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Abstract

An equitable coloring of a graph is a proper vertex coloring such that the
sizes of any two color classes differ by at most one. The least positive inte-
ger k for which there exists an equitable coloring of a graph G with k colors
is said to be the equitable chromatic number of G and is denoted by χ=(G).
The least positive integer k such that for any k′ ≥ k there exists an equi-
table coloring of a graph G with k′ colors is said to be the equitable chro-

matic threshold of G and is denoted by χ∗
=(G). In this paper we investigate

the asymptotic behavior of these coloring parameters in the probability space
G(n, p) of random graphs. We prove that if n−1/5+ǫ < p < 0.99 for some
0 < ǫ, then almost surely χ(G(n, p)) ≤ χ=(G(n, p)) = (1 + o(1))χ(G(n, p))
holds (where χ(G(n, p)) is the ordinary chromatic number of G(n, p)). We also
show that there exists a constant C such that if C/n < p < 0.99, then al-
most surely χ(G(n, p)) ≤ χ=(G(n, p)) ≤ (2 + o(1))χ(G(n, p)). Concerning the
equitable chromatic threshold, we prove that if n−(1−ǫ) < p < 0.99 for some
0 < ǫ, then almost surely χ(G(n, p)) ≤ χ∗

=(G(n, p)) ≤ (2 + o(1))χ(G(n, p))

holds, and if log1+ǫ n
n < p < 0.99 for some 0 < ǫ, then almost surely we have

χ(G(n, p)) ≤ χ∗
=(G(n, p)) = Oǫ(χ(G(n, p))).
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AMS subject classification: 05C15, 05C80

1 Introduction and main results

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any
two color classes differ by at most one. One of the first results about equitable colorings
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Nádor u. 9., Hungary. Email: patkos@renyi.hu. Research supported in part by the European Network
PHD, MCRN-511953.

1



is the celebrated Hajnal-Szemerédi theorem [5] (recently reproved in a much simpler
way by Kierstead and Kostocka [10]) stating that every graph with maximum degree
∆ has an equitable coloring with k colors for any k ≥ ∆ + 1. Lih’s paper [14] surveys
some basic results on equitable colorings and how the bound of ∆ + 1 can be replaced
by ∆ for certain classes of graphs. Applications of the Hajnal-Szemerédi theorem and
recent results on equitable colorings of graphs can be found in (among others) [1], [2],
[9], [11], [12], [19]. Equitable coloring turned out to be useful in establishing bounds
on tails of sums of dependent variables [6], [8], [18].

The property of being equitably colorable by k colors is not monotone in k, i.e. it
is possible that a graph admits an equitable k-coloring but is not equitably (k + 1)-
colorable. Therefore there are two parameters of a graph related to equitable colorings.
The least positive integer k for which there exists an equitable coloring of a graph G
with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G),
while the least positive integer k such that for any k′ ≥ k there exists an equitable
coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G
and is denoted by χ∗

=(G). (We follow the notation of [14], though equitable chromatic
threshold is sometimes denoted by eq(G).)

In this paper, we prove results on the asymptotic behavior of the above parameters
in the random graph G(n, p). By G(n, p) we mean the probability space of all labeled
graphs on n vertices, where every edge appears randomly and independently with
probability p = p(n). We say that G(n, p) possesses a property P almost surely, or a.s.
for brevity, if the probability that G(n, p) satisfies P tends to 1 as n tends to infinity.
Our main aim is to address the following conjecture:

Conjecture: There exists a constant C such that if C/n < p < 0.99, then almost
surely

χ(G(n, p)) ≤ χ=(G(n, p)) ≤ χ∗
=(G(n, p)) = (1 + o(1))χ(G(n, p))

holds (the first two inequalities are true by definition).

Before proceeding to our results let us summarize the asymptotic behavior of χ(G(n, p))
in one theorem which for some values of p was discovered by Bollobás [4] and indepen-
dently by Matula and Kučera [17], and for other values of p by ÃLuczak [15] (see also
Chapter 7 of [7]). Here and throughout the paper log stands for the logarithm in the
natural base e.

Theorem 1.1 The following statements are true for the chromatic number χ(G(n, p)).

(a) If log−8 n < p < 0.99, then almost surely

n

2 logb n − logb logb(np)
≤ χ(G(n, p)) ≤

n

2 logb n − 8 logb logb(np)
,

where b = 1
1−p

.
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(b) There exists a constant C0 > 0 such that for every p = p(n) satisfying C0/n ≤ p ≤
log−8 n almost surely

np

2 log(np) − 2 log log(np)
≤ χ(G(n, p)) ≤

np

2 log(np) − 40 log log(np)
.

Note that if p tends to 0, then 2(logb n−logb logb(np)) is asymptotically 2(log(np)−log log(np))
p

.

Also note that if p is as in case (a), then logb n ≫ logb logb(np), while if p is as in
case (b), then log(np) ≫ log log(np), so changing the coefficient of logb logb(np) (or
log log(np) in the latter case) in the denominator has no effect on the asymptotics of
the expressions in Theorem 1.1. In our theorems, all lower bounds on χ=(G(n, p)) or
χ∗

=(G(n, p)) follow from the lower bound of Theorem 1.1.

By analyzing a greedy algorithm we obtain the following theorem.

Theorem 1.2 Almost surely the equitable chromatic threshold χ∗
=(G(n, p)) satisfies the

following inequalities.

(a) If p < 0.99 and p = n−o(1), then

n

2 logb n − logb logb(np)
≤ χ∗

=(G(n, p)) ≤
n

logb n − 2.1 logb logb(np)
,

where b = 1
1−p

.

(b) If there exists a positive ǫ such that n−1+ǫ ≤ p ≤ log−8 n, then

np

2 log(np) − log log(np)
≤ χ∗

=(G(n, p)) ≤
np

log(np) − 2.1 log log(np)
.

