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The Effect of Induced Subgraphs on Quasi-Randomness∗

Asaf Shapira † Raphael Yuster ‡

Abstract

One of the main questions that arise when studying random and quasi-random structures

is which properties P are such that any object that satisfies P “behaves” like a truly random

one. In the context of graphs, Chung, Graham, and Wilson [8] call a graph p-quasi-random

if it satisfies a long list of the properties that hold in G(n, p) with high probability, like edge

distribution, spectral gap, cut size, and more.

Our main result here is that the following holds for any fixed graph H : if the distribution

of induced copies of H in a graph G is close (in a well defined way) to the distribution we would

expect to have in G(n, p), then G is either p-quasi-random or p-quasi-random, where p is the

unique non-trivial solution of the polynomial equation xδ(1−x)1−δ = pδ(1−p)1−δ, with δ being

the edge density of H . We thus infer that having the correct distribution of induced copies of

any single graph H is enough to guarantee that a graph has the properties of a random one.

The proof techniques we develop here, which combine probabilistic, algebraic and combinatorial

tools, may be of independent interest to the study of quasi-random structures.

1 Introduction

1.1 Background and basic definitions

Quasi-random structures are those that possess the properties we expect random objects to have

with high probability. The study of quasi-random structures is one of the most interesting border-

lines between discrete mathematics and theoretical computer science, as they relate the problem of

how to deterministically construct a random-like object with the question of when we can consider a

single event to be a random one. Although quasi-random structures have been implicitly studied for

many decades, they were first explicitly studied in the context of graphs by Thomason [28, 29] and

then followed by Chung, Graham, and Wilson [8]. Following the results on quasi-random graphs,

quasi-random properties were also studied in various other contexts such as set systems [4], tour-

naments [5], and hypergraphs [6]. There are also some very recent results on quasi-random groups
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[11] and generalized quasi-random graphs [17]. We briefly mention that the study of quasi-random

structures lies at the core of the recent proofs of Szemerédi’s Theorem [25] that were recently ob-

tained independently by Gowers [12, 13] and by Nagle, Rödl, Schacht and Skokan [20, 18] and then

also by Tao [27] and Ishigami [15]. For more mathematical background on quasi-randomness the

reader is referred to the recent papers of Gowers [11, 12, 13] and to the survey of Krivelevich and

Sudakov [16].

Besides being intriguing questions on their own, results on quasi-random objects also have

applications in theoretical computer science. The main point is that, while the classical definitions

of what it means for an object to be quasi-random are hard to verify, some other properties,

which can be proved to be equivalent, are much easier to verify. The archetypal example of this

phenomenon is probably the spectral gap property of expanders. Expanders are sparse graphs

that behave like random sparse graphs in many aspects (see [14] for more details), and are one of

the most widely used structures in theoretical computer science. However, verifying that a graph

satisfies the classical definition of being an expander, that is, that any cut has many edges, requires

exponential time. A very useful fact is that being an expander is equivalent to the fact that the

absolute value of the second eigenvalue of the adjacency matrix of the graph is significantly smaller

than the first eigenvalue (see also Property P3 in Theorem 1). As eigenvalues can be computed in

polynomial time, this gives an efficient way to verify that a sparse graph is an expander.

Throughout the paper, when we say that a graph G has the “correct” number of copies of a

graph H as we would expect to have in G(n, p), we mean that the number of copies of H in G is

(1 + o(1))np, where as usual, an o(1) term represents an arbitrary function tending to 0 as n tends

to infinity. Let us now consider another example in which equivalence between different notions

of quasi-randomness is useful, this time on dense graphs. A natural notion of quasi-randomness

for a dense graph is that all subsets of vertices should contain the “correct” number of edges as in

G(n, p). This property takes exponential time to verify, but fortunately (see Theorem 1), it turns

out that this property is equivalent to the property of having the “correct” number of edges and

copies of the cycle of length four in the entire graph! As this property takes only polynomial time

to verify, this gives an efficient algorithm for checking if a dense graph is quasi-random. This easily

verifiable condition was a key (implicit) ingredient in the work of Alon, Duke, Lefmann, Rödl and

Yuster [1], who gave the first polynomial time algorithm for Szemerédi’s Regularity Lemma [26],

whose original proof was non-constructive.

Given the above discussion, one of the most natural questions that arise when studying quasi-

random objects, is which properties “guarantee” that an object behaves like a truly-random one.

Our main result in this paper establishes that for any single graph H, if the distribution of the

induced copies of H in a graph G is “close”, in some precise sense, to the one we expect to have

in G(n, p), then G is quasi-random. Previous studies [23, 24] of the effect of induced subgraph on

quasi-randomness that used a slightly weaker notion of “closeness”, indicated that in some cases
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the distribution of induced copies of a single graph H is not enough to guarantee that a graph

is quasi-random. Therefore, the notion of closeness that we use here is essentially optimal if one

wants to be able to deal with any H.

Before stating our main result we first discuss some previous ones, which will put ours in the

right context. The cornerstone result on properties guaranteeing that a graph is quasi-random is

that of Chung, Graham, and Wilson [8], stated below, but before stating it we need to introduce

some notation. We will denote by e(G) the number of edges of a graph G. A labeled copy of a

graph H in a graph G is an injective mapping φ, from the vertices of H to the vertices of G,

that maps edges to edges, that is (i, j) ∈ E(H) ⇒ (φ(i), φ(j)) ∈ E(G). So the expected number

of labeled copies of a graph H in G(n, p), is pe(H)nh + o(nh) where h is the number of vertices

of H 1. A labeled induced copy of a graph H in a graph G is an injective mapping φ, from the

vertices of H to the vertices of G, that maps edges to edges, and non-edges to non-edges, that is

(i, j) ∈ E(H) ⇔ (φ(i), φ(j)) ∈ E(G). So the expected number of induced labeled copies of a graph

H in G(n, p), is δH(p)nh+ o(nh), where here and throughout the paper we will use δH(p) to denote

pe(H)(1− p)(
h
2
)−e(H). For a set of vertices U ⊆ V we denote by H[U ] the number of labeled copies

of H in U , and by H∗[U ] the number of induced labeled copies of H in U . We also use e(U) to

denote the number of edges inside a set of vertices U , and e(U, V ) to denote the number of edges

connecting U to V . The following is (part of) the main result of [8]:

Theorem 1 (Chung, Graham, and Wilson [8]) Fix any 0 < p < 1. For any n-vertex graph

G the following properties are equivalent:

P1: For any subset of vertices U ⊆ V (G) we have e(U) = 1
2p|U |2 + o(n2).

P2: For any subset of vertices U ⊆ V (G) of size 1
2n we have e(U) = 1

2p|U |2 + o(n2).

P3: Let λi(G) denote the ith largest (in absolute value) eigenvalue of G. Then e(G) = 1
2pn

2+o(n2),

λ1(G) = pn+ o(n) and λ2(G) = o(n).

P4(t): For an even integer t ≥ 4, let Ct denote the cycle of length t. Then e(G) = 1
2pn

2 + o(n2) and

Ct[G] = ptnt + o(nt).

P5: Fix an α ∈ (0, 12). For any U ⊆ V (G) of size αn we have e(U, V \U) = pα(1− α)n2 + o(n2).

