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7 Linear Lower Bounds for δc(p) for a Class of

2D Self-Destructive Percolation Models

J. van den Berg ∗and B.N.B. de Lima †

Abstract

The self-destructive percolation model is defined as follows: Con-
sider percolation with parameter p > pc. Remove the infinite occupied
cluster. Finally, give each vertex (or, for bond percolation, each edge)
that at this stage is vacant, an extra chance δ to become occupied. Let
δc(p) be the minimal value of δ, needed to obtain an infinite occupied
cluster in the final configuration. This model was introduced some
years ago by van den Berg and Brouwer. They showed that, for the
site model on the square lattice (and a few other 2D lattices satisfying

a special technical condition) that δc(p) ≥
(p−pc)

p
. In particular, δc(p)

is at least linear in p− pc.
Although the arguments used by van den Berg and Brouwer look

quite rigid, we show that they can be suitably modified to obtain
similar linear lower bounds for δc(p) (with p near pc) for a much larger
class of 2D lattices, including bond percolation on the square and
triangular lattices, and site percolation on the star lattice (or matching
lattice) of the square lattice.
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1 Introduction

Some years ago van den Berg and Brouwer, motivated by the study of forest-
fire processes, introduced the self-destructive percolation model (see [1] and
[3]). This model can be described in a few steps as follows.

Let G = (V,E) be a connected, infinite, locally finite graph. The first
step is to perform independent site percolation with parameter p on this
graph: we declare each vertex occupied with probability p and vacant with
probability 1− p, independent of the other vertices. If U,W ⊂ V, we use the
notation {U ↔ W} for the event that there is a path of occupied vertices
connecting some vertex of U to some vertex of W , and {U ↔ ∞} for the
event that there exists an infinite path of occupied vertices starting from
some vertex in U . If G = (V,E) is transitive (i.e., without lost of generality
we can choose any vertex to be the origin), let θ(p) be the probability that
the origin belongs to an infinite occupied cluster.

Since θ(p) is monotone in p, there is a critical value pc ∈ [0, 1] such that
θ(p) > 0 if p ∈ (pc, 1] and θ(p) = 0 if p ∈ [0, pc). It is well-known (see [4] for
this and other background results on percolation) that θ(pc) = 0 for a large
class of graphs including the d-dimensional hypercubic lattice, for d = 2 or
d ≥ 19, the triangular and hexagonal lattices.

Now suppose that, by some ‘catastrophe’, the infinite occupied clusters
are destroyed, that is, each vertex that belongs to an infinite occupied cluster
becomes vacant. After the catastrophe we give each vacant vertex an extra
chance to become occupied; more precisely, each vacant vertex becomes oc-
cupied with probability δ, independent of everything else. Let Pp,δ be the
distribution of the final configuration and θ(p, δ) := Pp,δ(0 ↔ ∞).

An equivalent but more formal (and often more convenient) description
of the self-destructive percolation model is the following: let Xi, i ∈ V be a
sequence of i.i.d. 0-1 random variables with parameter p, and let Yi, i ∈ V be
another sequence of i.i.d. 0-1 random variables with parameter δ. (Here, we
can interpret 0 as vacant and 1 as occupied). Moreover we take the sequence
of Yi’s independent of the sequence of Xj ’s. Let X

∗

i , i ∈ V be defined by

X∗

i =

{

1, if Xi = 1 and there is no infinite X-occupied path from i
0, otherwise

(1.1)
Here, by X-occupied path we mean a path on which each vertex j has

Xj = 1. Finally, we define Zi := X∗

i ∨Yi. This sequence Zi, i ∈ V is the final
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configuration and the measure Pp,δ is its distribution. Analogously (with
obvious modifications of the definitions) one can define the self-destructive
bond percolation model.

Monotonicity in δ obviously implies that for each p ∈ [pc, 1] there exists a
δc(p) ∈ [0, 1] such that θ(p, δ) = 0 for all δ ∈ [0, δc(p)) and θ(p, δ) > 0 for all
δ ∈ (δc(p), 1]. It is also clear that if δ > pc, then θ(p, δ) > 0 for all p ∈ [0, 1];
that is,

∀p δc(p) ≤ pc. (1.2)

As to lower bounds for pc, Proposition 3.1 of [1] and Proposition 2.3.2 in
[3] show that for site percolation on the square (and the triangular and the
honeycomb) lattice δc(p) is at least linear in p − pc. More precisely it was
shown for these models that

If p(1− δ) > pc, then θ(p, δ) = 0, (1.3)

which is obviously equivalent to

δc(p) ≥
p− pc

p
, p ≥ pc. (1.4)

(In fact, it is conjectured in that paper that for self-destructive percolation
on these lattices δc(p) does not go to 0 as p ↓ pc, but a proof or disproof of
that conjecture seems out of reach at the moment).

