
ar
X

iv
:0

70
4.

36
03

v3
  [

m
at

h.
P

R
]  

29
 J

an
 2

00
9

Rapid Mixing of Gibbs Sampling on Graphs that are Sparse on
Average

Elchanan Mossel∗ Allan Sly †

November 1, 2018

Abstract

Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimen-
sional distributions defined on graphs. Of special interestis the behavior of Gibbs sampling on the
Erdős-Rényi random graphG(n, d/n), where each edge is chosen independently with probabilityd/n
andd is fixed. While the average degree inG(n, d/n) is d(1 − o(1)), it contains many nodes of degree
of orderlogn/ log log n.

The existence of nodes of almost logarithmic degrees implies that for many natural distributions
defined onG(n, p) such as uniform coloring (with a constant number of colors) or the Ising model at
any fixed inverse temperatureβ, the mixing time of Gibbs sampling is at leastn1+Ω(1/ log logn). Recall
that the Ising model with inverse temperatureβ defined on a graphG = (V,E) is the distribution over
{±}V given byP (σ) = 1

Z exp(β
∑

(v,u)∈E σ(v)σ(u)). High degree nodes pose a technical challenge
in proving polynomial time mixing of the dynamics for many models including the Ising model and
coloring. Almost all known sufficient conditions in terms ofβ or number of colors needed for rapid
mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph.

In this work we show that for everyd < ∞ and the Ising model defined onG(n, d/n), there exists
a βd > 0, such that for allβ < βd with probability going to1 asn → ∞, the mixing time of the
dynamics onG(n, d/n) is polynomial inn. Our results are the first polynomial time mixing results
proven for a natural model onG(n, d/n) for d > 1 where the parameters of the model do not depend on
n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in
a situation where the actual mixing time is slower thannpolylog(n). Our proof exploits in novel ways
the local treelike structure of Erdős-Rényi random graphs, comparison and block dynamics arguments
and a recent result of Weitz.

Our results extend to much more general families of graphs which are sparse in some average sense
and to much more general interactions. In particular, they apply to any graph for which every vertexv
of the graph has a neighborhoodN(v) of radiusO(log n) in which the induced sub-graph is a tree union
at mostO(log n) edges and where for each simple path inN(v) the sum of the vertex degrees along
the path isO(log n). Moreover, our result apply also in the case of arbitrary external fields and provide
the first FPRAS for sampling the Ising distribution in this case. We finally present a non Markov Chain
algorithm for sampling the distribution which is effectivefor a wider range of parameters. In particular,
for G(n, d/n) it applies for all external fields andβ < βd, whered tanh(βd) = 1 is the critical point for
decay of correlation for the Ising model onG(n, d/n).
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1 Introduction

Efficient approximate sampling from Gibbs distributions isa central challenge of randomized algorithms.
Examples include sampling from the uniform distribution over independent sets of a graph [27, 26, 6, 8],
sampling from the uniform distribution of perfect matchings in a graph [17], or sampling from the uni-
form distribution of colorings [12, 4, 5] of a graph. A natural family of approximate sampling techniques
is given by Gibbs samplers, also known as Glauber dynamics. These are reversible Markov chains that
have the desired distribution as their stationary distribution and where at each step the status of one vertex
is updated. It is typically easy to establish that the chainswill eventually converge to the desired distribution.

Studying the convergence rate of the dynamics is interesting from both the theoretical computer science
the statistical physics perspectives. Approximate convergence in time polynomial in the size of the system,
sometimes calledrapid mixing, is essential in computer science applications. The convergence rate is also
of natural interest in physics where the dynamical properties of such distributions are extensively studied,
see e.g. [20]. Much recent work has been devoted to determining sufficient and necessary conditions for
rapid convergence of Gibbs samplers. A common feature to most of this work [27, 26, 6, 8, 12, 4, 18, 22]
is that the conditions for convergence are stated in terms ofthe maximal degree of the underlying graph. In
particular, these results do not allow for the analysis of the mixing rate of Gibbs samplers on the Erdős-Rényi
random graph, which is sparse on average, but has rare densersub-graphs. Recent work has been directed
at showing how to relax statements so that they do not involvemaximal degrees [5, 13], but the results are
not strong enough to imply rapid mixing of Gibbs sampling forthe Ising model onG(n, d/n) for d > 1
and anyβ > 0 or for sampling uniform colorings fromG(n, d/n) for d > 1 and1000d colors. The second
challenge is presented as the major open problem of [5].

In this paper we give the first rapid convergence result of Gibbs samplers for the Ising model on Erdős-
Rényi random graphs in terms of the average degree andβ only. Our results hold for the Ising model
allowing different interactions and arbitrary external fields. We note that there is an FPRAS that samples
from the Ising model on any graph [16] as long as all the interactions are positive and the external field is
the same for all vertices. However, these results do not provide a FPRAS in the case where different nodes
have different external fields as we do here.

Our results are further extended to much more general families of graphs that are “tree-like” and “sparse on
average”. These are graph where every vertex has a radiusO(log n) neighborhood which is a tree with at
mostO(log n) edges added and where for each simple path in the neighborhood, the sum of degrees along
the path isO(log n). An important open problem [5] is to establish similar conditions for other models
defined on graphs, such as the uniform distribution over colorings.

Below we define the Ising model and Gibbs samplers and state our main result. Some related work and a
sketch of the proof are also given as the introduction. Section 2 gives a more detailed proof though we have
not tried to optimize any of the parameters in proofs below.

1.1 The Ising Model

The Ising model is perhaps the simplest model defined on graphs. This model defines a distribution on
labelings of the vertices of the graph by+ and−. The Ising model has various natural generalizations
including the uniform distribution over colorings. The Ising model with varying parameters is of use in a
variety of areas of machine learning, most notably in vision, see e.g. [9].

Definition 1.1 The (homogeneous) Ising model on a (weighted) graphG with inverse temperatureβ is a
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distribution on configurations{±}V such that

P (σ) =
1

Z(β)
exp(β

∑

{v,u}∈E

σ(v)σ(u)) (1)

whereZ(β) is a normalizing constant.

More generally, we will be interested in (inhomogeneous) Ising models defined by:

P (σ) =
1

Z(β)
exp(

∑

{v,u}∈E

βu,vσ(v)σ(u) +
∑

v

hvσ(v)), (2)

wherehv are arbitrary and whereβu,v ≥ 0 for all u and v. In the more general case we will write
β = maxu,v βu,v.

1.2 Gibbs Sampling

The Gibbs sampler is a Markov chain on configurations where a configurationσ is updated by choosing a
vertexv uniformly at random and assigning it a spin according to the Gibbs distribution conditional on the
spins onG− {v}.

