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THE SECOND LARGEST COMPONENT IN THE SUPERCRITICAL 2D

HAMMING GRAPH

REMCO VAN DER HOFSTAD, MALWINA J. LUCZAK, AND JOEL SPENCER

Abstract. The 2-dimensional Hamming graph H(2, n) consists of the n2 vertices (i, j), 1 ≤
i, j ≤ n, two vertices being adjacent when they share a common coordinate. We examine random
subgraphs of H(2, n) in percolation with edge probability p, in such a way that the average degree
satisfies 2(n − 1)p = 1 + ε. Previous work [7] has shown that in the barely supercritical region

n−2/3 ln1/3
n ≪ ε ≪ 1, the largest component satisfies a law of large numbers with mean 2εn.

Here we show that the second largest component has, with high probability, size bounded by
28ε−2 log(n2ε3), so that the dominant component has emerged. This result also suggests that
a discrete duality principle holds, where, after removing the largest connected component in the
supercritical regime, the remaining random subgraphs behave as in the subcritical regime.

1. Introduction and main result

In their seminal work [6], Paul Erdős and Alfred Rényi noted with surprise the development of
a giant component in the random graph G(n, p) where each of the n(n− 1)/2 possible edges of the
complete graph of size n is present with probability p independently of all the other edges. When
the average degree (n− 1)p satisfies (n− 1)p = 1 + ε, and ε is positive and fixed (independent of
n), then the largest component will contain a positive proportion of the vertices while the size of
the second largest component is only logarithmic in n. Today we see this as a phase transition
phenomenon exhibiting what mathematical physicists call ‘mean-field’ behaviour.

For many years, there has been great interest in the barely supercritical phase of G(n, p), that
is, the range of p values given by p = (1 + ε)/n, where ε = ε(n) satisfies n−1/3 ≪ ε = o(1). For
convenience, we can also write ε = λn−1/3, where λ = λ(n) → +∞, but does so more slowly
than n1/3. In this phase the dominant component has already appeared. We actually know quite
precisely that the largest component, C(1), satisfies |C(1)| = 2εn(1 + op(1)) = 2λn2/3(1 + op(1))
with probability tending to 1 as n → ∞, where op(1) denotes a quantity that converges to zero
in probability; and that the second largest component, C(2), satisfies |C(2)| = Θ(ε−2 log(nε3)) =
Θ(n2/3λ−2 lnλ) with probability tending to 1 as n → ∞. Thus, in particular, |C(2)| ≪ n2/3 ≪ |C(1)|.
Further, as λ increases, the largest component increases in size while the second largest diminishes
in size. (Actually, the second largest component is being frequently ‘gobbled up’ by the dominant
component, generally leaving a smaller component as the new second component.) See [1, 10] for
the proofs of these results, and [2, 9] for introductions to the field. We feel, speaking quite generally,
that an intensive study of the second largest component is vital to enhancing our understanding
of percolation phenomena.

We believe that the second largest component should grow until the random structure reaches
a critical window. In that critical window, which, for G(n, p), means p = (1 + λn−1/3)/n with λ
fixed, the first and second largest components exhibit complex chaotic behaviour. On the other
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hand, in the barely supercritical phase, just after the critical window, the dominant, or ‘giant’,
component will have asserted itself.

In the present paper, our object of study is the 2-dimensional Hamming graph H(2, n). The n2

vertices of this graph can be represented as ordered pairs (i, j), 1 ≤ i, j ≤ n. Vertices (i, j) and
(i′, j′) are adjacent if and only if either i = i′ or j = j′. Pictorially, H(2, n) consists of an n × n
lattice with each horizontal and vertical line being a complete graph. We write Ω = 2(n− 1) for
the vertex degree in H(2, n). We examine random subgraphs of H(2, n) in independent percolation
with edge probability p; that is, each edge is kept with probability p and removed with probability
1−p, independently of all other edges. We set pc = 1/Ω, which will act as our critical probability;
a justification for this definition of critical probability lies in the recent results in [3, 4, 7]. We
parametrise p = (1 + ε)/Ω so that the average vertex degree is 1 + ε. Throughout the rest of
the paper C(1), C(2) will refer to the largest and second largest components, respectively, of the
Hamming graph H(2, n). Also, we shall use the phrase ‘with high probability’ (whp) to mean
‘with probability 1− o(1) as n → ∞’.