(c) If p → 0 and there is a positive ǫ such that p ≥ log1+ǫ n
n

, then for any ǫ′ with
0 < ǫ′ < ǫ

1+ǫ
we have

np

2 log(np) − log log(np)
≤ χ∗

=(G(n, p)) ≤
np

( ǫ
1+ǫ

− ǫ′) log(np)
.

Applying case (c) of the above theorem with ǫ tending to infinity, we get the fol-
lowing result.

Corollary 1.3 If p < 0.99 and log log n ≪ log(np), then almost surely we have

χ(G(n, p)) ≤ χ=(G(n, p)) ≤ χ∗
=(G(n, p)) ≤ (2 + o(1))χ(G(n, p)).
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Although the above result is not asymptotically tight, the algorithm used in the proof
gives us almost surely an equitable coloring in polynomial time, while the other results
just prove the existence of a such coloring.

The following theorem is a purely deterministic one, which we will use in our proba-
bilistic proofs; we state it among the main results for it can be of independent interest.

Theorem 1.4 Let G be a graph on n vertices in which every induced subgraph G[U ] with

|U | ≥ m contains an independent set of size s. Suppose further that n−∆(G)−m−ms2

s
≥ m

holds, where ∆(G) denotes the maximum degree of the graph G. Then G can be properly
colored using color classes only of size s and s − 1.

Our next result gives the asymptotic value of χ=(G(n, p)) for dense random graphs.

Theorem 1.5 If n−1/5+ǫ < p < 0.99 for some ǫ > 0, then the following holds almost
surely:

χ(G(n, p)) ≤ χ=(G(n, p)) ≤ (1 + o(1))χ(G(n, p)).

Our last theorem gives the same upper bound as Theorem 1.2; its importance is
that its proof works also when p tends to 0 very quickly (i.e., when G(n, p) is very
sparse).

Theorem 1.6 There exists a constant C such that if C
n

≤ p ≤ log−8 n, then a.s.
χ=(G(n, p)) ≤ np

(1−o(1)) log(np)
.

The rest of this paper is organized as follows: in the next section we introduce
some notation and gather some basic facts that we will use in our proofs. In Section
3, we prove Theorem 1.2 analyzing a greedy algorithm. Theorem 1.5 will be proved
in Section 4 which consists of two subsections. In the first subsection, we give the
proof of Theorem 1.4 and deduce the “very dense case” of Theorem 1.5, in the second
subsection we prove the “dense, but not very dense” case of Theorem 1.5. Section 4
contains the proof of Theorem 1.6.

2 Preliminaries

In this section, we introduce some (standard) notation and gather some basic results
concerning binomial distributions, random graphs and equitable coloring that we will
use in our proofs.

Let α(G) denote the independence number (the size of a largest independent set) of
G. We will say that a graph G is d-degenerate if every subgraph of G contains a vertex
of degree at most d and the degeneracy number of G is the smallest integer d such
that G is d-degenerate. We will also say that the sets S1, S2, ..., Ss are almost equal if
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||Si| − |Sj|| ≤ 1 for any 1 ≤ i, j ≤ s. The neighborhood of a set of vertices U ⊆ V (G)
is {v ∈ V (G) \ U : ∃u ∈ U such that (u, v) ∈ E(G)} and is denoted by N(U).

The following well-known bound (see e.g. Theorem 2.1. in [7]) on the tails of
binomial distributions will be used several times for proving some properties of random
graphs.

Chernoff bound: If X is a binomially distributed random variable with parameters n
and p and λ = np, then for any t ≥ 0 we have

P(X ≥ EX + t) ≤ exp

(

−
t2

2(λ + t/3)

)

and

P(X ≤ EX − t) ≤ exp

(

−
t2

2λ

)

.

Also, the following result of Kostochka, Nakprasit and Pemmaraju will be quoted.

Theorem 2.1 (Kostochka, Nakprasit, Pemmaraju [11]) For every d, n ≥ 1, if a graph
G is d-degenerate, has n vertices and satisfies ∆(G) ≤ n/15, then χ∗

=(G) ≤ 16d.

Let us collect a couple of facts, easy inequalities that will be used during the proofs.

Fact 2.2 If p > log2 n
n

, then almost surely ∆(G) < 1.01np.

Corollary 2.3 If p > log2 n
n

, then almost surely for every set of vertices U of size
|U | = t, we have |N(U)| ≤ 1.01npt.

For binomial coefficients we will have the following upper bound.

(

n

k

)

≤
(en

k

)k

= exp (O (k log(n/k))) .

Let us finish this section with introducing the standard notations used for comparing
the order of magnitude of two non-negative sequences. We will write g(n) = o(f(n))

(g(n) = ω(f(n))) to denote the fact that limn
g(n)
f(n)

= 0 (limn
g(n)
f(n)

= ∞), while g(n) =

O(f(n)) (g(n) = Ω(f(n))) will mean that there exists a positive number K such that
g(n)
f(n)

< K ( g(n)
f(n)

> K) for all integers n. Finally, we will write g(n) ∼ f(n) for limn
g(n)
f(n)

=
1.

