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Abstract

Gibbs sampling also known as Glauber dynamics is a poputhntque for sampling high dimen-
sional distributions defined on graphs. Of special intei®she behavior of Gibbs sampling on the
Erd6és-Rényi random grapf(n, d/n), where each edge is chosen independently with probability
andd is fixed. While the average degreediin, d/n) is d(1 — o(1)), it contains many nodes of degree
of orderlogn/loglogn.

The existence of nodes of almost logarithmic degrees imphat for many natural distributions
defined onG(n, p) such as uniform coloring (with a constant number of colorshe Ising model at
any fixed inverse temperatufe the mixing time of Gibbs sampling is at leasltt<X(1/loglogn) Recall
that the Ising model with inverse temperatrelefined on a grapty = (V, E) is the distribution over
{+}V given by P(c) = £ exp(B > (wuwyer o(v)o(u)). High degree nodes pose a technical challenge
in proving polynomial time mixing of the dynamics for many dsds including the Ising model and
coloring. Almost all known sufficient conditions in terms gfor number of colors needed for rapid
mixing of Gibbs samplers are stated in terms of the maximugnesteof the underlying graph.

In this work we show that for every < oo and the Ising model defined @(n, d/n), there exists
a fqg > 0, such that for all3 < g4 with probability going tol asn — oo, the mixing time of the
dynamics onG(n, d/n) is polynomial inn. Our results are the first polynomial time mixing results
proven for a natural model a@(n, d/n) for d > 1 where the parameters of the model do not depend on
n. They also provide a rare example where one can prove a poightme mixing of Gibbs sampler in
a situation where the actual mixing time is slower thamlylog(n). Our proof exploits in novel ways
the local treelike structure of Erd6s-Rényi random gsmomparison and block dynamics arguments
and a recent result of Weitz.

Our results extend to much more general families of graphstwédre sparse in some average sense
and to much more general interactions. In particular, thmhato any graph for which every vertex
of the graph has a neighborhodtv) of radiusO(log n) in which the induced sub-graph is a tree union
at mostO(logn) edges and where for each simple pathNifw) the sum of the vertex degrees along
the path isO(log n). Moreover, our result apply also in the case of arbitrargendl fields and provide
the first FPRAS for sampling the Ising distribution in thiseaWe finally present a non Markov Chain
algorithm for sampling the distribution which is effectif@ a wider range of parameters. In particular,
for G(n,d/n) it applies for all external fields an@l < 54, whered tanh(54) = 1 is the critical point for
decay of correlation for the Ising model 6{(n, d/n).
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1 Introduction

Efficient approximate sampling from Gibbs distributionsaisentral challenge of randomized algorithms.
Examples include sampling from the uniform distributiorenindependent sets of a graphl[27] 26,16, 8],
sampling from the uniform distribution of perfect matchsénim a graph([17], or sampling from the uni-
form distribution of coloringsl[12,14,]5] of a graph. A natufamily of approximate sampling techniques
is given by Gibbs samplers, also known as Glauber dynamit®sd are reversible Markov chains that
have the desired distribution as their stationary distidouand where at each step the status of one vertex
is updated. Itis typically easy to establish that the chaiiiseventually converge to the desired distribution.

Studying the convergence rate of the dynamics is inteiggtiom both the theoretical computer science
the statistical physics perspectives. Approximate caemee in time polynomial in the size of the system,
sometimes calledapid mixing is essential in computer science applications. The cgevnee rate is also
of natural interest in physics where the dynamical propsrtif such distributions are extensively studied,
see e.g.[[20]. Much recent work has been devoted to detergmifficient and necessary conditions for
rapid convergence of Gibbs samplers. A common feature ta aidhkis work [27,26 6, 8, 12,14, 18, P2]
is that the conditions for convergence are stated in terntiseomaximal degree of the underlying graph. In
particular, these results do not allow for the analysis efittixing rate of Gibbs samplers on the Erd6s-Rényi
random graph, which is sparse on average, but has rare drisgraphs. Recent work has been directed
at showing how to relax statements so that they do not involagimal degrees [5, 13], but the results are
not strong enough to imply rapid mixing of Gibbs sampling tlee Ising model orG(n,d/n) for d > 1
and anyg > 0 or for sampling uniform colorings fror&(n, d/n) for d > 1 and1000d colors. The second
challenge is presented as the major open problem of [5].

In this paper we give the first rapid convergence result ob&isamplers for the Ising model on Erdés-
Rényi random graphs in terms of the average degreefandly. Our results hold for the Ising model
allowing different interactions and arbitrary externaldg&e We note that there is an FPRAS that samples
from the Ising model on any graph [16] as long as all the imtgwas are positive and the external field is
the same for all vertices. However, these results do notigeay FPRAS in the case where different nodes
have different external fields as we do here.

Our results are further extended to much more general fesmli graphs that are “tree-like” and “sparse on
average”. These are graph where every vertex has a r@diog n) neighborhood which is a tree with at
mostO(log n) edges added and where for each simple path in the neighlmbrttedsum of degrees along
the path isO(logn). An important open problem [5] is to establish similar caiedis for other models
defined on graphs, such as the uniform distribution overrougs.

Below we define the Ising model and Gibbs samplers and statenain result. Some related work and a
sketch of the proof are also given as the introduction. 8e@igives a more detailed proof though we have
not tried to optimize any of the parameters in proofs below.

1.1 The Ising Model

The Ising model is perhaps the simplest model defined on graphis model defines a distribution on
labelings of the vertices of the graph Byand —. The Ising model has various natural generalizations
including the uniform distribution over colorings. Therlgimodel with varying parameters is of use in a
variety of areas of machine learning, most notably in visgee e.g/[9].

Definition 1.1 The (homogeneous) Ising model on a (weighted) gi@phith inverse temperaturg is a
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distribution on configurationg+}" such that
P(o) = (5 exp(B > o 1)
{v,u}eFl

whereZ(3) is a normalizing constant.
More generally, we will be interested in (inhomogeneousiglsnodels defined by:

Po) = 77z (D Buwo()o(u)+ Y hyo(v)), 2)
{vu}elr v
where h,, are arbitrary and wheres, , > 0 for all « and v. In the more general case we will write

B = maXxoy, vy Bu,v-

1.2 Gibbs Sampling

The Gibbs sampler is a Markov chain on configurations whemnégurations is updated by choosing a
vertexv uniformly at random and assigning it a spin according to titeb&distribution conditional on the
spins onG — {v}.