This work continues the exploration of van der Hofstad and Luczak [7]. It was shown therein
that, when n−2/3(log n)1/3 ≪ ε ≪ 1, the largest component has size 2εn2(1 + op(1)). The general
sense of a mean-field percolation event in percolation on a graph with V vertices is that there
is a critical probability pc, and that the barely supercritical phase occurs when p = pc(1 + ε)
and V −1/3 ≪ ε ≪ 1. This is the case in the Erdős-Rényi phase transition with V = n. For
the H(2, n) phase transition, V = n2, and so the above results, up to a logarithmic term, fit
the mean-field paradigm. Here we study the second largest component in percolation on H(2, n)
in the barely supercritical region. In this aspect we are also able to, again up to a logarithmic
term, fit the mean-field paradigm. In the mean-field picture of random graphs, the structure
remaining when the dominant component is removed for p = pc(1 + ε) where ε = ε(n) → 0 is
like the largest connected component in the subcritical regime with p = pc(1 − ε). It is well
known that in this regime in G(n, p), the second largest component is of order ε−2 log(nε3). The
upper bound is the content of our main result. In our results for H(2, n), we shall always work at
p = pc+ ε/Ω = pc+ ε/(2(n−1)). In [7, (1.10) and (1.11)], it is shown that there is little difference
in working with p = pc + ε/Ω or p = (1 + ε)/Ω, and we refer the reader there for more details.

Theorem 1.1 (The second component in the supercritical phase for H(2, n)). Consider the 2-
dimensional Hamming graph H(2, n). Let p = pc +

ε
Ω

and let n−2/3(log n)1/3 ≪ ε ≪ 1. Then,
whp,

|C(2)| ≤ 28ε−2 log(n2ε3). (1.1)

In particular, this result implies that the ratio of the sizes of the second and first largest com-
ponents tends to zero in this regime, a salient feature of the barely supercritical phase. We feel
that this feature should hold even without the logarithmic separation from criticality. That is,
parametrise 2(n− 1)p = 1+ ε and assume only n−2/3 ≪ ε ≪ 1. We conjecture, following [7], that
the largest component will have size 2εn2(1+op(1)). We further conjecture that the second largest
component will have size ≪ n2/3, which in particular is asymptotically smaller than the largest
component. Let us note at this point that the logarithmic gap from the critical window (defined as
in [3, 4, 5]) has recently been removed by Asaf Nachmias [11]; however, he does not establish a law
of large numbers for the giant component, and he does not consider the second largest component.
Further, we conjecture that, when n−2/3 ≪ ε ≪ 1, |C(2)| = Θ(ε−2 log(n2ε3)), i.e., the bound in
Theorem 1.1 is sharp. Thus, in particular, we conjecture that the barely supercritical regime for
H(n, 2) has similar behaviour to that of G(n, p).
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2. Preliminaries

In this section, we establish a lemma for a class of branching processes that will play a key role
in our proofs.

We start with an inequality concerning deviations of binomial random variables below their
mean. If X ∼ Bi(k, p), then (see for instance [8])

P(X ≤ kp− t) ≤ e
− t2

2(kp+ t
3 ) . (2.1)

We consider Galton-Watson processes where each individual’s offspring is a random variable Z
such that E[Z2] < ∞. We always assume that our process begins with one individual. Sometimes
we shall take Z to have a binomial distribution Bi(N, p), with p the Hamming graph edge probabil-
ity, and N a suitable positive integer. We will write PN,p for the probability measure corresponding
to this process. We will also need Galton-Watson processes that are ‘inhomogeneous’, in that the
offspring size may vary depending on the parent’s ‘location’ in the Galton-Watson tree.

