the expectation of Ik(σ
(1), . . . ,σ(k)), but now we use part

(3) of Lemma 3.8 to bound the number of sequences σ̃
(1), . . . , σ̃(u). Using again
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Lemma 3.8 (1) to bound the number of ways σ(1), . . . ,σ(k) can be obtained from

σ̃
(1), . . . , σ̃(u), we now obtain the upper bound

R=
n,k ≤ c5c8

∑

u0,u:
u0<u≤k

(

k

u

)

2u(k−u)e−λ2
n/2(2nqn)

u (3.67)

where c8 = maxu ≤ kc4(u) = 2k+1. Using again that 2nqn = O(
√
n), we conclude

that
R=

n,k = O(nk/2e−λ2
n/2). (3.68)

Since e−λ2
n/2 = e− log2 n/2 decays faster than any power of n, the right hand side

goes to zero as n → ∞, as desired.
This completes the proof that E[(Zn(an, bn))k] → γk as n → ∞. To prove the

convergence of the higher-dimensional factorial moments, we need to generalize
Lemmas 3.4, 3.5 and 3.7. But, except for notational inconveniences, this causes
no problems. Indeed, comparing the representations (3.8) and (3.10), we see that

the only difference is the appearance of several distinct intervals [a
ℓ(j)
n , b

ℓ(j)
n ] for the

energy of the configuration σ(j), instead of the same interval [an, bn] for all of them.
As a consequence, the statement of Lemma 3.4 has to be modified, with the right

hand side of (3.27) replaced by

k
∏

ℓ=1

qkℓ

n,ℓ

∫∫∫ ∞

−∞

n
∏

s=1

ρ̂(vs)

k
∏

j=1

sinc(fjqn,ℓ(j)) cos(2πfjt
ℓ(j)
n

√
n)dfj . (3.69)

But the proof remains unchanged, since it never used that qn,ℓ(j) or t
ℓ(j)
n is constant.

In a similar way, the proof of Lemma 3.5 needs only notational changes: the
arguments leading to (3.40) now give a prefactor 2nk

∏

j qℓ(j) instead of 2nkqkn, but

the integral multiplying this prefactor (and therefore the rest of the proof) remains
unchanged, proving that under the conditions of Lemma 3.5,

2nkE[Ik(σ
(1), . . . ,σ(k))] =

∏

j

γℓ(j) + o(1). (3.70)

Turning finally to the proof of Lemma 3.7, we note that its proof goes through if
we replace q̃n by ‖M̃−1‖maxℓ=1,...,m qn,ℓ. As a consequence, the bound (3.46) has
to be modified to

∣

∣

∣
E[Iu(σ

(1), . . . ,σ(u))]
∣

∣

∣
≤ Cu( max

ℓ=1,...,m
qn,ℓ)

u0+(u−u0)/n0 , (3.71)

which does not change the n-dependence of the bound.
Using these generalizations of Lemmas 3.4, 3.5 and 3.7, it is easy to see that the

bounds (3.66) and (3.68) remain unchanged, except for the fact that the implicit
constants in the O-symbols now depend on maxℓ γℓ instead of γ. This completes
the convergence proof for the multi-dimensional factorial moments, and hence the
proof of Theorem 3.1.

Remark 3.9. Throughout this section, we have assumed that α is bounded. For
convenience in our companion paper [BCMN05], we note that the above estimates
on R<

n,k and R=
n,k can be easily be generalized to growing α if we choose λn ap-

propriately. Indeed, making the α-dependence of our bounds explicit, we obtain

R<
n,k = O(nc7ekα

2/2q1/n0
n ) (3.72)
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and

R=
n,k = O(nk/2ekα

2/2e−λ2
n/2), (3.73)

as long as λn = o(
√
n). For α = o(

√
n), qn decays exponentially in n, and R<

n,k =

o(1). Choosing λn in such a way that α = o(λn), λn = o(
√
n) and e−λ2

n/2 decays
faster than any power of n, we also have R=

n,k = o(1).
In order to prove Theorem 3.1 for growing α, we therefore only need to generalize

the statements of Lemmas 3.3 and 3.5. For α = o(n1/4), this will be done in
[BCMN05].