Definition 1.2 Given a graphG = (V, E') and an inverse temperatuyg the Gibbs sampler is the discrete
time Markov chain or{+}" where given the current configuratienthe next configuration’ is obtained
by choosing a vertex in V' uniformly at random and

e Lettingo’(w) = o(w) for all w # v.
e o/(v) is assigned the spi# with probability

exp(hv + Zu:(v,u)eE ,BUWO'(U))
eXp(hU + Zu:(v,u)eE Buvvg(u)) + exp(—hv o EUZ(U,U)EE 5“,00-(“)) ‘

We will be interested in the time it takes the dynamics to dese to the distributiond 1) and](2). The
mixing time 7,,,;,- Of the chain is defined as the number of steps needed in ordelatantee that the chain,
starting from an arbitrary state, is within total variatidistancel /2e from the stationary distribution. We
will bound the mixing time by the relaxation time defined helo

It is well known that Gibbs sampling is a reversible Markowichwith stationary distributionP. Let
1=X > X > ... > )\, > —1denote the eigenvalues of the transition matrix of Gibbspdag. The
spectral gaps denoted bymax{l — X2, 1 — |A,,|} and therelaxation timer is the inverse of the spectral
gap. The relaxation time can be given in terms of the Diricfdem of the Markov chain by the equation

2%, PN
- p{EU#Q(UJ)(f(U 71 2P } ©

wheref : {£}V — R is any function on configuration®)(c,7) = P(c)P(c — 7)andP(c — 1) is
transition probability fromy to 7. We use the result that for reversible Markov chains thexegian time
satisfies

T < Toie < T <1 + %log(main P(O‘))_1> (4)



wherer,,;, is the mixing time (see e.d.][2]) and so by bounding the re¢laraime we can bound the mixing
time up to a polynomial factor.

While our results are given for the discrete time Gibbs Samgéscribed above, it will at times be conve-
nient to consider the continuos time version of the modelrelsges are updated at rate 1 by independent
Poisson clocks. The two chains are closely related, the&atitm time of the continuous time Markov chain
is n times the relaxation time of the discrete chain (see elg. [2]

For our proofs it will be useful to use the notionlbck dynamicsThe Gibbs sampler can be generalized to
update blocks of vertices rather than individual vertides: blocksVy, Vs, ..., Vi, € V with V = U;V; the
block dynamics of the Gibbs sampler updates a configuratioy choosing a block; uniformly at random
and assigning the spins i) according to the Gibbs distribution conditional on the s@nG — {V;}. There

is also a continuous analog in which the blocks each updaggeal. In continuous time, the relaxation time
of the Gibbs sampler can be given in terms of the relaxatime of the block dynamics and the relaxation
times of the Gibbs sampler on the blocks.

Proposition 1.3 In continuous time ity is the relaxation time of the block dynamics ands the max-
imum the relaxation time of; given any boundary condition fro&@ — {V;} then by Proposition 3.4 of
[20]

T < Tblock’(max Ti) max{#j HUUAS ‘/J} (5)
i veV

1.2.1 Monotone Coupling

For two configurationsX,Y <€ {—,+}" we let X = Y denote thatX is greater than or equal 6
pointwise. When all the interactions; are positive, it is well known that the Ising model is a momato
system under this partial ordering, that iskif = Y then,

P (0y = +loy\p} = Xv\fy) 2 P (00 = How ) = Vi) -

As it is a monotne system there exists a coupling of Markomm@Xf}xe{_#}v such that marginally
each has the law of the Gibbs Sampler with starting configuratX§ = X and further that ifc = y then
for all ¢, X} »= X/. This is referred to as the monotone coupling and can be mmtst as follows: let
v1, ... be arandom sequence of vertices updated by the Gibbs Saampl@ssociate with them iid random
variablesU1, . . . distributed ag/[0, 1] which determine how the site is updated. At itlreupdate the site;

is updated tot if

< exp(hv + Zu:(v,u)EE BU,UU(U))
- eXp(hU + Zu:(v,u)eE 5%110-(“)) + eXp(_hU - zu:(v,u)EE Bu,va(u))

and to— otherwise. It is well known that such transitions presehe partial ordering which guarantees
that if z = y then X »= X/ by the monotonicity of the system. In particular this impliat it is enough
to bounded the time taken to couple from the-alhnd all— starting configurations.

1.3 Erdds-Renyi Random Graphs and Other Models of graphs

The Erdds-Rényi random gragh(n, p), is the graph withm verticesV and random edgeB where each
potential edgdu,v) € V x V is chosen independently with probability We takep = d/n whered > 1
is fixed. In the cas@ < 1, it is well known that with high probability all component$ @(n,p) are of
logarithmic size which implies immediately that the dynasamix in polynomial time for alf5.
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For avertex in G(n,d/n) letV(v,l) = {u € G : d(u,v) < I}, the set of vertices within distan¢ef v,
let S(v,l) = {u € G : d(u,v) =1}, let E(v,l) = {(u,w) € G : u,w € V(v,1)} and letB(v,!) be the
graph V' (v,1), E(v,1)).

Our results only require some simple features of the neidtdmuls of all vertices in the graph.

Definition 1.4 LetG = (V, E) be a graph and a vertex inG. Lett(G) denote thdree accesef G, i.e.,
t(G)=|E|—|V|+ 1

We call a pathwy, v, . . . self avoidingif for all ¢ # j it holds thatv; # v;. We let themaximal path density
m be defined by
m(G,v,l) = mlgmxuze;du

where the maximum is taken over all self-avoiding patfstarting atv with length at most andd,, is the
degree of node. We writet(v, 1) for t(B(v,1)) andm(v,1) for m(B(v,1),v,1).

1.4 Our Results

Throughout we will be using the termith high probabilityto mean with probabilityl — o(1) asn goes to
Q.

Theorem 1.5 Let G be a random graph distributed &8(n, d/n). When

1

tanh —
an (6)<62d,

there exists constant@ = C(d) such that the mixing time of the Glauber dynamic®{%“) with high
probability (probability 1 — o(1)) over the graph as: goes tooo. The result holds for the homogeneous
model [1) and for the inhomogeneous mofel (2) providgd< 1005n for all v.

Note in the theorem above tlig&-) bound depends of. It may be viewed as a special case of the following
more general result.

Theorem 1.6 LetG = (V, E) be any graph om vertices satisfying the following properties. There exist
a>0,0<b<ooandl < ¢ < oo such that for all € V' it holds that

t(v,alogn) < blogn, m(v,alogn) < clogn.