A Galton-Watson process can be thought of as a 2-dimensional Markov chain (Qt, Gt), where Qt

is the total progeny born until time t, and Gt is the total number of ‘active’ population members,
that is those that are yet to have offspring. To be precise, we think of a Galton-Watson process
as an evolving tree that is explored one node at a time; then Qt is the total number of nodes
in that tree at time t, and Gt is the total number of unexplored nodes at time t. At each time
t, if Gt > 0, then we choose one active member of the population and decide the number of
its offspring. In a homogeneous Galton-Watson process, all population members have the same
offspring distribution, in our case binomial distribution Bi(N, p), where N ∈ N and p ∈ [0, 1] is
the Hamming graph edge probability. Then, on the event {ω : Gt(ω) ≥ 1},

Qt+1 = Qt + Zt, Gt+1 = Gt + Zt − 1, (2.2)

where the Zt are i.i.d. Bi(N, p). We always assume Q0 = G0 = 1; we let ϕ0 = ∅ and

ϕt = σ(Zs : s ≤ t), t = 1, 2, . . . , (2.3)

the σ-field generated by Zs (s = 1, 2, . . . , t).
Note that, by the above,

IGt−1≥1Qt = IGt−1≥1(1 + Z0 + . . .+ Zt−1), (2.4)

IGt−1≥1Gt = IGt−1≥1(1 + Z0 + . . .+ Zt−1 − t), (2.5)

where IA denotes the indicator of the event A. Letting T0 = inf{t : Gt = 0}, we further see that

Z0 + . . .+ ZT0−1 = T0 − 1. (2.6)

For convenience, we shall instead assume that our Galton-Watson processes have a continuation
in that the random variables Zt continue to be generated even after Gt has hit 0. With this
assumption, we may simply write, for each t,

Qt = 1 + Z0 + . . .+ Zt−1, Gt = 1 + Z0 + . . .+ Zt−1 − t. (2.7)

We shall now generalise this setting to a branching process where Zt are not i.i.d., but where
each Zt is Binomial Bi(Nt, p). Here, p is the edge probability of the Hamming graph H(2, n), and
each Nt is a random variable independent of Zt and such that, for each t, and conditionally on
ϕt−1,

Ntp ∈ [1 + ε/2, 1 + ε] with probability 1. (2.8)
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Any such branching process will be called generically a narrow-banded (discrete) birth process, and
in the lemma below we use P to denote the corresponding probability measure – with a slight
abuse of notation, since in fact there is a whole class of processes satisfying property (2.8).

Lemma 2.1 (Large finite progeny for narrow-banded processes). Let Q be the total population
size of a narrow-banded birth process as defined above. Then, for α > 0 sufficiently large, there
exists a constant C such that

P(αε−2 ≤ Q < ∞) < Cεe−α/28 .

Proof. As described above, at each time t we generate Zt, a binomial Bi(Nt, p), where

p =
1 + ε

2(n− 1)
and P(Ntp ∈ [1 + ε/2, 1 + ε] | ϕt−1) = 1. (2.9)

As earlier in this section, let G0 = 1, and let Gt = 1+Z0+ . . .+Zt−1− t for t = 1, 2, . . .. In other
words, we assume our narrow-banded Galton-Watson process to have a continuation; clearly, this
does not in any way affect the correctness of the proof of the lemma.

Let

E =
{

G⌊αε−2/2⌋ < αε−1/16; Gt > 0 for all t ≤ αε−2/2
}

, (2.10)

Ẽ = {G⌊αε−2/2⌋ ≥ αε−1/16; Gt > 0 for all t ≤ αε−2/2}. (2.11)

Let T0 be the first time t such that Gt = 0. Then T0 ≤ αε−2/2, and GT0−1 = 1, so it follows that

Q = QT0−1 = GT0−1 + T0 − 1 ≤ αε−2/2 < αε−2.