For the rest of the paper let us use the notation x = y±ǫ as a shorthand for the two inequalities

y − ǫ ≤ x ≤ y + ǫ. As we have mentioned before, we use the o(1) term to denote an arbitrary

1Note that this is not the expected number of unlabeled copies of H in G, which is just the number of labeled

copies of H divided by the number of automorphisms of H . Therefore, all the results we mention here also hold when

considering unlabeled copies. We work with labeled copies (induced or not) because we do not need to refer to the

automorphisms of H , and because it is easier to count labeled copies than copies.
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function tending to 0 with n. Hence, the meaning of the fact that, for example, P2 implies P1 is that

for any f(n) = o(1) there is a g(n) = o(1) such that if G has the property that all U ⊆ V (G) of size

n/2 satisfy e(U) = 1
2p|U |2 ± g(n)n2, then e(U) = 1

2p|U |2 ± f(n)n2 for all U ⊆ V (G). Equivalently,

this means for any δ > 0 there is an ǫ = ǫ(δ) and n0 = n0(δ) such that if G is a graph on n ≥ n0

vertices and it has the property that all U ⊆ V (G) of size n/2 satisfy e(U) = 1
2p|U |2 ± ǫn2, then

e(U) = 1
2p|U |2± δn2 for all U ⊆ V (G). This will also be the meaning of other implications between

other graph properties later on in the paper.

Note, that each of the items in Theorem 1 is a property we would expect G(n, p) to satisfy with

high probability. We will thus say that G is p-quasi-random if it satisfies property P1, that is if

for some small δ all U ⊆ V (G) satisfy e(U) = 1
2p|U |2 ± δn2. If one wishes to be more precise then

one can in fact say that such a graph is (p, δ)-quasi-random. We will sometimes omit the p and

just say that a graph is quasi-random. In the rest of the paper the meaning of a statement “If G

satisfies P2 then G is quasi-random” is that P2 implies P1 in the sense of Theorem 1 discussed in

the previous paragraph. We will also say that a graph property P is quasi-random if any graph

that satisfies P must be quasi-random. So the meaning of the statement “P2 is quasi-random” is

that P2 implies P1. Therefore, all the properties in Theorem 1 are quasi-random.

Given Theorem 1 one may think that any property that holds with high probability in G(n, p)

is quasi-random. That however, is far from true. For example, it is easy to see that having the

“correct” vertex degrees is not a quasi-random property (consider Kn/2,n/2). Note also that in P5

we require α < 1
2 , because when α = 1

2 the property is not quasi-random (see [7] and [23]). A more

relevant family of non quasi-random properties are those requiring the graph to have the “correct”

number of copies of a fixed graph H. Note that P4(t) guarantees that for any even t, if a graph has

the “correct” number of edges and the “correct” number of copies of Ct then it is quasi-random.

As observed in [8] this is not true for all graphs, in fact this is not true for any non-bipartite H.

1.2 Quasi-randomness and the distribution of copies of a single graph

As throughout the paper we work with labeled copies and labeled induced copies ofH, we henceforth

just call them copies and induced copies. To understand the context of our main result, which deals

with induced copies of a fixed graph H, it is instructive to review what is known about the effect

of the distribution of a fixed graph H on quasi-randomness. By Theorem 1 we know that for some

graphs H the property of having the “correct” number of copies of H in G, along with the right

number of edges, is enough to guarantee that G is quasi-random. Furthermore, this is not true for

all graphs H. However, the intuition is that something along these lines should be true for any

H, i.e. that for any H, if the copies of H in a graph G have the “properties” we would expect

them to have in G(n, p), then G should be p-quasi-random. Simonovits and Sós [23] observed

that the counter examples showing that, for some graphs H, having just the “correct” number of

copies of H (and the “correct” number of edges) is not enough to guarantee quasi-randomness, all

4



have the property that some of the induced subgraphs of these counter examples have significantly

more/less copies of H than we would expect to find in G(n, p). For example, in order to show that

having the “correct” number of edges and triangles as in G(n, 1/2) does not guarantee that G is
1
2 -quasi-random, one can take a complete graph on αn vertices and a complete bipartite graph on

(1− α)n vertices, for an appropriate α.

The main insight of Simonovits and Sós [23] was that quasi-randomness is a hereditary property,

in the sense that we expect a sub-structure of a random-like object to be random-like as well. Thus,

perhaps it will suffice to require that the subgraphs of G should also have the “correct” number of

copies of H. To state the main result of [23] let us introduce the following variant of property P1

of Theorem 1.

Definition 1.1 (H[U1, . . . , Uh]) For a graph H on h vertices, and pairwise disjoint vertex sets

U1, . . . , Uh, we denote by H[U1, . . . , Uh] the number of h-tuples v1 ∈ U1, . . . , vh ∈ Uh that span a

labeled copy of H.

Definition 1.2 (PH) For a fixed graph H on h vertices, we say that a graph G satisfies PH if all

pairwise disjoint h-tuples U1, . . . , Uh ⊆ V (G) of equal (arbitrary) size m satisfy

H[U1, . . . , Uh] = pe(H)h!mh + o(nh) .

Note that the above restriction is that the value of H[U1, . . . , Uh] should be close to what it

should be in G(n, p) for all h-tuples of equal-size. Observe also that the above condition does not

impose any restriction on the number of edges of G, while in property P1 there is. Note also, that

the error in the above definition involves n rather than m = |U1| = · · · = |Uh| so when m = o(n) the

condition vacuously holds. As opposed to P4, which is not quasi-random for all graphs, Simonovits

and Sós [23] showed that PH is quasi-random for any graph H.

Theorem 2 (Simonovits and Sós [23]) The following holds for any graph H: if a graph G

satisfies PH then it is p-quasi-random.

Observe that PH requires, via Definition 1.1, all h-tuples of vertex sets to have the “correct”

number of copies of H with one vertex in each set. A more “natural” requirement, that was actually

used in [23], is that all subsets of vertices U ⊆ V (G) should contain the “correct” number of copies

of H, that is, that H[U ] ≈ pe(H)|U |h for all U ⊆ V (G). However, it is not difficult to show that

these two conditions are in fact equivalent (see [21]). We choose to work with Definition 1.1 as it

will fit better with the discussion in the next subsection.

1.3 The main result

So we know from Theorem 1 that when we consider the number of subgraphs of H in G, then some

H but not all, are such that having the “correct” number of copies of H in a graph G (and number
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of edges) is enough to guarantee that G is quasi-random. From Theorem 2 we know that for all

H, having the “correct” number of copies of H in all the subgraphs of G is enough to guarantee

that G is quasi-random. A natural question is what can we learn from the distribution of induced

copies of a graph H? As we shall see, the situation is much more involved.

Recall that for a fixed graph H on h vertices and a fixed 0 < p < 1, we define δH(p) =

pe(H)(1 − p)(
h

2
)−e(H). Let us denote by pH the second 2 solution (other than p) of the equation

δH(p) = xe(H)(1− x)(
h
2
)−e(H). We call pH the conjugate of p with respect to H. We will sometimes

just write p instead of pH when H is fixed. Note that the expected number of induced copies of H in

a set of vertices U is roughly δH(p)|U |h. But, as it may 3 be the case that p 6= pH we see that for any

H and any p, the distribution of induced copies of H in both G(n, p) and G(n, pH) behaves precisely

the same. Therefore, the best we can hope to deduce from the fact that the distribution of induced

copies of H in G is close to that of G(n, p) is that G is either p-quasi-random or pH -quasi-random.

Let us denote by H∗[U1, . . . , Uh] the natural generalization of H[U1, . . . , Uh] (defined in Defini-

tion 1.1) with respect to induced subgraphs, that is, H∗[U1, . . . , Uh] is the number of h-tuples of

vertices v1 ∈ U1, . . . , vh ∈ Uh with the property that v1, . . . , vh span a labeled induced copy of H.

Note that for an h tuple of vertex sets U1, . . . , Uh in G(n, p) each of size m, the expected value of

H∗[U1, . . . , Uh] is δH(p)h!mh.