3.5. Overlap Estimates. To complete the proof of the Theorem 2.2, we need to
show that the rescaled overlaps converge to a standard normal. Defining R(β) to
be the tail of the standard Gaussian,

R(β) =

∫ ∞

β

1√
2π

e−
x2

2 dx.

we therefore have to show that for any β ∈ R and any j > i > 0, we have

P(Qij ≥ β) → R(β) (3.74)

as n → ∞.
Let Ern+i and Ern+j be the ith and jth energy above α, respectively, and let

λ0 > 0. Having established the convergence (2.4) of the rescaled energies, we note
that the probability that both Ern+i and Ern+j fall into the interval [α, α + λ0ξn]
can be made arbitrary close to one by choosing λ0 and n large enough. Consider
further a discretization scale η such that λ0/η is an integer. If both Ern+i and
Ern+j fall into the interval [α, α + λ0ξn], each of them must fall into one of the
λ0/η intervals [α, α+ ηξn], [α+ ηξn, α+ 2ηξn], . . . , [α+ (γ0 − η)ξn, α+ λ0ξn]. By
choosing η sufficiently small and n sufficiently large, the probability that both fall
into the same interval, or that one of the other energies between α and α + λ0ξn
falls into the same interval as Ern+i or Ern+j , can be made arbitrarily close to one
as well.

It is therefore enough to consider the intersection of the event Qij ≥ β, the
event that Ern+i and Ern+j fall into two different intervals of the form [α + (m −
1)ηξn, α +mηξn], m = 1, . . . , λ0/η, and the event that both of them are the only
energies that fall into these intervals. Denote the intersection of these events by
Aij(β). Decomposing the event Aij(β) according to the spin configurations σ(rn+i)

and σ(rn+j) corresponding to the ith and jth energy above α and the particular
intervals containing these energies, we then rewrite the probability of Aij(β) as

P(Aij(β)) =
∑

mi<mj

∑(β)

σ,σ̃

P

[

Ami
(σ) ∩Amj

(σ̃) ∩ {Z(1)
n = i− 1} ∩ {Z(2)

n = 1}

∩ {Z(3)
n = j − i− 1} ∩ {Z(4)

n = 1}
]

.

(3.75)
Here the second sum runs over pairs of distinct configurations σ, σ̃ with rescaled
overlap larger than β, the first sum runs over integers mi,mj with 0 < mi < mj ≤
λ0/η, the symbol Am(σ) denotes the event that the energy of the configuration
σ falls into the interval [α + (m − 1)ηξn, α + mηξn], and the random variables

Z
(ℓ)
n are equal to the number of points in the spectrum that lie in the intervals
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[a
(ℓ)
n , b

(ℓ)
n ] where a

(1)
n = α, b

(1)
n = a

(2)
n = α + (m1 − 1)ηξn, b

(2)
n = a

(3)
n = α +m1ηξn,

b
(3)
n = a

(4)
n = α+(m2− 1)ηξn, and b

(4)
n = α+m2ηξn. Defining I(ℓ)(·) as before, let

(Zn)
(β)
2 =

∑(β)

σ,σ̃

I(2)(σ)I(4)(σ̃) (3.76)

be the number of distinct pairs of configurations σ, σ̃ with rescaled overlap at least

β such that the energy of σ falls into the interval [a
(2)
n , b

(2)
n ], and the energy of σ̃

falls into the interval [a
(4)
n , b

(4)
n ]. We then rewrite the probability P(Aij(β)) as

P(Aij(β)) =
∑

mi<mj

E

[

(Zn)
(β)
2 I(Z(1)

n = i− 1)I(Z(2)
n = 1)

I(Z(3)
n = j − i− 1)I(Z(4)

n = 1)
]

,

(3.77)

where I(A) denotes the indicator function of the event A.
Let Nn(β) be the number of distinct pairs σ, σ̃ with rescaled overlap at least β.

Combining the methods of the last section with the standard central limit theorem,
we now easily establish that

E

[

(Zn)
(β)
2

]

= η22−2nNn(β)
(

1 + o(1)
)

= η2R(β)
(

1 + o(1)
)

. (3.78)

In order to analyze the right hand side of (3.77) we would like first to factor the
expectation on the right hand side, and then use (3.78) and Poisson convergence

of the random variables Z
(ℓ)
n to analyze the resulting terms. In the process, we will

have to analyze the factorial moments

E

[

(Zn)
(β)
2 (Z(1)

n )k1 (Z
(2)
n )k2(Z

(3)
n )k3(Z

(4)
n )k4

]

. (3.79)

Unfortunately, the methods of the last section cannot be directly applied to these
factorial moments since the sum over configurations representing the above expres-
sion is not a sum over pairwise distinct configurations: comparing, e.g., the sum

over σ in (3.76) and the representation of the random variable Z
(2)
n as a sum over

configurations,

Z(2)
n =

∑

σ′

I(2)(σ′), (3.80)

we see that both involve configurations whose energy lies in the interval [a
(2)
n , b

(2)
n ].