Using totaly different arguments it has been proved that (1.4) also holds
for site percolation on the binary tree (see Theorem 2.6.1 in [3] or Theorem 5.1
in [1]). This raises the question how general (1.4), or, at least, the following
weaker property, are:

∃p̂ > pc ∃C > 0 s.t. ∀p ∈ [pc, p̂] δc(p) ≥ C(p− pc). (1.5)

As mentioned in Remark (ii) just after the above mentioned Proposition
3.1 in [1], the argument of this Proposition does not work for bond perco-
lation on the square lattice. However, in Section 2 we will show that the
statement of that Proposition is true for that model. We do this by refining
the argument in [1].

On the other hand, it is easy to see that (1.4) can not hold for the bond
model on the triangular lattice, the site model on the matching (or star)
lattice of the square lattice, and more generally any percolation model with
pc smaller than 1/2: For such models (p − pc)/p is clearly larger than 1/2
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(and hence larger than pc) for p sufficiently close to 1. For such p (1.4) would
contradict (1.2).

Nevertheless, still further refinement of the arguments shows that for a
large class of 2D percolation models, including the above mentioned bond
model on the triangular lattice and the site model on the star lattice of the
square lattice, (1.5) does hold. This is done in Section 3.

This paper focuses mainly on transitive graphs. However, related to Re-
mark 6 at the end of Section 3, we make the following comment on non-
transitive graphs. On such graphs Pp(v ↔ ∞) may depend on the vertex v,
and for this reason the notation θ(p; v) is used. However (as is well-known),
by positive association (FKG) θ(p;w) ≥ Pp(v ↔ w)θ(p; v) for all vertices
v, w. Therefore θ(p; v) is positive if and only if θ(p;w) is positive, and hence
pc does not depend on v. For similar reasons (see [1] for positive association
for the self-destructive percolation model) δc(p) does not depend on v either.

2 Bond percolation on the Square Lattice

Let L2 = (Z2,E(L2)) be the square lattice, where

E(L2) = {〈x, y〉; ‖x− y‖1 = 1}

and let Gcb = (Z2,Ecb) be the chess-board lattice, where

Ecb = {〈x, y〉; ‖x− y‖1 = 1}

∪ {〈(x1, x2), (y1, y2)〉; (y1, y2) = (1, 1) + (x1, x2) and x1 + x2 is even }

∪ {〈(x1, x2), (y1, y2)〉; (y1, y2) = (1,−1) + (x1, x2) and x1 + x2 is odd }

It is well-known that bond percolation on the square lattice is equivalent
to site percolation on its covering graph (see section 2.5 in [5] or section 1.6
in [4]), the chess-board lattice.

The next result is an extension of Proposition 3.1 in [1] for bond percola-
tion on the square lattice. For the proof of that proposition it was essential
that the lattice under consideration is a subgraph of its matching lattice.
(For the notion ‘matching lattice’, see e.g. Section 3.1 in [4]. In the par-
ticular case of the square lattice, the matching lattice is obtained from the
square lattice by adding, in each face, the two diagonals as extra edges; the
matching lattice of the triangular lattice is the tringular lattice itself: it is
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self-matching). The chess-board lattice does not have this property. This is
why the proof of [1] does not work for the site model on that lattice (and
hence for bond percolation on the square lattice). However, the chess-board
lattice is a translation (‘along an edge’) of its matching lattice, and we will
exploit this property to modify the proof of the above mentioned Proposition
3.1 in [1].

Theorem 1. For the self-destructive site percolation model on the chess-
board lattice (or, equivalently, bond percolation on the square lattice), it holds
that if p(1− δ) > pc then θ(p, δ) = 0. Hence, δc(p) ≥

p−pc
p

.