So given the above discussion and Theorem 2, it seems reasonable to conjecture that, if a graph

G has the “correct” distribution of induced copies of H, then G is either p-quasi-random or pH -

quasi-random. When we say “correct” distribution we mean that all pairwise disjoint h-tuples

U1, . . . , Uh ⊆ V (G) of the same size m satisfy H∗[U1, . . . , Uh] = δH(p)h!mh ± o(mh). However, it

was observed in [23, 24] that this is not the case. For example, one can take vertex set V1, V2 of

sizes αn, (1 − α)n and put G(αn, p1) on V1, G((1 − α1)n, p1) on V2 and connect V1 and V2 with

probability p2 6= p1. Then for appropriate constants, we get a graph with the “correct” distribution

of the 3-vertex path, yet this graph is not p-quasi-random for any p.

However, as before, the intuition is that having the “correct” distribution of induced copies

of H should guarantee that G is quasi-random. Our main result in this paper is that indeed it

does, one just needs to refine the notion of “correct distribution”. As we have mentioned before,

if U1, . . . , Uh is an h-tuple of vertices in G(n, p) of the same size m, then we would expect to have

H∗[U1, . . . , Uh] = δH(p)h!mh± o(mh). However, this is because we would actually expect a slightly

stronger condition to hold. Before stating this condition, let us introduce the following “permuted”

version of the quantity H∗[U1, . . . , Uh].

Definition 1.3 (H∗
σ[U1, . . . , Uh]) Let H be a graph on h vertices, let U1, . . . , Uh be an h-tuple of

pairwise disjoint vertex sets, and let σ ∈ Sh be a permutation [h] → [h]. Then we denote by

2It is not difficult to see that for non-negative integers k, ℓ the equation xk(1− x)ℓ = q has at most two solutions

in (0, 1).
3The only case where p = pH is when p = e(H)/

`

h

2

´

or when e(H) ∈ {0,
`

h

2

´

}.
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H∗
σ[U1, . . . , Uh] the number of h-tuples of vertices v1 ∈ Uσ(1), . . . , vh ∈ Uσ(h) with the property that

vi ∈ Uσ(i) is connected to vj ∈ Uσ(j) if and only if (i, j) ∈ H.

Getting back to our discussion, observe that the reason we expect to have H∗[U1, . . . , Uh] =

δH(p)h!mh ± o(mh) is simply because we expect to have H∗
σ[U1, . . . , Uh] = δH(p)mh ± o(mh) for all

h! permutations in Sh. It is now natural to define the following property:

Definition 1.4 (P∗
H) For a fixed graph H on h vertices, we say that a graph G satisfies P∗

H if for

all pairwise disjoint h-tuples U1, . . . , Uh ⊆ V (G) of equal (arbitrary) size m, and for every σ ∈ Sh

H∗
σ[U1, . . . , Uh] = δH(p)mh + o(nh) .

Our main result is that property P∗
H guarantees that a graph is quasi-random.

Theorem 3 (Main result) The following holds for any graph H: if a graph satisfies P∗
H then it

is either p-quasi-random or pH-quasi-random.

Our main result can be formulated as saying that for any H, if a graph G has the “correct”

distribution of induced copies of H, then G is quasi-random. We remind the reader that one cannot

hope to strengthen Theorem 3 by showing that G must be p-quasi-random, as G(n, p) satisfies P∗
H

with probability 1. Observe, that our notion of “correct distribution” (that is, the quantities H∗
σ)

is stronger than the notions that have been considered before (that is, the quantities H∗), where

the latter is known to be too weak to guarantee quasi-randomness for arbitrary graphs H. Let us

mention here that Simonovits and Sós conjectured in [23] that the weaker quantities H∗ should

be sufficient for guaranteeing quasi-randomness for any H on at least 4 vertices. This conjecture,

however, is still wide open.

1.4 Overview of the paper

As we have discussed in the first subsection, the theory of quasi-random graphs has many applica-

tions in theoretical computer science, both in the case of sparse and dense graphs. We think that

the main interest of our result is in the proof techniques and tools that are used in the course of

its proof. Besides several combinatorial arguments and tools (such as the Regularity Lemma [26],

Ramsey’s Theorem and Rödl’s “nibble” Theorem [19]) the main underlying idea of the proof is an

algebraic one. Roughly speaking, what we do is take all the information we know about the graph

G, namely the information on the distribution of induced copies of H, and use it in order define

a large system of polynomial equations. The unknowns in this system of equations represent (in

some way) the distribution of edges of G. The crux of the proof is to show that the unique solution

of this system of equations, is one that forces the edges of the graph to be nicely distributed (in the

sense of property P1 in Theorem 1). The main theorem we need in order to obtain this uniqueness
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is a result of Gottlieb [10], in algebraic combinatorics, concerning the rank of set inclusion matrices

(see Theorem 4). This approach to showing that a graph is quasi-random may be applicable for

showing quasi-random properties of other structures.

In Section 2 we prove Theorem 3 by applying several combinatorial tools as well as a key lemma

(Lemma 2.1) that is proved in Section 3. The proof of Lemma 2.1, which is the most difficult step

in the proof of Theorem 3, contains most of the new ideas we introduce in this paper.

2 Proof of Main Result

In this section we give the proof of Theorem 3, but before getting to the actual proof we will need

some preparation. We first discuss Lemma 2.1, which is the main technical lemma we need for the

proof of Theorem 3, and whose proof appears in the next section. We then discuss some simple

notions related to the Regularity Lemma, and then turn to the proof of Theorem 3. Throughout

this section, let us fix a real 0 < p < 1 and a graph H on h vertices. Recall that we set δH(p) =

pe(H)(1 − p)(
h
2
)−e(H) and that we denote by p, the conjugate of p, the second solution in (0, 1) of

the equation δH(p) = xe(H)(1− x)(
h

2
)−e(H).

2.1 The Key Lemma

In what follows we will work with weighted complete graphs W on r vertices. We will think of

the vertices of W as the integers [r]. In that case each pair of vertices 1 ≤ i < j ≤ r will have a

weight 0 ≤ w(i, j) ≤ 1. Let us identify the h vertices of H with the integers [h]. Given an injective

mapping φ : [h] → [r], which we think of as a mapping from the vertices of H to the vertices of W ,

we will set

W (φ) =
∏

(i,j)∈E(H)

w(φ(i), φ(j))
∏

(i,j)6∈E(H)

(1− w(φ(i), φ(j))) .

Another notation that will simplify the presentation is a variant of the H∗
σ[U1, . . . , Uh] notation

that was defined in Section 1. Suppose we have r pairwise disjoint vertex sets U1, . . . , Ur and an

injective mapping φ : [h] → [r]. Then we denote by H∗
φ[U1, . . . , Ur] the number of h-tuples of

vertices v1 ∈ Uφ(1), . . . , vh ∈ Uφ(h) with the property that vi ∈ Uφ(i) is connected to vj ∈ Uφ(j) if

and only if (i, j) is an edge of H.

Suppose we construct an r-partite graph on vertex sets U1, . . . , Ur, each of size m, by connecting

every vertex in Ui with any vertex in Uj independently with probability w(i, j). Then, observe

that for any φ : [h] → [r], we would expect H∗
φ[U1, . . . , Ur] to be close to W (φ)mh. Continuing

this example, suppose that all (i, j) satisfy w(i, j) = p. Then we would expect all φ to satisfy

H∗
φ[U1, . . . , Uh] = δH(p)mh. Observe however, that we would also expect the same to hold if we

were to replace p by p.
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The following lemma shows that the converse is also true in the following sense: if we know

that for any injective mapping φ we have the “correct” fraction of induced copies of H as we would

expect to find if we had w(i, j) = p for all (i, j), then either4 almost all (i, j) satisfy w(i, j) = p

or almost all satisfy w(i, j) = p. Note that for convenience the lemma is stated with respect to

quantities in (0, 1), rather than with respect to the number of edges or number of copies 5. In what

follows, we will always assume wlog that if p 6= p then ǫ < |p − p|/2. This will guarantee that the

intervals p± ǫ and p± ǫ are disjoint.