Definition 1.2 Given a graphG = (V,E) and an inverse temperatureβ, the Gibbs sampler is the discrete
time Markov chain on{±}V where given the current configurationσ the next configurationσ′ is obtained
by choosing a vertexv in V uniformly at random and

• Lettingσ′(w) = σ(w) for all w 6= v.

• σ′(v) is assigned the spin+ with probability

exp(hv +
∑

u:(v,u)∈E βu,vσ(u))

exp(hv +
∑

u:(v,u)∈E βu,vσ(u)) + exp(−hv −
∑

u:(v,u)∈E βu,vσ(u))
.

We will be interested in the time it takes the dynamics to get close to the distributions (1) and (2). The
mixing time τmix of the chain is defined as the number of steps needed in order toguarantee that the chain,
starting from an arbitrary state, is within total variationdistance1/2e from the stationary distribution. We
will bound the mixing time by the relaxation time defined below.

It is well known that Gibbs sampling is a reversible Markov chain with stationary distributionP . Let
1 = λ1 > λ2 ≥ . . . ≥ λm ≥ −1 denote the eigenvalues of the transition matrix of Gibbs sampling. The
spectral gapis denoted bymax{1 − λ2, 1 − |λm|} and therelaxation timeτ is the inverse of the spectral
gap. The relaxation time can be given in terms of the Dirichlet form of the Markov chain by the equation

τ = sup

{
2
∑

σ P (σ)(f(σ))2∑
σ 6=τ Q(σ, τ)(f(σ) − f(τ))2

:
∑

σ

P (σ)f(σ) 6= 0

}
(3)

wheref : {±}V → R is any function on configurations,Q(σ, τ) = P (σ)P (σ → τ) andP (σ → τ) is
transition probability fromσ to τ . We use the result that for reversible Markov chains the relaxation time
satisfies

τ ≤ τmix ≤ τ

(
1 +

1

2
log(min

σ
P (σ))−1

)
(4)
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whereτmix is the mixing time (see e.g. [2]) and so by bounding the relaxation time we can bound the mixing
time up to a polynomial factor.

While our results are given for the discrete time Gibbs Sampler described above, it will at times be conve-
nient to consider the continuos time version of the model. Here sites are updated at rate 1 by independent
Poisson clocks. The two chains are closely related, the relaxation time of the continuous time Markov chain
is n times the relaxation time of the discrete chain (see e.g. [2]).

For our proofs it will be useful to use the notion ofblock dynamics. The Gibbs sampler can be generalized to
update blocks of vertices rather than individual vertices.For blocksV1, V2, . . . , Vk ⊂ V with V = ∪iVi the
block dynamics of the Gibbs sampler updates a configurationσ by choosing a blockVi uniformly at random
and assigning the spins inVi according to the Gibbs distribution conditional on the spins onG−{Vi}. There
is also a continuous analog in which the blocks each update atrate 1. In continuous time, the relaxation time
of the Gibbs sampler can be given in terms of the relaxation time of the block dynamics and the relaxation
times of the Gibbs sampler on the blocks.

Proposition 1.3 In continuous time ifτblock is the relaxation time of the block dynamics andτi is the max-
imum the relaxation time onVi given any boundary condition fromG − {Vi} then by Proposition 3.4 of
[20]

τ ≤ τblock(max
i

τi)max
v∈V

{#j : v ∈ Vj}. (5)

1.2.1 Monotone Coupling

For two configurationsX,Y ∈ {−,+}V we let X < Y denote thatX is greater than or equal toY
pointwise. When all the interactionsβij are positive, it is well known that the Ising model is a monotone
system under this partial ordering, that is ifX < Y then,

P
(
σv = +|σV \{v} = XV \{v}

)
≥ P

(
σv = +|σV \{v} = YV \{v}

)
.

As it is a monotne system there exists a coupling of Markov chains {Xx
t }x∈{−,+}V such that marginally

each has the law of the Gibbs Sampler with starting configurationsXx
0 = X and further that ifx < y then

for all t, Xx
t < Xy

t . This is referred to as the monotone coupling and can be constructed as follows: let
v1, . . . be a random sequence of vertices updated by the Gibbs Samplerand associate with them iid random
variablesU1, . . . distributed asU [0, 1] which determine how the site is updated. At theith update the sitevi
is updated to+ if

Ui ≤
exp(hv +

∑
u:(v,u)∈E βu,vσ(u))

exp(hv +
∑

u:(v,u)∈E βu,vσ(u)) + exp(−hv −
∑

u:(v,u)∈E βu,vσ(u))

and to− otherwise. It is well known that such transitions preserve the partial ordering which guarantees
that if x < y thenXx

t < Xy
t by the monotonicity of the system. In particular this implies that it is enough

to bounded the time taken to couple from the all+ and all− starting configurations.

1.3 Erdős-Rényi Random Graphs and Other Models of graphs

The Erdős-Rényi random graphG(n, p), is the graph withn verticesV and random edgesE where each
potential edge(u, v) ∈ V × V is chosen independently with probabilityp. We takep = d/n whered ≥ 1
is fixed. In the cased < 1, it is well known that with high probability all components of G(n, p) are of
logarithmic size which implies immediately that the dynamics mix in polynomial time for allβ.

4



For a vertexv in G(n, d/n) let V (v, l) = {u ∈ G : d(u, v) ≤ l}, the set of vertices within distancel of v,
let S(v, l) = {u ∈ G : d(u, v) = l}, let E(v, l) = {(u,w) ∈ G : u,w ∈ V (v, l)} and letB(v, l) be the
graph (V (v, l), E(v, l)).

Our results only require some simple features of the neighborhoods of all vertices in the graph.

Definition 1.4 LetG = (V,E) be a graph andv a vertex inG. Let t(G) denote thetree accessof G, i.e.,

t(G) = |E| − |V |+ 1.

We call a pathv1, v2, . . . self avoidingif for all i 6= j it holds thatvi 6= vj . We let themaximal path density
m be defined by

m(G, v, l) = max
Γ

∑

u∈Γ

du

where the maximum is taken over all self-avoiding pathsΓ starting atv with length at mostl anddu is the
degree of nodeu. We writet(v, l) for t(B(v, l)) andm(v, l) for m(B(v, l), v, l).

1.4 Our Results

Throughout we will be using the termwith high probabilityto mean with probability1 − o(1) asn goes to
∞.