Proof. Given v ∈ Z
2, we will use the notation ṽ := v + (1, 0). Recall the

sequences of 0-1 valued random variables, Xv, Yv, Zv v ∈ Z
2, introduced in

section 1. We color each vertex v ∈ Z
2 red if Xv = 1 and Yṽ = 0. Then, each

vertex v will be red with probability p(1 − δ), independently of the other
vertices. Since, p(1 − δ) > pc it follows from ordinary site percolation (see
section 11.8 in [4]), that, a.s., there is an infinite red cluster, and this cluster
contains a circuit around the origin.

Let γ be such a red circuit. Define

γ̃ := γ + (1, 0).

Note that γ̃ is a circuit in the matching graph. Let ṽ ∈ γ̃. By construction,
Yṽ = 0. Moreover, since ṽ is a neighbor of the infinite X-occupied cluster,
X∗

ṽ = 0. Hence Zṽ = 0. Summarizing we have that, almost surely, there is
a Z-vacant circuit in the matching graph which surrounds or contains the
origin. Hence θ(p, δ) = 0.

3 Other 2D lattices

Note that in the proof of Theorem 1 (as in that of Proposition 3.1 of [1]) the
definition of red vertices (or edges) was done in such a way that each vertex
(edge) is red independently of the other vertices (edges). In the current
Section the color of a vertex will involve the Y values of all its neighbours.
This strategy, which will be used to show that (1.5) is true for a large class of
2D lattices, leads to dependencies which somewhat complicate the analysis.
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The main result of this section, Theorem 2 below, is stated for three
well-known lattices, but, as we shall point out in Remark 6, the result (with
practically the same proof) holds for a large class of 2D lattices.

Theorem 2. For self-destructive site percolation on the matching lattice of
the square or honeycomb lattice, or self-destructive bond percolation on the
triangular lattice, the following holds:

There are p̂ > pc and C > 0 such that

∀p ∈ [pc, p̂] δc(p) ≥ C(p− pc).

Proof. From now on G = (V,E) denotes the matching lattice of the square
or honeycomb lattice, or the covering lattice of the triangular lattice, and pc
the critical probability for site percolation on G. (See, however, Remark 6
below).

Recall that for the proofs in Section 2 we introduced a certain colouring
of the vertices, and that the colours were i.i.d. so that we could compare the
result of the coulouring with ordinary percolation. In the current situation
we will again define a colouring, but now the colours are not independent.
Nevertheless it turns out that we again obtain a suitable comparison with
ordinary percolation. First some notation.

For each vertex v ∈ V, let Dv := {u ∈ V; 〈v, u〉 ∈ E}. Let d := |Dv| (for
example, d = 8 for the matching lattice of the square lattice).

Recall the sequences Xv, Yv, v ∈ V defined in Section 1. Now define the
sequence of 0-1 random variables Rv, v ∈ V as

Rv =

{

1, if Xv = 1 and Yu = 0, ∀u ∈ Dv

0, otherwise
(3.6)

If Rv = 1 we say that v is R−occupied (or, simply, that v is red).
Before we proceed with the proof of the theorem, we first state Observa-

tion 3 and state and prove Lemma 4 below, which will be used later.

Observation 3. Let γ be a circuit in G. Then every path that starts in the
interior of γ and ends in the exterior of γ contains a vertex which has a
neighbour on γ.

Lemma 4. Let ǫ > 0. There is a constant cǫ such that for the self-destructive
site percolation model on G with parameters 0 < δ ≤ pc and p ∈ (pc, 1 − ǫ)
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the following holds: For every v ∈ V, every finite subset of vertices F ⊂ V

and every colouring (ru, u ∈ F ) of F ,

P (Yv = 1;Ru = ru, u ∈ F )

P (Yv = 0;Ru = ru, u ∈ F )
≤ cǫδ.

Hence, P (Yv = 1|Ru = ru, u ∈ F ) ≤ cǫδ.

Proof of Lemma 4: If Dv ∩F = ∅, the random variable Yv is independent
of the sequence Ru, u ∈ F , and hence

P (Yv = 1; Ru = ru, u ∈ F )

P (Yv = 0; Ru = ru, u ∈ F )
=

δ

1− δ
.