Lemma 2.1 (The Key Lemma) For every h there exists an N2.1 = N2.1(h) so that for any

r ≥ N2.1 and ǫ > 0 there exists δ2.1 = δ2.1(ǫ, h, r) > 0 with the following properties: suppose W is

a weighted graph on r vertices, such that for all φ : [h] → [r] we have W (φ) = δH(p)± δ2.1. Then

any pair (i, j) satisfies either w(i, j) = p ± ǫ or w(i, j) = p ± ǫ. Furthermore, either at most r − 1

of the pairs (i, j) satisfy w(i, j) = p± ǫ or at most r − 1 of the pairs (i, j) satisfy w(i, j) = p± ǫ.

The proof of Lemma 2.1, which is the main lemma we need for the proof of Theorem 3, appears

in Section 3. It is interesting to note that, as we show in Section 3, one cannot strengthen the

above lemma by showing that either all densities are close to p or they are all close to p.

2.2 The Regularity Lemma

We now give a brief overview of the Regularity Lemma of Szemerédi, which turns out to be strongly

related to quasi-random graphs. For a pair of nonempty vertex sets (A,B) we denote by d(A,B)

the edge density between A and B, that is d(A,B) = |E(A,B)|/|A||B|. A pair of vertex sets

(A,B) is said to be γ-regular, if for any two subsets A′ ⊆ A and B′ ⊆ B, satisfying |A′| ≥ γ|A|

and |B′| ≥ γ|B|, the inequality |d(A′, B′) − d(A,B)| ≤ γ holds. A partition of the vertex set of a

graph is called an equipartition if all the sets of the partition are of the same size (up to 1). We

call the number of partition classes of an equipartition the order of the equipartition. Finally, an

equipartition V = {V1, . . . , Vk} of the vertex set of a graph is called γ-regular if all but at most

γ
(

k
2

)

of the pairs (Vi, Vj) are γ-regular. The celebrated Regularity Lemma of Szemerédi can be

formulated as follows:

Lemma 2.2 ([26]) For every t and γ > 0 there exists T = T2.2(γ, t), such that any graph of size

at least t has a γ-regular equipartition of order k, where t ≤ k ≤ T .

The following lemma of Simonovits and Sós [22] shows that the property of having a regular

partition where most of the pairs are connected by regular pairs of density close to p implies that the

4Remember that we cannot expect to be able to show that all densities are p as the number of induced copies of

H behaves the same with respect to p and p.
5So w(i, j) should be understood as the density between the pair (Ui, Uj) and W (φ) is H∗

φ[U1, . . . , Ur]/m
h.
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graph is p-quasi-random. For completeness we include a short self-contained proof of this lemma

at the end of this section. We remind the reader that we use the notation x = y ± ǫ to denote the

fact that y − ǫ ≤ x ≤ y + ǫ.

Lemma 2.3 (Simonovits and Sós [22]) For every ζ > 0 there is an ǫ = ǫ2.3(ζ) and t = t2.3(ζ)

with the following property: suppose an n vertex graph G has an ǫ-regular partition of order k ≥ t

where all but ǫ
(k
2

)

of the pairs are ǫ-regular with density p ± ǫ. Then every set of vertices U ⊆ G

spans 1
2p|U |2 ± ζn2 edges.

Another tool we will need for the proof of Theorem 3 is Lemma 2.4 below. This lemma is

equivalent to saying that if we have r pairwise disjoint vertex sets V1, . . . , Vr that are all regular

enough, then for any injective mapping φ : [h] → [r] we have that H∗
φ[V1, . . . , Vr] is close to what it

should be. Such a lemma is well known, and has been proven and used in many papers. See, e.g.,

Lemma 4.2 in [9] for one such proof. We thus omit the proof of Lemma 2.4.

Lemma 2.4 For any δ > 0 and h, there exists a γ = γ2.4(δ, h) > 0 such that the following

holds: Let W be a weighted complete graph on r vertices, and suppose V1, . . . , Vr are pairwise

disjoint sets of vertices of size m each, that all pairs (Vi, Vj) are γ-regular and that all pairs satisfy

d(Vi, Vj) = w(i, j). Then, for any injective mapping φ : [h] → [r], we have

H∗
φ[V1, . . . , Vr] = (W (φ)± δ)mh. (1)

2.3 Proof of Theorem 3

For the proof of Theorem 3 we will also need the following two lemmas, whose proofs are deferred

to the end of this section.

Lemma 2.5 For every ǫ there is an r2.5 = r2.5(ǫ) such that for every r ≥ r2.5 there is N2.5 =

N2.5(r) and γ2.5 = γ2.5(r) with the following property. Assume k ≥ N2.5 and that K is a k vertex

graph with at least (1− γ2.5)
(k
2

)

edges. Suppose the edges of K are colored red/blue so that at least

ǫ
(

k
2

)

are blue and at least ǫ
(

k
2

)

are red. Then K has r vertices that span a complete graph Kr with

at least r blue edges and at least r red edges.

Lemma 2.6 For any γ and r, there is an N2.6 = N2.6(γ, r) such that the following holds for

any k ≥ N2.6. If K is a graph on k vertices with at least (1 − γ)
(k
2

)

edges, then K has at least

(1− γr2)
(

k
2

)

edges that belong to a copy of Kr.

Proof of Theorem 3: We will say that a γ-regular equipartition of order k is γ-super-regular6

if all but γ
(

k
2

)

of the pairs are γ-regular with density p± γ or all but γ
(

k
2

)

of the pairs are γ-regular

6In some papers the term γ-super-regular is used for other notions of regular partitions of graphs, but these should

not be confused with the notion we define and use here.
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with density p ± γ. We need to show that any graph G that satisfies P∗
H must be either p-quasi-

random or p-quasi-random7. Fix any ζ > 0 and recall that by Lemma 2.3 we know that in order

to show that a graph G has the property that every set U ⊆ V (G) satisfies e(U) = 1
2p|U

2| ± ζn2 or

that every such set satisfies e(U) = 1
2p|U

2|±ζn2, it is enough to show that G has an ǫ-super-regular

partition of order at least t, where

t = t2.3(ζ) , (2)

and

ǫ = ǫ2.3(ζ) . (3)

Let us define the following constants8

r = max(r2.5(ǫ/2), N2.1(h)) (4)

γ = min(ǫ, γ2.5(r) , γ2.4(δ2.1(ǫ, h, r)/2, h)) (5)

N = max(t, N2.6(γ, r), N2.5(r), N2.1(h)) (6)

T = T2.2(γ/r
2, N) (7)

δ = δ2.1(ǫ, h, r)/2T
h. (8)

To complete the proof that P∗
H implies that a graph is either p-quasi-random or p-quasi-random, we

show (via Lemma 2.3) that for any ζ > 0 there is an N(ζ) and δ(ζ) such that the following holds:

if G is a graph on at least N(ζ) vertices and for every h-tuple of vertex sets U1, . . . , Uh ⊆ V (G) of

(arbitrary) size m each, and for every permutation σ : [h] → [h] we have

H∗
σ[U1, . . . , Uh] = δH(p)mh ± δ(ζ)nh , (9)

then G has an ǫ-super-regular partition of order k, where k ≥ t. We will show that one can take

N(ζ) to be the integer N defined in (6) and that δ(ζ) can be taken as the value defined in (8).