Then if
v
el/a(c —a)’

there exists constant@ = C(a, b, ¢, 3) such that the mixing time of the Glauber dynamic®{&). The
result holds for the homogeneous modél (1) and for the inigemeous mode[{2) provided,| < 1005n
for all v.

tanh(f3) <

Remark 1.7 The condition thath,| < 1005n for all v will be needed in the proof of the result in the
general case[{2). However, we note that given Thedrein 1.6kdack box, it is easy to extend the result
and provide an efficient sampling algorithm in the generadecavithout any bounds on tlig. In the case

where some of the verticessatisfy|h, | > 105n, it is easy to see that the target distribution satisfies pkce
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with exponentially small probability that, = + for all v with h, > 105n ando, = — for all v with

h, < —108n. Thus we may set, = + whenh, > 108n ando,, = — whenh, < 105n and consider the
dynamics where these values are fixed. Doing so will effdgtiestrict the dynamics to the graph spanned
by the remaining vertices and will modify the valued.pfor the remaining vertices; however, it is easy to
see that all remaining vertices will hayg,| < 1008n. It is also easy to verify that if the original graph
satisfied the hypothesis of Theoreml 1.6 then so does th&tedtone. Therefore we obtain an efficient
sampling procedure for the desired distribution.

1.5 Related Work and Open Problems

Much work has been focused on the problem of understandengitking time of the Ising model in various
contexts. In a series of results [14[ 1] 28] culminatind &) [Rwas shown that the Gibbs sampler on integer
lattice mixes rapidly when the model has the strong spatieihg property. InZ? strong spatial mixing, and
therefore rapid mixing, holds in the entire uniqguenessmegisee e.g[ [21]). On the regular tree the mixing
time is always polynomial but is onlg)(nlogn) up to the threshold for extremity|[3]. For completely
general graphs the best known results are given by the Dmbrasndition which establishes rapid mixing
whend tanh(5) < 1 whered is the maximum degree.

Most results for mixing rates of Gibbs samplers are state@rims of the maximal degree. For example
many results have focused on sampling uniform coloringsrésult are of the form: for every graph where
all degrees are at most if the number of colors; satisfiesg > ¢(d) then Gibbs sampling is rapidly
mixing [27,[26,6/8[ 12[14, 18, 22]. For example, Jerrum! [18dvged that one can takgd) = 2d.

The novelty of the result presented here is that it allowsHerstudy of graphs where the average degree is
small while some degrees may be large.

Previous attempts at studying this problem, with boundextaaye degree but some large degrees, for sam-
pling uniform colorings yielded weaker results. [ [5] it shown that Gibbs sampling rapidly mixes
on G(n,d/n) if ¢ = Q4((logn)*) wherea < 1 and that a variant of the algorithm rapidly mixes if
q > Q4(loglogn/logloglogn). Indeed the main open problem of [5] is to determine if onete&rq to

be a function ofd only. Our results here provide a positive answer to the guale question for the Ising
model. We further note that other results where the condition degree are relaxed [13] do not apply in
our setting.

The following propositions, which are easy and well knowstablish that for/ > 1 and large3 the mixing
time is exponential im and that for ald > 0 andg > 0 the mixing time is more thanpolylog(n).

Proposition 1.8 If d > 0 and 3 > 0 then with high probability the mixing time of the dynamics on
G(n,d/n) is at leasty ! +(1/ loglogn),

Proof: The proof follows from the fact tha¥(n, d/n) contains an isolated star with= Q(log n/ log log n)
vertices with high probability and that the mixing time oéthtar iss exp(€2(s)). Since the star is updated
with frequencys/n, it follows that the mixing time is at least

(n/s)sexp(Q(s)) = nexp(Q(s)) = n'T(1/loglogn),

Proposition 1.9 If d > 1 then there existg/, such that if5 > 3/, then the with probability going ta, the
mixing time of the dynamics @®(n, d/n) is exp(£2(n)).



Proof: The claim follows from expansion properties@fn, d/n). Itis well known that ifd > 1 then with
high probability G(n,d/n) contains acore C' of size at leastyyn such that that everg C C of size at
leasta;/4n has at least n edges betwee@ andS \ C. Let A be the set of configurations such thatr
restricted taC has at least,;/4 +'s and at leasty;/4 —'s. ThenP(A) < 2" exp(B|E|—28v4n)/Z. Onthe
other hand if+ denotes the all- state thenP(+) = P(—) = exp(S|E|)/Z. Thus by standard conductance
arguments, the mixing time is exponentiakirwhen2 exp(—25v4) < 1. &

It is natural to conjecture that properties of the Ising niaatethe branching process witRoisson(d)
offspring distribution determines the mixing time of thendynics onGG(n, d/n). In particular, it is natural

to conjecture that the critical point famiquenes®f Gibbs measures plays a fundamental role [10, 24]
as results of similar flavor were recently obtained for thedk@re model on random bi-partiteregular

graphs[[23].

Conjecture 1.10 If dtanh(3) > 1 then with high probability ove€(n, d/n) the mixing time of the Gibbs
sampler isexp(€2(n)). If d > 1 anddtanh(f3) < 1 then with high probability ove6(n, d/n) the mixing
time of the Gibbs sampler is polynomialsin

After proposing the conjecture we have recently learnetiAnéoine Gerschenfeld and Andrea Montanari
have found an elegant proof for estimating the partitiorcfiom (that is the normalizing constagt(3))
for the Ising model on randoni-regular graphs [11]. Their result together with a standardductance
argument shows exponentially slow mixing above the unigasinhreshold which in the context of random
regular graphs (g + 1) tanh(8) = 1.

1.6 Proof Technique
Our proof follows the following main steps.

e Analysis of the mixing time for Gibbs sampling on trees ofywag degrees. We find a bound on the
mixing time on trees in terms of the maximal sum of degreeagakny simple path from the root.
This implies that forall 5 if we consider a tree where each node has number of descenitiant
has Poisson distribution with parameter- 1 then with high probability the mixing time of Gibbs
sampling on the tree is polynomial in its size. The motivatior this step is that we are looking at
tree-like graphs Note however, that the results estaldisieee hold for all3, while rapid mixing for
G(n,d/n) does not hold for alB. Our analysis here holds for all boundary conditions anex#rnal
fields on the tree.

e We next use standard comparison arguments to extend thié abswe to case where the graph is
a tree with a few edges added. Note that with high probalbitityall v € G(n,d/n) the induced
subgraphB (v, £ log, n) on all vertices of distance at mostog, n from v is a tree with at most a few
edges added. (Note this still holds for &).

e We next consider the effect of the boundary on the root of tbe. tWe show that for tree aflogn
levels, the total variation distance of the conditionaltritisition at the root given all- boundary
conditions and all- boundary conditions ia—*~2(!) with probability 1 — »n~*=() provideds < 3,
is sufficiently small (this is the only step where the fact thas small is used).

e Using the construction of Weitz [27] and a Lemma fram|[18, &] show that the spatial decay estab-
lished in the previous step also holds with probability o(1) for all neighborhoods3 (v, alog n) in
the graph.



e The remaining steps use the fact that a strong enough decayrefation inside blocks each of which
is rapidly mixing implies that the dynamics on the full graghrapidly mixing. This idea is taken
from [[7].

e In order to show rapid mixing it suffices to exhibit a couplioigthe dynamics starting at alt and all
— that couples with probability at leasf2 in polynomial time. We show that the monotone coupling
(where the configuration started-atis always “below” the configuration started-a} satisfies this by
showing that for each in polynomial time the two configurations atoupled except with probability

n~1/(2e).

e In order to establish the later fact, it suffices to show themning the dynamics o (v, alogn)
starting at all+ and all + boundary conditions and the dynamics starting at-atnd all — will
couple at except with probabilityn —! /(2¢) within polynomial time.

e The final fact then follows from the fact that the dynamicsidesB(v, alogn) have polynomial
mixing time and that the stationary distributionsio, % log,n) given+ and— boundary conditions
agree ab with probability at least — n=1/(4e).