Theorem 1.5 LetG be a random graph distributed asG(n, d/n). When

tanh(β) <
1

e2d
,

there exists constant aC = C(d) such that the mixing time of the Glauber dynamics isO(nC) with high
probability (probability1 − o(1)) over the graph asn goes to∞. The result holds for the homogeneous
model (1) and for the inhomogeneous model (2) provided|hv | ≤ 100βn for all v.

Note in the theorem above theO(·) bound depends onβ. It may be viewed as a special case of the following
more general result.

Theorem 1.6 LetG = (V,E) be any graph onn vertices satisfying the following properties. There exist
a > 0, 0 < b < ∞ and0 < c < ∞ such that for allv ∈ V it holds that

t(v, a log n) ≤ b log n, m(v, a log n) ≤ c log n.

Then if

tanh(β) <
a

e1/a(c− a)
,

there exists constant aC = C(a, b, c, β) such that the mixing time of the Glauber dynamics isO(nC). The
result holds for the homogeneous model (1) and for the inhomogeneous model (2) provided|hv | ≤ 100βn
for all v.

Remark 1.7 The condition that|hv| ≤ 100βn for all v will be needed in the proof of the result in the
general case (2). However, we note that given Theorem 1.6 as ablack box, it is easy to extend the result
and provide an efficient sampling algorithm in the general case without any bounds on thehv. In the case
where some of the verticesv satisfy|hv | ≥ 10βn, it is easy to see that the target distribution satisfies except
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with exponentially small probability thatσv = + for all v with hv > 10βn and σv = − for all v with
hv < −10βn. Thus we may setσv = + whenhv > 10βn andσv = − whenhv < 10βn and consider the
dynamics where these values are fixed. Doing so will effectively restrict the dynamics to the graph spanned
by the remaining vertices and will modify the values ofhv for the remaining vertices; however, it is easy to
see that all remaining vertices will have|hv | ≤ 100βn. It is also easy to verify that if the original graph
satisfied the hypothesis of Theorem 1.6 then so does the restricted one. Therefore we obtain an efficient
sampling procedure for the desired distribution.

1.5 Related Work and Open Problems

Much work has been focused on the problem of understanding the mixing time of the Ising model in various
contexts. In a series of results [14, 1, 28] culminating in [25] it was shown that the Gibbs sampler on integer
lattice mixes rapidly when the model has the strong spatial mixing property. InZ2 strong spatial mixing, and
therefore rapid mixing, holds in the entire uniqueness regime (see e.g. [21]). On the regular tree the mixing
time is always polynomial but is onlyO(n log n) up to the threshold for extremity [3]. For completely
general graphs the best known results are given by the Dobrushin condition which establishes rapid mixing
whend tanh(β) < 1 whered is the maximum degree.

Most results for mixing rates of Gibbs samplers are stated interms of the maximal degree. For example
many results have focused on sampling uniform colorings, the result are of the form: for every graph where
all degrees are at mostd if the number of colorsq satisfiesq ≥ q(d) then Gibbs sampling is rapidly
mixing [27, 26, 6, 8, 12, 4, 18, 22]. For example, Jerrum [15] showed that one can takeq(d) = 2d.
The novelty of the result presented here is that it allows forthe study of graphs where the average degree is
small while some degrees may be large.

Previous attempts at studying this problem, with bounded average degree but some large degrees, for sam-
pling uniform colorings yielded weaker results. In [5] it isshown that Gibbs sampling rapidly mixes
on G(n, d/n) if q = Ωd((log n)

α) whereα < 1 and that a variant of the algorithm rapidly mixes if
q ≥ Ωd(log log n/ log log log n). Indeed the main open problem of [5] is to determine if one cantakeq to
be a function ofd only. Our results here provide a positive answer to the analogous question for the Ising
model. We further note that other results where the conditions on degree are relaxed [13] do not apply in
our setting.

The following propositions, which are easy and well known, establish that ford > 1 and largeβ the mixing
time is exponential inn and that for alld > 0 andβ > 0 the mixing time is more thannpolylog(n).

Proposition 1.8 If d > 0 and β > 0 then with high probability the mixing time of the dynamics on
G(n, d/n) is at leastn1+Ω(1/ log logn).

Proof: The proof follows from the fact thatG(n, d/n) contains an isolated star withs = Ω(log n/ log log n)
vertices with high probability and that the mixing time of the star iss exp(Ω(s)). Since the star is updated
with frequencys/n, it follows that the mixing time is at least

(n/s)s exp(Ω(s)) = n exp(Ω(s)) = n1+Ω(1/ log logn).

�

Proposition 1.9 If d > 1 then there existsβ′
d such that ifβ > β′

d then the with probability going to1, the
mixing time of the dynamics onG(n, d/n) is exp(Ω(n)).

6



Proof: The claim follows from expansion properties ofG(n, d/n). It is well known that ifd > 1 then with
high probabilityG(n, d/n) contains acoreC of size at leastαdn such that that everyS ⊂ C of size at
leastαd/4n has at leastγdn edges betweenC andS \ C. Let A be the set of configurationsσ such thatσ
restricted toC has at leastαd/4 +’s and at leastαd/4−’s. ThenP (A) ≤ 2n exp(β|E|−2βγdn)/Z. On the
other hand if+ denotes the all+ state thenP (+) = P (−) = exp(β|E|)/Z. Thus by standard conductance
arguments, the mixing time is exponential inn when2 exp(−2βγd) < 1. �

It is natural to conjecture that properties of the Ising model on the branching process withPoisson(d)
offspring distribution determines the mixing time of the dynamics onG(n, d/n). In particular, it is natural
to conjecture that the critical point foruniquenessof Gibbs measures plays a fundamental role [10, 24]
as results of similar flavor were recently obtained for the hard-core model on random bi-partited regular
graphs [23].

Conjecture 1.10 If d tanh(β) > 1 then with high probability overG(n, d/n) the mixing time of the Gibbs
sampler isexp(Ω(n)). If d > 1 andd tanh(β) < 1 then with high probability overG(n, d/n) the mixing
time of the Gibbs sampler is polynomial inn.

After proposing the conjecture we have recently learned that Antoine Gerschenfeld and Andrea Montanari
have found an elegant proof for estimating the partition function (that is the normalizing constantZ(β))
for the Ising model on randomd-regular graphs [11]. Their result together with a standardconductance
argument shows exponentially slow mixing above the uniqueness threshold which in the context of random
regular graphs is(d+ 1) tanh(β) = 1.

1.6 Proof Technique

Our proof follows the following main steps.