3 Coloring greedily

Proof of Theorem 1.2 We will use the following greedy algorithm: let us fix an
integer k, the future number of color classes and a partition of the vertex set V =
V1 ∪ V2 ∪ ... ∪ V⌈n

k
⌉ such that |V1| = |V2| = ... = |V⌊n

k
⌋| = k and if k does not divide n

V⌈n
k
⌉ = V \

⋃⌊n
k
⌋

i=1 Vi. Our algorithm consists of ⌈n
k
⌉ rounds. In the ith round we expose
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all the edges having one endpoint in Vi and the other in
⋃i

j=1 Vj. In such a way, our
graph will be truly random after the ⌈n

k
⌉th round. Suppose that after round (i − 1)

we have a proper coloring of the subgraph spanned by
⋃i−1

j=1 Vj in k colors so that each
color class has exactly one vertex in each Vj and has thus i − 1 vertices. We say that
the ith round succeeds if it is possible to extend this coloring to a proper coloring of
G[

⋃i
j=1 Vj] by adding one vertex of Vi to each of the k color classes; if this is impossible

then the round fails. Observe that the edges inside Vi have no bearing on the outcome
of the ith round and can thus be ignored. If all ⌈n

k
⌉ rounds are successful, then clearly

we have produced an equitable coloring of G in k colors.
Formally we can define an auxiliary random bipartite graph Gi on 2k vertices: k

vertices stand for the vertices in Vi and the k other vertices represent the color classes
that we have already built. There is an edge between a vertex representing a color class
C and a vertex representing a vertex v ∈ Vi if and only if all the pairs exposed in this
round between v and C are non-edges. So our auxiliary graph is a random bipartite
graph with edge-probability ρi = (1 − p)i−1.

By Remark 4.3 in Chapter 4 in [7], we know that the probability that there is no
perfect matching in our auxiliary graph (that is, we cannot extend our coloring of the
original graph G(n, p) properly) is

O(ke−kρi).

There are ⌈n
k
⌉ rounds and the probability of a failure (i.e. there is no matching in the

auxiliary graph) is the biggest in the last round. So by the union bound, we get that
the probability that our algorithm fails to give us an equitable coloring is

O(ne−k(1−p)
n
k ) = O(elog n−k(1−p)

n
k ).

It is clear that the probability of a failure decreases as k increases, so again using the
union bound, we obtain that the probability that our algorithm does not produce an
equitable k′-coloring for at least one k′ ≥ k is

O((n − k)ne−k(1−p)
n
k ) = O(e2 log n−k(1−p)

n
k ).

So if for some value of k we have k(1−p)
n
k = ω(log n), then almost surely χ∗

=(G(n, p)) ≤
k.
Case (a)

Let k = n
logb n−2.1 logb logb(np)

, where b = 1
1−p

. Then we have

k(1 − p)
n
k =

n

logb n − 2.1 logb logb(np)
(1 − p)logb n−2.1 logb logb(np)

=
n

logb n − 2.1 logb logb(np)

log2.1
b (np)

n
=

log2.1
b (np)

logb n − 2.1 logb logb(np)
.
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By the assumption that p > n−δ for every δ > 0, the above expression is asymptot-
ically equal to log1.1

b n = Ω(log1.1 n) ≫ log n.

Case (b)
Let k = np

log(np)−2.1 log log(np)
. Then we have

k(1 − p)
n
k =

np

log(np) − 2.1 log log(np)
(1 − p)

1
p
(log(np)−2.1 log log(np)) ∼

np

log(np) − 2.1 log log(np)
e2.1 log log(np)−log(np) ≥ log1.1(np).

By our assumption on p, this last expression is asymptotically bigger than log n.

Case (c)

Fix an ǫ satisfying the assumption of the theorem and let k = np
(ǫ/(1+ǫ)−ǫ′) log(np)

. Then
we have

k(1 − p)
n
k =

np

(ǫ/(1 + ǫ) − ǫ′) log(np)
(1 − p)

(ǫ/(1+ǫ)−ǫ′) log(np)
p ∼

np

(ǫ/(1 + ǫ) − ǫ′) log(np)
e−(ǫ/(1+ǫ)−ǫ′) log(np) =

np

(ǫ/(1 + ǫ) − ǫ′) log(np)
(np)−(ǫ/(1+ǫ)−ǫ′) ≥

≥ log1+ǫ′/2 n,

where for the last inequality we used the assumption log1+ǫ n
n

< p. ¤

4 The equitable chromatic number of dense ran-

dom graphs

In this section we prove Theorem 1.4. The proof will be divided into two parts. In the
following subsection we prove the theorem when p > log−8 n. For this purpose, we first
prove Theorem 1.3 and deduce this case of Theorem 1.4 as a corollary along with an
application to (n, d, λ)-graphs (see the definition there). In the second subsection we
prove the ”dense, but not very dense” case.

4.1 The very dense case

Proof of Theorem 1.4: Using the property of G assured by the assumption of the
theorem, we pick pairwise disjoint independent sets I1, I2, ..., It of size s as far as the
number of remaining vertices is less than m, i.e. |V (G) \ ∪t

i=1Ij| < m. So we have
t ≥ n−m

s
. Since we are allowed to have color classes of size s − 1, we may remove

one vertex from each Ij. We will use this to create independent sets of size s for each
v ∈ V (G) \

⋃t
j=1 Ij. For the first such vertex v1, let us pick vertices u1 ∈ Ij1 , u2 ∈
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Ij2 , ..., um ∈ Ijm such that i1 6= i2 implies ji1 6= ji2 and v1 is not adjacent to any of the
ui’s. Then by the property of G, there exists an independent set of size s − 1 among
the uis, which together with v1 is an independent set of size s.

We would like to repeat this procedure for all vertices in V (G) \
⋃t

j=1 Ij. Since we
are allowed to have independent sets only of size s and s−1 we cannot use the vertices
in the color classes from which we have already removed a vertex. We have to make
sure that we can pick the ui’s in the above mentioned way even for the last vertex vl

in V (G) \
⋃t

j=1 Ij. After the first phase (picking independent sets greedily due to the
property of G), we had at least n − m vertices in the Ij’s. For each previous vertex in
V (G) \

⋃t
j=1 Ij we have used s − 1 independent sets, each containing s vertices. We

cannot use these vertices, just as we cannot use at most ∆(G) vertices connected to vl.
Since we have to pick vertices from different Ij’s, the number of possible Ij’s we are

still allowed to pick from is at least n−∆(G)−m−ms2

s
. By the assumption of the theorem,

this is at least m, so our procedure never fails. ¤

Now, we are ready to prove the very dense case of Theorem 1.5. In order to apply
Theorem 1.4 to the random graph G(n, p), we need to find the corresponding values of
m and s. This was the crucial step in Bollobás’ proof [4] for the asymptotic value of
χ(G(n, p)). Here we cite a result of Krivelevich, Sudakov, Vu and Wormald [13] which

we will use setting ǫ = 0.01. Let k0 = max{k :
(

n
k

)

(1 − p)(
k
2) ≥ n4}. It is well known

that 2 logb n ≥ k0 ≥ 2 logb n − C ′ logb logb(np) for some constant C ′.