We note that the decay of correlation on the self-avoidieg tiefined by Weitz that we prove here allows a
different sampling scheme from the target distributiordeled, this decay of correlation implies that given
any assignment to a subset of the vertiSesnd anyv ¢ S we may calculate using the Weitz tree of radius
alog n in polynomial time the conditional probability thatv) = + up to an additive error af—!/100. It

is easy to see that this allow sampling the distribution itypamial time. More specifically, consider the
following algorithm from [27].

Algorithm 1.11 Fix a radius parameter. and label the vertices, ..., v,. Then the algorithm approxi-
mately samples from? (o) by assigning the spins of sequentially. Repeating froin< i < n:

e In stepi constructTZ,;,(v;), the tree of self-avoiding walks truncated at distadcom v;.

e Calculate
pi = PTSLAW (00, = +|0{v1,...,vi,1}>TA—Viﬂ)'

(The boundary conditions at the tree can be chosen arblyraim particular, one may calculate;
with no boundary conditions).

e Fix 0,, = X,, whereX,, is arandom variable withy; = P(X,, = +) =1 — P(X,, = —).
Then we prove that:

Theorem 1.12 LetG be a random graph distributed &g

—

n,d/n). When

tanh(f) <

Y

ISR

for any v > 0 there exist constants = r(d,,v) and C = C(d,3,7) such that with high proba-
bility Algorithm [I.I1, with parameter logn, has running timeO(n®) and output distributionQ with
dry (P, Q) < n~7. The result holds for the homogeneous mddel (1) and for thenmogeneous modél (2).



Theorem 1.13 LetG = (V, E) be any graph om vertices satisfying the following properties. There exist
a > 0,0 < b < oo such that for allv € V,

|VTSAW(U) (’U, a IOg n)| < b logn (6)

whereVr . () (v, 1) = {u € Tsaw (v) : d(u,v) < r}. When

tanh(f) < %,

for any~y > 0 there exist constants = r(a,b, 8,v) andC = C(a, b, 3,7) such that Algorithni 1.71, with
parameterr log n, has running timed(n¢) and output distribution with dry (P, Q) < n~". The result
holds for the homogeneous modegl (1) and for the inhomogsnaodel[(R).
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2 Proofs

2.1 Relaxation time on Sparse and Galton Watson Trees

Recall that the local neighborhood of a vertexdn, d/n) looks like a branching process tree. In the first
step of the proof we bound the relaxation time on a tree géseblay a Galton-Watson branching process.
More generally, we show that trees that are not too densegw@yaomial mixing time.

Definition 2.1 LetT" be afinite rooted tree. We defingT") = maxr ) .- d, where the maximum is taken
over all simple path$' emanating from the root and, is the degree of node

Theorem 2.2 Let 7 be the relaxation time of the continuous time Gibbs Sampiéf where0 < 3, , <
for all w andv and given arbitrary boundary conditions and external fielthen

7 < exp(48m(T)).

Proof:

We proceed by induction om with a similar argument to the one used(in![18] for a regulee tNote that if
m = 0 the claim holds true since = 1. For the general case, lete the root ofl’, and denote its children
by u1,...,u; and denote the subtree of the descendants; ofy 7¢. Now let7” be the tree obtained by
removing thek edges fromv to thew;, let P’ be the Ising model oi” and letr’ be the relaxation time on
T'. By equation[(B) we have that

max, P(c)/P'(0)
mina,r Q(U7 T)/Q,(O" T)

Now we divide 7" into k + 1 blocks {{v},{T"},...,{T*}}. Since these blocks are not connected to
each other the block dynamics is simply the product chairthEdock updates at rate 1 and therefore the

/7 <

< exp(45k). (7)



relaxation time of the block dynamics is simply By applying PropositidnI]3 we get that the relaxation
time onT” is simply the maximum of the relaxation times on the blocks,

7 < max{1,7'}.

wherer! is the relaxation time ofi*. Note that by the definition ofr, it follows that the value ofn for
each of the subtreeg’ satisfiesn(T") < m — k, and therefore for all it holds thatr? < exp(43(m — k)).
This then implies by((7) that < exp(4/m) as neededll

2.2 Some properties of Galton Watson Trees

Here we prove a couple of useful properties for Galton Watsees that will be used below. We [&tbe
the tree generated by a Galton-Watson branching procebsotfspring distribution/N' such that for alk,
Eexp(tN) < oo and such thaf/(N) = d. Of particular interest to us would be the Poisson distidout
with meand which has

Eexp(tN) = exp(d(e’ — 1)).

We letT, denote the first levels of 7. We letM (r) denote the value of: for 7'(r) and7(r) the supremum
of the relaxation times of the continuous time Gibbs Sampie?'(r) over any boundary conditions and
external fields assuming that= sup 3, ,. We denote byZ, the number of descendants at level

Theorem 2.3 Under the assumptions above we have:
e There exists a positive functiaift) such that for allt and all r:
Elexp(tM(r))] < exp(c(t)r).
e ThenET(r) < C(5)" for someC () < oo depending o = sup f3,,,, only.
e |f IV is the Poisson distribution with meatthen for all¢ > 0,
sup Elexp(tZ,d™")] < oo.
Proof: Let K denote the degree of the rootBf and forl < i < K let M;(r — 1) denote the value aoh
for the sub-tree of ;. rooted at the'th child. Then:
Elexp(tM(r))] = Elmax(1, max exp(t(Mi(r 1) + K)))
K
< E[(1+exp(tK)) >  exp(tM;(r — 1))]
= E[1+ Kexp(tKZ)j]lE[eXp(tM(r - 1))
and so the result follows by induction provided thé&t) is large enough so that

exp(c(t)) > E(1 + K exp(tK)).

For the second statement of the theorem, note that by thepestheorem we have that

E7(r) < Elexp(48M(r))],
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whereM (r) is the random value of: for the treeT,. so if C(3) = exp(c(453)) thenET(r) < C(B)".