For the case F ′ := Dv ∩ F 6= ∅, we consider two subcases: If there is at
least one u ∈ F ′ with ru = 1 then obviously

P (Yv = 1, Ru = ru, ∀u ∈ F ) = 0,

and it is easy to see that P (Yv = 0; Ru = ru, u ∈ F ) > 0.
If ru = 0, ∀u ∈ F ′ we have that

P (Yv = 1; Ru = ru, u ∈ F ) = P (Yv = 1)P (Ru = ru, u ∈ F | Yv = 1)

≤ δP (Ru = ru, u ∈ F \ F ′ | Yv = 1)

= δP (Ru = ru, u ∈ F \ F ′),

and

P (Yv = 0; Ru = ru, u ∈ F ) = P (Yv = 0)P (Ru = ru, u ∈ F | Yv = 0)

≥ (1− δ)P (Ru = ru, u ∈ F ; Xz = 0, z ∈ Dv | Yv = 0)

= (1− δ)(1− p)dP (Ru = ru, u ∈ F | Yv = 0; Xz = 0, z ∈ Dv)

= (1− δ)(1− p)dP (Ru = ru, u ∈ F \ F ′).

Combining these two inequalities we have that

P (Yv = 1; Ru = ru, u ∈ F )

P (Yv = 0; Ru = ru, u ∈ F )
≤

δ

(1− δ)(1− p)d
.

So the claim of the lemma holds, with the constant cǫ = 1
(1−pc) ǫd

. This
completes the proof of Lemma 4.
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Now we continue the proof of Theorem 2. Let ǫ > 0. Suppose p ∈
(pc, 1 − ǫ), and let δ be such that p(1 − dcǫδ) > pc, where cǫ is the constant
given in Lemma 4.

Let v ∈ V, F a finite set of vertices not containing v and ru ∈ {0, 1}, ∀u ∈
F . We have

P (Rv = 1 |Ru = ru, u ∈ F ) = P (Xv = 1; Yz = 0, z ∈ Dv |Ru = ru, u ∈ F )

= P (Xv = 1)P (Yz = 0, z ∈ Dv |Ru = ru, u ∈ F )

≥ p(1− dcǫδ),

where in the inequality we used Lemma 4 (and in the equality the fact thatXv

is independent of the collection of random variables {Ru, u ∈ F ; Yz, z ∈ Dv}).
As p(1− dcǫδ) > pc, the process (Rv, v ∈ V) dominates an i.i.d. process with
parameter larger than pc. Comparison with ordinary percolation shows that
a.s. there is an infinite R-occupied cluster which contains a circuit around
the origin. Let γ be such a circuit. Observe that, by the definition of the
colourings, γ belongs to an infinite X-occupied cluster. Define

Γ := ∪v∈γDv.

For each w ∈ Γ we have either Xw = 1, in which case (by the above obser-
vation) w belongs to an infinite X−open cluster, or we have Xw = 0. In
both cases X∗

w = 0. Since also Yw = 0 for all w ∈ Γ, we have Zw = 0 for all
w ∈ Γ. By Observation 3 we now conclude that there is no infinite Z−open
path starting in O. So we have proved that for all ǫ > 0 and all p < 1− ǫ, it
holds that θ(p, δ) = 0 if p(1− d cǫ δ) > pc; that is,

δc(p) ≥
p− pc
p d cǫ

, p < 1− ǫ. (3.7)

This completes the proof of Theorem 2.

Remark 5. Note that in fact we have proved something stronger than the
claim in the theorem, namely that for every ǫ > 0 there is a cǫ > 0 such that
(3.7) holds for all p < 1− ǫ.

This can be extended to the result that there is a C > 0 such that δc(p) ≥
C(p− pc for all p > pc. Since the cǫ in (3.7) goes to ∞ as ǫ goes to 0, this
result does not follow immediately. However, to get the extension, it suffices
to show that there is an ǫ > 0 such that δc(p) is bounded away from 0 for
p > 1− ǫ. Or, equivalently, that there are p̂ < 1 and δ > 0 such that
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θ(p, δ) = 0 for all p > p̂. (3.8)

This can be proved by (e.g.) arguments very similar to those used in the proof
that (ii) implies (i) in Theorem 5.1 in [2]. Artem Sapozhnikov (private com-
munication) has pointed out to us that further refinements of such arguments
show that, on the d-dimensional cubic lattice, δc(p) → pc as p → 1.

Remark 6. Theorem 2 holds for a large class of 2D lattices. Essentially we
only used that for supercritical percolation the infinite cluster a.s. contains
a circuit around O, which satisfies Observation 3. This property holds for
site percolation on the lattices belonging to the family in Theorem 12.1 in
Kesten’s book [5]. Informally speaking, this family consists of lattices which
belong to a pair of matching lattices with certain periodicity and reflection
symmetry properties (but which are not necessarily transitive).
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