Theorem 4.1 [13] Let p(n) satisfy n−2/5 log6/5 n ≪ p(n) ≤ 1 − ǫ for an absolute
constant 0 < ǫ < 1. Then

P[α(G(n, p)) < k0] = e
−Ω

„

n2

k4
0p

«

.

Now changing n to n
log3

b n
and applying the union bound we get that the probability

that some subgraph of G(n, p) on n
log3

b n
vertices does not contain an independent set of

size

2 logb

(

n

log3
b n

)

− C ′ logb logb

(

np

log3
b n

)

≥ 2 logb n − C ′′ logb logb(np)

is at most

(

n
n

log3
b n

)

e
−Ω

„

n2

k4
0p

«

≤ exp

(

O(n) − Ω

(

n2

k4
0p

))

,

which tends to zero, since logb n ≪ nγ and therefore k0 ≪ nγ for all γ > 0 if p > log−8 n.
Therefore, using Fact 2.2, we can apply Theorem 1.4 with s = 2 logb n−C ′′ logb logb(np)
and m = n

log3
b n

. This finishes the proof of the very dense case of Theorem 1.5. ¤
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For another application of Theorem 1.4 we need the following definition.

Definition. An (n, d, λ)-graph is a d-regular graph on n vertices with eigenvalues
d = λ1 ≥ λ2 ≥ ... ≥ λn such that λ ≥ max{|λi| : 2 ≤ i ≤ n}.

Theorem 4.2 Let Gn be a sequence of (n, d, λ)-graphs where d(n) ≤ 0.9n and d3

n2λ
=

Ω(nα) holds for some α > 0. Then χ=(Gn) = O( d
log d

).
Proof. We will need the following result of Alon, Krivelevich and Sudakov:

Theorem 4.3 (Alon, Krivelevich, Sudakov [3]) Let G be an (n, d, λ)-graph such that
λ < d < 0.9n. Then the induced subgraph G[U ] of G on any subset U , |U | = m,
contains an independent set of size at least

α(G[U ]) ≥
n

2(d − λ)
log

(

m(d − λ)

n(λ + 1)
+ 1

)

.

We would like to apply Theorem 1.4 with m = d2

n log3 n
and s = cn log n

d
for some c > 0,

so we have to verify that the conditions of the Theorem are met. By the assumption
d3

n2λ
= Ω(nα), we have λ = o(d), so n

2(d−λ)
= Θ

(

n
d

)

. Again by d3

n2λ
= Ω(nα), we have

log
(

m(d−λ)
n(λ+1)

+ 1
)

= Ω(log n), therefore it is indeed true that every subgraph of Gn with

m vertices contains an independent set of size s.

It remains to verify the inequality n−∆(G)−m−ms2

s
≥ m. ∆(G) = d ≤ 0.9n, ms2 =

c n
log n

= o(n), so we have n−∆(G)−m−ms2

s
= Θ(n

s
) = Θ( d

log n
) ≥ d2

n log3 n
= m. Theorem 1.3

gives that χ=(Gn) ≤ n
s−1

= Θ
(

d
log n

)

= Θ
(

d
log d

)

, where the last equality follows from

d3

n2λ
= Ω(nα) (since this trivially implies d > n2/3). ¤

4.2 The dense, but not very dense case

Bollobás’ argument [4] for determining the asymptotic behavior of χ(G(n, p)) for dense
random graphs was to find many independent sets of size close to α(G(n, p)) and then
to color the remaining small set of vertices with few additional colors. The coloring
obtained this way is very much not equitable. To overcome this difficulty we will intro-
duce the notion of an independent (t, k)-comb which informally consists of t pairwise
disjoint independent sets each of size k and an additional transversal independent set of
size k that contains k/t vertices from each of the pairwise disjoint independent sets (see
the next subsection for the formal definition). After proving that every large enough
subgraph of G(n, p) contains an independent (t, k)-comb with t and k appropriately
chosen, we will proceed as follows: we will pick independent (t, k)-combs C1, C2, ..., Cs

until the number of remaining vertices will be small. Then using Theorem 2.1, we will
partition these remaining vertices into exactly as many independent sets I1, I2, ..., Is as
the number of independent (t, k)-combs. Finally, we will match the Ii’s to the inde-
pendent (t, k)-combs in such a way that if Ci is matched to Ij, then there are hardly
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any edges between Ij and the transversal independent set of Ci. Thus we will be able
to obtain an equitable coloring of G(n, p) by partitioning all matched pairs into t + 1
independent sets where the (t + 1)-st set will be formed from the vertices of Ij and
most vertices of the transversal independent set of Ci.

In the next subsection we prove several properties of G(n, p) including the existence
of the independent combs and in Subsection 4.2.2 we prove the remaining case of
Theorem 1.5.

4.2.1 Properties of random graphs

In this subsection we collect all auxiliary lemmas that we will use in the proof of
Theorem 1.5.

Lemma 4.4 Let p ≥ 30/n and let c > 0 a constant. Then in G(n, p) almost surely
every s ≤ n

logc(np)
vertices span at most 2np

logc(np)
s edges. Therefore almost surely every

subgraph of G(n, p) of size s is 4np
logc(np)

-degenerate.