So let G be a graph of size at least N , and apply Lemma 2.2 (the regularity lemma) on G

with γ/r2 and N that were defined in (5) and (6). Lemma 2.2 guarantees that G has a γ-regular

partition V = {V1, . . . , Vk} where t ≤ N ≤ k ≤ T and T is given in (7). We now need to show that

all but ǫ
(k
2

)

of the pairs (Vi, Vj) are ǫ-regular and satisfy d(Vi, Vj) = p ± ǫ or ǫ-regular and satisfy

d(Vi, Vj) = p± ǫ. Let us define W to be a weighted graph on k vertices, where if (Vi, Vj) is ǫ-regular

then (i, j) are connected with an edge of weight w(i, j) = d(Vi, Vj), and if (Vi, Vj) is not ǫ-regular

then (i, j) are not connected. So our goal is to show that either all but ǫ
(

k
2

)

of the pairs of vertices

of W are connected by an edge with weight p± ǫ or that all but ǫ
(k
2

)

of the pairs of vertices of W

are connected by an edge with weight p± ǫ.

7Recall that the meaning of that is that either every set U ⊆ V (G) satisfies e(U) = 1

2
p|U2| ± ζn2 or that every

such set satisfies e(U) = 1

2
p|U2| ± ζn2 for some small ζ > 0

8We note that we need N , which is defined in (6), in order to allow us to apply the various lemmas we stated

above, that all work for large enough graphs.
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Claim 2.7 Any copy of Kr in W satisfies the following:

1. Any edge has either weight p± ǫ or weight p± ǫ.

2. If p 6= p then either at most r − 1 of them have weight p ± ǫ or at most r − 1 of them have

weight p± ǫ.

Proof: Consider any copy of Kr in W and suppose wlog that the vertices of this copy are 1, . . . , r.

Recall that k ≤ T and that G satisfies (9) with the δ that was chosen in (8). We thus infer that

for any injective mapping φ : [h] → [r]

H∗
φ[V1, . . . , Vr] = δH(p)

(n

k

)h
± δnh = (δH(p)±

1

2
δ2.1(ǫ, h, r))

(n

k

)h
. (10)

In addition, as we are referring to r vertices that form a copy of Kr in W , we know that V1, . . . , Vr

are all pairwise γ-regular. Thus the choice of γ in (5) guarantees via Lemma 2.4 that for any

injective mapping φ : [h] → [r] we have

H∗
φ[V1, . . . , Vr] = (W (φ)±

1

2
δ2.1(ǫ, h, r))

(n

k

)h
. (11)

Combining (10) and (11) we infer that for any φ : [h] → [r] we have W (φ) = δH(p) ± δ2.1(ǫ, h, r).

Hence, the two assertions of the claim follow from Lemma 2.1.

We are now going to use Lemma 2.1 in order to color some of the edges of W . Consider any

copy of Kr in W . We know from the first assertion of Claim 2.7 that all the edge weights in the

copy of Kr are either p± ǫ or p± ǫ. If p = p then we color all the edges of this Kr with the color

red. So assume that p 6= p and recall that we assume wlog that in this case ǫ < |p − p|/2, which

makes it possible to color the edges whose weight is p± ǫ blue, and the edges whose weight is p± ǫ

red (in a well defined way). We now apply this coloring scheme to any copy of Kr in W . We claim

that we have thus colored at least (1−γ)
(k
2

)

of the edges of W . Indeed, as we applied the regularity

lemma with γ/r2 we know that W has at least (1 − γ/r2)
(k
2

)

edges. As k ≥ N2.6(γ, r) we infer

from Lemma 2.6 that at least (1 − γ)
(k
2

)

of the edges of W belong to a copy of Kr thus they are

colored in the above process. Let us now remove from W all the uncolored edges and call the new

graph W ′. Thus W ′ has at least (1− γ)
(k
2

)

edges and they are all colored either red or blue.

We now claim that either W ′ has at most ǫ
2

(k
2

)

red edges, or at most ǫ
2

(k
2

)

blue edges. Indeed,

if W ′ had at least ǫ
(k
2

)

red edges and at least ǫ
(k
2

)

blue edges, then our choice of r and γ in (4) and

(5), the fact that W ′ has at least (1− γ)
(k
2

)

edges, and that k ≥ N2.5(r), would allow us to apply

Lemma 2.5 on W ′ and infer that it has a copy of Kr with at least r blue edges and at least r red

edges, contradicting Claim 2.7 (recall that W ′ is a subgraph of W ).

We thus conclude that W has at least (1 − γ)
(k
2

)

≥ (1 − ǫ
2)
(k
2

)

edges, and that even if p 6= p

either all but ǫ
2

(k
2

)

of them are red or all but at most ǫ
2

(k
2

)

of them are blue. By the definition of
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W , this means that in the equipartition V either all but ǫ
(

k
2

)

of the pairs are ǫ-regular with density

p± ǫ, or all but at most ǫ
(k
2

)

of them are ǫ-regular with density p± ǫ, which completes the proof.

2.4 Proofs of additional lemmas

We end this section with the proofs of Lemmas 2.3, 2.5 and 2.6.

Proof of Lemma 2.3: We claim that one can take ǫ = ǫ2.3(ζ) = 1
8ζ and t = t2.3(ζ) = 8/ζ.

Indeed, suppose G has an ǫ-super-regular partition {V1, . . . , Vk} of order k ≥ t, that is, a partition

in which all but ǫ
(

k
2

)

of the pairs (Vi, Vj) are ǫ-regular with density d(Vi, Vj) = p ± ǫ. Let us

count the number of edges of G that do not connect a pair (Vi, Vj) which is ǫ-regular with density

d(Vi, Vj) = p± ǫ. As k ≥ t ≥ 8/ζ we know that the number of pairs of vertices that both belong to

the same set Vi is at most k|n/k|2 ≤ 1
8ζn

2. As all but ǫ
(k
2

)

of the pairs (Vi, Vj) are ǫ-regular with

density d(Vi, Vj) = p± ǫ, we also know that the number of pairs connecting pairs (Vi, Vj), which do

not satisfy these two conditions, is bounded by ǫ
(k
2

)

(n/k)2 ≤ 1
8ζn

2.

Consider now a set of vertices U , and define Ui = U ∩ Vi. The number of vertices of U that

belong to a set Ui whose size is smaller than ǫ|Vi| is bounded by ǫn. Therefore the number of pairs

of vertices of U such that one of them belongs to a set Ui of size smaller than ǫ|Vi| is bounded by

ǫn2 ≤ 1
8ζn

2. Combining the above three facts we conclude that all but 1
2ζn

2 of the pairs of vertices

of ui, uj ∈ U are such that: (1) ui ∈ Ui, uj ∈ Uj and i 6= j; (2) Ui ≥ ǫ|Vi| and Uj ≥ ǫ|Vj |; (3)

(Vi, Vj) is ǫ-regular with density p± ǫ. Therefore, by the definition of a regular pair we get that the

density of U in all but 1
2ζn

2 of its pairs is p± 2ǫ = p± 1
2ζ, and therefore e(U) = 1

2p|U |2 ± ζn2.

Proof of Lemma 2.5: Suppose we randomly pick r vertices v1, . . . , vr from K with repetitions

where r = Ω(1/ǫ3). Clearly, if k ≥ 10r2 then by a Birthday-Paradox argument we infer that with

probability at least 3/4 all the vertices v1, . . . , vr are distinct. Suppose wlog that r is even and let

us partition the set of unordered pairs (vi, vj) into r − 1 perfect matchings M1, . . . ,Mr−1 on the

vertices v1, . . . , vr. For every pair (vi, vj) let pi,j be the indicator random variable for the event

that vi and vj are connected in K by a red edge. As we sample with repetitions then for every

matching Mt, the r/2 events {pi,j : (vi, vj) ∈ Mt} are independent. Also, as K has at least ǫ
(k
2

)

red edges, we have that Pr[pi,j = 1] ≥ ǫ/2 (we lose a little due to the probability of having non

distinct vertices). We thus conclude that for any matching Mt, the expected number of red edges

spanned by its members is at least ǫr/4 and by a Chernoff bound, the probability of deviating

from this expectation by more than ǫr/8 is bounded by 2−Θ(ǫ2r) < 1/4r. Clearly the same analysis

applies for the blue edges. We conclude by the union bound that with probability at least 3/4 the

r vertices span at least ǫr2/16 red edges and at least ǫr2/16 blue edges. As r = Ω(1/ǫ3) we have

ǫr2/16 ≥ r therefore we have the required amount of red/blue edges. We conclude that one can

take r2.5 = Ω(1/ǫ3) and N2.5(r) = 10r2.
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Finally, to conclude that all the pairs (vi, vj) are connected we take γ2.5 = 1/4r2. This way,

the probability that a pair of vertices are not connected is at most 1/4r2 and by the union bound,

with probability at least 3/4 they are all connected. So to recap, if we sample with repetition r

vertices, then with probability at least 1/4 they are all distinct, all connected, and have at least r

red edges and at least r blue edges. So there must be at least one such set of r vertices in K.