• Analysis of the mixing time for Gibbs sampling on trees of varying degrees. We find a bound on the
mixing time on trees in terms of the maximal sum of degrees along any simple path from the root.
This implies that forall β if we consider a tree where each node has number of descendants that
has Poisson distribution with parameterd − 1 then with high probability the mixing time of Gibbs
sampling on the tree is polynomial in its size. The motivation for this step is that we are looking at
tree-like graphs Note however, that the results established here hold for allβ, while rapid mixing for
G(n, d/n) does not hold for allβ. Our analysis here holds for all boundary conditions and allexternal
fields on the tree.

• We next use standard comparison arguments to extend the result above to case where the graph is
a tree with a few edges added. Note that with high probabilityfor all v ∈ G(n, d/n) the induced
subgraphB(v, 12 logd n) on all vertices of distance at most1

2 logd n from v is a tree with at most a few
edges added. (Note this still holds for allβ).

• We next consider the effect of the boundary on the root of the tree. We show that for tree ofa log n
levels, the total variation distance of the conditional distribution at the root given all+ boundary
conditions and all− boundary conditions isn−1−Ω(1) with probability1−n−1−Ω(1) providedβ < βd
is sufficiently small (this is the only step where the fact that β is small is used).

• Using the construction of Weitz [27] and a Lemma from [18, 3] we show that the spatial decay estab-
lished in the previous step also holds with probability1− o(1) for all neighborhoodsB(v, a log n) in
the graph.
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• The remaining steps use the fact that a strong enough decay ofcorrelation inside blocks each of which
is rapidly mixing implies that the dynamics on the full graphis rapidly mixing. This idea is taken
from [7].

• In order to show rapid mixing it suffices to exhibit a couplingof the dynamics starting at all+ and all
− that couples with probability at least1/2 in polynomial time. We show that the monotone coupling
(where the configuration started at− is always “below” the configuration started at+) satisfies this by
showing that for eachv in polynomial time the two configurations atv coupled except with probability
n−1/(2e).

• In order to establish the later fact, it suffices to show that running the dynamics onB(v, a log n)
starting at all+ and all+ boundary conditions and the dynamics starting at all− and all− will
couple atv except with probabilityn−1/(2e) within polynomial time.

• The final fact then follows from the fact that the dynamics inside B(v, a log n) have polynomial
mixing time and that the stationary distributions inB(v, 12 logd n) given+ and− boundary conditions
agree atv with probability at least1− n−1/(4e).

We note that the decay of correlation on the self-avoiding tree defined by Weitz that we prove here allows a
different sampling scheme from the target distribution. Indeed, this decay of correlation implies that given
any assignment to a subset of the verticesS and anyv 6∈ S we may calculate using the Weitz tree of radius
a log n in polynomial time the conditional probability thatσ(v) = + up to an additive error ofn−1/100. It
is easy to see that this allow sampling the distribution in polynomial time. More specifically, consider the
following algorithm from [27].

Algorithm 1.11 Fix a radius parameterL and label the verticesv1, . . . , vn. Then the algorithm approxi-
mately samples fromP (σ) by assigning the spins ofvi sequentially. Repeating from1 ≤ i ≤ n:

• In stepi constructTL
SAW (vi), the tree of self-avoiding walks truncated at distanceL from vi.

• Calculate
pi = PTL

SAW

(σvi = +|σ{v1,...,vi−1}, τA−Vi−1
).

(The boundary conditions at the tree can be chosen arbitrarily; in particular, one may calculatepi
with no boundary conditions).

• Fix σvi = Xvi whereXvi is a random variable withpi = P (Xvi = +) = 1− P (Xvi = −).

Then we prove that:

Theorem 1.12 LetG be a random graph distributed asG(n, d/n). When

tanh(β) <
1

d
,

for any γ > 0 there exist constantsr = r(d, β, γ) and C = C(d, β, γ) such that with high proba-
bility Algorithm 1.11, with parameterr log n, has running timeO(nC) and output distributionQ with
dTV (P,Q) < n−γ . The result holds for the homogeneous model (1) and for the inhomogeneous model (2).
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Theorem 1.13 LetG = (V,E) be any graph onn vertices satisfying the following properties. There exist
a > 0, 0 < b < ∞ such that for allv ∈ V ,

|VTSAW (v)(v, a log n)| ≤ ba logn (6)

whereVTSAW (v)(v, r) = {u ∈ TSAW (v) : d(u, v) ≤ r}. When

tanh(β) <
1

b
,

for anyγ > 0 there exist constantsr = r(a, b, β, γ) andC = C(a, b, β, γ) such that Algorithm 1.11, with
parameterr log n, has running timeO(nC) and output distributionQ with dTV (P,Q) < n−γ. The result
holds for the homogeneous model (1) and for the inhomogeneous model (2).
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2 Proofs

2.1 Relaxation time on Sparse and Galton Watson Trees

Recall that the local neighborhood of a vertex inG(n, d/n) looks like a branching process tree. In the first
step of the proof we bound the relaxation time on a tree generated by a Galton-Watson branching process.
More generally, we show that trees that are not too dense havepolynomial mixing time.

Definition 2.1 LetT be a finite rooted tree. We definem(T ) = maxΓ
∑

v∈Γ dv where the maximum is taken
over all simple pathsΓ emanating from the root anddv is the degree of nodev.

Theorem 2.2 Let τ be the relaxation time of the continuous time Gibbs Sampler on T where0 ≤ βu,v ≤ β
for all u andv and given arbitrary boundary conditions and external field.Then

τ ≤ exp(4βm(T )).

Proof:
We proceed by induction onm with a similar argument to the one used in [18] for a regular tree. Note that if
m = 0 the claim holds true sinceτ = 1. For the general case, letv be the root ofT , and denote its children
by u1, . . . , uk and denote the subtree of the descendants ofui by T i. Now let T ′ be the tree obtained by
removing thek edges fromv to theui, let P ′ be the Ising model onT ′ and letτ ′ be the relaxation time on
T ′. By equation (3) we have that

τ/τ ′ ≤
maxσ P (σ)/P ′(σ)

minσ,τ Q(σ, τ)/Q′(σ, τ)
≤ exp(4βk). (7)

Now we divideT ′ into k + 1 blocks {{v}, {T 1}, . . . , {T k}}. Since these blocks are not connected to
each other the block dynamics is simply the product chain. Each block updates at rate 1 and therefore the
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relaxation time of the block dynamics is simply1. By applying Proposition1.3 we get that the relaxation
time onT ′ is simply the maximum of the relaxation times on the blocks,

τ ′ ≤ max{1, τ i}.

whereτ i is the relaxation time onT i. Note that by the definition ofm, it follows that the value ofm for
each of the subtreesT i satisfiesm(T i) ≤ m− k, and therefore for alli it holds thatτ i ≤ exp(4β(m− k)).
This then implies by (7) thatτ ≤ exp(4βm) as needed.�

2.2 Some properties of Galton Watson Trees

Here we prove a couple of useful properties for Galton Watsontrees that will be used below. We letT be
the tree generated by a Galton-Watson branching process with offspring distributionN such that for allt,
E exp(tN) < ∞ and such thatE(N) = d. Of particular interest to us would be the Poisson distribution
with meand which has

E exp(tN) = exp(d(et − 1)).