Proof: Let r = 2np
logc(np)

. The probability of the existence of a subset V0 ⊆ V violating
the assertion of the lemma is at most

n
logc(np)
∑

i=r

(

n

i

)(
(

i
2

)

ri

)

pri ≤

n
logc(np)
∑

i=r

[

en

i

(

ei

2r

)r

pr

]i

=

n
logc(np)
∑

i=r

[

e2np

2r

(

eip

2r

)r−1
]i

≤

n
logc(np)
∑

i=r

[

3 logc(np)

(

ei logc(np)

4n

)
2np

logc(np)
−1

]i

=

n
logc(np)
∑

i=r

ai,

where ai =

[

3 logc(np)
(

ei logc(np)
4n

)
2np

logc(np)
−1

]i

.

Noting that

ai+1

ai

= 3 logc(np)

(

e logc(np)

4n

)
2np

logc(np)
−1 (

(i + 1)i+1

ii

)

2np
logc(np)

−1

is monotone increasing with respect to i, we obtain that the terms of the last sum form
a convex sequence, so either the first one or the last one is the largest. Therefore the
sum is at most

max

{

n

logc(np)

[

3 logc(np)
(ep

2

)
2np

logc(np)
−1

]

2np
logc(np)

,
n

logc(np)

[

3 logc(np)
(e

4

)
2np

logc(np)
−1

]

n
logc(np)

}

,

which tends to zero as n tends to infinity. ¤
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Lemma 4.5 For every pair of positive constants 0 < γ′ < γ there exists another
constant C = C(γ′, γ) such that if p ≥ C/n and x = x(n), y = y(n) satisfy pxy =

n
logγ(np)

, x ≤ y ≤ n
logγ(np)

, then the following holds almost surely in G(n, p):

for any two disjoint sets of vertices U1 and U2 with |U1| = x and |U2| = y, the number
of edges between U1 and U2 is at most n

logγ′

(np)
.

Proof: The expected number of edges between two fixed disjoint sets of the prescribed
size is pxy = n

logγ(np)
. Applying the Chernoff bound, we get that if C is chosen such

that 2 n
logγ(np)

≤ n

logγ′

(np)
, then the probability that for a fixed pair of sets there are too

many edges between them is at most

exp

(

−
3n

16 logγ′

(np)

)

.

Therefore, using the union bound for all possible pairs of sets, we get that the proba-
bility that there is a pair of sets contradicting the lemma is at most

(

n

x

)(

n

y

)

exp

(

−
3n

log16γ′

(np)

)

=

exp

(

x log(n/x) + x + y log(n/y) + y −
3n

16 logγ′

(np)

)

≤ exp

(

4y log(n/y) −
3n

16 logγ′

(np)

)

.

y log(n/y) ≤ n

logγ′′

(np)
for some γ′ < γ′′ < γ if C is large enough, therefore the

expression above tends to zero provided 4

logγ′′

(np)
≤ 3

16 logγ′

(np)
which is true if C is

chosen large enough. ¤

Definition: A set E0 ⊂
(

V (G)
2

)

\ E(G) (E0 ⊂ E(G)) of non-edges (edges) forms an
independent (clique) (t, k)-comb in a graph G if there exist 2t pairwise disjoint sets of
vertices I1, ..., It, J1, ..., Jt with |Ii| = t−1

t
k, and |Ji| = 1

t
k for every i (1 ≤ i ≤ t) such

that E0 =
⋃t

i=1

(

Ii∪Ji

2

)

∪
(

∪Ji

2

)

.

An edge of a clique (t, k)-comb is called horizontal if it lies inside some Ii ∪ Ji and is
called crossing otherwise (i.e. if it is an edge between some Ji1 6= Ji2). The number of
(all) edges in a clique (t, k)-comb will be denoted by E(t, k) (t and k will be omitted if
their value is clear from context).

Let us write m in the form m = k + s t−1
t

k + l for some 0 ≤ s ≤ t− 1 and 0 ≤ l < t−1
t

k.
An optimal subcomb of a clique (t, k)-comb is an induced subgraph of a clique (t, k)-
comb spanned by all vertices in

⋃t
j=1 Jj ∪

⋃s
i=1 Ii and l additional vertices from Is+1. If

m < k, then an optimal subcomb is an induced subgraph spanned by m vertices each
of which are in Ii ∪ Ji for some 1 ≤ i ≤ t. The number of edges spanned by an optimal
subcomb of m vertices will be denoted by L(t, k,m).

11
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J1 J1

Jt−1

Jt Jt

I1 I1

It−1

It

Figure 1: The vertex set of a (t, k)-comb and an optimal subcomb.

Lemma 4.6 The number of edges spanned by any set of vertices U in a clique (t, k)-
comb with |U | = m is at most L(t, k,m).

Proof: If m ≤ k, then an optimal subcomb is a clique, thus the lemma is true trivially,
therefore we can assume that m > k. Let U be a set of m vertices in a clique (t, k)-comb
spanning the most number of edges among all such sets. We may assume that for any
i (1 ≤ i ≤ t), if U ∩ Ii 6= ∅, then Ji ⊂ U . Indeed, if u ∈ U ∩ Ii and v ∈ Ji, v 6∈ U , than
U ′ = U \ {u} ∪ {v} contains the same number of horizontal edges and contain at least
as many crossing edges as U . We can assume that there is at most one Ii such that
U ∩ Ii 6= ∅ and Ii 6⊂ U . Indeed, if there were two such Ii’s, then we could pick a vertex
v from the one of which the intersection with U is not larger than that of the other,
and remove v from U and add a vertex to U among the vertices of the other Ii which
are not yet in U . (It is clear that the number of spanned edges will increase.)