Therefore, we can upper bound

P(αε−2 ≤ Q < ∞) = P({αε−2 ≤ Q < ∞} ∩ E c) + P({αε−2 ≤ Q < ∞} ∩ E)
≤ P({αε−2 ≤ Q < ∞} ∩ Ẽ) + P(E)
= P(αε−2 ≤ Q < ∞ | Ẽ)P(Ẽ) + P(E), (2.12)

since, if Q ≥ αε−2, then Gt > 0 for all t ≤ αε−2/2. We shall start by bounding P(αε−2 ≤ Q < ∞ |
Ẽ), and later bound P(E) and P(Ẽ).

On the event Ẽ , for t ≥ αε−2/2, we couple our narrow-banded birth process with the standard
Galton-Watson process where the offspring distribution is binomial

Bi
(⌊2(n− 1)(1 + ε/2)

1 + ε

⌋

,
1 + ε

2(n− 1)

)

, (2.13)

with mean less than or equal to 1 + ε/2. Let Q−
t and G−

t respectively be the total progeny and
total number of active members at time t for this process; assume also that Q−

⌊αε−2/2⌋ = ⌈αε−1/16⌉.
Let t0 = ⌊αε−2/2⌋, and for t ≥ t0 + 1 let us write

Q−
t = ⌈αε−1/16⌉+ Z−

t0
+ . . .+ Z−

t , G−
t = ⌈αε−1/16⌉+ Z−

t0
+ . . .+ Z−

t − (t− t0), (2.14)

where the Z−
t are i.i.d. Bi

(

⌊(2(n − 1)(1 + ε/2)/(1 + ε)⌋, (1 + ε)/2(n − 1)
)

. Let P− denote the
probability measure corresponding to this process.

The coupling is between the corresponding tree exploration processes, step-by-step, as is stan-
dard (and as used, for instance, in [7, Section 4]), so that Zt ≥ Z−

t , Qt ≥ Q−
t and Gt ≥ G−

t for all
t ≥ ⌊αε−2/2⌋. This implies that

P(sup
t

Qt < ∞ | Ẽ) ≤ P−(supQ−
t < ∞). (2.15)
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Let Qk denote the law of a branching process with offspring distribution in (2.13), and starting

from k individuals, and let Q̃− be its total progeny. Then,

P−(supQ−
t < ∞) = Q⌈αε−1/16⌉(Q̃

− < ∞) = Q1(Q̃
− < ∞)⌈αε

−1/16⌉, (2.16)

by the independence of the evolution of the initial individuals.
Further, [7, (3.28)] shows that

Q1(Q̃
− < ∞) = 1− ε+O(n−1 + ε2), (2.17)

so that

P−(supQ−
t < ∞) = (1− ε+O(n−1 + ε2))⌈αε

−1/16⌉ ≤ e−α/16(1 +O(α(ε+ (εn)−1))), (2.18)

for all ε ∈ (0, 1) and α > 0. We conclude from the above thet

P(sup
t

Qt < ∞ | Ẽ) ≤ e−α/16(1 + o(1)).

Next we shall show that P(E) and P(Ẽ) are quite small. For this, we also need an upper bounding
Galton-Watson process (Q+

t , G
+
t ), where the offspring distribution is binomial

Bi
(

2(n− 1),
1 + ε

2(n− 1)

)

,

with mean 1 + ε. Let Q+
t and G+

t respectively be the total progeny and total number of active
members at time t for this process; assume also that the initial population size is Q+

0 = 1. Let us
write

Q+
t = 1 + Z+

0 + . . .+ Z+
t−1, G+

t = 1 + Z+
0 + . . .+ Z+

t−1 − t, (2.19)

where the Z+
t are i.i.d. Bi(2(n − 1), (1 + ε)/2(n − 1)). We use P+ to denote the corresponding

probability measure.
Similarly, we use a lower bounding Galton-Watson process (Q−

t , G
−
t ) (but this time starting

from time 0, rather than from time t0 = ⌊αε−2/2⌋), where the offspring distribution is binomial
Bi