We letTr denote the firstr levels ofT . We letM(r) denote the value ofm for T (r) andτ(r) the supremum
of the relaxation times of the continuous time Gibbs Sampleron T (r) over any boundary conditions and
external fields assuming thatβ = supβu,v. We denote byZr the number of descendants at levelr.

Theorem 2.3 Under the assumptions above we have:

• There exists a positive functionc(t) such that for allt and all r:

E[exp(tM(r))] ≤ exp(c(t)r).

• ThenEτ(r) ≤ C(β)r for someC(β) < ∞ depending onβ = supβu,v only.

• If N is the Poisson distribution with meand then for allt > 0,

sup
r

E[exp(tZrd
−r)] < ∞.

Proof: Let K denote the degree of the root ofTr and for1 ≤ i ≤ K let Mi(r − 1) denote the value ofm
for the sub-tree ofTr rooted at thei’th child. Then:

E[exp(tM(r))] = E[max(1, max
1≤i≤K

exp(t(Mi(r − 1) +K)))]

≤ E[(1 + exp(tK))

K∑

i=1

exp(tMi(r − 1))]

= E[(1 +K exp(tK))]E[exp(tM(r − 1))].

and so the result follows by induction provided thatc(t) is large enough so that

exp(c(t)) ≥ E(1 +K exp(tK)).

For the second statement of the theorem, note that by the previous theorem we have that

Eτ(r) ≤ E[exp(4βM(r))],

10



whereM(r) is the random value ofm for the treeTr so ifC(β) = exp(c(4β)) thenEτ(r) ≤ C(β)r.

For the last part of the theorem, letNi be independent copies ofN and note that

E exp(tZr+1) = E exp(

Zr∑

i=0

td−(r+1)Ni) = E[E[exp(

Zr∑

i=0

td−(r+1)Ni|Zn]] (8)

= E[(E[exp(td−r+1N)])Zr ] = E exp(log(E exp(td−(r+1)N))Zr)

which recursively relates the exponential moments ofZr+1 to the exponential moments ofZr. In particular
since all the exponential moments ofZ1 exist,E exp(tZr) < ∞ for all t andr. When0 < s ≤ 1

E exp(sN) =

∞∑

i=0

siEN i

i!
≤ 1 + sd+ s2

∞∑

i=2

EN i

i!
≤ exp(sd(1 + αs)) (9)

providedα is sufficiently large. Now fix at and lettn = t exp(2αt
∑∞

i=r+1 d
−i). For some sufficiently large

j we have thatexp(2αt
∑∞

i=r+1 d
−i) < 2 andtrd−(r+1) < 1 for all r ≥ j. Then forr ≥ j by equations (8)

and (9),

E exp(tr+1Zr+1d
−(r+1)) = E exp(log(E exp(tr+1d

−(r+1)Ni))Zr)

≤ E exp(tr+1(1 + αtr+1d
−(r+1))Zrd

−r)

≤ E exp(tr+1(1 + 2αtd−(r+1))Zrd
−r)

≤ E exp(trZrd
−r)

and so
sup
r≥j

E exp(tZrd
−r) ≤ sup

r≥j
E exp(trZrd

−r) = E exp(tjZjd
−j) < ∞

which completes the result.�

When the branching process is super-critical, the number ofvertices isO((EW )r) and the result above gives
that the mixing time is polynomial in the number of vertices on Galton Watson branching process with high
probability. We remark that all our bounds here are increasing in the degrees of the vertices so if a random
tree T is stochastically dominated by a Galton-Watson branching process then the same bound applies.

2.3 Relaxation in Tree-Like Graphs

For the applications considered for random and sparse graphs, it is not always the case that the neighborhood
of a vertex is a tree, instead it is sometimes a tree with a small number of edges added. Using standard
comparison arguments we show that the mixing time of a graph that is a tree with a few edges added is still
polynomial. We also show that with high probability for theG(n, d/n) the neighborhoods of all vertices are
tree-like.

Proposition 2.4 Let G be a graph onr vertices withr + s − 1 edges that has a spanning treeT with
m(T ) = m. Then the mixing timeτ of the Glauber dynamics onG with any boundary conditions and
external fields satisfies:

τ ≤ exp(4β(m + s)).

11



Proof: By equation (7) removing thes edges inG which are not inT decreases the relaxation time by at
most a multiplicative factor ofexp(4βs). By Theorem 2.2 the relaxation time ofT is at mostexp(4βm) so
the relaxation time ofG is bounded byexp(4β(m+ s)). �

Lemma 2.5 LetG be a random graph distributed asG(n, d/n). The following hold with high probability
overG:

• For 0 < a < 1
2 log d there exists somec(a, d) such that for allv ∈ G, m(v, a log n) ≤ c log n.

• There existsk = k(a, d) > 0 such that for allv ∈ G, t(v, a log n) ≤ k.

• For 0 < a < 1
2 log d and everyv ∈ G,

|B(v, a log n)| ≤ 3(1 − d−1)na log d log n.

Proof: We construct a spanning treeT (v, l) of B(v, l) in a standard manner. Take some arbitrary ordering
of the vertices ofG. Start with the vertexv and attach it to all its neighbors inG. Now take the minimal
vertex inS(v, 1), according to the ordering, and attach it to all its neighbors in G which are not already in
the graph. Repeat this for each of the vertices inS(v, 1) in increasing order. Repeat this forS(v, 2) and
continue untilS(v, l − 1) which completesT (v, l). By construction this is a spanning tree forB(v, l). The
construction can be viewed as a breadth first search ofB(v, l) starting fromv and exploring according to
our ordering.

By a standard argumentT (v, a log n) is stochastically dominated by a Galton-Watson branching process
with offspring distribution Poisson(d). Then by repeating the argument of Theorem 2.3 for someδ,

E exp(m(T (v, a log n), v, a log n)) ≤ δa logn

and so,
P (m(T (v, a log n), v, a log n)) > (aδ + 2) log n) = O(n−2).

which implies that with high probabilitym(T (v, a log n), v, a log n)) < (aδ + 2) log n for all v.