If U satisfies the above assumptions, and if U contains all vertices from
⋃t

j=1 Jj,

then U is an optimal substructure. If U does not contain all vertices from
⋃t

j=1 Jj,

then we can remove min{|Ii ∩ U |, |
⋃t

j=1 Jj \ U |} vertices from the only Ii which is not

completely contained in U and add the same number of vertices to U from
⋃t

j=1 Jj \U .
Again it is easy to see that the number of spanned edges cannot decrease.

As a last step, if still
⋃t

j=1 Jj 6⊂ U , we can remove |
⋃t

j=1 Jj \ U | vertices from any

of the Ii’s contained in U and add the vertices of
⋃t

j=1 Jj \ U . ¤

Lemma 4.7 If there exists an 0 < ǫ such that n−1/5+ǫ ≤ p ≤ log−8 n holds, then almost
surely every subgraph of G(n, p) with at least n

log7(np)
vertices contains an independent

(t′, k′)-comb with t′ = log(np) − 7 log log(np) and k′ = 1
p
(2 log(np) − 24 log log(np)).

Proof: Let X denote the number of independent (t, k)-combs in G(n, p), where t =
log(np) and k = 1

p
(2 log(np) − 10 log log(np)). We establish an upper bound for the

probability of the event that X = 0 by using the generalized Janson inequality (see

12



e.g. Theorem 2.18 in [7]):

P(X = 0) ≤ exp

(

−
(EX)2

∑ ∑

A∩B 6=∅ E(IAIB)

)

,

where IA stands for the indicator variable that A is a set of non-edges forming an
independent (t, k)-comb. (Formally we should apply the inequality for the indicator
variable, that the set A of edges form a clique (t, k)-comb in G(n, 1− p), the ”comple-
ment” of G(n, p).)
Using Lemma 4.6, we have

∑∑

A∩B 6=∅ E(IAIB)

(EX)2
≤

∑tk
m=2

(

tk
m

)(

n−tk
tk−m

)(

tk
k

)(

(t−1)k
k

)

...
(

k
k

)(

k
k
t

)t
(1 − p)E−L(t,k,m)

(

n
tk

)(

tk
k

)(

(t−1)k
k

)

. . .
(

k
k

)(

k
k
t

)t
(1 − p)E

=

∑tk
m=2

(

tk
m

)(

n−tk
tk−m

)

(1 − p)E−L(t,k,m)

(

n
tk

)

(1 − p)E
=

∑tk
m=2 am

(

n
tk

)

(1 − p)E
,

where am =
(

tk
m

)(

n−tk
tk−m

)

(1 − p)E−L(t,k,m).

We want to prove that among the ai’s a2 is the largest.

Using Lemma 4.6 and the definition of an optimal subcomb, we get that if 2 ≤ m <
k, then

bm =
am+1

am

=
(tk − m)2

(m + 1)(n − 2tk + m + 1)
(1 − p)−m,

and if m = k + s t−1
t

k + l for some 0 ≤ s ≤ t − 1 and 0 ≤ l < t−1
t

k, then

bm =
am+1

am

=
(tk − m)2

(m + 1)(n − 2tk + m + 1)
(1 − p)−(l+ k

t
).

Elementary calculations show that in each interval (2 ≤ m < k or k + s t−1
t

k ≤ m <
k +(s+1) t−1

t
k) bm decreases (with starting value less than 1) and then increases (with

ending value larger than 1). This implies that the maximum of the am’s is attained at
a2 or at some am, where m = k + s t−1

t
k for some 0 ≤ s ≤ t.

Before continuing the proof, let us remark that by the choice of t and k we have

( n

t3k

)tk

(1 − p)(t+1) k2

2 ≥ 1. (1)

Indeed,

( n

t3k

)tk

=

(

np

2 log4(np) − 10 log3(np) log log(np)

)
1
p
(2 log(np)−10 log log(np)) log(np)

=

13



exp

(

1

p

[

2 log3(np) − 18 log2(np) log log(np) − o(log2(np) log log(np))
]

)

,

while

(1−p)(t+1) k2

2 ∼ exp

(

−
1

p

[

2 log3(np) − 20 log2(np) log log(np) + o(log2(np) log log(np))
]

)

.

Let cs = ak+s t−1
t

k. Then for 0 ≤ s ≤ t − 1

ds =
cs+1

cs

=

(

tk
k+(s+1) t−1

t
k

)(

n−tk
(t−1)k−(s+1) t−1

t
k

)

(

tk
k+s t−1

t
k

)(

n−tk
(t−1)k−s t−1

t
k

) (1 − p)−(k
2)+(k/t

2 ) ≤

≤ (t2)
t−1

t
k [(t − 1)k − s t−1

t
k]

[n − (2t − 1)k + (s + 1) t−1
t

k]
·...·

[(t − 1)k − (s + 1) t−1
t

k + 1]

[n − (2t − 1)k + s t−1
t

k + 1]
(1−p)−(k

2)+(k/t
2 ),

which, by taking the − t2

t−1
th power of (1), is less than 1. This implies that the largest

am is either a2 or ak.
To compare a2 and ak, observe that

ak

a2

=

(

tk
k

)(

n−tk
(t−1)k

)

(

tk
2

)(

n−tk
tk−2

) (1 − p)−(k
2)+1 ≤ (t2)tk (tk − 2)...((t − 1)k + 1)

(n − (t − 1)k)...(n − tk + 3)
(1 − p)−(k

2)+1,

which is (again using (1)) less than 1.
So we finally get that a2 is the largest summand, therefore we have

∑ ∑

A∩B 6=∅ E(IAIB)

(EX)2
≤

(tk − 1)a2
(

n
tk

)

(1 − p)E
=

(tk − 1)
(

tk
2

)(

n−tk
tk−2

)

(

n
tk

)

(1 − p)
≤

≤
(tk)5

(1 − p)(n − 2tk)2
≤

33 log10(np)

p5n2
.