(

⌊2(n− 1)(1 + ε/2)/(1 + ε)⌋, (1 + ε)/2(n− 1)
)

, with mean at most 1 + ε/2. Let Q−
t and G−

t be
the total progeny and total number of active members at time t for this process; assume also that
the initial population size is Q−

0 = 1. Let us write

Q−
t = 1 + Z−

0 + . . .+ Z−
t−1, G−

t = 1 + Z−
0 + . . .+ Z−

t−1 − t, (2.20)

where the Z−
t are i.i.d. Bi

(

⌊2(n− 1)(1 + ε/2)/(1 + ε)⌋, (1 + ε)/2(n− 1)
)

. Once again, we use P−

to denote the corresponding probability measure.
Now we couple Zt with Z−

t and Z+
t , so that, for all t = 0, 1, . . .,

Z−
t ≤ Zt ≤ Z+

t . (2.21)

A suitable coupling can be achieved thanks to standard results about stochastic domination be-
tween binomial random variables with different parameters. Explicitly, for n large enough, we may
generate independent binomial random variables Z−

t such that

Z−
t ∼ Bi

(

⌊2(n− 1)(1 + ε/2)/(1 + ε)⌋, (1 + ε)/2(n− 1)
)

,

and independent binomial random variables Wt such that

Wt ∼ Bi
(

2(n− 1)− ⌊2(n− 1)(1 + ε/2)/(1 + ε)⌋, (1 + ε)/2(n− 1)
)

.

We can then set Z+
t = Z−

t +Wt for all t. We let P+,− denote the coupling measure.
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Let A be the event that G+
t > 0 for all t ≤ t0. Let B be the event that G−

t0 < αε−1/16. Note
that, under the coupling,

E ⊆ A ∩ B. (2.22)

However, now it is easily seen (using [7, Proposition 3.2]) that there exists c0 = c0(α) such that
c0 → 0 as α → ∞ and

P+,−
p (A) = Pp(Q ≥ t0) = 2ε+O

(

ε2 + 1/
√
t0
)

≤ (2 + c0(α))ε(1 + o(1)). (2.23)

This follows since t0 = ⌊αε−2/2⌋. Also, using (2.1),

P+,−
p (B) ≤ Pp

(

Bi
(

⌊2(n− 1)(1 + ε/2)/(1 + ε)⌋⌊αε−2/2⌋, (1 + ε)/2(n− 1)
)

< αε−2/2 + αε−1/16
)

≤ exp
(

− α/28
)

, (2.24)

for all ε satisfying ε ≫ n−2/3(logn)1/3, and all α and n sufficiently large, since αε−1 ≫ 1 and
αε−1 ≫ αε−2/n.

Now, the event A is increasing, and the event B is decreasing, and both are events on the same
probability space, corresponding to a family of independent random variables. It then follows from
the FKG inequality that they are negatively correlated. Hence,

Pp(E) ≤ P+,−
p (A ∩ B) ≤ P+,−

p (A)P+,−
p (B) ≤ (2 + c0(α))εe

−α/28(1 + o(1)). (2.25)

Also,

P(Ẽ) ≤ P+,−
p (A),

and hence

Pp(αε
−2 ≤ Q < ∞) ≤ P({αε−2 ≤ Q < ∞} ∩ Ẽ) + P(E) ≤ 2(2 + c0(α))εe

−α/28(1 + o(1)). (2.26)

3. Proof of main result

Recall that Ω = 2(n − 1). Let Q(v) denote the component of vertex v. Our first lemma is [7,
Proposition 2.1].