For the last part of the theorem, 1&% be independent copies &f and note that

Eexp(tZy41) = Eexp( th D N;) = E[Elexp( th ) NG| Z, ] (8)
=0 =0
= E[(Elexp(td "' N)))*] = Eexp(log(E exp(td” "tV N))Z,)

which recursively relates the exponential momentg&,of; to the exponential moments 4f.. In particular
since all the exponential momentsZf exist, E exp(tZ,) < oo for all t andr. When0 < s <1

ZEZN Ni < exp(sd(l + as)) 9)

<1+sd+322

Eexp(sN) = Z
=0 =2

provideda is sufficiently large. Now fixaand lett,, = texp(2at> 72 | d~"). For some sufficiently large
j we have thatxp(2at 3°2° , d~%) < 2 andt,d-"+1) < 1forall r > j. Then forr > j by equations[{8)
and [9),

Eexp(ty1Z,41d~ ") = Eexp(log(E exp(t,41d~ "tV N;)) Z,)

(
< Eexp(ty4+1(1+ at7«+1d_(r+1))Zrd_r)
< Eexp(tyi1(1+ 2atd= ") Z,d™")
< Fexp(t,Z,d™")

and so '
sup Eexp(tZ,d™") <sup Eexp(t,Z,d" ") = Eexp(t;Z;d™7) < oo
r>j r>j

which completes the resull

When the branching process is super-critical, the numbesrtites isO((EW)") and the result above gives
that the mixing time is polynomial in the number of vertices@®alton Watson branching process with high
probability. We remark that all our bounds here are increpgi the degrees of the vertices so if a random
tree T is stochastically dominated by a Galton-Watson bisgcprocess then the same bound applies.

2.3 Relaxation in Tree-Like Graphs

For the applications considered for random and sparse gyréphinot always the case that the neighborhood
of a vertex is a tree, instead it is sometimes a tree with alsmahber of edges added. Using standard
comparison arguments we show that the mixing time of a graghis$ a tree with a few edges added is still
polynomial. We also show that with high probability for t6€n, d/n) the neighborhoods of all vertices are
tree-like.

Proposition 2.4 Let G be a graph onr vertices withr + s — 1 edges that has a spanning tréewith
m(T) = m. Then the mixing time of the Glauber dynamics o& with any boundary conditions and
external fields satisfies:

T < exp(48(m + s)).

11



Proof: By equation[(¥) removing the edges inG which are not inl" decreases the relaxation time by at
most a multiplicative factor ofxp(43s). By Theoreni 2P the relaxation time @fis at mostxp(45m) so
the relaxation time of7 is bounded byxp(43(m + s)). R

Lemma 2.5 Let G be a random graph distributed &s(n,d/n). The following hold with high probability
overG:

e For0 < a < 55 there exists somea, d) such that for allv € G, m(v,alogn) < clogn.
e There exist& = k(a,d) > 0 such that for allv € G, t(v,alogn) < k.

e For0 < a < g7 and every € G,
|B(v,alogn)| <3(1 —d H)n*°s4logn.

Proof: We construct a spanning tr@&v, ) of B(v,[) in a standard manner. Take some arbitrary ordering
of the vertices of7. Start with the vertex and attach it to all its neighbors (. Now take the minimal
vertex inS(v, 1), according to the ordering, and attach it to all its neigbkiorG which are not already in
the graph. Repeat this for each of the vertice$'{m, 1) in increasing order. Repeat this f8fv,2) and
continue untilS(v, 1 — 1) which completed’(v, ). By construction this is a spanning tree #8(v, /). The
construction can be viewed as a breadth first seardB(of /) starting fromv and exploring according to
our ordering.

By a standard argumerit(v, alogn) is stochastically dominated by a Galton-Watson branchinggss
with offspring distribution Poissdd). Then by repeating the argument of Theofem 2.3 for some

Eexp(m(T(v,alogn),v,alogn)) < §*1°8"

and so,
P(m(T(v,alogn),v,alogn)) > (ad + 2)logn) = O(n™2).

which implies that with high probabilityn(7'(v, alogn),v,alogn)) < (ad + 2) log n for all v.
If Z; are the number of offspring in generatiérof a Galton-Watson branching process with offspring
distribution Poissofil) then by Theoreri 213 we have thatp, E exp(Z;/d') < co and since

P(|S(v,1)| > 3d'logn) < P(exp(Zi/d') > n’) < n~*Eexp(Z/d"),
it follows by a union bound over all € G and1 <[ < alogn we have with high probability for alb,
|B(v,alogn)| < 3(1 —d ')n**sdlogn. (10)

In the construction of (v, alog n) there may be some edgeshiv, a log n) which are not explored and so
are not inT'(v, alogn). Each edge between w € V (v, alogn) which is not explored in the construction
of T'(v,alogn) then is present il (v, a log n) independently of (v, a log n) with probabilityd/n. There
are at mos{3(1 — d~1)n?'°¢91og n)? unexplored edges. Now whén> 1/(1 — 2alog d),

P(Binomial((3(1 — d =" )8 log n)2, d/n) > k) = O(n*e108d=1) (15g 1)2k) = 5~ 1-21)

so by a union bound with high probability we ha\te, a log n) < k. Now a self-avoiding path if8(v, a log n)
can traverse each of theseadges at most once so this path can be split into at mastl self-avoiding
paths inT'(v, alog n) and hence with high probability:(v, 1) < clogn wherec = (k+ 1)(ad +2). R
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Lemma 2.6 When0 < a < @ with high probability for allv € G,
Vg aw (v) (v, alogn)| < O(n“logdlog n)
whereVr, () (v,7) = {u € Tsaw (v) : d(u,v) <r}.

Proof: We now count the number of self-avoiding walks of length astdogn in B(v,alogn). By
Lemmal2b we have that with high probability for all |B(v,alogn)| < 3(1 — d~')n®!°¢<logn and
t(v,alogn) < k. Leter, ..., ey q10gn) denote the edges iB (v, alogn) which are not inl’(v, alogn).
Now every vertex inu’ € Tsaw (v) corresponds to a unique self avoiding walk®v, alogn) from v

to u. A self-avoiding walk inB(v, alogn) passes through each edge at most most once so in particular it
passes through each of theat most once. So a path which beging dtaverses through some sequence
ei,- - -, € in particular directions and then endswais otherwise uniquely defined since the intermediate
steps are paths ifi(v, a log n) which are unique. There are at mast!) sequences;,, . . . , e;,, there are*
choices of directions to travel through them, and at m¢st— d—')n?1°¢ < log n possible terminal vertices
in B(v,alogn) sO|Vrg ., v) (v, alogn)| < 3(1 — d=N2Fk(k)nledlog n.