If Zl are the number of offspring in generationl of a Galton-Watson branching process with offspring
distribution Poisson(d) then by Theorem 2.3 we have thatsupl E exp(Zl/d

l) < ∞ and since

P (|S(v, l)| > 3dl log n) ≤ P (exp(Zl/d
l) > n3) ≤ n−3E exp(Zl/d

l),

it follows by a union bound over allv ∈ G and1 ≤ l ≤ a log n we have with high probability for allv,

|B(v, a log n)| ≤ 3(1 − d−1)na log d log n. (10)

In the construction ofT (v, a log n) there may be some edges inB(v, a log n) which are not explored and so
are not inT (v, a log n). Each edge betweenu,w ∈ V (v, a log n) which is not explored in the construction
of T (v, a log n) then is present inB(v, a log n) independently ofT (v, a log n) with probabilityd/n. There
are at most(3(1− d−1)na log d log n)2 unexplored edges. Now whenk > 1/(1 − 2a log d),

P (Binomial((3(1 − d−1)na log d log n)2, d/n) > k) = O(nk(2a log d−1)(log n)2k) = n−1−Ω(1)

so by a union bound with high probability we havet(v, a log n) ≤ k. Now a self-avoiding path inB(v, a log n)
can traverse each of thesek edges at most once so this path can be split into at mostk + 1 self-avoiding
paths inT (v, a log n) and hence with high probabilitym(v, l) ≤ c log n wherec = (k + 1)(aδ + 2). �
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Lemma 2.6 When0 < a < 1
2 log d with high probability for allv ∈ G,

|VTSAW (v)(v, a log n)| ≤ O(na log d log n)

whereVTSAW (v)(v, r) = {u ∈ TSAW (v) : d(u, v) ≤ r}.

Proof: We now count the number of self-avoiding walks of length at most a log n in B(v, a log n). By
Lemma 2.5 we have that with high probability for allv, |B(v, a log n)| ≤ 3(1 − d−1)na log d log n and
t(v, a log n) ≤ k. Let e1, . . . , et(v,a logn) denote the edges inB(v, a log n) which are not inT (v, a log n).
Now every vertex inu′ ∈ TSAW (v) corresponds to a unique self avoiding walk inB(v, a log n) from v
to u. A self-avoiding walk inB(v, a log n) passes through each edge at most most once so in particular it
passes through each of theei at most once. So a path which begins atv traverses through some sequence
ei1 , . . . , eil in particular directions and then ends atu is otherwise uniquely defined since the intermediate
steps are paths inT (v, a log n) which are unique. There are at mostk(k!) sequencesei1 , . . . , eil , there are2k

choices of directions to travel through them, and at most3(1 − d−1)na log d log n possible terminal vertices
in B(v, a log n) so |VTSAW (v)(v, a log n)| ≤ 3(1 − d−1)2kk(k!)na log d log n.

�

2.4 Spatial decay of correlation for tree-like neighborhoods

Proposition 2.7 LetT be a tree such thatm(v, a) ≤ m. ThenS|(v, a)| ≤ (m−a+1
a )a.

Proof: First we establish inductively that|S(v, a)| is maximized by a spherically symmetric tree, that is
one where the degrees of the vertices depend only on their distance tov (it may be that it is also maximized
by non-spherically symmetric trees). It is clearly true when a = 0 so suppose that it is true for allm up
to heighta − 1. Let T ∗ be a tree of heighta rooted atv that maximizes|S(T ∗, v, a)| under the constraint
m(T ∗, v, a) ≤ m and letk be the degree ofv. Then each of the subtreesTi attached tov have deptha − 1
and are constrained to havem(Ti, vi, a−1) ≤ m−k−1. LetT− be a sphereically symmetric tree of height
a−1 which hasm(T−, v, a−1) ≤ m−k−1 and maximizesS|(T−, v, a−1)|. A vertexv connected to the
roots ofk copies ofT− is a spherically symmetric tree of heighta with m(v, a) = m and by our inductive
hypothesis must have boundary size|S(v, a)| at least as large asT ∗ which completes the induction step.

So suppose thatT is sphereically symmetric and letdi be the degree of a vertex distancei from v. Then by
the arithmetic-geometric inequality

|S(v, a)| = d0

a−1∏

i=1

(di − 1) ≤ ((
a−1∑

i=0

di − (a− 1))/a)a ≤

(
m− a+ 1

a

)a

.

�

We now consider the effect that conditioning on the leaves ofa tree can have on the marginal distribution
of the spin at the root. It will be convenient to compare this probability to the Ising model with the same
interaction strengthsβuv but no external field (h ≡ 0) which we will denoteP̃ .

Lemma 2.8 If T is a tree,P is the Ising model with arbitrary external field (includinghu = ±∞ meaning
thatσu is set to±) andβu,v ≤ β then for allv ,

P (σv = +|σS(v,l) ≡ +)− P (σv = +|σS(v,l) ≡ −) ≤ |S(v, l)|(tanh β)l.
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Proof: Lemma 4.1 of [3] states that for any verticesv, u ∈ T ,

P (σv = +|σu = +)− P (σv = +|σu = −) ≤ P̃ (σv = +|σu = +)− P̃ (σv = +|σu = −). (11)

If u0, u1, . . . , ul are a path of vertices inT then a simple calculation yields that

P̃ (σuk
= +|σu0

= +)− P̃ (σuk
= +|σu0

= −) =
k∏

i=1

tanh βui−1ui
≤ (tanh β)k. (12)

Now suppose thatu ∈ S(v, l) and thatη+S(v,l) andη−S(v,l) are configurations onS(v, l) which differ only at

u whereη±u = ±. Conditioning is equivalent to setting an infinite externalfield so equations (11) and (12)
imply that

P (σv = +|σS(v,l) = η+)− P (σv = +|σS(v,l) = η−) ≤ (tanh β)l. (13)

Take a sequence of configurationsη0, η1, . . . , η|S(v,l)| on S(v, l) with η0 ≡ − andη|S(v,l)| ≡ + where
consecutive configurations differ at a single vertex. By equation (13) we have that

P (σv = +|σS(v,l) = ηi+1)− P (σv = +|σS(v,l) = ηi) ≤ (tanh β)l

and so
P (σv = +|σS(v,l) ≡ +)− P (σv = +|σS(v,l) ≡ −) ≤ |S(v, l)|(tanh β)l

which completes the proof.�

Now B(v, a log n) is not in general a tree so we use the self-avoiding tree construction of Weitz [27] to
reduce the problem to one on a tree. The tree of self-avoidingwalks, which we denoteTsaw(v, a log n),
is the tree of paths inB(v, a log n) starting fromv and not intersecting themselves, except at the terminal
vertex of the path. Through this construction each vertex inTsaw(v, a log n) can be identified with a vertex
in G which gives a natural way to relate a subsetΛ ⊂ V and a configurationσΛ to the corresponding subset
Λ′ ⊂ Tsaw(v, a log n) and configurationσΛ′ in Tsaw. Furthermore ifA,B ⊂ V thend(A,B) = d(A′, B′).
Then Theorem 3.1 of [27] gives the following result. Each vertex (edge) ofTsaw corresponds to a vertex
(edge) soPTsaw

is defined by taking the corresponding external field and interactions.