But this problem can be easily overcome by considering the random variables Z
(2)
n −

1 and Z
(4)
n − 1 instead of Z

(2)
n and Z

(4)
n . We therefore consider the expression

E

[

(Zn)
(β)
2 (Z(1)

n )k1(Z
(2)
n − 1)k2(Z

(3)
n )k3(Z

(4)
n − 1)k4

]

=
∑(β)

σ,σ̃

E

[

I(2)(σ)I(4)(σ̃)(Z(1)
n )k1(Z

(2)
n − 1)k2(Z

(3)
n )k3(Z

(4)
n − 1)k4

]

.
(3.81)

We claim that this expression can again be be expressed as a double sum over
distinct configurations, allowing us to apply the methods of the last section. Indeed,
let us first consider the product

I(2)(σ)(Z(2)
n − 1)k2 = I(2)(σ)(Z(2)

n − 1)(Z(2)
n − 2) · · · (Z(2)

n − k2). (3.82)

Proceeding as in the proof of (3.7), we now rewrite this product as a sum of con-
figurations σ

(1), . . . ,σ(k2) which are mutually distinct and distinct from σ. In a
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similar way, the product I(4)(σ̃)(Z
(4)
n − 1)k4 can be expressed as a sum over mu-

tually distinct configurations which are distinct from σ̃. Using these facts, we now
proceed as before to obtain the bound

E

[

(Zn)
(β)
2 (Z(1)

n )k1(Z
(2)
n − 1)k2(Z

(3)
n )k3(Z

(4)
n − 1)k4

]

= η2γk1
1 ηk2γk3

3 ηk42−2nNn(β)
(

1 + o(1)
)

,
(3.83)

where γ1 = η(m1 − 1) and γ3 = η(m2 −m1 − 1).

Consider the four random variables Z
(1)
n , Z

(2)
n − 1, Z

(3)
n and Z

(4)
n − 1, together

with the probability distribution µ defined by

µ
(

Z(1)
n = i1, Z

(2)
n − 1 = i2, Z

(3)
n = i3, Z

(4)
n − 1 = i4

)

=
E

[

(Zn)
(β)
2 I(Z

(1)
n = i1)I(Z

(2)
n − 1 = i2)I(Z

(3)
n = i3)I(Z

(4)
n − 1 = i4)

]

E

[

(Zn)
(β)
2

] .
(3.84)

The bounds (3.78) and (3.83) then establish that in the measure µ, the four random

variables Z
(1)
n , Z

(2)
n −1, Z

(3)
n and Z

(4)
n −1 converge to four independent Poisson ran-

dom variables with rates η, γ2, η and γ4, respectively. Using once more the bound
(3.78), we conclude that the expectation in the sum in (3.77) can be approximated
as

E

[

(Zn)
(β)
2 I(Z(1)

n = i− 1)I(Z(2)
n − 1 = 0)I(Z(3)

n = j − i− 1)I(Z(4)
n − 1 = 0)

]

= η2
γi−1
1

(i − 1)!

γj−i−1
3

(j − i− 1)!
e−(2η+γ1+γ3)R(β)

(

1 + o(1)
)

.

(3.85)
Inserted into (3.77) this gives the bound

P(Aij(β)) = Kη(λ0)R(β)
(

1 + o(1)
)

, (3.86)

where

Kη(λ0) = η2
∑

m1<m2

((m1 − 1)η)i−1

(i − 1)!

((m2 −m1 − 1)η)j−i−1

(j − i− 1)!
e−ηm2 (3.87)

is the Riemann-sum approximation to the integral

K(λ0) =

∫ λ0

0

dγ1
γi−1
1

(i− 1)!
e−γ1

∫ λ0

0

dγ3
γj−i−1
3

(j − i− 1)!
e−γ3 . (3.88)

As η → 0, the Riemann sum Kη(λ0) converges to the integral K(λ0), and as
λ0 → ∞, the integral K(λ0) converges to 1. Choosing first λ0 large enough, then
η small enough, and then n large enough, the normal distribution function R(β)
is therefore an arbitrarily good approximation to P(Aij(β), which in turn can be
made arbitrary close to P(Qij ≥ β), again by first choosing λ0 sufficiently large,
then η sufficiently small, and then n sufficiently large. This establishes (3.74) and
hence the remaining statements of Theorem 2.2.