Proof of Lemma 2.6: Suppose k is large enough to guarantee by Rödl’s theorem [19] that the

complete graph on k vertices contains (1− γ)
(

k
2

)

/
(

r
2

)

edge disjoint copies of Kr. If we now consider

the same copies of Kr in K (more precisely, the vertex sets of these copies) then the fact that K

has (1− γ)
(

k
2

)

edges implies that at most γ
(

k
2

)

= γ
(

r
2

)

·
(

k
2

)

/
(

r
2

)

of these copies of Kr have a pair of

vertices that are not connected. Thus, K contains at least (1− γr2)
(k
2

)

/
(r
2

)

edge disjoint copies of

Kr implying that at least (1− γr2)
(

k
2

)

edges of K belong to a copy of Kr.

3 Proof of the Key Lemma

As in Section 2, let us fix a real 0 < p < 1 and a fixed graph H on h vertices. Let also p be

the conjugate of p with respect to H. We will again work with weighted complete graphs W

on r vertices, and will identify the vertices of W with [r] and the vertices of H with [h]. Each

pair of vertices 1 ≤ i < j ≤ r of W has a weight 0 ≤ w(i, j) ≤ 1 that is given by some weight

function w : E(W ) → [0, 1]. We remind the reader of the notation W (φ) that was introduced at

the beginning of Section 2.

Recall that Lemma 2.1 states that, if all the values W (φ) are close to what they should be,

then all the weights w(i, j) are close to what they should be. The following lemma is an “exact”

version of Lemma 2.1 where we assume that the values W (φ) are exactly what they should be. The

proof of Lemma 2.1 will then follow from the lemma below using standard continuity arguments.

Observe that the lemma below actually gives a bit more information than what we need for Lemma

2.1. In what follows let Φ be the set of all possible injective mappings φ : [h] → [r], and notice that

there are r!/(r − h)! elements in Φ.

Lemma 3.1 For every h > 2 there exists N3.1 = N3.1(h) so that the following holds. Let H be a

fixed graph with m edges and h vertices. If r ≥ N3.1 and W is a labeled weighted graph on r vertices

satisfying W (φ) = δH(p) for all φ ∈ Φ, then w(i, j) ∈ {p, p} for all 1 ≤ i < j ≤ r. Furthermore,

if gcd(
(h
2

)

,m) = 1 then all edge weights are the same, and if gcd(
(h
2

)

,m) > 1 then either all edge

weights are the same, or else there exists one vertex whose deletion from W yields a subgraph with

r − 1 vertices all of whose edge weights are the same.

We split the proof of Lemma 3.1 into two parts. We initially prove Lemma 3.2 below showing

that all w(i, j) are taken from {p, p}. We then use this lemma in order to show that in fact most
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of the w(i, j) are either p or p.

An important ingredient in the proof of Lemma 3.2 will be a theorem of Gottlieb [10], concerning

the rank of set inclusion matrices. For integers r ≥ h > 2, the inclusion matrix A(r, h) is defined

as follows: The rows of A(r, h) are indexed by h-element subsets of [r], and the columns by the

2-element subsets of [r]. Entry (i, j) of A(r, h) is 1 if the 2-element set, whose index is j, is contained

in the h-element set, whose index is i. Otherwise, this entry is 0. Notice that A(r, h) is a square

matrix if and only if r = h + 2, and that for r > h + 2, A(r, h) has more rows than columns.

Trivially, rank(A(r, h)) ≤
(r
2

)

. However, Gottlieb [10] proved 9 that in fact

Theorem 4 (Gottlieb [10]) rank(A(r, h)) =
(r
2

)

for all r ≥ h+ 2.

Lemma 3.2 Let H be a fixed graph with h > 2 vertices. If r ≥ h+ 2 and W is a labeled weighted

graph on r vertices satisfying W (φ) = δH(p) for all φ ∈ Φ, then w(i, j) ∈ {p, p} for all 1 ≤ i < j ≤ r.

Proof: We associate a variable xi,j for each 1 ≤ i < j ≤ r, which represents the unknown w(i, j).

Thus, for any φ ∈ Φ we have that W (φ) is given by the polynomial

Pφ =
∏

(i,j)∈E(H)

xφ(i),φ(j)
∏

(i,j)6∈E(H)

(1− xφ(i),φ(j)) . (12)

As our assumption is that W (φ) = δH(p) for all φ ∈ Φ we have the following set of r!/(r − h)!

polynomial equations Eφ:

Eφ :
∏

(i,j)∈E(H)

xφ(i),φ(j)
∏

(i,j)6∈E(H)

(1− xφ(i),φ(j)) = δH(p) . (13)

Our goal now is to show that the only solution to this system is xi,j ∈ {p, p}.

For a vertex set S ⊆ [r] of size h, let E[S] denote the
(h
2

)

edges of W induced by S. Let S be

the set of all h-element subsets of V (W ) = [r] and notice that |S| =
(

r
h

)

. For every S ∈ S let ΦS

be the set of all h! elements of Φ that are bijections on S. For every set S let us take the product

of the h! equations {Eφ : φ ∈ ΦS} of (13). We thus get the following system of
(r
h

)

polynomial

equations (one for every S ∈ S) with
(r
2

)

variables (one for each (i, j) ∈ E(W )):

ES :
∏

(i,j)∈E[S]

(

xmi,j · (1− xi,j)
(h
2
)−m

)2!(h−2)!
= (δH(p))h! . (14)

In order to show that the only solution of the equations ES is given by xi,j ∈ {p, p}, it would be

convenient to first transform them to linear equalities, by taking logarithms on both sides. Define

yi,j = m · log(xi,j) +

((

h

2

)

−m

)

· log(1− xi,j) (15)

9Gottliebs’s theorem actually deals with the more general case where the columns are indexed by the d element

subsets of [r] where 2 ≤ d ≤ h, and in that case the rank is
`

r

d

´

for all r ≥ h+ d.
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and note that if we take logarithm of the equations given in (14) and use the yi,j defined above, we

thus obtain an equivalent system of linear equations on the
(r
2

)

variables yi,j, where equation ES

becomes

E′
S :

∑

(i,j)∈E[S]

yi,j =

(

h

2

)

· log(δH(p)) . (16)

We can write the
(

r
h

)

linear equations E′
S as Ax = b where A in an

(

r
h

)

×
(

r
2

)

matrix, and b is the all
(h
2

)

· log(δH(p)) vector. A key observation at this point is that A is precisely the inclusion matrix

A(r, h). Since r ≥ h+ 2 we obtain, by Theorem 4, that the system has a unique solution and the

values of the variables yi,j are uniquely determined. Now, as each set S ∈ S is of size h it is clear

that setting yi,j = log(δH(p)) for all (i, j) gives a valid solution of the linear equations given in (16),

and by the above observation, this is in fact the unique solution. Recalling the definition of yi,j in

(15), this implies that for all (i, j) we have

xmi,j · (1− xi,j)
(h
2
)−m = δH(p) .