|

2.4 Spatial decay of correlation for tree-like neighborhoals

Proposition 2.7 LetT be a tree such thati(v, a) < m. ThenS|(v,a)| < (Z=2tl)a,

Proof: First we establish inductively thab (v, a)| is maximized by a spherically symmetric tree, that is
one where the degrees of the vertices depend only on th&ndestov (it may be that it is also maximized
by non-spherically symmetric trees). It is clearly true wlae= 0 so suppose that it is true for al up

to heighta — 1. LetT™ be a tree of height rooted atv that maximizeg.S(7™, v, a)| under the constraint
m(T*,v,a) < m and letk be the degree af. Then each of the subtre@s attached ta@ have depthu — 1
and are constrained to hawg7;, v;,a—1) < m—k—1. LetT~ be a sphereically symmetric tree of height
a— 1 which hasn(T~,v,a—1) < m—k—1and maximizes|(7'~,v,a—1)|. A vertexv connected to the
roots ofk copies ofT'~ is a spherically symmetric tree of heightvith m (v, a) = m and by our inductive
hypothesis must have boundary sj$€v, a)| at least as large 8" which completes the induction step.

So suppose that is sphereically symmetric and léf be the degree of a vertex distandeom v. Then by
the arithmetic-geometric inequality

va\—doHd—1 Zdz_a—l ) /a)e S( —;+1>

We now consider the effect that conditioning on the leaves wée can have on the marginal distribution
of the spin at the root. It will be convenient to compare thisb@bility to the Ising model with the same
interaction strengthg,,,, but no external field/{ = 0) which we will denoteP.

Lemma 2.8 If T is a tree, P is the Ising model with arbitrary external field (includirkg, = +o0o0 meaning
that o, is set tot) and 3, , < 3 then for allv ,

P(oy = Hos@y = +) = P(ow = +losqy = ) < [S(v, )| (tanh §)".
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Proof: Lemma 4.1 of[[8] states that for any vertices: € T,
P(oy = +|ow =+) = Ploy = +|oy = —) < Jg(av = +low =+) — ]3(01) = +|ow = ). (11)
If ug,u1,...,u; are a path of vertices ifi then a simple calculation yields that

k
]B(auk = +|oy, = +) — Jg(auk =+|oy, =—) = Htanh Busu; < (tanh ). (12)

i=1
Now suppose that € S(v,l) and thatngf(v ) andng(v ) are configurations o (v, [) which differ only at

u wheren = +. Conditioning is equivalent to setting an infinite exterfiald so equationd(11) and{12)
imply that
P(oy = +loswy =n") = P(oy = +|ogwy =17) < (tanh B)". (13)

Take a sequence of configurationd n', ..., nlS@dl on S(v,1) with n° = — andyl*@Vl = + where
consecutive configurations differ at a single vertex. Byagigun [13) we have that
P(oy = +logwn =n""") = P(oy = +|os(,y) =1n') < (tanh B)’

and so
P(ow = +loswy = +) = P(ov = +loswy = =) < [S(v, )| (tanh 5)

which completes the prooll

Now B(v,alogn) is not in general a tree so we use the self-avoiding tree rari&in of Weitz [27] to
reduce the problem to one on a tree. The tree of self-avoidial§gs, which we denot&,,, (v, alogn),

is the tree of paths i3 (v, alog n) starting fromv and not intersecting themselves, except at the terminal
vertex of the path. Through this construction each verteékjn, (v, a log n) can be identified with a vertex

in G which gives a natural way to relate a subset V' and a configuration, to the corresponding subset
A C Tyaw(v,alog n) and configurationr,, in Ts,,,. Furthermore ifA, B C V thend(A, B) = d(A’, B').
Then Theorem 3.1 of [27] gives the following result. Eachteeredge) ofT,,, corresponds to a vertex
(edge) saPr,,,, is defined by taking the corresponding external field andactéons.

Lemma 2.9 For a graphG andv € G there existsA C T4, and some configurationy on A such that,
Pg(oy = +|oa) = Pr,,, (00 = +loa, Ta—nr).

The setA corresponds to the terminal vertices of path which retuma vertex already visited by the path.

Corollary 2.10 Suppose that, b, c, 3 satisfy the hypothesis of Theorem]|1.6. Then,

gleagfp(o-v = +|JS(v,alogn) = +) - P(JU = +|JS(v,alogn) = _) = O(n_l)'

Proof: By applying Lemma& 219 we have thatif= S(v, alogn) then
Pg(oy = +|op =+) — Pa(oy = +|op = —)
= PTsaw(JU = +|O-A, = +7 TA—A,) - PTsa'uJ (O-'U = +|O-A/ = _77—A—A/)'

Conditioning onr4 is equivalent to setting the external fieldwatce A to sign(r,)oo hence it follows by
Lemmd 2.8 that,

alogn

Pr,,.(0p =+|lon =+,7a-n) — Pr, (00 = +loar = —,Ta—nr) < |Ssaw(v, alogn)|(tanh )
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where S (v, alogn) = {u € Tsau(v,alogn) : d(u,v) = alogn}. Now suppose = uj,us,...,u
is a non-repeating walk iffs,,, and letu), u, ..., u; be the corresponding walk i@. Then from the
construction offs,,, eitheru}, us, . .., uj is a non-repeating walk i@ or for somej < k, u; = w; in which
caseuy, Is a leaf of T, and so has degree 1. It also follows from the constructioh,gf that the degree
of u; is less than or equal to the degreeubfand so we have that(v,alogn) < m(Tsqw, v, alogn) + 1.
The by Proposition 217

clogn —alogn + 2

alogn
‘Ssaw(fu’alog n)‘ < < > =0 (nalog((c—a)/a)> — o(n_l(tanhﬁ)_alog"),

alogn

which completes the resull

2.5 Proof of the Main Result

Proof:(Theoren{LB) LefX,", X, , denote the Gibbs sampler 6hstarted from respectively alk and —,
coupled using the monotone coupling described in SeEi@Al1Fix some vertex € G. Define four new
chainsQ;", Q;, Z," and Z,". These chains run the Glauber dynamics and are coupledXyitand X,
inside B(v, alog n) by using the same choice of vertices vs, . .. and the same choice of update random
variablesU;, Us, . .. except that they are fixed (i.e. do not update) outddde, a log n). They are given the
following initial and boundary conditions.

e Q; starts from alk- configuration (and therefore has allboundary conditions during the dynamics).
e (), starts from all- configuration (and therefore has allboundary conditions during the dynamics).

e Z," starts from all+ configuration outside3 (v, alog n) and Z;" is distributed according to the sta-
tionary distribution inside3 (v, alog n) given the all+ boundary condition (therefor&;” will have
this distribution for allt).

e 7, starts from all- configuration outsidé3(v, a log n) and is distributed according to the stationary
distribution insideB(v, alogn) given the all— boundary condition (therefor&,  will have this
distribution for allt).