By changing n to n
log7(np)

, we get that the probability that there is a subgraph of G(n, p)

of size n
log7(np)

not containing an independent (t′, k′)-comb with

t′ = log

(

np

log7(np)

)

= log(np) − 7 log log(np),

k′ =
1

p

(

2 log(
np

log7(np)
) − 10 log log(

np

log7(np)
)

)

≥
1

p
(2 log(np) − 24 log log(np))

is at most
(

n
n

log7(np)

)

exp

(

−
p5n2/ log14(np)

33 log10( np
log7(np)

)

)

→ 0.

¤
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4.2.2 Proof of Theorem 1.5

It is enough to prove that we can color equitably any graph G having the properties
assured by Lemma 4.4, 4.5 and 4.7 and the Corollary 2.3 with at most

np

(1 − 1
log(np)−7 log log(np)

)(2 log(np) − 24 log log(np))

colors, where in Lemma 4.5 we set γ = 5, γ′ = 4, x = α n
log7(np)

and y = β log2(np)
p

.

Given such a graph G, we pick sequentially using Lemma 4.7 independent (t, k)-combs
(which we will denote by Si 1 ≤ i ≤ s) with t = log(np)−7 log log(np), k = 1

p
(2 log(np)−

24 log log(np)) until we are left with at most n
log7(np)

vertices. Note that the number of

combs s is s = kt = Θ( np
log2(np)

). With the help of Theorem 2.1 (the result of Kostochka

et al.) we can partition the vertices left into almost equal independent sets A1, ..., As,
i.e. the number of sets is equal to the number of independent combs. Indeed, the
assumption p ≤ log−8 n assures that the maximum degree among the vertices left is
at most n

log8(np)
which is much smaller than n

log7(np)
, the number of remaining vertices,

and Lemma 4.4 assures that the degeneracy number of the subgraph spanned by the

remaining vertices is O
(

np
log7(np)

)

.

Note that the size of the independent sets A1, ..., As is Θ
(

1
p log5(np)

)

.

We are looking for a matching between the independent sets and the independent
combs, such that if Ai1 is matched with Si2 , then (with the notation of the definition of

a (t, k)-comb) for any j (1 ≤ j ≤ t) at most 1
2 log2(np)

|Ij ∪ Jj| = k
2 log2(np)

= Θ
(

1
p log(np)

)

vertices in Ij ∪ Jj have neighbors in Ai1 .
To ensure the existence of a such matching, we have to verify that Hall’s condition

holds. First note that any Ai can be matched to at least half of the independent
combs. Indeed, if not, then in at least half of the independent combs there are at

least Θ
(

1
p log(np)

)

vertices having at least one neighbor in A1. So altogether, there are

s
2
·Θ

(

1
p log(np)

)

= Θ
(

n
log3(np)

)

vertices with this property, which contradicts the property

assured by Corollary 2.3 which in this case states that there can be at most O
(

n
log5(np)

)

such vertices. This gives that Hall’s condition holds for every family consisting of at
most half of the independent sets Ai (1 ≤ i ≤ s).

We claim that for any family A containing at least half of the independent sets
A1, ..., As and for any (t, k)-comb S, there is an A ∈ A such that A can be matched
with S (this of course would imply that Hall’s condition holds for A, too). Suppose

not. Then for any A ∈ A there are Ω
(

1
p log(np)

)

edges between A and S. Therefore

there are s · Ω
(

1
p log(np)

)

= Ω
(

n
log3(np)

)

edges between S and
⋃

A∈A A contradicting

Lemma 4.6 according to which there should be at most n
log4(np)

such edges.
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Having realized a matching with the property above, we would like to proceed as
follows: for every pair of an independent set A and an independent (t, k)-comb S that
are matched in our matching, we would like to partition A ∪ S into t + 1 almost equal
independent sets. Since all (t, k)-combs have the same size and the Ai’s are almost
equal, for any two matched pairs the size of A ∪ S may differ by at most 1, so the
resulting independent sets will be almost equal.

Let us suppose that in our matching an independent set A is matched with an inde-
pendent (t, k)-comb S =

⋃t
j=1 Ij∪Jj. By definition |S| = tk, therefore the independent

sets we are looking for should be of size tk+|A|
t+1

. We would like to have sets J ′
i ⊂ Ji

(1 ≤ i ≤ t) with |J ′
1| = · · · = |J ′

t| such that
⋃t

i=1 J ′
i ∪ A is independent and is of size

tk+|A|
t+1

. Therefore we need |J ′
i | to be

tk+|A|
t+1

− |A|

t
=

k − |A|

t + 1
.

By the definition of our matching there are at most k
2 log2(np)

≤ k
1.8t(t+1)

vertices in Ii∪Ji

that have at least one neighbor in A. Even if all these vertices were in Ji, there would
be |Ji| −

k
1.8t(t+1)

= 1.8(t+1)k−k
1.8t(t+1)

≥ k
t+1

vertices out of which we could form J ′
i . ¤

5 The order of the equitable chromatic number

In this section we will prove Theorem 1.6 using very similar ideas to those of the
previous section. The main difference is that we are not able to prove the existence of
large independent combs and therefore we have to use independent sets that we obtain
by ÃLuczak’s proof [15] of the chromatic number for sparse random graphs. In the next
subsection we gather some technical lemmas corresponding to the ones of the dense
case in Subsection 4.2.1 and then in Section 5.2 we prove Theorem 1.6.

5.1 Properties of random graphs

The Corollary from the Introduction is valid only if p ≥ log2 n
n

, therefore we need a
similar statement that can be used in the sparse case as well.