24 CHRISTIAN BORGS1, JENNIFER CHAYES1, STEPHAN MERTENS2, CHANDRA NAIR3

4. Generalizations and open problems

4.1. Generalizations of the Npp. The Npp has a natural generalization: Divide
a set {X1, X2, . . . , Xn} of numbers into q subsets such that the sums in all q subsets
are as equal as possible. This is known as multi-way partitioning or multiprocessor
scheduling problem [BME03]. The latter name refers to the problem of distributing
n tasks with running times {X1, X2, . . . , Xn} on q processors of a parallel computer
such that the overall running time is minimized. Bovier and Kurkova [BK04] con-
sidered the restricted multi-way partitioning problem where the cardinality of each
subset is fixed to n/q. For this model they could prove the “energy part” of the
local REM hypothesis at α = 0, i.e., the convergence of the properly scaled near
optimal solutions to a Poisson point process. The local REM (including the “over-
lap part”) is conjectured to be valid for all α ≥ 0 for the multi-way partitioning
problem in the unrestricted case (i.e., for n/q not necessarily fixed) [BFM04]. This
generalization is still open.

4.2. Universality. In [BM04] it is conjectured that the local REM is a property
of discrete, disordered systems well beyond number partitioning and its relatives.
Since this conjecture represents a fascinating open problem for the rigorous com-
munity, we briefly review the heuristic argument of [BM04]: Consider a model with
an energy function of the form

E(σ) =
n
∑

i=1

σiXi , (4.1)

where the σ is an n-dimensional vector with binary entries σi = ±1 or σi ∈ {0, 1}
and the Xi are real random numbers from the unit interval. In case of the Npp

(or the 1-d Edwards-Anderson model), any vector σ is a feasible configuration. If
we add more restrictions, we could write the cost function of many optimization
problems in the form ((4.1)). For example, in the traveling salesman problem, we
would take σi ∈ {0, 1}, where σi = 1 means that the distance Xi is part of the tour,
and the σi would have to fulfill the constraint to encode a valid itinerary. In higher-
dimensional spin glasses, the σi = ±1 encode satisfied or unsatisfied edges, and are
correlated due to loops in the graph. In all cases we have an exponential number of
valid configurations, with an exponential number of energy values E(σ). Since the
range of energies scales only linearly with n, it should follow that adjacent levels
will be separated by exponentially small distances. The precise value of each gap
will be determined by the least significant bits in the Xi’s, however. The dynamical
variables σi can only control the n most significant bits of the energy. [BM04]
argue that the residual entropy of the least significant bits then gives rise to the
Poisson nature of adjacent energy levels and to the full local REM property. This
very heuristic argument has been supported by extensive numerical simulations
in various spin glass models (Edwards-Anderson model, Sherrington-Kirkpatrick
model, Potts glasses) and in optimization problems (TSP, minimum spanning tree,
shortest path) [BM04].

In this paper, we rigorously established the local REM conjecture for a particular
model, the Npp. In a recent paper [BK05], submitted shortly after the present
one, Bovier and Kurkova showed that the local REM conjecture holds for many
types of spin glasses as well, in particular the Edwards-Anderson model and the
Sherrington-Kirkpatrick model. Their approach is based on a general theorem
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establishing Poisson convergence for an abstract class of models, with conditions
that are very similar to the statements of our Lemmas 3.5 and 3.8 in an abstract
setting.

4.3. Phase Transition. According to the heuristic argument above, the bit-en-
tropy of the disorder Xi is the essential property that leads to the local REM: if
it is larger than the entropy of the configurations, the local REM should apply. If
it is lower than the configurational entropy, the distances between adjacent energy
levels are multiples of a fixed, smallest distance. In this case, each energy level is
populated by an exponential number of configurations. An indicator for the transi-
tion between the two regimes is the maximum overlap between two configurations
with adjacent energy levels. If the entropy of the disorder is larger than the con-
figurational entropy, this overlap should be 0 (the local REM). If the entropy of
the disorder is much smaller than the configurational entropy, this overlap should
be 1 − Θ(n−1). Numerical simulations in [BM04] indicate that there is a sharp
transition at the point at which these entropies are the same. A canonical problem
in which such a transition has been rigorously investigated is the phase transition
of the Npp [BCP01]. [BM04] propose that a transition of this type may be as
universal as the local REM. A proof of the universality of this transition poses yet
another challenge for the rigorous community.
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