Lemma 3.1 (Cluster tail equals the survival probability). Let ε satisfy ε3n2 ≫ log n. Let p =
pc + ε/Ω. Let N ≫ ε−2. Then, for any vertex v0 = (i0, j0),

Pp

(

|Q(v0)| ≥ N
)

= 2ε(1 + o(1)). (3.1)

Our next lemma upper bounds the variance of Z≥N , the number of vertices in components at
least N . This result is a special case of [7, Corollary 2.3].

Lemma 3.2 (Concentration of vertices in large clusters). Let ε satisfy ε3n2 ≫ log n. Let p =
pc + ε/Ω. Let N ≫ ε−2. Then, for every δ > 0,

Pp(|Z≥N − Ep[Z≥N ]| ≥ δεn2) = o(1). (3.2)

We now show that, whp, there are no components of ‘medium’ size; that is, if α = α(n) → ∞
as n → ∞, then any component of size at least αε−2, whp will in fact be of size at least εn2/5.
This is the content of our next lemma:
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Lemma 3.3 (No middle ground). Let ε satisfy ε3n2 ≫ log n. Let p = pc+ε/Ω. Let α = α(n) → ∞
as n → ∞. Then there exists a constant C such that, for n large enough,

Pp

(

αε−2 ≤ |Q(v0)| <
εn2

5

)

≤ C
(

εe−α/28 + n−6
)

. (3.3)

Hence, the probability that there is some vertex v0 such that its component Q(v0) satisfies

28ε−2 log(n2ε3) ≤ |Q(v0)| < εn2/5 (3.4)

is o(1) as n → ∞.

Before giving the proof of Lemma 3.3, let us state two more results from [7], which compare the
size of the cluster of a vertex to the total progeny of suitable Galton-Watson processes.

The first of these is essentially [7, Lemma 4.1], proved by standard methods, and gives an upper
bound. Let PΩ,p be the probability measure corresponding to a standard Galton-Watson process
where the family size is a binomial with parameters Ω and p, and the initial population size is 1.

Lemma 3.4 (Stochastic domination of cluster size by branching process progeny size). For every
ℓ ∈ N,

Pp(|Q(v0)| ≥ ℓ) ≤ PΩ,p(Q ≥ ℓ).

The second one is a slight extension of [7, Lemma 4.3], and establishes a lower bound. Let
Ω′ = Ω− 5

2
max{ℓn−1, C log n} and note that Ω′ ≥ 2(n− 1)− 1

2
εn for n sufficiently large. It turns

out that the cluster size can be stochastically bounded from below using a Galton-Watson process
where the family size is a binomial with parameters Ω′ and p, and the initial population size is 1.
For n sufficiently large, this process is supercritical, with mean population size at least 1 + ε/2,
since Ω′ ≥ 2(n− 1)− 1

2
εn.

Lemma 3.5 (Stochastic domination of cluster size over branching process progeny size). There is
a constant C > 0 such that the following holds. For every ℓ ≤ εn2/5,

Pp(|Q(v0)| ≥ ℓ) ≥ PΩ′,p(Q ≥ ℓ) + O(n−6), (3.5)

where Ω′ = Ω− 5
2
max{ℓn−1, C log n} ≥ 2(n− 1)− 1

2
εn.

Lemma 3.5 can be proved in exactly the same way as [7, Lemma 4.3], using an extension of
[7, Proposition 4.4] concerning the number of elements per line in large clusters from η ≪ ε to
η ≤ ε/5 (which is exactly the same, again, since the proof of [7, Proposition 4.4] does not in any
way rely on η being of a smaller order than ε).