Lemma 5.1 For every constant c > 0 there exists a constant C > 0 so that the random
graph G(n, p) with C

n
≤ p = p(n) = o(1) has almost surely the following property :

For every set J of size c
p log0.5(np)

the number of vertices that are not adjacent to any

vertex in J is at least 2
3
n, i.e. the neighborhood of J is of size at most n

3
.

Proof: For a fixed set J of size c
p log0.5(np)

the expected number of such vertices is

(n − |J |)(1 − p)
c

p log0.5(np) ∼ (n − |J |)e
− c

log0.5(np) ≥ (1 −
1

100
)n,
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if n is large enough. So by the Chernoff bound we get that the probability that there
are less than 2

3
n such vertices for this fixed J is at most exp(− 1

32
n). Therefore, taking

the union bound, the probability that there is a set contradicting the statement of the
claim is at most

(

n
c

p log0.5(np)

)

exp

(

−
1

32
n

)

≤ (c−1np log0.5(np))
c

p log0.5(np) exp

(

−
1

32
n

)

= o(1) . ¤

Lemma 5.2 There exists a constant C such that if C
n
≤ p ≤ log−8 n then almost surely

the vertex set of G(n, p) can be covered by pairwise disjoint independent sets larger
than 1

p
(2 log(np)−38 log log(np)) and all of the same size with the exception of at most

4n log−1.5(np) vertices.
Proof: ÃLuczak (using Matula’s expose-and-merge method [16]) showed in [15] (see
also Lemma 7.17 and Lemma 7.18 in Chapter 7 of [7]) that with probability at least
1 − o(log−1(np)), one can pick pairwise disjoint sets of vertices I1, I2, ..., It each of size
1
p
(2 log(np) − 37 log log(np)) such that |V (G) \

⋃t
i=1 Ii| ≤ n log−3(np) and the total

number of edges contained in some Ii (1 ≤ i ≤ t) is at most n log−3(np). It follows
that t ≤ np

log(np)
.

Let A be the set of those Ii’s which contain more than 1
p log0.5(np)

edges. Then

|A| ≤ np log−2.5(np) and so |
⋃

I∈A I| ≤ 2n log−1.5(np). The number of the remaining
Ii’s that do not contain more than 1

p log0.5(np)
edges can be bounded by the total number

of Ii’s which is t ≤ np log−1(np). Therefore by deleting one vertex from each edge and
possibly some additional vertices, we can get independent sets (all of the same size,
which is larger than 1

p
(2 log(np) − 38 log log(np)) if n is large enough) with removing

at most n log−1.5(np) vertices. So we covered the graph by independent sets of the
same size with the exception of at most 2n log−1.5(np) + n log−1.5(np) + n log−3(np) ≤
4n log−1.5(np) vertices. ¤

5.2 Proof of Theorem 1.6

The statements of Lemmas 4.4, 4.5, 5.1 and 5.2 hold almost surely, so it is enough
to prove the theorem for graphs having properties assured by these lemmas, and this
time in Lemma 4.5 we set γ = 0.5, γ′ = 0.3, x = α n

log1.5(np)
, y = β log(np)

p
. By Lemma

5.2 we can cover all the vertices of such a graph by independent sets each of the
same size, 1

p
(2 log(np) − 38 log log(np)), with the exception of at most 4n log−1.5(np)

vertices. Let us denote these independent sets by I. By Lemma 4.4, the degeneracy
number of the graph induced by the vertices not covered is O(np log−1.5(np)) (and the
maximum degree is at most the maximum degree of the original graph, which is at
most max{1.01np, log2 n} ≪ n log−1.5(np) by the assumption on p), so by Theorem
2.1 (Kostochka et al. [11]), we can color them equitably with as many colors as the
number of independent sets in I. In such a way we get independent sets J1, J2, ..., J|I|,
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such that their size may differ by at most one and their size is at most c
p log0.5(np)

for
some constant c > 0.

Our aim is to find a matching between the independent sets in I and the Jj’s (let us
denote the family containing them by J ) in such a way that whenever a Jj is matched
with some Ii, then at least half of the vertices of Ii can be added to Jj preserving the
stability of Jj. To assure the existence of such a matching, we have to verify that Hall’s
condition holds.

As a consequence of Lemma 5.1 we get that any J ∈ J can be matched with at
least 1

5
|I| I’s from I. Indeed, if not then in at least 4

5
|I| I’s at least half of the vertices

cannot be added to J , so there are at least 2
5
n vertices with this property - contradicting

the lemma.
Now we are ready to check that Hall’s condition holds for I and J . If a subfamily

J ′ ⊂ J has size less than 1
5
|J | then by the previous paragraph (and considering only

one set from J ′) the number of sets in I that can be matched with some set J in J ′

is at least 1
5
|I| ≥ |J ′|. Otherwise |J ′| ≥ 1

5
|J |, and we claim that all sets in I are can

be matched with some set J in J ′. We only have to check this for |J ′| = 1
5
|J |. In this

case |
⋃

J∈J ′ J | ≤ β n
log1.5(np)

and for any independent set I ∈ I we have |I| = γ log(np)
p

.

Therefore by Lemma 4.5 the number of edges between I and
⋃

J∈J ′ J is at most n
log0.3(np)

.

If no J ∈ J ′ can be matched with I, then there are Ω
(

log(np)
p

)

edges between I and

any J ∈ J ′, so there are Ω(n) edges between I and
⋃

J∈J ′ J – a contradiction.

For any two matched pairs (I1, J1) and (I2, J2), the size of I1 ∪ J1 and I2 ∪ J2 differ
by at most 1, so if we can split all matched pairs into two almost equal independent
sets, then we partition the vertex set into almost equal independent sets each of size
at least 1

p
(log(np) − 19 log log(np)). By the assumption on the matching we may add

at least half of the vertices of I to J , while to split I ∪ J into almost equal parts, we
need only |I∪J |

2
− |J | vertices. ¤
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