Lemma 2.9 For a graphG andv ∈ G there existsA ⊂ Tsaw and some configurationτA onA such that,

PG(σv = +|σΛ) = PTsaw
(σv = +|σΛ′ , τA−Λ′).

The setA corresponds to the terminal vertices of path which returns to a vertex already visited by the path.

Corollary 2.10 Suppose thata, b, c, β satisfy the hypothesis of Theorem 1.6. Then,

max
v∈G

P (σv = +|σS(v,a logn) ≡ +)− P (σv = +|σS(v,a logn) ≡ −) = o(n−1).

Proof: By applying Lemma 2.9 we have that ifΛ = S(v, a log n) then

PG(σv = +|σΛ ≡ +)− PG(σv = +|σΛ ≡ −)

= PTsaw
(σv = +|σΛ′ ≡ +, τA−Λ′)− PTsaw

(σv = +|σΛ′ ≡ −, τA−Λ′).

Conditioning onτA is equivalent to setting the external field atu ∈ A to sign(τv)∞ hence it follows by
Lemma 2.8 that,

PTsaw
(σv = +|σΛ′ ≡ +, τA−Λ′)− PTsaw

(σv = +|σΛ′ ≡ −, τA−Λ′) ≤ |Ssaw(v, a log n)|(tanh β)
a logn
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whereSsaw(v, a log n) = {u ∈ Tsaw(v, a log n) : d(u, v) = a log n}. Now supposev = u1, u2, . . . , uk
is a non-repeating walk inTsaw and letu′1, u

′
2, . . . , u

′
k be the corresponding walk inG. Then from the

construction ofTsaw eitheru′1, u
′
2, . . . , u

′
k is a non-repeating walk inG or for somej < k, u′j = u′k in which

caseuk is a leaf ofTsaw and so has degree 1. It also follows from the construction ofTsaw that the degree
of ui is less than or equal to the degree ofu′i and so we have thatm(v, a log n) ≤ m(Tsaw, v, a log n) + 1.
The by Proposition 2.7

|Ssaw(v, a log n)| ≤

(
c log n− a log n+ 2

a log n

)a logn

= O
(
na log((c−a)/a)

)
= o(n−1(tanh β)−a logn),

which completes the result.�

2.5 Proof of the Main Result

Proof:(Theorem 1.6) LetX+
t ,X−

t , denote the Gibbs sampler onG started from respectively all+ and−,
coupled using the monotone coupling described in Section 1.2.1. Fix some vertexv ∈ G. Define four new
chainsQ+

t , Q−
t , Z+

t andZ−
t . These chains run the Glauber dynamics and are coupled withX+

t andX−
t

insideB(v, a log n) by using the same choice of verticesv1, v2, . . . and the same choice of update random
variablesU1, U2, . . . except that they are fixed (i.e. do not update) outsideB(v, a log n). They are given the
following initial and boundary conditions.

• Q+
t starts from all+ configuration (and therefore has all+ boundary conditions during the dynamics).

• Q−
t starts from all− configuration (and therefore has all− boundary conditions during the dynamics).

• Z+
t starts from all+ configuration outsideB(v, a log n) andZ+

0 is distributed according to the sta-
tionary distribution insideB(v, a log n) given the all+ boundary condition (thereforeZ+

t will have
this distribution for allt).

• Z−
t starts from all− configuration outsideB(v, a log n) and is distributed according to the stationary

distribution insideB(v, a log n) given the all− boundary condition (thereforeZ−
t will have this

distribution for allt).

As the Gibbs distribution onB(v, a log n) with a+ boundary condition stochstically dominates the distri-
bution with a− boundary condition, we can initializeZ+

t andZ−
t so thatZ+

0 < Z−
0 . By monotonicity of

the updates we haveQ+
t < Z+

t < Z−
t < Q−

t for all t. We also have thatQ+
t < X+

t < X−
t < Q−

t on
B(v, a log n). As Z+

t (respectivelyZ−
t ) starts in the stationary distribution of the Gibbs samplergiven the

all + (respectively all−) boundary condition, it remains in the stationary distribution for all timet.

SinceZ+
t (v) ≥ Z−

t (v) we have that

P (Z+
t (v) 6= Z−

t (v)) = P (Z+
t (v) = +)− P (Z−

t (v) = +) ≤ o(n−1),

for all t where the inequality follows from Corollary 2.10. By Proposition 2.4 the continuous time Gibbs
sampler onB(v, a log n) has relaxation time bounded above byexp(4β(b+ c) log n) which implies that the
discrete time relaxation time satisfiesτ ≤ n1+4β(b+c). As each vertex has degree at mostc log n,

log(min
σ

P (σ))−1 ≤ (β|E|) +
∑

u

|hu| ≤ (100cn2β2 log n)

which implies thatτmix ≤ O(n4+4(b+c)β) since the mixing satisifiesτmix ≤ τ(1 + 1
2 log(minσ P (σ))−1).

ForC = 6 + 4(b + c)β we have that with high probability aftert = 2nC steps that the Gibbs sampler has
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chosen every vertex at leastn5+4(b+c)β ≥ nτmix times. It follows that the number of updates toB(v, a log n)
is at leastn times its mixing time and so

P (Q+
t (v) 6= Z+

t (v)) ≤ dTV (Q
+
t (v), Z

+
t (v)) ≤ e−n = o(n−1).

wheredTV denotes the total variation distance which is always bounded above byexp(−t/τmix). We
similarly have that

P (Q−
t (v) 6= Z−

t (v)) ≤ o(n−1).