As the Gibbs distribution o3 (v, a log n) with a+ boundary condition stochstically dominates the distri-
bution with a— boundary condition, we can initializ&;" and Z,” so thatZ;” = Z; . By monotonicity of
the updates we hav@;” = Z;" = Z; = Q; for all t. We also have tha®);” = X,” = X, = Q, on
B(v,alogn). As Z; (respectivelyZ;”) starts in the stationary distribution of the Gibbs sampigen the

all + (respectively all-) boundary condition, it remains in the stationary disttit for all timet.

SinceZ;" (v) > Z; (v) we have that
P(Z(v) # Z; (v)) = P(Z} (v) = +) = P(Z (v) = +) < o(n™),

for all ¢ where the inequality follows from Corollaty 2]10. By Projtims [2.4 the continuous time Gibbs
sampler onB(v, alog n) has relaxation time bounded abovedsy (43(b+ ¢) log n) which implies that the
discrete time relaxation time satisfies< n!t4#(b+c)  As each vertex has degree at mekie n,

log(min P(0)) " < (BIE]) + > Jha| < (100cn® 8% logn)

which implies thatr,,;, < O(n*+4t+9) since the mixing satisifies,,;, < 7(1 + 3 log(min, P(c))~).

ForC = 6 + 4(b + ¢)3 we have that with high probability aftéer= 2n" steps that the Gibbs sampler has
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chosen every vertex at least™(*t98 > nr, . times. It follows that the number of updatesidv, a log n)
is at least: times its mixing time and so

P(Qf (v) # Zf (v)) < drv(Qf (v), Z (v)) < e = o(n™").

where dpy denotes the total variation distance which is always bodratgove byexp(—t/7,i.). We
similarly have that

P(Qf (v) # Z; (v)) < o(n™").
It follows that P(Q; (v) # Q; (v)) < o(n™') and henceP(X;" (v) # X, (v)) < o(n~") for all v. By a
union boundP(X;" # X, ) < o(1) so the mixing time is bounded ly(n®) as required®

Proof:(Theoren{_1.b) By Lemmia2.5 with high probability a randompixaatisfies the hypothesis of The-
orem[L6 for small enough. To prove the result whetanh(3) < - - the only modification to the proof

of Theorem 1.6 needed is to show that with high probabllltyewhl/(log(d tanh(3))) < a < (2logd)~!

we still have P(Z," (v) # Z; (v)) < o(n™1). We know from Lemmd2]6 that with high probability
Vg aw (v) (v alogn)| < O(nalOgdlogn) = o(n~!(tanh g)~@!°&"), Now using this bound and repeat-
ing the proof of Corollary 210 we get th&t(Z," (v) # Z; (v)) = o(n~ 1) as required.

The mixing time is bounded by®+4+9)3 which is bounded by, 5+ 2™ (233 and does not need to
depend orB. B

2.6 Sampling from the distribution through the tree of self asoiding walks

The proofs Theorenis 1.12 ahd 1.13 make use the following Esnm

Lemma 2.11 Let (X;,...,X,,) and(Y7,...,Y,) be two vector valued distributions taking values in some
product space. Suppose that for alk i < nand all (x4, ..., z;) we have

drv(Xi| X1 =z1,..., Xici =221), YVi|Y1 =21,..., Y1 = 21)) < &,

Then .
drv (X1, .. Xp), (Y1, Vo)) < e,

Proof: The proof follows by constructing a coupling of the two disfitions whose total variation distance
is bounded by """, ;. The coupling is performed by first coupling; andY; except with probability; .
Then at step, given the coupling of Xy, ..., X;_1) and(Y1,...,Y;_1) and conditioned on

(X1, Xima) = (N, Yi),

we couple the two configurations in such a way that they do gi@eaat most with probability;. The proof
follows. B

Lemma 2.12 Suppose the grapi satisfies that fov € V' it holds that
‘VTSAW(U) (v,a)] <0,

Then for all integer; it holds that '
Vg aw () (v, ja)] < b
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Proof: We prove the result by induction gh Suppose that € St , () (v, (j — 1)a) and letT;, denote
the subtree of; and its descendants Wi, , ., ) (v, ja)\Vrg .y, (o) (v, (7 — 1)a). Each path fromu in T,
corresponds to a self avoiding walk @ started fromu so it follows that the number of vertices Ty, \ {u }

is at most — 1. So|Vir . (v) (v, 7@)\Virg o1y (0 (v, (7 — 1)a)| < b7~ (b—1) which completes the induction.
|

Proof:(Theoren{ 1.113) Set = ja wherej is the smallest integer greater th%n(lf}::#ﬁ By Lemmd2.1P
rlogn

for all i, [Virg 4y (or) (vi, 7 log n)| < 0718 s0T¢ 08" (v;) the tree of self avoiding walks of radiugog n can

be constructed i (b"1°8") = O(n"'°8°) steps. Using the standard recursions on a jreean be evaluated
in O(n"'°8%) steps so the running time of the algorithngn®) whereC' = 1 + r log b.

At step: we calculatep; = TT logn (0p; = +|ov,_,,Ta—v,_,) to approximateP (o, = +|ov;_, ). Applying
SAW
LemmdZ.9D we have that

P(Uvi = —HO'V@;l) = PTSAW(Ui)(UUi = +‘O-Vifl7TA_Vi71)'
whereV; = {vy,...,v;} and so ifA = St , . () (vi, 7 logn) then,

PTSAW(Ui)(UUi = "HO'A = _70'%7177-14—‘/@'71) < P(Uvi = "HO'V' )

S PTSAW(Ui)(UUL - +‘O-A — + UV 17TA Vio 1)

and similarly
PTSAW(Ui)(UUi = +|oa = =0V, 1, TA—V; ;) < PT;{:";%V”(UUZ = —HUV 13 TA=V; 1)
< PTSAW(Ui)(JUi = +loa = +,0v_,, TA-Vi,)
SO

‘P TlOg”(UU - "HUV 1y TA=V;_ 1) _P(Uvi = +’UW—1)’
< PTSAW(Ui)(UUi = +|0A = +’O-Vz'71’TA—Vi—1) - PTSAW(vi)(UUi = +|0A = _70-‘/2'7177—14—‘/2'71)'

Conditioning ooy, _, andr4 is equivalent to setting the external field to-heo. Then by Lemm&a2]8
PTSAw(vi)(UUi = +|0A = +7O‘Vi717TA—Vifl) - PTSAw(vi)(UUi = +|0A = _70'\/271’7—14—\/271)
< |STSAW(Ui)(Ui7 rlog n)|(tanh 5)Tlogn = O(n_l_’y)-
If Q) is the output of the algorithm then by Lemma2.11

drv (P, Q) < Z sup |P rlog7L(UU = +loy, ,,Ta-v,_,) — P(oy, = +|ov,_,)| =0(n™")

i=1%Vi-1

which completes the resull

Proof:(Theoren 1.1R2) By Lemma 2.6 equatidn (6) holds with high plolity for any0 < a < 210gd and
b > d so the result follows by Theorelm 1]13.