Now, as {p, p} are the only solutions to the above equation, we deduce that indeed xi,j ∈ {p, p},

proving the lemma.

For the proof of Lemma 3.1, we will need another simple lemma. A graph is called pairwise

regular if there exists a number t so that d(x) + d(y) − d(x, y) = t for all pairs of distinct vertices

x, y. Here d(v) denotes the degree of v and d(u, v) = 1 if (u, v) is an edge, otherwise d(u, v) = 0. A

graph is called pairwise outer-regular if there exists a number t so that d(x)+d(y)−2d(x, y) = t for

all pairs of distinct vertices x, y. Trivially, a graph is pairwise regular if and only if its complement

is. The same holds for pairwise outer-regular. It is also trivial that the complete graph (and the

empty graph) is both pairwise regular and pairwise outer-regular. Notice, that K1,2 is also pairwise

regular, and that K1,3 is also pairwise outer-regular. The following lemma, whose proof is deferred

to the end of this section, establishes that these are the only non-trivial cases.

Lemma 3.3 The only non-complete and non-empty graphs which are pairwise regular are K1,2 and

its complement. The only non-complete and non-empty graphs which are pairwise outer-regular are

K1,3 and its complement.

Proof of Lemma 3.1: Notice that if p = p then there is actually nothing to prove, since Lemma

3.2 already yields the desired conclusion. Hence, assume p 6= p. Observe, that this implies that H

in not the complete graph nor the empty graph as in these two cases p = p.

By Lemma 3.2, each edge weight is either p or p. We color the edges of W with two colors: blue

for edges whose weight is p and red for edges whose weight is p. We may assume that our coloring

is non-trivial, that is, that we have both red and blue edges, since otherwise there is nothing to

prove. Each φ ∈ Φ defines a labeled copy of H in W . Let b(φ) be the number of edges of H mapped
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to blue edges and let a(φ) be the number of non-edges10 of H mapped to blue edges. Then, the

number of edges of H mapped to red edges is m− b(φ) and the number of non-edges of H mapped

to red edges is
(

h
2

)

−m− a(φ). Thus, we have for every φ ∈ Φ that

δH(p) = W (φ) = pb(φ)pm−b(φ)(1− p)a(φ)(1− p)(
h
2
)−m−a(φ) . (17)

Multiplying (17) by pb(φ)(1− p)a(φ) we get that

δH(p) · pb(φ)(1− p)a(φ) = pb(φ)(1− p)a(φ)pm(1− p)(
h

2
)−m = δH(p) · pb(φ)(1− p)a(φ) (18)

where in the second equality we use the fact that pm(1− p)(
h

2
)−m = δH(p). This implies that

(

p

p

)b(φ) (1− p

1− p

)a(φ)

= 1 . (19)

On the other hand, since p and p are both solutions of the equation xm · (1− x)(
h

2
)−m = δH(p) we

also know that
(

p

p

)m(

1− p

1− p

)(h
2
)−m

= 1 . (20)

Thus, solving (19) for p
p and plugging it into (20) gives that for any φ

a(φ) ·m = b(φ) ·

((

h

2

)

−m

)

. (21)

Consider first the case where gcd(m,
(h
2

)

) = 1. This implies that gcd(m,
(h
2

)

−m) = 1. Since the

red-blue coloring is not trivial there is a Kh subgraph of W which contains both red and blue edges.

Thus there exists φ ∈ Φ so that 0 < a(φ) + b(φ) <
(h
2

)

. There are two ways in which (21) can be

satisfied: the first is if a(φ) = b(φ) = 0, but this violates the fact that 0 < a(φ) + b(φ). The second

is if a(φ) is a multiple of
(h
2

)

−m and b(φ) is a multiple of m, but this violates a(φ) + b(φ) <
(h
2

)

.

Thus, the coloring must be trivial, and we are done.

Now consider the case gcd(m,
(h
2

)

) > 1. By Ramsey’s Theorem if N3.1(h) is sufficiently large,

there is a monochromatic copy of K3h−8 in W . Let T denote a maximal monochromatic copy in

W . Thus, T has t vertices and r > t ≥ 3h − 8. Suppose, wlog, that T is completely red. Let x be

a vertex outside T . By maximality of T , there exists y ∈ T so that (x, y) is blue. Suppose x has

at least h − 2 red neighbors in T , say (x, v1), . . . , (x, vh−2) are all red. Then, {x, y, v1, . . . , vh−2}

induce a copy of Kh which has precisely one blue edge. If φ is any bijection onto this copy then

a(φ)+ b(φ) = 1, but this must violate (21) and hence the coloring must be trivial and we are done.

We may now assume that each vertex x outside T has at most h− 3 red neighbors in T . Now,

if t = r − 1 then there are at most r − 1 blue edges in our coloring, all incident with x, and

10The non-edges of H are all the pairs i, j that are not connected in H .
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we are done. Otherwise, there are at least two vertices x1 and x2 outside T , that have at least

t − 2(h − 3) ≥ 3h − 8 − 2h + 6 = h − 2 common neighbors {v1, . . . , vh−2} in T so that all edges

(xi, vj) are blue for i = 1, 2 and j = 1, . . . , h− 2.

Consider first the case where (x1, x2) is blue. Since gcd(m,
(h
2

)

) > 1 we must have that H is

not K1,2 nor its complement. Thus, by Lemma 3.3, H is not pairwise regular11. Let {u1, u2} and

{u3, u4} be two pairs of distinct vertices of H so that

d(u1) + d(u2)− d(u1, u2) 6= d(u3) + d(u4)− d(u3, u4) . (22)

Let φ1 be a bijection from V (H) to {x1, x2, v1, . . . , vh−2} mapping u1 to x1 and u2 to x2. Clearly,

b(φ1) = d(u1) + d(u2)− d(u1, u2). Similarly, if φ2 is a bijection from V (H) to {x1, x2, v1, . . . , vh−2}

mapping u3 to x1 and u4 to x2 then b(φ2) = d(u3) + d(u4) − d(u3, u4). In particular, we get

from (22) that b(φ1) 6= b(φ2). We claim however that this is impossible as in fact b(φ1) = b(φ2).

Indeed, by combining (21) for φ1 and for φ2 we get that a(φ1)/a(φ2) = b(φ1)/b(φ2). Further we

have b(φ1) + a(φ1) = b(φ2) + a(φ2) as both sides are equal to the number of blue edges in the

corresponding induced Kh of W . Combining the two equations we get b(φ1) = b(φ2).

Consider finally the case where (x1, x2) is red. Assume first that H is not K1,3 nor its com-

plement. Thus, by Lemma 3.3, H is not pairwise outer-regular. Let {u1, u2} and {u3, u4} be two

pairs of distinct vertices of H so that

d(u1) + d(u2)− 2d(u1, u2) 6= d(u3) + d(u4)− 2d(u3, u4) .

Let φ1 be a bijection from V (H) to {x1, x2, v1, . . . , vh−2} mapping u1 to x1 and u2 to x2. Clearly,

b(φ1) = d(u1)+d(u2)−2d(u1, u2). Similarly, if φ2 is a bijection from V (H) to {x1, x2, v1, . . . , vh−2}

mapping u3 to x1 and u4 to x2 then b(φ2) = d(u3)+d(u4)−2d(u3, u4). In particular, b(φ1) 6= b(φ2).

As in the previous case, this is a contradiction. If H = K1,3 then h = 4 and we can use the fact

that x1 has at least 3h− 8− (h− 3) = 3 blue neighbors in T denoted y1, y2, y3. Thus, x1, y1, y2, y3

have a red triangle and a blue K1,3. Let φ1 map the vertex of degree 3 of H to x1 and the rest to

y1, y2, y3, yielding b(φ1) = 3. Let φ2 map the vertex of degree 3 of H to y1 and the rest to x1, y2, y3

yielding b(φ2) = 1. Again, b(φ1) 6= b(φ2), a contradiction. The case of the complement of K1,3 is

proved in the same way.