It follows thatP (Q+
t (v) 6= Q−

t (v)) ≤ o(n−1) and henceP (X+
t (v) 6= X−

t (v)) ≤ o(n−1) for all v. By a
union boundP (X+

t 6= X−
t ) ≤ o(1) so the mixing time is bounded byO(nC) as required.�

Proof:(Theorem 1.5) By Lemma 2.5 with high probability a random graph satisfies the hypothesis of The-
orem 1.6 for small enoughβ. To prove the result whentanh(β) < 1

e2d
the only modification to the proof

of Theorem 1.6 needed is to show that with high probability when−1/(log(d tanh(β))) < a < (2 log d)−1

we still haveP (Z+
t (v) 6= Z−

t (v)) ≤ o(n−1). We know from Lemma 2.6 that with high probability
|VTSAW (v)(v, a log n)| ≤ O(na log d log n) = o(n−1(tanh β)−a logn). Now using this bound and repeat-
ing the proof of Corollary 2.10 we get thatP (Z+

t (v) 6= Z−
t (v)) = o(n−1) as required.

The mixing time is bounded byn6+4(b+c)β which is bounded byn6+4(b+c) tanh−1( 1

e2d
) and does not need to

depend onβ. �

2.6 Sampling from the distribution through the tree of self avoiding walks

The proofs Theorems 1.12 and 1.13 make use the following lemmas.

Lemma 2.11 Let (X1, . . . ,Xn) and(Y1, . . . , Yn) be two vector valued distributions taking values in some
product space. Suppose that for all1 ≤ i ≤ n and all (x1, . . . , xi) we have

dTV ((Xi|X1 = x1, . . . ,Xi−1 = xi−1), (Yi|Y1 = x1, . . . , Yi−1 = xi−1)) ≤ εi,

Then

dTV ((X1, . . . ,Xn), (Y1, . . . , Yn)) ≤

n∑

i=1

εi,

Proof: The proof follows by constructing a coupling of the two distributions whose total variation distance
is bounded by

∑n
i=1 εi. The coupling is performed by first couplingX1 andY1 except with probabilityε1.

Then at stepi, given the coupling of(X1, . . . ,Xi−1) and(Y1, . . . , Yi−1) and conditioned on

(X1, . . . ,Xi−1) = (Y1, . . . , Yi−1),

we couple the two configurations in such a way that they do not agree at most with probabilityεi. The proof
follows. �

Lemma 2.12 Suppose the graphG satisfies that forv ∈ V it holds that

|VTSAW (v)(v, a)| ≤ b,

Then for all integerj it holds that
|VTSAW (v)(v, ja)| ≤ bj.
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Proof: We prove the result by induction onj. Suppose thatu ∈ STSAW (v)(v, (j − 1)a) and letTu denote
the subtree ofu and its descendants inVTSAW (v)(v, ja)\VTSAW (v)(v, (j − 1)a). Each path fromu in Tu

corresponds to a self avoiding walk inG started fromu so it follows that the number of vertices inTu\{u}
is at mostb−1. So|VTSAW (v)(v, ja)\VTSAW (v)(v, (j−1)a)| ≤ bj−1(b−1) which completes the induction.
�

Proof:(Theorem 1.13) Setr = ja wherej is the smallest integer greater than−(1+γ)
log(b tanh β) . By Lemma 2.12

for all i, |VTSAW (vi)(vi, r log n)| ≤ br logn soT r logn
SAW (vi) the tree of self avoiding walks of radiusr log n can

be constructed inO(br logn) = O(nr log b) steps. Using the standard recursions on a tree,pi can be evaluated
in O(nr log b) steps so the running time of the algorithm isO(nC) whereC = 1 + r log b.

At stepi we calculatepi = P
T r log n

SAW

(σvi = +|σVi−1
, τA−Vi−1

) to approximateP (σvi = +|σVi−1
). Applying

Lemma 2.9 we have that

P (σvi = +|σVi−1
) = PTSAW (vi)(σvi = +|σVi−1

, τA−Vi−1
).

whereVj = {v1, . . . , vj} and so ifΛ = STSAW (vi)(vi, r log n) then,

PTSAW (vi)(σvi = +|σΛ ≡ −, σVi−1
, τA−Vi−1

) ≤ P (σvi = +|σVi−1
)

≤ PTSAW (vi)(σvi = +|σΛ ≡ +, σVi−1
, τA−Vi−1

)

and similarly

PTSAW (vi)(σvi = +|σΛ ≡ −, σVi−1
, τA−Vi−1

) ≤ P
T r log n

SAW

(σvi = +|σVi−1
, τA−Vi−1

)

≤ PTSAW (vi)(σvi = +|σΛ ≡ +, σVi−1
, τA−Vi−1

)

so

|P
T r log n

SAW

(σvi = +|σVi−1
, τA−Vi−1

)− P (σvi = +|σVi−1
)|

≤ PTSAW (vi)(σvi = +|σΛ ≡ +, σVi−1
, τA−Vi−1

)− PTSAW (vi)(σvi = +|σΛ ≡ −, σVi−1
, τA−Vi−1

).

Conditioning onσVi−1
andτA is equivalent to setting the external field to be±∞. Then by Lemma 2.8

PTSAW (vi)(σvi = +|σΛ ≡ +, σVi−1
, τA−Vi−1

)− PTSAW (vi)(σvi = +|σΛ ≡ −, σVi−1
, τA−Vi−1

)

≤ |STSAW (vi)(vi, r log n)|(tanh β)
r logn = O(n−1−γ).

If Q is the output of the algorithm then by Lemma 2.11

dTV (P,Q) ≤
n∑

i=1

sup
σVi−1

|P
T r log n

SAW

(σvi = +|σVi−1
, τA−Vi−1

)− P (σvi = +|σVi−1
)| = O(n−γ)

which completes the result.�

Proof:(Theorem 1.12) By Lemma 2.6 equation (6) holds with high probability for any0 < a < 1
2 log d and

b > d so the result follows by Theorem 1.13.

�
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[25] D. W. Stroock and B. Zegarliński. The logarithmic Sobolev inequality for discrete spin systems on a
lattice. Comm. Math. Phys., 149(1):175–193, 1992.

[26] E. Vigoda. A note on the Glauber dynamics for sampling independent sets.Electronic Journal of
Combinatorics, (1), 2001.

[27] D. Weitz. Counting indpendent sets up to the tree threshold. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 140–149. ACM, 2006.

[28] B. Zegarlinski. On log-Sobolev inequalities for infinite lattice systems.Lett. Math. Phys., 20:173–182,
1990.

19


	Introduction
	The Ising Model
	Gibbs Sampling
	Monotone Coupling

	Erdos-Rényi Random Graphs and Other Models of graphs
	Our Results
	Related Work and Open Problems
	Proof Technique
	Acknowledgment

	Proofs
	Relaxation time on Sparse and Galton Watson Trees
	Some properties of Galton Watson Trees
	Relaxation in Tree-Like Graphs
	Spatial decay of correlation for tree-like neighborhoods
	Proof of the Main Result
	Sampling from the distribution through the tree of self avoiding walks