In fact, Lemmas 3.4 and 3.5 are not sufficient for our purposes, and we refine them in the
following. Let Qt(v0), Gt(v0) denote the total number of vertices and the number of unexplored
vertices at time t in the exploration of the cluster of vertex v0. Also, Qt and Gt, respectively, will
denote the total number of nodes and the number of unexplored nodes at time t in the Galton-
Watson tree when the offspring is binomial Bi(Ω, p); and let Q′

t and G′
t, respectively, denote the

total number of nodes and the number of unexplored nodes at time t in the Galton-Watson tree
when the offspring is binomial Bi(Ω′, p). Let Et be the event that, for every i, no more than m
vertices (i, x) and no more than m vertices (x, i) have been included in the cluster of a vertex v0

up to time t during its exploration process. Also, let E ′
t be the event that Q′

t ≤ Qt(v0) ≤ Qt and
G′

t ≤ Gt(v0) ≤ Gt.

Lemma 3.6 (Sandwiching the cluster exploration). Let ℓ = εn2/5, and let m = 5ℓn−1/2. Then,
if n is large enough, on the event Et ∩ E ′

t, there exists a coupling PΩ,Ω′,p of the cluster exploration
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process and the upper and lower bounding Galton-Watson processes PΩ,p,PΩ′,p in such a way that,
PΩ,Ω′,p-almost surely, Q′

t+1 ≤ Qt+1(v0) ≤ Qt+1 and G′
t+1 ≤ Gt+1(v0) ≤ Gt+1.

It is easy to prove Lemma 3.6 using standard component exploration and coupling methods, in
a similar way to [7, Lemmas 4.1 and 4.3], and so we omit the details. We are now ready to prove
that there is indeed no middle ground:

Proof of Lemma 3.3. Lemma 3.6 implies that, on the event Et ∩ E ′
t, the (t + 1)th step of the

exploration process of the cluster of vertex v0 can be coupled with the (t+ 1)th step of a narrow-
banded process in Lemma 2.1. Since [2(n − 1) − 1

2
εn]p ≥ 1 + ε/2 for n large enough, the family

size of the narrow-banded branching process in question (i.e., the component exploration process)
falls into the interval [1 + ε/2, 1 + ε], as required. Now observe that Q(v0) ≥ ℓ if and only if
Qℓ(v0) ≥ ℓ. We use this fact, first with ℓ = 28ε−2 log(n2ε−3), and then with ℓ = ε2n/5. Then, the
first claim follows directly from Lemma 2.1, also noting that Pp(E c

t ) = O(n−6) for all t ≤ εn2/5,
see [7, Proposition 4.4 and its proof].

As for the second claim, note that for every x, y, the number of components of size in between
x and y, where 0 ≤ x ≤ y, is given by

Nx,y =
∑

v

1

|Q(v)|Ix≤|Q(v)|<y. (3.6)

Let x = 28ε−2 log(n2ε3) and y = εn2/5. Then, for any vertex v,

E

( 1

|Q(v)|Ix≤|Q(v)|<y

)

≤ 2−8ε2

log(n2ε3)
Pp

(

28ε−2 log(n2ε3) ≤ |Q(v)| < εn2/5
)

≤ C2−8ε2

log(n2ε3)

(

εe− log(n2ε3) + n−6
)

≤ C

n2 log(n2ε3)
, (3.7)

where, for the second inequality, we have used (3.3). Summing over all vertices v, we see that
E[Nx,y] = o(1), and hence Pp(Nx,y ≥ 1) = o(1), as required.

We now complete the proof of Theorem 1.1:
Proof of Theorem 1.1. By Lemmas 3.1–3.2, Z≥28ε−2 log(n2ε3), the number of vertices in components of
size at least 28ε−2 log(n2ε3), is concentrated around 2εn2. In other words, the number of vertices
in connected components of size at least 28ε−2 log(n2ε3) is close to 2εn2 whp. Now, from [7], we
know that, whp, there is a giant component of size 2εn2(1 + op(1)). This implies that, whp,
there is no other cluster of size at least εn2/5. Further, by (3.4) in Lemma 3.3, whp, there are no
components of size at least 28ε−2 log(n2ε3) and less than εn2/5. Hence, whp, the second largest
component must be at most 28ε−2 log(n2ε3), as claimed.
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