For the proof of Lemma 2.1, we will need the following simple fact

Claim 3.4 For any integer p and δ there is a γ = γ3.4(δ, p) with the following property: Let A be

any p× p non-singular 0/1 matrix, let b be any vector in R
p and let x ∈ R

p be the unique solution

of the system of linear equations Ax = b. Then if b′ satisfies ℓ∞(b′, b) ≤ γ then the unique solution

x′ of Ax′ = b′ satisfies ℓ∞(x′, x) ≤ δ.

11Remember that at this point we know that H is neither a complete graph nor an edgeless graph.
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Proof: Fix any p×p non-singular matrix A with 0/1 entries. Then the solution of Ax = b is given

by x = A−1b. As xi =
∑p

j=1A
−1
i,j · bj is a continuous function of b it is clear to for any δ there is a

γ = γ(δ,A) such that if ℓ∞(b′, b) ≤ γ then the unique solution x′ of Ax′ = b′ satisfies ℓ∞(x′, x) ≤ δ.

Now, as there are finitely many 0/1 p× p matrices, we can set γ = γ3.4(δ, p) = minA γ(δ,A), where

the minimum is taken over all 0/1 p× p matrices.

Proof of Lemma 2.1: The lemma is an immediate consequence of Lemma 3.1 using standard

arguments of continuity; the continuity of polynomials as functions, and the continuity of unique

solutions to linear systems that is given in Lemma 3.4 above. First we can take N2.1(h) = N3.1(h).

Now, given any r ≥ N3.1(h) and ǫ we need to show that if all W (φ) are very close to δH(p) then

we can get the conclusion of Lemma 2.1.

First, we see that in Lemma 3.2 if all W (φ) are close to δH(p) then by Lemma 3.4 any solution

to the linear equations E′
S given in (16) satisfies that all yi,j are very close to log(δH(p)). By

continuity of 2x this means that xmi,j(1 − xi,j)
(h
2
)−m is close to δH(p), which again by continuity of

xk implies that either xi,j is close to p or to p. So the conclusion of Lemma 3.2 is that if all W (φ)

are close to δH(p), then all densities are indeed close to either p or p.

For the rest of the proof, in equations (17) and (18) we replace p and p with quantities close to

them. This means that (19) and (20) are no longer equations but approximately equal to 1. This

implies that in (21) we also have approximate equality. However, note that as both sides of (21)

involve integers, once the two sides are close enough, they must in fact be equal. Now, as the rest

of the proof only relies on the validity of (21) it follows verbatim as in the proof of Lemma 3.1.

It is interesting to note that we cannot hope to prove a stronger version of Lemma 3.1 in which

all edge weights are the same, regardless of gcd(
(

h
2

)

,m). Indeed, consider the case where H = Ch

is a cycle with h ≥ 4 vertices. For every r ≥ h+ 1, there are weighted complete graphs W with r

vertices having W (φ) = δH(p) for each φ ∈ Φ, while still some edges of W have weight p and others

have weight p. Indeed, assume that all weights of edges not incident with r ∈ W have weight p,

and the r− 1 edges incident with r have weight p. Now, if the image of φ does not contain r then,

clearly,

W (φ) = ph(1− p)(
h
2
)−h = δH(p).

On the other hand, if the image of φ contains r then

W (φ) = ph−2p2(1− p)(
h

2
)−2h+3(1− p)h−3.

But note that p2(1 − p)h−3 is just δH(p)2/h, and hence it also equals p2(1 − p)h−3. Consequently,

W (φ) = δH(p) in this case as well.
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Proof of Lemma 3.3: Let us say that (x1, y1)(x2, y2) are violating, with respect to the property

of being pairwise regular if d(x1) + d(y1)− d(x1, y1) 6= d(x2) + d(y2)− d(x2, y2) and violating with

respect to the property of being pairwise outer-regular if d(x1)+d(y1)−2d(x1, y1) 6= d(x2)+d(y2)−

2d(x2, y2). Suppose first that G is a pairwise regular graph which is neither complete nor empty.

We claim that this implies that |d(x)− d(y)| ≤ 1 for any two vertices x, y ∈ V (G). Indeed, if there

is a pair that violates this, then (x, z), (y, z) is violating for any z. Note that G cannot be regular,

otherwise (x1, y1)(x2, y2) is violating whenever (x1, y1) is and edge and (x2, y2) is not. So partition

the vertices of G into two non empty sets, V1 and V2, where all the vertices of V1 have degree s and

those of V2 have degree s− 1.

If |V1| > 1 then V1 must be a clique otherwise (x1, x2)(x2, y) is violating for any non-adjacent

x1, x2 ∈ V1 and y ∈ V2. In particular, we have t = 2s− 1. We also have that |V2| = 1 as otherwise

(x1, x2)(y1, y2) is violating for any x1, x2 ∈ V1 and y1, y2 ∈ V2. If the unique vertex v of V2 is

connected to x1 ∈ V1 but not to x2 ∈ V1 then (x1, v)(x2, v) is clearly violating, so v is either

connected to all the vertices of V1 or else is an isolated vertex. If v is an isolated vertex then s = 1,

which implies that V1 is a clique of size 2, and G is thus the complement of K1,2. If v is connected

to all the vertices of V1 then |V1| = s− 1 which is impossible, since in a graph with s vertices there

cannot be vertices with degree s. If |V1| = 1 then we must have |V2| > 1. Note that in this case

V2 must span an independent set as otherwise (x, y1)(y1, y2) is violating for any choice of adjacent

y1, y2 ∈ V2 and x ∈ V1. As G is not edgeless we infer that s− 1 = 1 implying that G is K1,2.

Suppose now that G is pairwise outer-regular and is neither complete nor empty. Following

the same reasoning as above, we must have for any two vertices x, y of G, that |d(x) − d(y)| ≤ 2.

Again, note that G cannot be regular, so partition the vertices of G into two non-empty sets, V1

and V2, where all of the vertices of V1 have degree s and all the vertices of V2 have degree s− 1 or

s− 2. If |V1| > 1 then again V1 must span a clique, as otherwise (x1, x2)(x2, y) is violating for any

x1, x2 ∈ V1 and y ∈ V2, and therefore t = 2s − 2. Note that if y ∈ V2 is connected to x ∈ V1 then

(x1, x)(x, y) is violating for any other x1 ∈ V1. Also, if |V2| ≥ 2 then any pair of vertices of V2 must

be disconnected with degree s − 1 as otherwise (x1, x2)(y1, y2) is violating for any x1, x2 ∈ V1 and

y1, y2 ∈ V2. We thus get that the degree of vertices in V2 is zero, hence either s = 1 or s = 2. The

former case implies that t = 0 and that |V1| = 2. This means that G has just one edge, which is

not an outer-regular graph. If s = 2 then |V1| = 3 implying that G is a triangle plus some isolated

vertices. If there is one such vertex then G is the complement of K1,3, and if there are two such

vertices y1, y2, then (y1, y2)(y1, v) is violating for any v ∈ V1. So assume that |V1| = 1, which implies

that |V2| ≥ 2. Let x be the unique vertex of V1, and observe that if x is connected to y1 ∈ V2 but

not to y2 ∈ V2 then (x, y1)(x, y2) is violating. So either v is connected to all the vertices of V2 or

to none of them, but note that the latter case is impossible as s > s − 1 ≥ 0. We now claim that

V2 must be edgeless. Indeed if y1, y2 ∈ V2 are connected and d(y1) ≥ d(y2) then (y1, y2)(x, y1) is

violating. We infer that the degree of the vertices of V2 is 1, so G is either K1,2, which is not outer
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regular, or K1,3.
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