17



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Aizenman and R. Holley. Rapid convergence to equillibr of stochastic Ising models in the
Dobrushin Shlosman regime. In H. Kesten, ediRercolation Theory and Ergodic Theory of Infinite
Particle Systemsvolume 8 ofIMS Volumes in Math. and Applpages 1-11. Springer-Verlag, New
York, 1987.

D. Aldous and J. A. Fill. Reversible Markov chains anddam walks on graphs. book in preparation.
Current version online at http://stat-www.berkeley.edefs/aldous/book.html.

Noam Berger, Claire Kenyon, Elchanan Mossel, and YuwaeB. Glauber dynamics on trees and
hyperbolic graphsProbab. Theory Related Field$31(3):311-340, 2005.

M. Dyer, A. Frieze, T. Hayes, and E. Vigoda. Randomly c¢imlg constant degree graphs. Pmo-
ceedings of the 45th Annual IEEE Symposium on FoundatioBsmijputer Science (FOCS’'Q4ages
582-589, 2004.

Martin Dyer, Abraham D. Flaxman, Alan M. Frieze, and Exigoda. Randomly coloring sparse
random graphs with fewer colors than the maximum degRsndom Struct. Algorithm29(4):450—
465, 2006.

Martin Dyer, Alan Frieze, and Mark Jerrum. On countingépendent sets in sparse grapBsAM J.
Comput, 31:1527-1541, 2002.

Martin Dyer, Alistair Sinclair, Eric Vigoda, and Dror Wite. Mixing in time and space for lattice spin
systems: a combinatorial vieMRandom Structures Algorithm®4(4):461-479, 2004.

Martin E. Dyer and Catherine S. Greenhill. On Markov cfsafor independent setsl. Algorithms
35(1):17-49, 2000.

S. Geman and D. Geman. Stochastic relaxation, Gibbghilifbns, and the Bayesian restoration of
images.IEEE Trans. Pattern Anal. Mach. Intelbages 721-741, 1984.

H. O. Georgii.Gibbs measures and phase transitiomsiume 9 ofde Gruyter Studies in Mathematics
Walter de Gruyter & Co., Berlin, 1988.

Antoine Gerschenfeld and Andrea Montanari. Recowrtitva for models on random graphs. FOCS
'07: Proceedings of the 48th Annual IEEE Symposium on Fotimaka of Computer Scienceages
194-204, Washington, DC, USA, 2007. IEEE Computer Society.

L. A. Goldberg, R. Martin, and M Paterson. Strong spatiging for lattice graphs with fewer colours.
In Proceedings of the 45th Annual IEEE Symposium on Foundatib@omputer Science (FOCS'04)
pages 562-571. 2004.

T. P. Hayes. A simple condition implying rapid mixing sihgle-site dynamics on spin systems. In
Proceedings of the 47th Annual IEEE Symposium on Foundatid@omputer Science (FOCS 2006)
pages 39-46, 2006.

R. Holley. Rapid convergence to equilibrium of stodi@mssing models in the Dobrushin Shlosman
regime. In R. Durret, editoRarticle systems, Random media, and Large deviatisokime 41 of
AMS Volumes on Contemp. Mathages 215-234. 1985.

18



[15] M. R. Jerrum. A very simple algorithm for estimating thember of k-colourings of a low degree
graph.Random Structures and Algorithm&157-165, 1995.

[16] Mark Jerrum and Alistair Sinclair. Polynomial-time @pximation algorithms for the ising model.
SIAM J. Comput.22:1087-1116, 1993.

[17] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A palgmial-time approximation algorithm for
the permanent of a matrix with non-negative entriekurnal of the ACM, 51(4):671-697, 2004.
51(4):671-697, 2004.

[18] Claire Kenyon, Elchanan Mossel, and Yuval Peres. Gdadlgnamics on trees and hyperbolic graphs.
In 42nd IEEE Symposium on Foundations of Computer Science/fges, NV, 2001 pages 568-578.
IEEE Computer Soc., Los Alamitos, CA, 2001.

[19] R. Lyons. The Ising model and percolation on trees amé-like graphs. Comm. Math. Phys.
125(2):337-353, 1989.

[20] F. Martinelli. Lectures on Glauber dynamics for digerspin models. lhectures on probability theory
and statistics (Saint-Flour, 1997yolume 1717 ofLecture Notes in Mathpages 93-191. Springer,
Berlin, 1999.

[21] F. Martinelli and E. Olivieri. Approach to equilibriumf Glauber dynamics in the one phase region. |.
The attractive caseComm. Math. Phys161(3):447-486, 1994.

[22] Fabio Matrtinelli, Alistair Sinclair, and Dror Weitz. I&uber dynamics on trees: boundary conditions
and mixing time.Comm. Math. Phys250:301-334, 2004.

[23] Elchanan Mossel, Dror Weitz, and Nicholas Wormald. @ahardness of sampling independent sets
beyond the tree threshold. Submitted, 2007.

[24] R.Pemantle and J. E. Steif. Robust phase transitiartddsenberg and other models on general trees.
Ann. Probah.27(2):876-912, 1999.

[25] D. W. Stroock and B. Zegarlifiski. The logarithmic Sédboinequality for discrete spin systems on a
lattice. Comm. Math. Phys149(1):175-193, 1992.

[26] E. Vigoda. A note on the Glauber dynamics for samplindgeppendent setsElectronic Journal of
Combinatorics (1), 2001.

[27] D. Weitz. Counting indpendent sets up to the tree tholesHn Proceedings of the thirty-eighth annual
ACM symposium on Theory of computipgges 140-149. ACM, 2006.

[28] B. Zegarlinski. Onlog-Sobolev inequalities for infimiattice systemd.ett. Math. Phys.20:173-182,
1990.

19



	Introduction
	The Ising Model
	Gibbs Sampling
	Monotone Coupling

	Erdos-Rényi Random Graphs and Other Models of graphs
	Our Results
	Related Work and Open Problems
	Proof Technique
	Acknowledgment

	Proofs
	Relaxation time on Sparse and Galton Watson Trees
	Some properties of Galton Watson Trees
	Relaxation in Tree-Like Graphs
	Spatial decay of correlation for tree-like neighborhoods
	Proof of the Main Result
	Sampling from the distribution through the tree of self avoiding walks


